| //===------------------- SSI.cpp - Creates SSI Representation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass converts a list of variables to the Static Single Information |
| // form. This is a program representation described by Scott Ananian in his |
| // Master Thesis: "The Static Single Information Form (1999)". |
| // We are building an on-demand representation, that is, we do not convert |
| // every single variable in the target function to SSI form. Rather, we receive |
| // a list of target variables that must be converted. We also do not |
| // completely convert a target variable to the SSI format. Instead, we only |
| // change the variable in the points where new information can be attached |
| // to its live range, that is, at branch points. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ssi" |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/SSI.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Dominators.h" |
| |
| using namespace llvm; |
| |
| static const std::string SSI_PHI = "SSI_phi"; |
| static const std::string SSI_SIG = "SSI_sigma"; |
| |
| STATISTIC(NumSigmaInserted, "Number of sigma functions inserted"); |
| STATISTIC(NumPhiInserted, "Number of phi functions inserted"); |
| |
| void SSI::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequiredTransitive<DominanceFrontier>(); |
| AU.addRequiredTransitive<DominatorTree>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool SSI::runOnFunction(Function &F) { |
| DT_ = &getAnalysis<DominatorTree>(); |
| return false; |
| } |
| |
| /// This methods creates the SSI representation for the list of values |
| /// received. It will only create SSI representation if a value is used |
| /// to decide a branch. Repeated values are created only once. |
| /// |
| void SSI::createSSI(SmallVectorImpl<Instruction *> &value) { |
| init(value); |
| |
| SmallPtrSet<Instruction*, 4> needConstruction; |
| for (SmallVectorImpl<Instruction*>::iterator I = value.begin(), |
| E = value.end(); I != E; ++I) |
| if (created.insert(*I)) |
| needConstruction.insert(*I); |
| |
| insertSigmaFunctions(needConstruction); |
| |
| // Test if there is a need to transform to SSI |
| if (!needConstruction.empty()) { |
| insertPhiFunctions(needConstruction); |
| renameInit(needConstruction); |
| rename(DT_->getRoot()); |
| fixPhis(); |
| } |
| |
| clean(); |
| } |
| |
| /// Insert sigma functions (a sigma function is a phi function with one |
| /// operator) |
| /// |
| void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) { |
| for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), |
| E = value.end(); I != E; ++I) { |
| for (Value::use_iterator begin = (*I)->use_begin(), |
| end = (*I)->use_end(); begin != end; ++begin) { |
| // Test if the Use of the Value is in a comparator |
| if (CmpInst *CI = dyn_cast<CmpInst>(begin)) { |
| // Iterates through all uses of CmpInst |
| for (Value::use_iterator begin_ci = CI->use_begin(), |
| end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) { |
| // Test if any use of CmpInst is in a Terminator |
| if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) { |
| insertSigma(TI, *I); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Inserts Sigma Functions in every BasicBlock successor to Terminator |
| /// Instruction TI. All inserted Sigma Function are related to Instruction I. |
| /// |
| void SSI::insertSigma(TerminatorInst *TI, Instruction *I) { |
| // Basic Block of the Terminator Instruction |
| BasicBlock *BB = TI->getParent(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { |
| // Next Basic Block |
| BasicBlock *BB_next = TI->getSuccessor(i); |
| if (BB_next != BB && |
| BB_next->getSinglePredecessor() != NULL && |
| dominateAny(BB_next, I)) { |
| PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin()); |
| PN->addIncoming(I, BB); |
| sigmas[PN] = I; |
| created.insert(PN); |
| defsites[I].push_back(BB_next); |
| ++NumSigmaInserted; |
| } |
| } |
| } |
| |
| /// Insert phi functions when necessary |
| /// |
| void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) { |
| DominanceFrontier *DF = &getAnalysis<DominanceFrontier>(); |
| for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), |
| E = value.end(); I != E; ++I) { |
| // Test if there were any sigmas for this variable |
| SmallPtrSet<BasicBlock *, 16> BB_visited; |
| |
| // Insert phi functions if there is any sigma function |
| while (!defsites[*I].empty()) { |
| |
| BasicBlock *BB = defsites[*I].back(); |
| |
| defsites[*I].pop_back(); |
| DominanceFrontier::iterator DF_BB = DF->find(BB); |
| |
| // The BB is unreachable. Skip it. |
| if (DF_BB == DF->end()) |
| continue; |
| |
| // Iterates through all the dominance frontier of BB |
| for (std::set<BasicBlock *>::iterator DF_BB_begin = |
| DF_BB->second.begin(), DF_BB_end = DF_BB->second.end(); |
| DF_BB_begin != DF_BB_end; ++DF_BB_begin) { |
| BasicBlock *BB_dominated = *DF_BB_begin; |
| |
| // Test if has not yet visited this node and if the |
| // original definition dominates this node |
| if (BB_visited.insert(BB_dominated) && |
| DT_->properlyDominates(value_original[*I], BB_dominated) && |
| dominateAny(BB_dominated, *I)) { |
| PHINode *PN = PHINode::Create( |
| (*I)->getType(), SSI_PHI, BB_dominated->begin()); |
| phis.insert(std::make_pair(PN, *I)); |
| created.insert(PN); |
| |
| defsites[*I].push_back(BB_dominated); |
| ++NumPhiInserted; |
| } |
| } |
| } |
| BB_visited.clear(); |
| } |
| } |
| |
| /// Some initialization for the rename part |
| /// |
| void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) { |
| for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), |
| E = value.end(); I != E; ++I) |
| value_stack[*I].push_back(*I); |
| } |
| |
| /// Renames all variables in the specified BasicBlock. |
| /// Only variables that need to be rename will be. |
| /// |
| void SSI::rename(BasicBlock *BB) { |
| SmallPtrSet<Instruction*, 8> defined; |
| |
| // Iterate through instructions and make appropriate renaming. |
| // For SSI_PHI (b = PHI()), store b at value_stack as a new |
| // definition of the variable it represents. |
| // For SSI_SIG (b = PHI(a)), substitute a with the current |
| // value of a, present in the value_stack. |
| // Then store bin the value_stack as the new definition of a. |
| // For all other instructions (b = OP(a, c, d, ...)), we need to substitute |
| // all operands with its current value, present in value_stack. |
| for (BasicBlock::iterator begin = BB->begin(), end = BB->end(); |
| begin != end; ++begin) { |
| Instruction *I = begin; |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions |
| Instruction* position; |
| |
| // Treat SSI_PHI |
| if ((position = getPositionPhi(PN))) { |
| value_stack[position].push_back(PN); |
| defined.insert(position); |
| // Treat SSI_SIG |
| } else if ((position = getPositionSigma(PN))) { |
| substituteUse(I); |
| value_stack[position].push_back(PN); |
| defined.insert(position); |
| } |
| |
| // Treat all other PHI functions |
| else { |
| substituteUse(I); |
| } |
| } |
| |
| // Treat all other functions |
| else { |
| substituteUse(I); |
| } |
| } |
| |
| // This loop iterates in all BasicBlocks that are successors of the current |
| // BasicBlock. For each SSI_PHI instruction found, insert an operand. |
| // This operand is the current operand in value_stack for the variable |
| // in "position". And the BasicBlock this operand represents is the current |
| // BasicBlock. |
| for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { |
| BasicBlock *BB_succ = *SI; |
| |
| for (BasicBlock::iterator begin = BB_succ->begin(), |
| notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) { |
| Instruction *I = begin; |
| PHINode *PN = dyn_cast<PHINode>(I); |
| Instruction* position; |
| if (PN && ((position = getPositionPhi(PN)))) { |
| PN->addIncoming(value_stack[position].back(), BB); |
| } |
| } |
| } |
| |
| // This loop calls rename on all children from this block. This time children |
| // refers to a successor block in the dominance tree. |
| DomTreeNode *DTN = DT_->getNode(BB); |
| for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end(); |
| begin != end; ++begin) { |
| DomTreeNodeBase<BasicBlock> *DTN_children = *begin; |
| BasicBlock *BB_children = DTN_children->getBlock(); |
| rename(BB_children); |
| } |
| |
| // Now we remove all inserted definitions of a variable from the top of |
| // the stack leaving the previous one as the top. |
| for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(), |
| DE = defined.end(); DI != DE; ++DI) |
| value_stack[*DI].pop_back(); |
| } |
| |
| /// Substitute any use in this instruction for the last definition of |
| /// the variable |
| /// |
| void SSI::substituteUse(Instruction *I) { |
| for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { |
| Value *operand = I->getOperand(i); |
| for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator |
| VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) { |
| if (operand == VI->second.front() && |
| I != VI->second.back()) { |
| PHINode *PN_I = dyn_cast<PHINode>(I); |
| PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back()); |
| |
| // If a phi created in a BasicBlock is used as an operand of another |
| // created in the same BasicBlock, this step marks this second phi, |
| // to fix this issue later. It cannot be fixed now, because the |
| // operands of the first phi are not final yet. |
| if (PN_I && PN_vs && |
| VI->second.back()->getParent() == I->getParent()) { |
| |
| phisToFix.insert(PN_I); |
| } |
| |
| I->setOperand(i, VI->second.back()); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Test if the BasicBlock BB dominates any use or definition of value. |
| /// If it dominates a phi instruction that is on the same BasicBlock, |
| /// that does not count. |
| /// |
| bool SSI::dominateAny(BasicBlock *BB, Instruction *value) { |
| for (Value::use_iterator begin = value->use_begin(), |
| end = value->use_end(); begin != end; ++begin) { |
| Instruction *I = cast<Instruction>(*begin); |
| BasicBlock *BB_father = I->getParent(); |
| if (BB == BB_father && isa<PHINode>(I)) |
| continue; |
| if (DT_->dominates(BB, BB_father)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// When there is a phi node that is created in a BasicBlock and it is used |
| /// as an operand of another phi function used in the same BasicBlock, |
| /// LLVM looks this as an error. So on the second phi, the first phi is called |
| /// P and the BasicBlock it incomes is B. This P will be replaced by the value |
| /// it has for BasicBlock B. It also includes undef values for predecessors |
| /// that were not included in the phi. |
| /// |
| void SSI::fixPhis() { |
| for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(), |
| end = phisToFix.end(); begin != end; ++begin) { |
| PHINode *PN = *begin; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
| PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i)); |
| if (PN_father && PN->getParent() == PN_father->getParent() && |
| !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) { |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| int pos = PN_father->getBasicBlockIndex(BB); |
| PN->setIncomingValue(i, PN_father->getIncomingValue(pos)); |
| } |
| } |
| } |
| |
| for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(), |
| end = phis.end(); begin != end; ++begin) { |
| PHINode *PN = begin->first; |
| BasicBlock *BB = PN->getParent(); |
| pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| SmallVector<BasicBlock*, 8> Preds(PI, PE); |
| for (unsigned size = Preds.size(); |
| PI != PE && PN->getNumIncomingValues() != size; ++PI) { |
| bool found = false; |
| for (unsigned i = 0, pn_end = PN->getNumIncomingValues(); |
| i < pn_end; ++i) { |
| if (PN->getIncomingBlock(i) == *PI) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| PN->addIncoming(UndefValue::get(PN->getType()), *PI); |
| } |
| } |
| } |
| } |
| |
| /// Return which variable (position on the vector of variables) this phi |
| /// represents on the phis list. |
| /// |
| Instruction* SSI::getPositionPhi(PHINode *PN) { |
| DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN); |
| if (val == phis.end()) |
| return 0; |
| else |
| return val->second; |
| } |
| |
| /// Return which variable (position on the vector of variables) this phi |
| /// represents on the sigmas list. |
| /// |
| Instruction* SSI::getPositionSigma(PHINode *PN) { |
| DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN); |
| if (val == sigmas.end()) |
| return 0; |
| else |
| return val->second; |
| } |
| |
| /// Initializes |
| /// |
| void SSI::init(SmallVectorImpl<Instruction *> &value) { |
| for (SmallVectorImpl<Instruction *>::iterator I = value.begin(), |
| E = value.end(); I != E; ++I) { |
| value_original[*I] = (*I)->getParent(); |
| defsites[*I].push_back((*I)->getParent()); |
| } |
| } |
| |
| /// Clean all used resources in this creation of SSI |
| /// |
| void SSI::clean() { |
| phis.clear(); |
| sigmas.clear(); |
| phisToFix.clear(); |
| |
| defsites.clear(); |
| value_stack.clear(); |
| value_original.clear(); |
| } |
| |
| /// createSSIPass - The public interface to this file... |
| /// |
| FunctionPass *llvm::createSSIPass() { return new SSI(); } |
| |
| char SSI::ID = 0; |
| static RegisterPass<SSI> X("ssi", "Static Single Information Construction"); |
| |
| /// SSIEverything - A pass that runs createSSI on every non-void variable, |
| /// intended for debugging. |
| namespace { |
| struct SSIEverything : public FunctionPass { |
| static char ID; // Pass identification, replacement for typeid |
| SSIEverything() : FunctionPass(&ID) {} |
| |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<SSI>(); |
| } |
| }; |
| } |
| |
| bool SSIEverything::runOnFunction(Function &F) { |
| SmallVector<Instruction *, 16> Insts; |
| SSI &ssi = getAnalysis<SSI>(); |
| |
| if (F.isDeclaration() || F.isIntrinsic()) return false; |
| |
| for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) |
| for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) |
| if (!I->getType()->isVoidTy()) |
| Insts.push_back(I); |
| |
| ssi.createSSI(Insts); |
| return true; |
| } |
| |
| /// createSSIEverythingPass - The public interface to this file... |
| /// |
| FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); } |
| |
| char SSIEverything::ID = 0; |
| static RegisterPass<SSIEverything> |
| Y("ssi-everything", "Static Single Information Construction"); |