| //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// \brief This pass adds instructions to enable whole quad mode for pixel |
| /// shaders. |
| /// |
| /// Whole quad mode is required for derivative computations, but it interferes |
| /// with shader side effects (stores and atomics). This pass is run on the |
| /// scheduled machine IR but before register coalescing, so that machine SSA is |
| /// available for analysis. It ensures that WQM is enabled when necessary, but |
| /// disabled around stores and atomics. |
| /// |
| /// When necessary, this pass creates a function prolog |
| /// |
| /// S_MOV_B64 LiveMask, EXEC |
| /// S_WQM_B64 EXEC, EXEC |
| /// |
| /// to enter WQM at the top of the function and surrounds blocks of Exact |
| /// instructions by |
| /// |
| /// S_AND_SAVEEXEC_B64 Tmp, LiveMask |
| /// ... |
| /// S_MOV_B64 EXEC, Tmp |
| /// |
| /// In order to avoid excessive switching during sequences of Exact |
| /// instructions, the pass first analyzes which instructions must be run in WQM |
| /// (aka which instructions produce values that lead to derivative |
| /// computations). |
| /// |
| /// Basic blocks are always exited in WQM as long as some successor needs WQM. |
| /// |
| /// There is room for improvement given better control flow analysis: |
| /// |
| /// (1) at the top level (outside of control flow statements, and as long as |
| /// kill hasn't been used), one SGPR can be saved by recovering WQM from |
| /// the LiveMask (this is implemented for the entry block). |
| /// |
| /// (2) when entire regions (e.g. if-else blocks or entire loops) only |
| /// consist of exact and don't-care instructions, the switch only has to |
| /// be done at the entry and exit points rather than potentially in each |
| /// block of the region. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "si-wqm" |
| |
| namespace { |
| |
| enum { |
| StateWQM = 0x1, |
| StateExact = 0x2, |
| }; |
| |
| struct InstrInfo { |
| char Needs = 0; |
| char OutNeeds = 0; |
| }; |
| |
| struct BlockInfo { |
| char Needs = 0; |
| char InNeeds = 0; |
| char OutNeeds = 0; |
| }; |
| |
| struct WorkItem { |
| MachineBasicBlock *MBB = nullptr; |
| MachineInstr *MI = nullptr; |
| |
| WorkItem() {} |
| WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} |
| WorkItem(MachineInstr *MI) : MI(MI) {} |
| }; |
| |
| class SIWholeQuadMode : public MachineFunctionPass { |
| private: |
| const SIInstrInfo *TII; |
| const SIRegisterInfo *TRI; |
| MachineRegisterInfo *MRI; |
| |
| DenseMap<const MachineInstr *, InstrInfo> Instructions; |
| DenseMap<MachineBasicBlock *, BlockInfo> Blocks; |
| SmallVector<const MachineInstr *, 2> ExecExports; |
| SmallVector<MachineInstr *, 1> LiveMaskQueries; |
| |
| char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); |
| void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); |
| void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); |
| char analyzeFunction(MachineFunction &MF); |
| |
| void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SaveWQM, unsigned LiveMaskReg); |
| void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SavedWQM); |
| void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); |
| |
| void lowerLiveMaskQueries(unsigned LiveMaskReg); |
| |
| public: |
| static char ID; |
| |
| SIWholeQuadMode() : |
| MachineFunctionPass(ID) { } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| const char *getPassName() const override { |
| return "SI Whole Quad Mode"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // End anonymous namespace |
| |
| char SIWholeQuadMode::ID = 0; |
| |
| INITIALIZE_PASS(SIWholeQuadMode, DEBUG_TYPE, |
| "SI Whole Quad Mode", false, false) |
| |
| char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; |
| |
| FunctionPass *llvm::createSIWholeQuadModePass() { |
| return new SIWholeQuadMode; |
| } |
| |
| // Scan instructions to determine which ones require an Exact execmask and |
| // which ones seed WQM requirements. |
| char SIWholeQuadMode::scanInstructions(MachineFunction &MF, |
| std::vector<WorkItem> &Worklist) { |
| char GlobalFlags = 0; |
| bool WQMOutputs = MF.getFunction()->hasFnAttribute("amdgpu-ps-wqm-outputs"); |
| |
| for (auto BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { |
| MachineBasicBlock &MBB = *BI; |
| |
| for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { |
| MachineInstr &MI = *II; |
| unsigned Opcode = MI.getOpcode(); |
| char Flags = 0; |
| |
| if (TII->isWQM(Opcode) || TII->isDS(Opcode)) { |
| Flags = StateWQM; |
| } else if (MI.mayStore() && TII->usesVM_CNT(MI)) { |
| Flags = StateExact; |
| } else { |
| // Handle export instructions with the exec mask valid flag set |
| if (Opcode == AMDGPU::EXP) { |
| if (MI.getOperand(4).getImm() != 0) |
| ExecExports.push_back(&MI); |
| } else if (Opcode == AMDGPU::SI_PS_LIVE) { |
| LiveMaskQueries.push_back(&MI); |
| } else if (WQMOutputs) { |
| // The function is in machine SSA form, which means that physical |
| // VGPRs correspond to shader inputs and outputs. Inputs are |
| // only used, outputs are only defined. |
| for (const MachineOperand &MO : MI.defs()) { |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| |
| if (!TRI->isVirtualRegister(Reg) && |
| TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) { |
| Flags = StateWQM; |
| break; |
| } |
| } |
| } |
| |
| if (!Flags) |
| continue; |
| } |
| |
| Instructions[&MI].Needs = Flags; |
| Worklist.push_back(&MI); |
| GlobalFlags |= Flags; |
| } |
| |
| if (WQMOutputs && MBB.succ_empty()) { |
| // This is a prolog shader. Make sure we go back to exact mode at the end. |
| Blocks[&MBB].OutNeeds = StateExact; |
| Worklist.push_back(&MBB); |
| GlobalFlags |= StateExact; |
| } |
| } |
| |
| return GlobalFlags; |
| } |
| |
| void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, |
| std::vector<WorkItem>& Worklist) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references |
| BlockInfo &BI = Blocks[MBB]; |
| |
| // Control flow-type instructions that are followed by WQM computations |
| // must themselves be in WQM. |
| if ((II.OutNeeds & StateWQM) && !(II.Needs & StateWQM) && MI.isTerminator()) { |
| Instructions[&MI].Needs = StateWQM; |
| II.Needs = StateWQM; |
| } |
| |
| // Propagate to block level |
| BI.Needs |= II.Needs; |
| if ((BI.InNeeds | II.Needs) != BI.InNeeds) { |
| BI.InNeeds |= II.Needs; |
| Worklist.push_back(MBB); |
| } |
| |
| // Propagate backwards within block |
| if (MachineInstr *PrevMI = MI.getPrevNode()) { |
| char InNeeds = II.Needs | II.OutNeeds; |
| if (!PrevMI->isPHI()) { |
| InstrInfo &PrevII = Instructions[PrevMI]; |
| if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { |
| PrevII.OutNeeds |= InNeeds; |
| Worklist.push_back(PrevMI); |
| } |
| } |
| } |
| |
| // Propagate WQM flag to instruction inputs |
| assert(II.Needs != (StateWQM | StateExact)); |
| if (II.Needs != StateWQM) |
| return; |
| |
| for (const MachineOperand &Use : MI.uses()) { |
| if (!Use.isReg() || !Use.isUse()) |
| continue; |
| |
| // At this point, physical registers appear as inputs or outputs |
| // and following them makes no sense (and would in fact be incorrect |
| // when the same VGPR is used as both an output and an input that leads |
| // to a NeedsWQM instruction). |
| // |
| // Note: VCC appears e.g. in 64-bit addition with carry - theoretically we |
| // have to trace this, in practice it happens for 64-bit computations like |
| // pointers where both dwords are followed already anyway. |
| if (!TargetRegisterInfo::isVirtualRegister(Use.getReg())) |
| continue; |
| |
| for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) { |
| InstrInfo &DefII = Instructions[&DefMI]; |
| |
| // Obviously skip if DefMI is already flagged as NeedWQM. |
| // |
| // The instruction might also be flagged as NeedExact. This happens when |
| // the result of an atomic is used in a WQM computation. In this case, |
| // the atomic must not run for helper pixels and the WQM result is |
| // undefined. |
| if (DefII.Needs != 0) |
| continue; |
| |
| DefII.Needs = StateWQM; |
| Worklist.push_back(&DefMI); |
| } |
| } |
| } |
| |
| void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, |
| std::vector<WorkItem>& Worklist) { |
| BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. |
| |
| // Propagate through instructions |
| if (!MBB.empty()) { |
| MachineInstr *LastMI = &*MBB.rbegin(); |
| InstrInfo &LastII = Instructions[LastMI]; |
| if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { |
| LastII.OutNeeds |= BI.OutNeeds; |
| Worklist.push_back(LastMI); |
| } |
| } |
| |
| // Predecessor blocks must provide for our WQM/Exact needs. |
| for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| BlockInfo &PredBI = Blocks[Pred]; |
| if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) |
| continue; |
| |
| PredBI.OutNeeds |= BI.InNeeds; |
| PredBI.InNeeds |= BI.InNeeds; |
| Worklist.push_back(Pred); |
| } |
| |
| // All successors must be prepared to accept the same set of WQM/Exact data. |
| for (MachineBasicBlock *Succ : MBB.successors()) { |
| BlockInfo &SuccBI = Blocks[Succ]; |
| if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) |
| continue; |
| |
| SuccBI.InNeeds |= BI.OutNeeds; |
| Worklist.push_back(Succ); |
| } |
| } |
| |
| char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { |
| std::vector<WorkItem> Worklist; |
| char GlobalFlags = scanInstructions(MF, Worklist); |
| |
| while (!Worklist.empty()) { |
| WorkItem WI = Worklist.back(); |
| Worklist.pop_back(); |
| |
| if (WI.MI) |
| propagateInstruction(*WI.MI, Worklist); |
| else |
| propagateBlock(*WI.MBB, Worklist); |
| } |
| |
| return GlobalFlags; |
| } |
| |
| void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SaveWQM, unsigned LiveMaskReg) { |
| if (SaveWQM) { |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), |
| SaveWQM) |
| .addReg(LiveMaskReg); |
| } else { |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC) |
| .addReg(LiveMaskReg); |
| } |
| } |
| |
| void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SavedWQM) { |
| if (SavedWQM) { |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC) |
| .addReg(SavedWQM); |
| } else { |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC); |
| } |
| } |
| |
| void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, |
| bool isEntry) { |
| auto BII = Blocks.find(&MBB); |
| if (BII == Blocks.end()) |
| return; |
| |
| const BlockInfo &BI = BII->second; |
| |
| if (!(BI.InNeeds & StateWQM)) |
| return; |
| |
| // This is a non-entry block that is WQM throughout, so no need to do |
| // anything. |
| if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact) |
| return; |
| |
| unsigned SavedWQMReg = 0; |
| bool WQMFromExec = isEntry; |
| char State = isEntry ? StateExact : StateWQM; |
| |
| auto II = MBB.getFirstNonPHI(), IE = MBB.end(); |
| while (II != IE) { |
| MachineInstr &MI = *II; |
| ++II; |
| |
| // Skip instructions that are not affected by EXEC |
| if (TII->isScalarUnit(MI) && !MI.isTerminator()) |
| continue; |
| |
| // Generic instructions such as COPY will either disappear by register |
| // coalescing or be lowered to SALU or VALU instructions. |
| if (TargetInstrInfo::isGenericOpcode(MI.getOpcode())) { |
| if (MI.getNumExplicitOperands() >= 1) { |
| const MachineOperand &Op = MI.getOperand(0); |
| if (Op.isReg()) { |
| if (TRI->isSGPRReg(*MRI, Op.getReg())) { |
| // SGPR instructions are not affected by EXEC |
| continue; |
| } |
| } |
| } |
| } |
| |
| char Needs = 0; |
| char OutNeeds = 0; |
| auto InstrInfoIt = Instructions.find(&MI); |
| if (InstrInfoIt != Instructions.end()) { |
| Needs = InstrInfoIt->second.Needs; |
| OutNeeds = InstrInfoIt->second.OutNeeds; |
| |
| // Make sure to switch to Exact mode before the end of the block when |
| // Exact and only Exact is needed further downstream. |
| if (OutNeeds == StateExact && MI.isTerminator()) { |
| assert(Needs == 0); |
| Needs = StateExact; |
| } |
| } |
| |
| // State switching |
| if (Needs && State != Needs) { |
| if (Needs == StateExact) { |
| assert(!SavedWQMReg); |
| |
| if (!WQMFromExec && (OutNeeds & StateWQM)) |
| SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); |
| |
| toExact(MBB, &MI, SavedWQMReg, LiveMaskReg); |
| } else { |
| assert(WQMFromExec == (SavedWQMReg == 0)); |
| toWQM(MBB, &MI, SavedWQMReg); |
| SavedWQMReg = 0; |
| } |
| |
| State = Needs; |
| } |
| } |
| |
| if ((BI.OutNeeds & StateWQM) && State != StateWQM) { |
| assert(WQMFromExec == (SavedWQMReg == 0)); |
| toWQM(MBB, MBB.end(), SavedWQMReg); |
| } else if (BI.OutNeeds == StateExact && State != StateExact) { |
| toExact(MBB, MBB.end(), 0, LiveMaskReg); |
| } |
| } |
| |
| void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { |
| for (MachineInstr *MI : LiveMaskQueries) { |
| const DebugLoc &DL = MI->getDebugLoc(); |
| unsigned Dest = MI->getOperand(0).getReg(); |
| BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) |
| .addReg(LiveMaskReg); |
| MI->eraseFromParent(); |
| } |
| } |
| |
| bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { |
| if (MF.getFunction()->getCallingConv() != CallingConv::AMDGPU_PS) |
| return false; |
| |
| Instructions.clear(); |
| Blocks.clear(); |
| ExecExports.clear(); |
| LiveMaskQueries.clear(); |
| |
| const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); |
| |
| TII = ST.getInstrInfo(); |
| TRI = &TII->getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| char GlobalFlags = analyzeFunction(MF); |
| if (!(GlobalFlags & StateWQM)) { |
| lowerLiveMaskQueries(AMDGPU::EXEC); |
| return !LiveMaskQueries.empty(); |
| } |
| |
| // Store a copy of the original live mask when required |
| unsigned LiveMaskReg = 0; |
| { |
| MachineBasicBlock &Entry = MF.front(); |
| MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); |
| |
| if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { |
| LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); |
| BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) |
| .addReg(AMDGPU::EXEC); |
| } |
| |
| if (GlobalFlags == StateWQM) { |
| // For a shader that needs only WQM, we can just set it once. |
| BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC); |
| |
| lowerLiveMaskQueries(LiveMaskReg); |
| // EntryMI may become invalid here |
| return true; |
| } |
| } |
| |
| lowerLiveMaskQueries(LiveMaskReg); |
| |
| // Handle the general case |
| for (auto BII : Blocks) |
| processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); |
| |
| return true; |
| } |