| //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for add, fadd, sub, and fsub. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/PatternMatch.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| namespace { |
| |
| /// Class representing coefficient of floating-point addend. |
| /// This class needs to be highly efficient, which is especially true for |
| /// the constructor. As of I write this comment, the cost of the default |
| /// constructor is merely 4-byte-store-zero (Assuming compiler is able to |
| /// perform write-merging). |
| /// |
| class FAddendCoef { |
| public: |
| // The constructor has to initialize a APFloat, which is unnecessary for |
| // most addends which have coefficient either 1 or -1. So, the constructor |
| // is expensive. In order to avoid the cost of the constructor, we should |
| // reuse some instances whenever possible. The pre-created instances |
| // FAddCombine::Add[0-5] embodies this idea. |
| // |
| FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} |
| ~FAddendCoef(); |
| |
| void set(short C) { |
| assert(!insaneIntVal(C) && "Insane coefficient"); |
| IsFp = false; IntVal = C; |
| } |
| |
| void set(const APFloat& C); |
| |
| void negate(); |
| |
| bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } |
| Value *getValue(Type *) const; |
| |
| // If possible, don't define operator+/operator- etc because these |
| // operators inevitably call FAddendCoef's constructor which is not cheap. |
| void operator=(const FAddendCoef &A); |
| void operator+=(const FAddendCoef &A); |
| void operator*=(const FAddendCoef &S); |
| |
| bool isOne() const { return isInt() && IntVal == 1; } |
| bool isTwo() const { return isInt() && IntVal == 2; } |
| bool isMinusOne() const { return isInt() && IntVal == -1; } |
| bool isMinusTwo() const { return isInt() && IntVal == -2; } |
| |
| private: |
| bool insaneIntVal(int V) { return V > 4 || V < -4; } |
| APFloat *getFpValPtr() |
| { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } |
| const APFloat *getFpValPtr() const |
| { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } |
| |
| const APFloat &getFpVal() const { |
| assert(IsFp && BufHasFpVal && "Incorret state"); |
| return *getFpValPtr(); |
| } |
| |
| APFloat &getFpVal() { |
| assert(IsFp && BufHasFpVal && "Incorret state"); |
| return *getFpValPtr(); |
| } |
| |
| bool isInt() const { return !IsFp; } |
| |
| // If the coefficient is represented by an integer, promote it to a |
| // floating point. |
| void convertToFpType(const fltSemantics &Sem); |
| |
| // Construct an APFloat from a signed integer. |
| // TODO: We should get rid of this function when APFloat can be constructed |
| // from an *SIGNED* integer. |
| APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); |
| |
| private: |
| bool IsFp; |
| |
| // True iff FpValBuf contains an instance of APFloat. |
| bool BufHasFpVal; |
| |
| // The integer coefficient of an individual addend is either 1 or -1, |
| // and we try to simplify at most 4 addends from neighboring at most |
| // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt |
| // is overkill of this end. |
| short IntVal; |
| |
| AlignedCharArrayUnion<APFloat> FpValBuf; |
| }; |
| |
| /// FAddend is used to represent floating-point addend. An addend is |
| /// represented as <C, V>, where the V is a symbolic value, and C is a |
| /// constant coefficient. A constant addend is represented as <C, 0>. |
| /// |
| class FAddend { |
| public: |
| FAddend() : Val(nullptr) {} |
| |
| Value *getSymVal() const { return Val; } |
| const FAddendCoef &getCoef() const { return Coeff; } |
| |
| bool isConstant() const { return Val == nullptr; } |
| bool isZero() const { return Coeff.isZero(); } |
| |
| void set(short Coefficient, Value *V) { |
| Coeff.set(Coefficient); |
| Val = V; |
| } |
| void set(const APFloat &Coefficient, Value *V) { |
| Coeff.set(Coefficient); |
| Val = V; |
| } |
| void set(const ConstantFP *Coefficient, Value *V) { |
| Coeff.set(Coefficient->getValueAPF()); |
| Val = V; |
| } |
| |
| void negate() { Coeff.negate(); } |
| |
| /// Drill down the U-D chain one step to find the definition of V, and |
| /// try to break the definition into one or two addends. |
| static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); |
| |
| /// Similar to FAddend::drillDownOneStep() except that the value being |
| /// splitted is the addend itself. |
| unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; |
| |
| void operator+=(const FAddend &T) { |
| assert((Val == T.Val) && "Symbolic-values disagree"); |
| Coeff += T.Coeff; |
| } |
| |
| private: |
| void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } |
| |
| // This addend has the value of "Coeff * Val". |
| Value *Val; |
| FAddendCoef Coeff; |
| }; |
| |
| /// FAddCombine is the class for optimizing an unsafe fadd/fsub along |
| /// with its neighboring at most two instructions. |
| /// |
| class FAddCombine { |
| public: |
| FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} |
| Value *simplify(Instruction *FAdd); |
| |
| private: |
| typedef SmallVector<const FAddend*, 4> AddendVect; |
| |
| Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); |
| |
| Value *performFactorization(Instruction *I); |
| |
| /// Convert given addend to a Value |
| Value *createAddendVal(const FAddend &A, bool& NeedNeg); |
| |
| /// Return the number of instructions needed to emit the N-ary addition. |
| unsigned calcInstrNumber(const AddendVect& Vect); |
| Value *createFSub(Value *Opnd0, Value *Opnd1); |
| Value *createFAdd(Value *Opnd0, Value *Opnd1); |
| Value *createFMul(Value *Opnd0, Value *Opnd1); |
| Value *createFDiv(Value *Opnd0, Value *Opnd1); |
| Value *createFNeg(Value *V); |
| Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); |
| void createInstPostProc(Instruction *NewInst, bool NoNumber = false); |
| |
| InstCombiner::BuilderTy *Builder; |
| Instruction *Instr; |
| |
| // Debugging stuff are clustered here. |
| #ifndef NDEBUG |
| unsigned CreateInstrNum; |
| void initCreateInstNum() { CreateInstrNum = 0; } |
| void incCreateInstNum() { CreateInstrNum++; } |
| #else |
| void initCreateInstNum() {} |
| void incCreateInstNum() {} |
| #endif |
| }; |
| |
| } // anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of |
| // {FAddendCoef, FAddend, FAddition, FAddCombine}. |
| // |
| //===----------------------------------------------------------------------===// |
| FAddendCoef::~FAddendCoef() { |
| if (BufHasFpVal) |
| getFpValPtr()->~APFloat(); |
| } |
| |
| void FAddendCoef::set(const APFloat& C) { |
| APFloat *P = getFpValPtr(); |
| |
| if (isInt()) { |
| // As the buffer is meanless byte stream, we cannot call |
| // APFloat::operator=(). |
| new(P) APFloat(C); |
| } else |
| *P = C; |
| |
| IsFp = BufHasFpVal = true; |
| } |
| |
| void FAddendCoef::convertToFpType(const fltSemantics &Sem) { |
| if (!isInt()) |
| return; |
| |
| APFloat *P = getFpValPtr(); |
| if (IntVal > 0) |
| new(P) APFloat(Sem, IntVal); |
| else { |
| new(P) APFloat(Sem, 0 - IntVal); |
| P->changeSign(); |
| } |
| IsFp = BufHasFpVal = true; |
| } |
| |
| APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { |
| if (Val >= 0) |
| return APFloat(Sem, Val); |
| |
| APFloat T(Sem, 0 - Val); |
| T.changeSign(); |
| |
| return T; |
| } |
| |
| void FAddendCoef::operator=(const FAddendCoef &That) { |
| if (That.isInt()) |
| set(That.IntVal); |
| else |
| set(That.getFpVal()); |
| } |
| |
| void FAddendCoef::operator+=(const FAddendCoef &That) { |
| enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; |
| if (isInt() == That.isInt()) { |
| if (isInt()) |
| IntVal += That.IntVal; |
| else |
| getFpVal().add(That.getFpVal(), RndMode); |
| return; |
| } |
| |
| if (isInt()) { |
| const APFloat &T = That.getFpVal(); |
| convertToFpType(T.getSemantics()); |
| getFpVal().add(T, RndMode); |
| return; |
| } |
| |
| APFloat &T = getFpVal(); |
| T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); |
| } |
| |
| void FAddendCoef::operator*=(const FAddendCoef &That) { |
| if (That.isOne()) |
| return; |
| |
| if (That.isMinusOne()) { |
| negate(); |
| return; |
| } |
| |
| if (isInt() && That.isInt()) { |
| int Res = IntVal * (int)That.IntVal; |
| assert(!insaneIntVal(Res) && "Insane int value"); |
| IntVal = Res; |
| return; |
| } |
| |
| const fltSemantics &Semantic = |
| isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); |
| |
| if (isInt()) |
| convertToFpType(Semantic); |
| APFloat &F0 = getFpVal(); |
| |
| if (That.isInt()) |
| F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), |
| APFloat::rmNearestTiesToEven); |
| else |
| F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); |
| } |
| |
| void FAddendCoef::negate() { |
| if (isInt()) |
| IntVal = 0 - IntVal; |
| else |
| getFpVal().changeSign(); |
| } |
| |
| Value *FAddendCoef::getValue(Type *Ty) const { |
| return isInt() ? |
| ConstantFP::get(Ty, float(IntVal)) : |
| ConstantFP::get(Ty->getContext(), getFpVal()); |
| } |
| |
| // The definition of <Val> Addends |
| // ========================================= |
| // A + B <1, A>, <1,B> |
| // A - B <1, A>, <1,B> |
| // 0 - B <-1, B> |
| // C * A, <C, A> |
| // A + C <1, A> <C, NULL> |
| // 0 +/- 0 <0, NULL> (corner case) |
| // |
| // Legend: A and B are not constant, C is constant |
| // |
| unsigned FAddend::drillValueDownOneStep |
| (Value *Val, FAddend &Addend0, FAddend &Addend1) { |
| Instruction *I = nullptr; |
| if (!Val || !(I = dyn_cast<Instruction>(Val))) |
| return 0; |
| |
| unsigned Opcode = I->getOpcode(); |
| |
| if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { |
| ConstantFP *C0, *C1; |
| Value *Opnd0 = I->getOperand(0); |
| Value *Opnd1 = I->getOperand(1); |
| if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) |
| Opnd0 = nullptr; |
| |
| if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) |
| Opnd1 = nullptr; |
| |
| if (Opnd0) { |
| if (!C0) |
| Addend0.set(1, Opnd0); |
| else |
| Addend0.set(C0, nullptr); |
| } |
| |
| if (Opnd1) { |
| FAddend &Addend = Opnd0 ? Addend1 : Addend0; |
| if (!C1) |
| Addend.set(1, Opnd1); |
| else |
| Addend.set(C1, nullptr); |
| if (Opcode == Instruction::FSub) |
| Addend.negate(); |
| } |
| |
| if (Opnd0 || Opnd1) |
| return Opnd0 && Opnd1 ? 2 : 1; |
| |
| // Both operands are zero. Weird! |
| Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); |
| return 1; |
| } |
| |
| if (I->getOpcode() == Instruction::FMul) { |
| Value *V0 = I->getOperand(0); |
| Value *V1 = I->getOperand(1); |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { |
| Addend0.set(C, V1); |
| return 1; |
| } |
| |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { |
| Addend0.set(C, V0); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Try to break *this* addend into two addends. e.g. Suppose this addend is |
| // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, |
| // i.e. <2.3, X> and <2.3, Y>. |
| // |
| unsigned FAddend::drillAddendDownOneStep |
| (FAddend &Addend0, FAddend &Addend1) const { |
| if (isConstant()) |
| return 0; |
| |
| unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); |
| if (!BreakNum || Coeff.isOne()) |
| return BreakNum; |
| |
| Addend0.Scale(Coeff); |
| |
| if (BreakNum == 2) |
| Addend1.Scale(Coeff); |
| |
| return BreakNum; |
| } |
| |
| // Try to perform following optimization on the input instruction I. Return the |
| // simplified expression if was successful; otherwise, return 0. |
| // |
| // Instruction "I" is Simplified into |
| // ------------------------------------------------------- |
| // (x * y) +/- (x * z) x * (y +/- z) |
| // (y / x) +/- (z / x) (y +/- z) / x |
| // |
| Value *FAddCombine::performFactorization(Instruction *I) { |
| assert((I->getOpcode() == Instruction::FAdd || |
| I->getOpcode() == Instruction::FSub) && "Expect add/sub"); |
| |
| Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); |
| Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); |
| |
| if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) |
| return nullptr; |
| |
| bool isMpy = false; |
| if (I0->getOpcode() == Instruction::FMul) |
| isMpy = true; |
| else if (I0->getOpcode() != Instruction::FDiv) |
| return nullptr; |
| |
| Value *Opnd0_0 = I0->getOperand(0); |
| Value *Opnd0_1 = I0->getOperand(1); |
| Value *Opnd1_0 = I1->getOperand(0); |
| Value *Opnd1_1 = I1->getOperand(1); |
| |
| // Input Instr I Factor AddSub0 AddSub1 |
| // ---------------------------------------------- |
| // (x*y) +/- (x*z) x y z |
| // (y/x) +/- (z/x) x y z |
| // |
| Value *Factor = nullptr; |
| Value *AddSub0 = nullptr, *AddSub1 = nullptr; |
| |
| if (isMpy) { |
| if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) |
| Factor = Opnd0_0; |
| else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) |
| Factor = Opnd0_1; |
| |
| if (Factor) { |
| AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; |
| AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; |
| } |
| } else if (Opnd0_1 == Opnd1_1) { |
| Factor = Opnd0_1; |
| AddSub0 = Opnd0_0; |
| AddSub1 = Opnd1_0; |
| } |
| |
| if (!Factor) |
| return nullptr; |
| |
| FastMathFlags Flags; |
| Flags.setUnsafeAlgebra(); |
| if (I0) Flags &= I->getFastMathFlags(); |
| if (I1) Flags &= I->getFastMathFlags(); |
| |
| // Create expression "NewAddSub = AddSub0 +/- AddsSub1" |
| Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? |
| createFAdd(AddSub0, AddSub1) : |
| createFSub(AddSub0, AddSub1); |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { |
| const APFloat &F = CFP->getValueAPF(); |
| if (!F.isNormal()) |
| return nullptr; |
| } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) |
| II->setFastMathFlags(Flags); |
| |
| if (isMpy) { |
| Value *RI = createFMul(Factor, NewAddSub); |
| if (Instruction *II = dyn_cast<Instruction>(RI)) |
| II->setFastMathFlags(Flags); |
| return RI; |
| } |
| |
| Value *RI = createFDiv(NewAddSub, Factor); |
| if (Instruction *II = dyn_cast<Instruction>(RI)) |
| II->setFastMathFlags(Flags); |
| return RI; |
| } |
| |
| Value *FAddCombine::simplify(Instruction *I) { |
| assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); |
| |
| // Currently we are not able to handle vector type. |
| if (I->getType()->isVectorTy()) |
| return nullptr; |
| |
| assert((I->getOpcode() == Instruction::FAdd || |
| I->getOpcode() == Instruction::FSub) && "Expect add/sub"); |
| |
| // Save the instruction before calling other member-functions. |
| Instr = I; |
| |
| FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; |
| |
| unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); |
| |
| // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. |
| unsigned Opnd0_ExpNum = 0; |
| unsigned Opnd1_ExpNum = 0; |
| |
| if (!Opnd0.isConstant()) |
| Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); |
| |
| // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. |
| if (OpndNum == 2 && !Opnd1.isConstant()) |
| Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); |
| |
| // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 |
| if (Opnd0_ExpNum && Opnd1_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd0_0); |
| AllOpnds.push_back(&Opnd1_0); |
| if (Opnd0_ExpNum == 2) |
| AllOpnds.push_back(&Opnd0_1); |
| if (Opnd1_ExpNum == 2) |
| AllOpnds.push_back(&Opnd1_1); |
| |
| // Compute instruction quota. We should save at least one instruction. |
| unsigned InstQuota = 0; |
| |
| Value *V0 = I->getOperand(0); |
| Value *V1 = I->getOperand(1); |
| InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && |
| (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; |
| |
| if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) |
| return R; |
| } |
| |
| if (OpndNum != 2) { |
| // The input instruction is : "I=0.0 +/- V". If the "V" were able to be |
| // splitted into two addends, say "V = X - Y", the instruction would have |
| // been optimized into "I = Y - X" in the previous steps. |
| // |
| const FAddendCoef &CE = Opnd0.getCoef(); |
| return CE.isOne() ? Opnd0.getSymVal() : nullptr; |
| } |
| |
| // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] |
| if (Opnd1_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd0); |
| AllOpnds.push_back(&Opnd1_0); |
| if (Opnd1_ExpNum == 2) |
| AllOpnds.push_back(&Opnd1_1); |
| |
| if (Value *R = simplifyFAdd(AllOpnds, 1)) |
| return R; |
| } |
| |
| // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] |
| if (Opnd0_ExpNum) { |
| AddendVect AllOpnds; |
| AllOpnds.push_back(&Opnd1); |
| AllOpnds.push_back(&Opnd0_0); |
| if (Opnd0_ExpNum == 2) |
| AllOpnds.push_back(&Opnd0_1); |
| |
| if (Value *R = simplifyFAdd(AllOpnds, 1)) |
| return R; |
| } |
| |
| // step 6: Try factorization as the last resort, |
| return performFactorization(I); |
| } |
| |
| Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { |
| unsigned AddendNum = Addends.size(); |
| assert(AddendNum <= 4 && "Too many addends"); |
| |
| // For saving intermediate results; |
| unsigned NextTmpIdx = 0; |
| FAddend TmpResult[3]; |
| |
| // Points to the constant addend of the resulting simplified expression. |
| // If the resulting expr has constant-addend, this constant-addend is |
| // desirable to reside at the top of the resulting expression tree. Placing |
| // constant close to supper-expr(s) will potentially reveal some optimization |
| // opportunities in super-expr(s). |
| // |
| const FAddend *ConstAdd = nullptr; |
| |
| // Simplified addends are placed <SimpVect>. |
| AddendVect SimpVect; |
| |
| // The outer loop works on one symbolic-value at a time. Suppose the input |
| // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... |
| // The symbolic-values will be processed in this order: x, y, z. |
| // |
| for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { |
| |
| const FAddend *ThisAddend = Addends[SymIdx]; |
| if (!ThisAddend) { |
| // This addend was processed before. |
| continue; |
| } |
| |
| Value *Val = ThisAddend->getSymVal(); |
| unsigned StartIdx = SimpVect.size(); |
| SimpVect.push_back(ThisAddend); |
| |
| // The inner loop collects addends sharing same symbolic-value, and these |
| // addends will be later on folded into a single addend. Following above |
| // example, if the symbolic value "y" is being processed, the inner loop |
| // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will |
| // be later on folded into "<b1+b2, y>". |
| // |
| for (unsigned SameSymIdx = SymIdx + 1; |
| SameSymIdx < AddendNum; SameSymIdx++) { |
| const FAddend *T = Addends[SameSymIdx]; |
| if (T && T->getSymVal() == Val) { |
| // Set null such that next iteration of the outer loop will not process |
| // this addend again. |
| Addends[SameSymIdx] = nullptr; |
| SimpVect.push_back(T); |
| } |
| } |
| |
| // If multiple addends share same symbolic value, fold them together. |
| if (StartIdx + 1 != SimpVect.size()) { |
| FAddend &R = TmpResult[NextTmpIdx ++]; |
| R = *SimpVect[StartIdx]; |
| for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) |
| R += *SimpVect[Idx]; |
| |
| // Pop all addends being folded and push the resulting folded addend. |
| SimpVect.resize(StartIdx); |
| if (Val) { |
| if (!R.isZero()) { |
| SimpVect.push_back(&R); |
| } |
| } else { |
| // Don't push constant addend at this time. It will be the last element |
| // of <SimpVect>. |
| ConstAdd = &R; |
| } |
| } |
| } |
| |
| assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && |
| "out-of-bound access"); |
| |
| if (ConstAdd) |
| SimpVect.push_back(ConstAdd); |
| |
| Value *Result; |
| if (!SimpVect.empty()) |
| Result = createNaryFAdd(SimpVect, InstrQuota); |
| else { |
| // The addition is folded to 0.0. |
| Result = ConstantFP::get(Instr->getType(), 0.0); |
| } |
| |
| return Result; |
| } |
| |
| Value *FAddCombine::createNaryFAdd |
| (const AddendVect &Opnds, unsigned InstrQuota) { |
| assert(!Opnds.empty() && "Expect at least one addend"); |
| |
| // Step 1: Check if the # of instructions needed exceeds the quota. |
| // |
| unsigned InstrNeeded = calcInstrNumber(Opnds); |
| if (InstrNeeded > InstrQuota) |
| return nullptr; |
| |
| initCreateInstNum(); |
| |
| // step 2: Emit the N-ary addition. |
| // Note that at most three instructions are involved in Fadd-InstCombine: the |
| // addition in question, and at most two neighboring instructions. |
| // The resulting optimized addition should have at least one less instruction |
| // than the original addition expression tree. This implies that the resulting |
| // N-ary addition has at most two instructions, and we don't need to worry |
| // about tree-height when constructing the N-ary addition. |
| |
| Value *LastVal = nullptr; |
| bool LastValNeedNeg = false; |
| |
| // Iterate the addends, creating fadd/fsub using adjacent two addends. |
| for (const FAddend *Opnd : Opnds) { |
| bool NeedNeg; |
| Value *V = createAddendVal(*Opnd, NeedNeg); |
| if (!LastVal) { |
| LastVal = V; |
| LastValNeedNeg = NeedNeg; |
| continue; |
| } |
| |
| if (LastValNeedNeg == NeedNeg) { |
| LastVal = createFAdd(LastVal, V); |
| continue; |
| } |
| |
| if (LastValNeedNeg) |
| LastVal = createFSub(V, LastVal); |
| else |
| LastVal = createFSub(LastVal, V); |
| |
| LastValNeedNeg = false; |
| } |
| |
| if (LastValNeedNeg) { |
| LastVal = createFNeg(LastVal); |
| } |
| |
| #ifndef NDEBUG |
| assert(CreateInstrNum == InstrNeeded && |
| "Inconsistent in instruction numbers"); |
| #endif |
| |
| return LastVal; |
| } |
| |
| Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder->CreateFSub(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| Value *FAddCombine::createFNeg(Value *V) { |
| Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); |
| Value *NewV = createFSub(Zero, V); |
| if (Instruction *I = dyn_cast<Instruction>(NewV)) |
| createInstPostProc(I, true); // fneg's don't receive instruction numbers. |
| return NewV; |
| } |
| |
| Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder->CreateFAdd(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder->CreateFMul(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { |
| Value *V = Builder->CreateFDiv(Opnd0, Opnd1); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| createInstPostProc(I); |
| return V; |
| } |
| |
| void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { |
| NewInstr->setDebugLoc(Instr->getDebugLoc()); |
| |
| // Keep track of the number of instruction created. |
| if (!NoNumber) |
| incCreateInstNum(); |
| |
| // Propagate fast-math flags |
| NewInstr->setFastMathFlags(Instr->getFastMathFlags()); |
| } |
| |
| // Return the number of instruction needed to emit the N-ary addition. |
| // NOTE: Keep this function in sync with createAddendVal(). |
| unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { |
| unsigned OpndNum = Opnds.size(); |
| unsigned InstrNeeded = OpndNum - 1; |
| |
| // The number of addends in the form of "(-1)*x". |
| unsigned NegOpndNum = 0; |
| |
| // Adjust the number of instructions needed to emit the N-ary add. |
| for (const FAddend *Opnd : Opnds) { |
| if (Opnd->isConstant()) |
| continue; |
| |
| const FAddendCoef &CE = Opnd->getCoef(); |
| if (CE.isMinusOne() || CE.isMinusTwo()) |
| NegOpndNum++; |
| |
| // Let the addend be "c * x". If "c == +/-1", the value of the addend |
| // is immediately available; otherwise, it needs exactly one instruction |
| // to evaluate the value. |
| if (!CE.isMinusOne() && !CE.isOne()) |
| InstrNeeded++; |
| } |
| if (NegOpndNum == OpndNum) |
| InstrNeeded++; |
| return InstrNeeded; |
| } |
| |
| // Input Addend Value NeedNeg(output) |
| // ================================================================ |
| // Constant C C false |
| // <+/-1, V> V coefficient is -1 |
| // <2/-2, V> "fadd V, V" coefficient is -2 |
| // <C, V> "fmul V, C" false |
| // |
| // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. |
| Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { |
| const FAddendCoef &Coeff = Opnd.getCoef(); |
| |
| if (Opnd.isConstant()) { |
| NeedNeg = false; |
| return Coeff.getValue(Instr->getType()); |
| } |
| |
| Value *OpndVal = Opnd.getSymVal(); |
| |
| if (Coeff.isMinusOne() || Coeff.isOne()) { |
| NeedNeg = Coeff.isMinusOne(); |
| return OpndVal; |
| } |
| |
| if (Coeff.isTwo() || Coeff.isMinusTwo()) { |
| NeedNeg = Coeff.isMinusTwo(); |
| return createFAdd(OpndVal, OpndVal); |
| } |
| |
| NeedNeg = false; |
| return createFMul(OpndVal, Coeff.getValue(Instr->getType())); |
| } |
| |
| // If one of the operands only has one non-zero bit, and if the other |
| // operand has a known-zero bit in a more significant place than it (not |
| // including the sign bit) the ripple may go up to and fill the zero, but |
| // won't change the sign. For example, (X & ~4) + 1. |
| static bool checkRippleForAdd(const APInt &Op0KnownZero, |
| const APInt &Op1KnownZero) { |
| APInt Op1MaybeOne = ~Op1KnownZero; |
| // Make sure that one of the operand has at most one bit set to 1. |
| if (Op1MaybeOne.countPopulation() != 1) |
| return false; |
| |
| // Find the most significant known 0 other than the sign bit. |
| int BitWidth = Op0KnownZero.getBitWidth(); |
| APInt Op0KnownZeroTemp(Op0KnownZero); |
| Op0KnownZeroTemp.clearBit(BitWidth - 1); |
| int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; |
| |
| int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; |
| assert(Op1OnePosition >= 0); |
| |
| // This also covers the case of no known zero, since in that case |
| // Op0ZeroPosition is -1. |
| return Op0ZeroPosition >= Op1OnePosition; |
| } |
| |
| /// Return true if we can prove that: |
| /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) |
| /// This basically requires proving that the add in the original type would not |
| /// overflow to change the sign bit or have a carry out. |
| bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, |
| Instruction &CxtI) { |
| // There are different heuristics we can use for this. Here are some simple |
| // ones. |
| |
| // If LHS and RHS each have at least two sign bits, the addition will look |
| // like |
| // |
| // XX..... + |
| // YY..... |
| // |
| // If the carry into the most significant position is 0, X and Y can't both |
| // be 1 and therefore the carry out of the addition is also 0. |
| // |
| // If the carry into the most significant position is 1, X and Y can't both |
| // be 0 and therefore the carry out of the addition is also 1. |
| // |
| // Since the carry into the most significant position is always equal to |
| // the carry out of the addition, there is no signed overflow. |
| if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && |
| ComputeNumSignBits(RHS, 0, &CxtI) > 1) |
| return true; |
| |
| unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); |
| APInt LHSKnownZero(BitWidth, 0); |
| APInt LHSKnownOne(BitWidth, 0); |
| computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); |
| |
| APInt RHSKnownZero(BitWidth, 0); |
| APInt RHSKnownOne(BitWidth, 0); |
| computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); |
| |
| // Addition of two 2's compliment numbers having opposite signs will never |
| // overflow. |
| if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || |
| (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) |
| return true; |
| |
| // Check if carry bit of addition will not cause overflow. |
| if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) |
| return true; |
| if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) |
| return true; |
| |
| return false; |
| } |
| |
| /// \brief Return true if we can prove that: |
| /// (sub LHS, RHS) === (sub nsw LHS, RHS) |
| /// This basically requires proving that the add in the original type would not |
| /// overflow to change the sign bit or have a carry out. |
| /// TODO: Handle this for Vectors. |
| bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, |
| Instruction &CxtI) { |
| // If LHS and RHS each have at least two sign bits, the subtraction |
| // cannot overflow. |
| if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && |
| ComputeNumSignBits(RHS, 0, &CxtI) > 1) |
| return true; |
| |
| unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); |
| APInt LHSKnownZero(BitWidth, 0); |
| APInt LHSKnownOne(BitWidth, 0); |
| computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); |
| |
| APInt RHSKnownZero(BitWidth, 0); |
| APInt RHSKnownOne(BitWidth, 0); |
| computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); |
| |
| // Subtraction of two 2's compliment numbers having identical signs will |
| // never overflow. |
| if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || |
| (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) |
| return true; |
| |
| // TODO: implement logic similar to checkRippleForAdd |
| return false; |
| } |
| |
| /// \brief Return true if we can prove that: |
| /// (sub LHS, RHS) === (sub nuw LHS, RHS) |
| bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, |
| Instruction &CxtI) { |
| // If the LHS is negative and the RHS is non-negative, no unsigned wrap. |
| bool LHSKnownNonNegative, LHSKnownNegative; |
| bool RHSKnownNonNegative, RHSKnownNegative; |
| ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, |
| &CxtI); |
| ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, |
| &CxtI); |
| if (LHSKnownNegative && RHSKnownNonNegative) |
| return true; |
| |
| return false; |
| } |
| |
| // Checks if any operand is negative and we can convert add to sub. |
| // This function checks for following negative patterns |
| // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) |
| // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) |
| // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even |
| static Value *checkForNegativeOperand(BinaryOperator &I, |
| InstCombiner::BuilderTy *Builder) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| // This function creates 2 instructions to replace ADD, we need at least one |
| // of LHS or RHS to have one use to ensure benefit in transform. |
| if (!LHS->hasOneUse() && !RHS->hasOneUse()) |
| return nullptr; |
| |
| Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
| const APInt *C1 = nullptr, *C2 = nullptr; |
| |
| // if ONE is on other side, swap |
| if (match(RHS, m_Add(m_Value(X), m_One()))) |
| std::swap(LHS, RHS); |
| |
| if (match(LHS, m_Add(m_Value(X), m_One()))) { |
| // if XOR on other side, swap |
| if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| std::swap(X, RHS); |
| |
| if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { |
| // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) |
| // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) |
| if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { |
| Value *NewAnd = Builder->CreateAnd(Z, *C1); |
| return Builder->CreateSub(RHS, NewAnd, "sub"); |
| } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { |
| // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) |
| // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) |
| Value *NewOr = Builder->CreateOr(Z, ~(*C1)); |
| return Builder->CreateSub(RHS, NewOr, "sub"); |
| } |
| } |
| } |
| |
| // Restore LHS and RHS |
| LHS = I.getOperand(0); |
| RHS = I.getOperand(1); |
| |
| // if XOR is on other side, swap |
| if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| std::swap(LHS, RHS); |
| |
| // C2 is ODD |
| // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) |
| // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) |
| if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) |
| if (C1->countTrailingZeros() == 0) |
| if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { |
| Value *NewOr = Builder->CreateOr(Z, ~(*C2)); |
| return Builder->CreateSub(RHS, NewOr, "sub"); |
| } |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), |
| I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // (A*B)+(A*C) -> A*(B+C) etc |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // X + (signbit) --> X ^ signbit |
| const APInt &Val = CI->getValue(); |
| if (Val.isSignBit()) |
| return BinaryOperator::CreateXor(LHS, RHS); |
| |
| // See if SimplifyDemandedBits can simplify this. This handles stuff like |
| // (X & 254)+1 -> (X&254)|1 |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // zext(bool) + C -> bool ? C + 1 : C |
| if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) |
| if (ZI->getSrcTy()->isIntegerTy(1)) |
| return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); |
| |
| Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; |
| if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { |
| uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); |
| const APInt &RHSVal = CI->getValue(); |
| unsigned ExtendAmt = 0; |
| // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. |
| // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. |
| if (XorRHS->getValue() == -RHSVal) { |
| if (RHSVal.isPowerOf2()) |
| ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; |
| else if (XorRHS->getValue().isPowerOf2()) |
| ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; |
| } |
| |
| if (ExtendAmt) { |
| APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); |
| if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) |
| ExtendAmt = 0; |
| } |
| |
| if (ExtendAmt) { |
| Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); |
| Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); |
| return BinaryOperator::CreateAShr(NewShl, ShAmt); |
| } |
| |
| // If this is a xor that was canonicalized from a sub, turn it back into |
| // a sub and fuse this add with it. |
| if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { |
| IntegerType *IT = cast<IntegerType>(I.getType()); |
| APInt LHSKnownOne(IT->getBitWidth(), 0); |
| APInt LHSKnownZero(IT->getBitWidth(), 0); |
| computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I); |
| if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) |
| return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), |
| XorLHS); |
| } |
| // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C, |
| // transform them into (X + (signbit ^ C)) |
| if (XorRHS->getValue().isSignBit()) |
| return BinaryOperator::CreateAdd(XorLHS, |
| ConstantExpr::getXor(XorRHS, CI)); |
| } |
| } |
| |
| if (isa<Constant>(RHS) && isa<PHINode>(LHS)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| if (I.getType()->getScalarType()->isIntegerTy(1)) |
| return BinaryOperator::CreateXor(LHS, RHS); |
| |
| // X + X --> X << 1 |
| if (LHS == RHS) { |
| BinaryOperator *New = |
| BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); |
| New->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| return New; |
| } |
| |
| // -A + B --> B - A |
| // -A + -B --> -(A + B) |
| if (Value *LHSV = dyn_castNegVal(LHS)) { |
| if (!isa<Constant>(RHS)) |
| if (Value *RHSV = dyn_castNegVal(RHS)) { |
| Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); |
| return BinaryOperator::CreateNeg(NewAdd); |
| } |
| |
| return BinaryOperator::CreateSub(RHS, LHSV); |
| } |
| |
| // A + -B --> A - B |
| if (!isa<Constant>(RHS)) |
| if (Value *V = dyn_castNegVal(RHS)) |
| return BinaryOperator::CreateSub(LHS, V); |
| |
| if (Value *V = checkForNegativeOperand(I, Builder)) |
| return replaceInstUsesWith(I, V); |
| |
| // A+B --> A|B iff A and B have no bits set in common. |
| if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT)) |
| return BinaryOperator::CreateOr(LHS, RHS); |
| |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| Value *X; |
| if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X |
| return BinaryOperator::CreateSub(SubOne(CRHS), X); |
| } |
| |
| if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { |
| // (X & FF00) + xx00 -> (X+xx00) & FF00 |
| Value *X; |
| ConstantInt *C2; |
| if (LHS->hasOneUse() && |
| match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && |
| CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { |
| // See if all bits from the first bit set in the Add RHS up are included |
| // in the mask. First, get the rightmost bit. |
| const APInt &AddRHSV = CRHS->getValue(); |
| |
| // Form a mask of all bits from the lowest bit added through the top. |
| APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); |
| |
| // See if the and mask includes all of these bits. |
| APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); |
| |
| if (AddRHSHighBits == AddRHSHighBitsAnd) { |
| // Okay, the xform is safe. Insert the new add pronto. |
| Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); |
| return BinaryOperator::CreateAnd(NewAdd, C2); |
| } |
| } |
| |
| // Try to fold constant add into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| } |
| |
| // add (select X 0 (sub n A)) A --> select X A n |
| { |
| SelectInst *SI = dyn_cast<SelectInst>(LHS); |
| Value *A = RHS; |
| if (!SI) { |
| SI = dyn_cast<SelectInst>(RHS); |
| A = LHS; |
| } |
| if (SI && SI->hasOneUse()) { |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| Value *N; |
| |
| // Can we fold the add into the argument of the select? |
| // We check both true and false select arguments for a matching subtract. |
| if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the true select value. |
| return SelectInst::Create(SI->getCondition(), N, A); |
| |
| if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the false select value. |
| return SelectInst::Create(SI->getCondition(), A, N); |
| } |
| } |
| |
| // Check for (add (sext x), y), see if we can merge this into an |
| // integer add followed by a sext. |
| if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { |
| // (add (sext x), cst) --> (sext (add x, cst')) |
| if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { |
| Constant *CI = |
| ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); |
| if (LHSConv->hasOneUse() && |
| ConstantExpr::getSExt(CI, I.getType()) == RHSC && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { |
| // Insert the new, smaller add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| CI, "addconv"); |
| return new SExtInst(NewAdd, I.getType()); |
| } |
| } |
| |
| // (add (sext x), (sext y)) --> (sext (add int x, y)) |
| if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { |
| // Only do this if x/y have the same type, if at last one of them has a |
| // single use (so we don't increase the number of sexts), and if the |
| // integer add will not overflow. |
| if (LHSConv->getOperand(0)->getType() == |
| RHSConv->getOperand(0)->getType() && |
| (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0), I)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0), "addconv"); |
| return new SExtInst(NewAdd, I.getType()); |
| } |
| } |
| } |
| |
| // (add (xor A, B) (and A, B)) --> (or A, B) |
| { |
| Value *A = nullptr, *B = nullptr; |
| if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && |
| (match(LHS, m_And(m_Specific(A), m_Specific(B))) || |
| match(LHS, m_And(m_Specific(B), m_Specific(A))))) |
| return BinaryOperator::CreateOr(A, B); |
| |
| if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && |
| (match(RHS, m_And(m_Specific(A), m_Specific(B))) || |
| match(RHS, m_And(m_Specific(B), m_Specific(A))))) |
| return BinaryOperator::CreateOr(A, B); |
| } |
| |
| // (add (or A, B) (and A, B)) --> (add A, B) |
| { |
| Value *A = nullptr, *B = nullptr; |
| if (match(RHS, m_Or(m_Value(A), m_Value(B))) && |
| (match(LHS, m_And(m_Specific(A), m_Specific(B))) || |
| match(LHS, m_And(m_Specific(B), m_Specific(A))))) { |
| auto *New = BinaryOperator::CreateAdd(A, B); |
| New->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| return New; |
| } |
| |
| if (match(LHS, m_Or(m_Value(A), m_Value(B))) && |
| (match(RHS, m_And(m_Specific(A), m_Specific(B))) || |
| match(RHS, m_And(m_Specific(B), m_Specific(A))))) { |
| auto *New = BinaryOperator::CreateAdd(A, B); |
| New->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| return New; |
| } |
| } |
| |
| // TODO(jingyue): Consider WillNotOverflowSignedAdd and |
| // WillNotOverflowUnsignedAdd to reduce the number of invocations of |
| // computeKnownBits. |
| if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| if (!I.hasNoUnsignedWrap() && |
| computeOverflowForUnsignedAdd(LHS, RHS, &I) == |
| OverflowResult::NeverOverflows) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = |
| SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| if (isa<Constant>(RHS)) { |
| if (isa<PHINode>(LHS)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) |
| if (Instruction *NV = FoldOpIntoSelect(I, SI)) |
| return NV; |
| } |
| |
| // -A + B --> B - A |
| // -A + -B --> -(A + B) |
| if (Value *LHSV = dyn_castFNegVal(LHS)) { |
| Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); |
| RI->copyFastMathFlags(&I); |
| return RI; |
| } |
| |
| // A + -B --> A - B |
| if (!isa<Constant>(RHS)) |
| if (Value *V = dyn_castFNegVal(RHS)) { |
| Instruction *RI = BinaryOperator::CreateFSub(LHS, V); |
| RI->copyFastMathFlags(&I); |
| return RI; |
| } |
| |
| // Check for (fadd double (sitofp x), y), see if we can merge this into an |
| // integer add followed by a promotion. |
| if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { |
| // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) |
| // ... if the constant fits in the integer value. This is useful for things |
| // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer |
| // requires a constant pool load, and generally allows the add to be better |
| // instcombined. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { |
| Constant *CI = |
| ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); |
| if (LHSConv->hasOneUse() && |
| ConstantExpr::getSIToFP(CI, I.getType()) == CFP && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| CI, "addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| |
| // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) |
| if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { |
| // Only do this if x/y have the same type, if at last one of them has a |
| // single use (so we don't increase the number of int->fp conversions), |
| // and if the integer add will not overflow. |
| if (LHSConv->getOperand(0)->getType() == |
| RHSConv->getOperand(0)->getType() && |
| (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0), I)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0),"addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| } |
| |
| // select C, 0, B + select C, A, 0 -> select C, A, B |
| { |
| Value *A1, *B1, *C1, *A2, *B2, *C2; |
| if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && |
| match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { |
| if (C1 == C2) { |
| Constant *Z1=nullptr, *Z2=nullptr; |
| Value *A, *B, *C=C1; |
| if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { |
| Z1 = dyn_cast<Constant>(A1); A = A2; |
| Z2 = dyn_cast<Constant>(B2); B = B1; |
| } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { |
| Z1 = dyn_cast<Constant>(B1); B = B2; |
| Z2 = dyn_cast<Constant>(A2); A = A1; |
| } |
| |
| if (Z1 && Z2 && |
| (I.hasNoSignedZeros() || |
| (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { |
| return SelectInst::Create(C, A, B); |
| } |
| } |
| } |
| } |
| |
| if (I.hasUnsafeAlgebra()) { |
| if (Value *V = FAddCombine(Builder).simplify(&I)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| /// Optimize pointer differences into the same array into a size. Consider: |
| /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer |
| /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. |
| /// |
| Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, |
| Type *Ty) { |
| // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize |
| // this. |
| bool Swapped = false; |
| GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; |
| |
| // For now we require one side to be the base pointer "A" or a constant |
| // GEP derived from it. |
| if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { |
| // (gep X, ...) - X |
| if (LHSGEP->getOperand(0) == RHS) { |
| GEP1 = LHSGEP; |
| Swapped = false; |
| } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { |
| // (gep X, ...) - (gep X, ...) |
| if (LHSGEP->getOperand(0)->stripPointerCasts() == |
| RHSGEP->getOperand(0)->stripPointerCasts()) { |
| GEP2 = RHSGEP; |
| GEP1 = LHSGEP; |
| Swapped = false; |
| } |
| } |
| } |
| |
| if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { |
| // X - (gep X, ...) |
| if (RHSGEP->getOperand(0) == LHS) { |
| GEP1 = RHSGEP; |
| Swapped = true; |
| } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { |
| // (gep X, ...) - (gep X, ...) |
| if (RHSGEP->getOperand(0)->stripPointerCasts() == |
| LHSGEP->getOperand(0)->stripPointerCasts()) { |
| GEP2 = LHSGEP; |
| GEP1 = RHSGEP; |
| Swapped = true; |
| } |
| } |
| } |
| |
| // Avoid duplicating the arithmetic if GEP2 has non-constant indices and |
| // multiple users. |
| if (!GEP1 || |
| (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) |
| return nullptr; |
| |
| // Emit the offset of the GEP and an intptr_t. |
| Value *Result = EmitGEPOffset(GEP1); |
| |
| // If we had a constant expression GEP on the other side offsetting the |
| // pointer, subtract it from the offset we have. |
| if (GEP2) { |
| Value *Offset = EmitGEPOffset(GEP2); |
| Result = Builder->CreateSub(Result, Offset); |
| } |
| |
| // If we have p - gep(p, ...) then we have to negate the result. |
| if (Swapped) |
| Result = Builder->CreateNeg(Result, "diff.neg"); |
| |
| return Builder->CreateIntCast(Result, Ty, true); |
| } |
| |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), |
| I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // (A*B)-(A*C) -> A*(B-C) etc |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| // If this is a 'B = x-(-A)', change to B = x+A. |
| if (Value *V = dyn_castNegVal(Op1)) { |
| BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); |
| |
| if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { |
| assert(BO->getOpcode() == Instruction::Sub && |
| "Expected a subtraction operator!"); |
| if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) |
| Res->setHasNoSignedWrap(true); |
| } else { |
| if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) |
| Res->setHasNoSignedWrap(true); |
| } |
| |
| return Res; |
| } |
| |
| if (I.getType()->isIntegerTy(1)) |
| return BinaryOperator::CreateXor(Op0, Op1); |
| |
| // Replace (-1 - A) with (~A). |
| if (match(Op0, m_AllOnes())) |
| return BinaryOperator::CreateNot(Op1); |
| |
| if (Constant *C = dyn_cast<Constant>(Op0)) { |
| // C - ~X == X + (1+C) |
| Value *X = nullptr; |
| if (match(Op1, m_Not(m_Value(X)))) |
| return BinaryOperator::CreateAdd(X, AddOne(C)); |
| |
| // Try to fold constant sub into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| // C-(X+C2) --> (C-C2)-X |
| Constant *C2; |
| if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) |
| return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); |
| |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // Fold (sub 0, (zext bool to B)) --> (sext bool to B) |
| if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) |
| if (X->getType()->getScalarType()->isIntegerTy(1)) |
| return CastInst::CreateSExtOrBitCast(X, Op1->getType()); |
| |
| // Fold (sub 0, (sext bool to B)) --> (zext bool to B) |
| if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) |
| if (X->getType()->getScalarType()->isIntegerTy(1)) |
| return CastInst::CreateZExtOrBitCast(X, Op1->getType()); |
| } |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { |
| // -(X >>u 31) -> (X >>s 31) |
| // -(X >>s 31) -> (X >>u 31) |
| if (C->isZero()) { |
| Value *X; |
| ConstantInt *CI; |
| if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && |
| // Verify we are shifting out everything but the sign bit. |
| CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) |
| return BinaryOperator::CreateAShr(X, CI); |
| |
| if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && |
| // Verify we are shifting out everything but the sign bit. |
| CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) |
| return BinaryOperator::CreateLShr(X, CI); |
| } |
| |
| // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known |
| // zero. |
| APInt IntVal = C->getValue(); |
| if ((IntVal + 1).isPowerOf2()) { |
| unsigned BitWidth = I.getType()->getScalarSizeInBits(); |
| APInt KnownZero(BitWidth, 0); |
| APInt KnownOne(BitWidth, 0); |
| computeKnownBits(&I, KnownZero, KnownOne, 0, &I); |
| if ((IntVal | KnownZero).isAllOnesValue()) { |
| return BinaryOperator::CreateXor(Op1, C); |
| } |
| } |
| } |
| |
| { |
| Value *Y; |
| // X-(X+Y) == -Y X-(Y+X) == -Y |
| if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || |
| match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) |
| return BinaryOperator::CreateNeg(Y); |
| |
| // (X-Y)-X == -Y |
| if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) |
| return BinaryOperator::CreateNeg(Y); |
| } |
| |
| // (sub (or A, B) (xor A, B)) --> (and A, B) |
| { |
| Value *A = nullptr, *B = nullptr; |
| if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && |
| (match(Op0, m_Or(m_Specific(A), m_Specific(B))) || |
| match(Op0, m_Or(m_Specific(B), m_Specific(A))))) |
| return BinaryOperator::CreateAnd(A, B); |
| } |
| |
| if (Op0->hasOneUse()) { |
| Value *Y = nullptr; |
| // ((X | Y) - X) --> (~X & Y) |
| if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) || |
| match(Op0, m_Or(m_Specific(Op1), m_Value(Y)))) |
| return BinaryOperator::CreateAnd( |
| Y, Builder->CreateNot(Op1, Op1->getName() + ".not")); |
| } |
| |
| if (Op1->hasOneUse()) { |
| Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
| Constant *C = nullptr; |
| Constant *CI = nullptr; |
| |
| // (X - (Y - Z)) --> (X + (Z - Y)). |
| if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) |
| return BinaryOperator::CreateAdd(Op0, |
| Builder->CreateSub(Z, Y, Op1->getName())); |
| |
| // (X - (X & Y)) --> (X & ~Y) |
| // |
| if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || |
| match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) |
| return BinaryOperator::CreateAnd(Op0, |
| Builder->CreateNot(Y, Y->getName() + ".not")); |
| |
| // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. |
| if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && |
| C->isNotMinSignedValue() && !C->isOneValue()) |
| return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); |
| |
| // 0 - (X << Y) -> (-X << Y) when X is freely negatable. |
| if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) |
| if (Value *XNeg = dyn_castNegVal(X)) |
| return BinaryOperator::CreateShl(XNeg, Y); |
| |
| // X - A*-B -> X + A*B |
| // X - -A*B -> X + A*B |
| Value *A, *B; |
| if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || |
| match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) |
| return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); |
| |
| // X - A*CI -> X + A*-CI |
| // X - CI*A -> X + A*-CI |
| if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) || |
| match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) { |
| Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); |
| return BinaryOperator::CreateAdd(Op0, NewMul); |
| } |
| } |
| |
| // Optimize pointer differences into the same array into a size. Consider: |
| // &A[10] - &A[0]: we should compile this to "10". |
| Value *LHSOp, *RHSOp; |
| if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && |
| match(Op1, m_PtrToInt(m_Value(RHSOp)))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) |
| return replaceInstUsesWith(I, Res); |
| |
| // trunc(p)-trunc(q) -> trunc(p-q) |
| if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && |
| match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) |
| return replaceInstUsesWith(I, Res); |
| |
| bool Changed = false; |
| if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = |
| SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // fsub nsz 0, X ==> fsub nsz -0.0, X |
| if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { |
| // Subtraction from -0.0 is the canonical form of fneg. |
| Instruction *NewI = BinaryOperator::CreateFNeg(Op1); |
| NewI->copyFastMathFlags(&I); |
| return NewI; |
| } |
| |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *NV = FoldOpIntoSelect(I, SI)) |
| return NV; |
| |
| // If this is a 'B = x-(-A)', change to B = x+A, potentially looking |
| // through FP extensions/truncations along the way. |
| if (Value *V = dyn_castFNegVal(Op1)) { |
| Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); |
| NewI->copyFastMathFlags(&I); |
| return NewI; |
| } |
| if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { |
| if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { |
| Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); |
| Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); |
| NewI->copyFastMathFlags(&I); |
| return NewI; |
| } |
| } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { |
| if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { |
| Value *NewExt = Builder->CreateFPExt(V, I.getType()); |
| Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); |
| NewI->copyFastMathFlags(&I); |
| return NewI; |
| } |
| } |
| |
| if (I.hasUnsafeAlgebra()) { |
| if (Value *V = FAddCombine(Builder).simplify(&I)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| return nullptr; |
| } |