| //===- InstCombineCalls.cpp -----------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visitCall and visitInvoke functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| STATISTIC(NumSimplified, "Number of library calls simplified"); |
| |
| /// Return the specified type promoted as it would be to pass though a va_arg |
| /// area. |
| static Type *getPromotedType(Type *Ty) { |
| if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { |
| if (ITy->getBitWidth() < 32) |
| return Type::getInt32Ty(Ty->getContext()); |
| } |
| return Ty; |
| } |
| |
| /// Given an aggregate type which ultimately holds a single scalar element, |
| /// like {{{type}}} or [1 x type], return type. |
| static Type *reduceToSingleValueType(Type *T) { |
| while (!T->isSingleValueType()) { |
| if (StructType *STy = dyn_cast<StructType>(T)) { |
| if (STy->getNumElements() == 1) |
| T = STy->getElementType(0); |
| else |
| break; |
| } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) { |
| if (ATy->getNumElements() == 1) |
| T = ATy->getElementType(); |
| else |
| break; |
| } else |
| break; |
| } |
| |
| return T; |
| } |
| |
| /// Return a constant boolean vector that has true elements in all positions |
| /// where the input constant data vector has an element with the sign bit set. |
| static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { |
| SmallVector<Constant *, 32> BoolVec; |
| IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); |
| for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { |
| Constant *Elt = V->getElementAsConstant(I); |
| assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) && |
| "Unexpected constant data vector element type"); |
| bool Sign = V->getElementType()->isIntegerTy() |
| ? cast<ConstantInt>(Elt)->isNegative() |
| : cast<ConstantFP>(Elt)->isNegative(); |
| BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); |
| } |
| return ConstantVector::get(BoolVec); |
| } |
| |
| Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { |
| unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT); |
| unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT); |
| unsigned MinAlign = std::min(DstAlign, SrcAlign); |
| unsigned CopyAlign = MI->getAlignment(); |
| |
| if (CopyAlign < MinAlign) { |
| MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false)); |
| return MI; |
| } |
| |
| // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with |
| // load/store. |
| ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2)); |
| if (!MemOpLength) return nullptr; |
| |
| // Source and destination pointer types are always "i8*" for intrinsic. See |
| // if the size is something we can handle with a single primitive load/store. |
| // A single load+store correctly handles overlapping memory in the memmove |
| // case. |
| uint64_t Size = MemOpLength->getLimitedValue(); |
| assert(Size && "0-sized memory transferring should be removed already."); |
| |
| if (Size > 8 || (Size&(Size-1))) |
| return nullptr; // If not 1/2/4/8 bytes, exit. |
| |
| // Use an integer load+store unless we can find something better. |
| unsigned SrcAddrSp = |
| cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); |
| unsigned DstAddrSp = |
| cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); |
| |
| IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); |
| Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); |
| Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); |
| |
| // Memcpy forces the use of i8* for the source and destination. That means |
| // that if you're using memcpy to move one double around, you'll get a cast |
| // from double* to i8*. We'd much rather use a double load+store rather than |
| // an i64 load+store, here because this improves the odds that the source or |
| // dest address will be promotable. See if we can find a better type than the |
| // integer datatype. |
| Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts(); |
| MDNode *CopyMD = nullptr; |
| if (StrippedDest != MI->getArgOperand(0)) { |
| Type *SrcETy = cast<PointerType>(StrippedDest->getType()) |
| ->getElementType(); |
| if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) { |
| // The SrcETy might be something like {{{double}}} or [1 x double]. Rip |
| // down through these levels if so. |
| SrcETy = reduceToSingleValueType(SrcETy); |
| |
| if (SrcETy->isSingleValueType()) { |
| NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp); |
| NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp); |
| |
| // If the memcpy has metadata describing the members, see if we can |
| // get the TBAA tag describing our copy. |
| if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { |
| if (M->getNumOperands() == 3 && M->getOperand(0) && |
| mdconst::hasa<ConstantInt>(M->getOperand(0)) && |
| mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() && |
| M->getOperand(1) && |
| mdconst::hasa<ConstantInt>(M->getOperand(1)) && |
| mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == |
| Size && |
| M->getOperand(2) && isa<MDNode>(M->getOperand(2))) |
| CopyMD = cast<MDNode>(M->getOperand(2)); |
| } |
| } |
| } |
| } |
| |
| // If the memcpy/memmove provides better alignment info than we can |
| // infer, use it. |
| SrcAlign = std::max(SrcAlign, CopyAlign); |
| DstAlign = std::max(DstAlign, CopyAlign); |
| |
| Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); |
| Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); |
| LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile()); |
| L->setAlignment(SrcAlign); |
| if (CopyMD) |
| L->setMetadata(LLVMContext::MD_tbaa, CopyMD); |
| StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile()); |
| S->setAlignment(DstAlign); |
| if (CopyMD) |
| S->setMetadata(LLVMContext::MD_tbaa, CopyMD); |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType())); |
| return MI; |
| } |
| |
| Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { |
| unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT); |
| if (MI->getAlignment() < Alignment) { |
| MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), |
| Alignment, false)); |
| return MI; |
| } |
| |
| // Extract the length and alignment and fill if they are constant. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); |
| ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); |
| if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) |
| return nullptr; |
| uint64_t Len = LenC->getLimitedValue(); |
| Alignment = MI->getAlignment(); |
| assert(Len && "0-sized memory setting should be removed already."); |
| |
| // memset(s,c,n) -> store s, c (for n=1,2,4,8) |
| if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { |
| Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. |
| |
| Value *Dest = MI->getDest(); |
| unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); |
| Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); |
| Dest = Builder->CreateBitCast(Dest, NewDstPtrTy); |
| |
| // Alignment 0 is identity for alignment 1 for memset, but not store. |
| if (Alignment == 0) Alignment = 1; |
| |
| // Extract the fill value and store. |
| uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; |
| StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest, |
| MI->isVolatile()); |
| S->setAlignment(Alignment); |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(LenC->getType())); |
| return MI; |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyX86immShift(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| bool LogicalShift = false; |
| bool ShiftLeft = false; |
| |
| switch (II.getIntrinsicID()) { |
| default: |
| return nullptr; |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_avx2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| LogicalShift = false; ShiftLeft = false; |
| break; |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| LogicalShift = true; ShiftLeft = false; |
| break; |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| LogicalShift = true; ShiftLeft = true; |
| break; |
| } |
| assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); |
| |
| // Simplify if count is constant. |
| auto Arg1 = II.getArgOperand(1); |
| auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); |
| auto CDV = dyn_cast<ConstantDataVector>(Arg1); |
| auto CInt = dyn_cast<ConstantInt>(Arg1); |
| if (!CAZ && !CDV && !CInt) |
| return nullptr; |
| |
| APInt Count(64, 0); |
| if (CDV) { |
| // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector |
| // operand to compute the shift amount. |
| auto VT = cast<VectorType>(CDV->getType()); |
| unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); |
| assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); |
| unsigned NumSubElts = 64 / BitWidth; |
| |
| // Concatenate the sub-elements to create the 64-bit value. |
| for (unsigned i = 0; i != NumSubElts; ++i) { |
| unsigned SubEltIdx = (NumSubElts - 1) - i; |
| auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); |
| Count = Count.shl(BitWidth); |
| Count |= SubElt->getValue().zextOrTrunc(64); |
| } |
| } |
| else if (CInt) |
| Count = CInt->getValue(); |
| |
| auto Vec = II.getArgOperand(0); |
| auto VT = cast<VectorType>(Vec->getType()); |
| auto SVT = VT->getElementType(); |
| unsigned VWidth = VT->getNumElements(); |
| unsigned BitWidth = SVT->getPrimitiveSizeInBits(); |
| |
| // If shift-by-zero then just return the original value. |
| if (Count == 0) |
| return Vec; |
| |
| // Handle cases when Shift >= BitWidth. |
| if (Count.uge(BitWidth)) { |
| // If LogicalShift - just return zero. |
| if (LogicalShift) |
| return ConstantAggregateZero::get(VT); |
| |
| // If ArithmeticShift - clamp Shift to (BitWidth - 1). |
| Count = APInt(64, BitWidth - 1); |
| } |
| |
| // Get a constant vector of the same type as the first operand. |
| auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); |
| auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); |
| |
| if (ShiftLeft) |
| return Builder.CreateShl(Vec, ShiftVec); |
| |
| if (LogicalShift) |
| return Builder.CreateLShr(Vec, ShiftVec); |
| |
| return Builder.CreateAShr(Vec, ShiftVec); |
| } |
| |
| // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. |
| // Unlike the generic IR shifts, the intrinsics have defined behaviour for out |
| // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). |
| static Value *simplifyX86varShift(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| bool LogicalShift = false; |
| bool ShiftLeft = false; |
| |
| switch (II.getIntrinsicID()) { |
| default: |
| return nullptr; |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| LogicalShift = false; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| LogicalShift = true; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| LogicalShift = true; |
| ShiftLeft = true; |
| break; |
| } |
| assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); |
| |
| // Simplify if all shift amounts are constant/undef. |
| auto *CShift = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!CShift) |
| return nullptr; |
| |
| auto Vec = II.getArgOperand(0); |
| auto VT = cast<VectorType>(II.getType()); |
| auto SVT = VT->getVectorElementType(); |
| int NumElts = VT->getNumElements(); |
| int BitWidth = SVT->getIntegerBitWidth(); |
| |
| // Collect each element's shift amount. |
| // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. |
| bool AnyOutOfRange = false; |
| SmallVector<int, 8> ShiftAmts; |
| for (int I = 0; I < NumElts; ++I) { |
| auto *CElt = CShift->getAggregateElement(I); |
| if (CElt && isa<UndefValue>(CElt)) { |
| ShiftAmts.push_back(-1); |
| continue; |
| } |
| |
| auto *COp = dyn_cast_or_null<ConstantInt>(CElt); |
| if (!COp) |
| return nullptr; |
| |
| // Handle out of range shifts. |
| // If LogicalShift - set to BitWidth (special case). |
| // If ArithmeticShift - set to (BitWidth - 1) (sign splat). |
| APInt ShiftVal = COp->getValue(); |
| if (ShiftVal.uge(BitWidth)) { |
| AnyOutOfRange = LogicalShift; |
| ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); |
| continue; |
| } |
| |
| ShiftAmts.push_back((int)ShiftVal.getZExtValue()); |
| } |
| |
| // If all elements out of range or UNDEF, return vector of zeros/undefs. |
| // ArithmeticShift should only hit this if they are all UNDEF. |
| auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; |
| if (llvm::all_of(ShiftAmts, OutOfRange)) { |
| SmallVector<Constant *, 8> ConstantVec; |
| for (int Idx : ShiftAmts) { |
| if (Idx < 0) { |
| ConstantVec.push_back(UndefValue::get(SVT)); |
| } else { |
| assert(LogicalShift && "Logical shift expected"); |
| ConstantVec.push_back(ConstantInt::getNullValue(SVT)); |
| } |
| } |
| return ConstantVector::get(ConstantVec); |
| } |
| |
| // We can't handle only some out of range values with generic logical shifts. |
| if (AnyOutOfRange) |
| return nullptr; |
| |
| // Build the shift amount constant vector. |
| SmallVector<Constant *, 8> ShiftVecAmts; |
| for (int Idx : ShiftAmts) { |
| if (Idx < 0) |
| ShiftVecAmts.push_back(UndefValue::get(SVT)); |
| else |
| ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); |
| } |
| auto ShiftVec = ConstantVector::get(ShiftVecAmts); |
| |
| if (ShiftLeft) |
| return Builder.CreateShl(Vec, ShiftVec); |
| |
| if (LogicalShift) |
| return Builder.CreateLShr(Vec, ShiftVec); |
| |
| return Builder.CreateAShr(Vec, ShiftVec); |
| } |
| |
| static Value *simplifyX86movmsk(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Arg = II.getArgOperand(0); |
| Type *ResTy = II.getType(); |
| Type *ArgTy = Arg->getType(); |
| |
| // movmsk(undef) -> zero as we must ensure the upper bits are zero. |
| if (isa<UndefValue>(Arg)) |
| return Constant::getNullValue(ResTy); |
| |
| // We can't easily peek through x86_mmx types. |
| if (!ArgTy->isVectorTy()) |
| return nullptr; |
| |
| auto *C = dyn_cast<Constant>(Arg); |
| if (!C) |
| return nullptr; |
| |
| // Extract signbits of the vector input and pack into integer result. |
| APInt Result(ResTy->getPrimitiveSizeInBits(), 0); |
| for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) { |
| auto *COp = C->getAggregateElement(I); |
| if (!COp) |
| return nullptr; |
| if (isa<UndefValue>(COp)) |
| continue; |
| |
| auto *CInt = dyn_cast<ConstantInt>(COp); |
| auto *CFp = dyn_cast<ConstantFP>(COp); |
| if (!CInt && !CFp) |
| return nullptr; |
| |
| if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative())) |
| Result.setBit(I); |
| } |
| |
| return Constant::getIntegerValue(ResTy, Result); |
| } |
| |
| static Value *simplifyX86insertps(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); |
| if (!CInt) |
| return nullptr; |
| |
| VectorType *VecTy = cast<VectorType>(II.getType()); |
| assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); |
| |
| // The immediate permute control byte looks like this: |
| // [3:0] - zero mask for each 32-bit lane |
| // [5:4] - select one 32-bit destination lane |
| // [7:6] - select one 32-bit source lane |
| |
| uint8_t Imm = CInt->getZExtValue(); |
| uint8_t ZMask = Imm & 0xf; |
| uint8_t DestLane = (Imm >> 4) & 0x3; |
| uint8_t SourceLane = (Imm >> 6) & 0x3; |
| |
| ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); |
| |
| // If all zero mask bits are set, this was just a weird way to |
| // generate a zero vector. |
| if (ZMask == 0xf) |
| return ZeroVector; |
| |
| // Initialize by passing all of the first source bits through. |
| uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; |
| |
| // We may replace the second operand with the zero vector. |
| Value *V1 = II.getArgOperand(1); |
| |
| if (ZMask) { |
| // If the zero mask is being used with a single input or the zero mask |
| // overrides the destination lane, this is a shuffle with the zero vector. |
| if ((II.getArgOperand(0) == II.getArgOperand(1)) || |
| (ZMask & (1 << DestLane))) { |
| V1 = ZeroVector; |
| // We may still move 32-bits of the first source vector from one lane |
| // to another. |
| ShuffleMask[DestLane] = SourceLane; |
| // The zero mask may override the previous insert operation. |
| for (unsigned i = 0; i < 4; ++i) |
| if ((ZMask >> i) & 0x1) |
| ShuffleMask[i] = i + 4; |
| } else { |
| // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? |
| return nullptr; |
| } |
| } else { |
| // Replace the selected destination lane with the selected source lane. |
| ShuffleMask[DestLane] = SourceLane + 4; |
| } |
| |
| return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); |
| } |
| |
| /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding |
| /// or conversion to a shuffle vector. |
| static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, |
| ConstantInt *CILength, ConstantInt *CIIndex, |
| InstCombiner::BuilderTy &Builder) { |
| auto LowConstantHighUndef = [&](uint64_t Val) { |
| Type *IntTy64 = Type::getInt64Ty(II.getContext()); |
| Constant *Args[] = {ConstantInt::get(IntTy64, Val), |
| UndefValue::get(IntTy64)}; |
| return ConstantVector::get(Args); |
| }; |
| |
| // See if we're dealing with constant values. |
| Constant *C0 = dyn_cast<Constant>(Op0); |
| ConstantInt *CI0 = |
| C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0)) |
| : nullptr; |
| |
| // Attempt to constant fold. |
| if (CILength && CIIndex) { |
| // From AMD documentation: "The bit index and field length are each six |
| // bits in length other bits of the field are ignored." |
| APInt APIndex = CIIndex->getValue().zextOrTrunc(6); |
| APInt APLength = CILength->getValue().zextOrTrunc(6); |
| |
| unsigned Index = APIndex.getZExtValue(); |
| |
| // From AMD documentation: "a value of zero in the field length is |
| // defined as length of 64". |
| unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| |
| // From AMD documentation: "If the sum of the bit index + length field |
| // is greater than 64, the results are undefined". |
| unsigned End = Index + Length; |
| |
| // Note that both field index and field length are 8-bit quantities. |
| // Since variables 'Index' and 'Length' are unsigned values |
| // obtained from zero-extending field index and field length |
| // respectively, their sum should never wrap around. |
| if (End > 64) |
| return UndefValue::get(II.getType()); |
| |
| // If we are inserting whole bytes, we can convert this to a shuffle. |
| // Lowering can recognize EXTRQI shuffle masks. |
| if ((Length % 8) == 0 && (Index % 8) == 0) { |
| // Convert bit indices to byte indices. |
| Length /= 8; |
| Index /= 8; |
| |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| Type *IntTy32 = Type::getInt32Ty(II.getContext()); |
| VectorType *ShufTy = VectorType::get(IntTy8, 16); |
| |
| SmallVector<Constant *, 16> ShuffleMask; |
| for (int i = 0; i != (int)Length; ++i) |
| ShuffleMask.push_back( |
| Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); |
| for (int i = Length; i != 8; ++i) |
| ShuffleMask.push_back( |
| Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); |
| for (int i = 8; i != 16; ++i) |
| ShuffleMask.push_back(UndefValue::get(IntTy32)); |
| |
| Value *SV = Builder.CreateShuffleVector( |
| Builder.CreateBitCast(Op0, ShufTy), |
| ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); |
| return Builder.CreateBitCast(SV, II.getType()); |
| } |
| |
| // Constant Fold - shift Index'th bit to lowest position and mask off |
| // Length bits. |
| if (CI0) { |
| APInt Elt = CI0->getValue(); |
| Elt = Elt.lshr(Index).zextOrTrunc(Length); |
| return LowConstantHighUndef(Elt.getZExtValue()); |
| } |
| |
| // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { |
| Value *Args[] = {Op0, CILength, CIIndex}; |
| Module *M = II.getModule(); |
| Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); |
| return Builder.CreateCall(F, Args); |
| } |
| } |
| |
| // Constant Fold - extraction from zero is always {zero, undef}. |
| if (CI0 && CI0->equalsInt(0)) |
| return LowConstantHighUndef(0); |
| |
| return nullptr; |
| } |
| |
| /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant |
| /// folding or conversion to a shuffle vector. |
| static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, |
| APInt APLength, APInt APIndex, |
| InstCombiner::BuilderTy &Builder) { |
| |
| // From AMD documentation: "The bit index and field length are each six bits |
| // in length other bits of the field are ignored." |
| APIndex = APIndex.zextOrTrunc(6); |
| APLength = APLength.zextOrTrunc(6); |
| |
| // Attempt to constant fold. |
| unsigned Index = APIndex.getZExtValue(); |
| |
| // From AMD documentation: "a value of zero in the field length is |
| // defined as length of 64". |
| unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| |
| // From AMD documentation: "If the sum of the bit index + length field |
| // is greater than 64, the results are undefined". |
| unsigned End = Index + Length; |
| |
| // Note that both field index and field length are 8-bit quantities. |
| // Since variables 'Index' and 'Length' are unsigned values |
| // obtained from zero-extending field index and field length |
| // respectively, their sum should never wrap around. |
| if (End > 64) |
| return UndefValue::get(II.getType()); |
| |
| // If we are inserting whole bytes, we can convert this to a shuffle. |
| // Lowering can recognize INSERTQI shuffle masks. |
| if ((Length % 8) == 0 && (Index % 8) == 0) { |
| // Convert bit indices to byte indices. |
| Length /= 8; |
| Index /= 8; |
| |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| Type *IntTy32 = Type::getInt32Ty(II.getContext()); |
| VectorType *ShufTy = VectorType::get(IntTy8, 16); |
| |
| SmallVector<Constant *, 16> ShuffleMask; |
| for (int i = 0; i != (int)Index; ++i) |
| ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); |
| for (int i = 0; i != (int)Length; ++i) |
| ShuffleMask.push_back( |
| Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); |
| for (int i = Index + Length; i != 8; ++i) |
| ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); |
| for (int i = 8; i != 16; ++i) |
| ShuffleMask.push_back(UndefValue::get(IntTy32)); |
| |
| Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), |
| Builder.CreateBitCast(Op1, ShufTy), |
| ConstantVector::get(ShuffleMask)); |
| return Builder.CreateBitCast(SV, II.getType()); |
| } |
| |
| // See if we're dealing with constant values. |
| Constant *C0 = dyn_cast<Constant>(Op0); |
| Constant *C1 = dyn_cast<Constant>(Op1); |
| ConstantInt *CI00 = |
| C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0)) |
| : nullptr; |
| ConstantInt *CI10 = |
| C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0)) |
| : nullptr; |
| |
| // Constant Fold - insert bottom Length bits starting at the Index'th bit. |
| if (CI00 && CI10) { |
| APInt V00 = CI00->getValue(); |
| APInt V10 = CI10->getValue(); |
| APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); |
| V00 = V00 & ~Mask; |
| V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); |
| APInt Val = V00 | V10; |
| Type *IntTy64 = Type::getInt64Ty(II.getContext()); |
| Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), |
| UndefValue::get(IntTy64)}; |
| return ConstantVector::get(Args); |
| } |
| |
| // If we were an INSERTQ call, we'll save demanded elements if we convert to |
| // INSERTQI. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| Constant *CILength = ConstantInt::get(IntTy8, Length, false); |
| Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); |
| |
| Value *Args[] = {Op0, Op1, CILength, CIIndex}; |
| Module *M = II.getModule(); |
| Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); |
| return Builder.CreateCall(F, Args); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Attempt to convert pshufb* to shufflevector if the mask is constant. |
| static Value *simplifyX86pshufb(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *VecTy = cast<VectorType>(II.getType()); |
| auto *MaskEltTy = Type::getInt32Ty(II.getContext()); |
| unsigned NumElts = VecTy->getNumElements(); |
| assert((NumElts == 16 || NumElts == 32) && |
| "Unexpected number of elements in shuffle mask!"); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| Constant *Indexes[32] = {NULL}; |
| |
| // Each byte in the shuffle control mask forms an index to permute the |
| // corresponding byte in the destination operand. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = UndefValue::get(MaskEltTy); |
| continue; |
| } |
| |
| int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); |
| |
| // If the most significant bit (bit[7]) of each byte of the shuffle |
| // control mask is set, then zero is written in the result byte. |
| // The zero vector is in the right-hand side of the resulting |
| // shufflevector. |
| |
| // The value of each index for the high 128-bit lane is the least |
| // significant 4 bits of the respective shuffle control byte. |
| Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); |
| Indexes[I] = ConstantInt::get(MaskEltTy, Index); |
| } |
| |
| auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); |
| auto V1 = II.getArgOperand(0); |
| auto V2 = Constant::getNullValue(VecTy); |
| return Builder.CreateShuffleVector(V1, V2, ShuffleMask); |
| } |
| |
| /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. |
| static Value *simplifyX86vpermilvar(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *MaskEltTy = Type::getInt32Ty(II.getContext()); |
| unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); |
| assert(NumElts == 8 || NumElts == 4 || NumElts == 2); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| Constant *Indexes[8] = {NULL}; |
| |
| // The intrinsics only read one or two bits, clear the rest. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = UndefValue::get(MaskEltTy); |
| continue; |
| } |
| |
| APInt Index = cast<ConstantInt>(COp)->getValue(); |
| Index = Index.zextOrTrunc(32).getLoBits(2); |
| |
| // The PD variants uses bit 1 to select per-lane element index, so |
| // shift down to convert to generic shuffle mask index. |
| if (II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd || |
| II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) |
| Index = Index.lshr(1); |
| |
| // The _256 variants are a bit trickier since the mask bits always index |
| // into the corresponding 128 half. In order to convert to a generic |
| // shuffle, we have to make that explicit. |
| if ((II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 || |
| II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) && |
| ((NumElts / 2) <= I)) { |
| Index += APInt(32, NumElts / 2); |
| } |
| |
| Indexes[I] = ConstantInt::get(MaskEltTy, Index); |
| } |
| |
| auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); |
| auto V1 = II.getArgOperand(0); |
| auto V2 = UndefValue::get(V1->getType()); |
| return Builder.CreateShuffleVector(V1, V2, ShuffleMask); |
| } |
| |
| /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. |
| static Value *simplifyX86vpermv(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *VecTy = cast<VectorType>(II.getType()); |
| auto *MaskEltTy = Type::getInt32Ty(II.getContext()); |
| unsigned Size = VecTy->getNumElements(); |
| assert(Size == 8 && "Unexpected shuffle mask size"); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| Constant *Indexes[8] = {NULL}; |
| |
| for (unsigned I = 0; I < Size; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = UndefValue::get(MaskEltTy); |
| continue; |
| } |
| |
| APInt Index = cast<ConstantInt>(COp)->getValue(); |
| Index = Index.zextOrTrunc(32).getLoBits(3); |
| Indexes[I] = ConstantInt::get(MaskEltTy, Index); |
| } |
| |
| auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); |
| auto V1 = II.getArgOperand(0); |
| auto V2 = UndefValue::get(VecTy); |
| return Builder.CreateShuffleVector(V1, V2, ShuffleMask); |
| } |
| |
| /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit |
| /// source vectors, unless a zero bit is set. If a zero bit is set, |
| /// then ignore that half of the mask and clear that half of the vector. |
| static Value *simplifyX86vperm2(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); |
| if (!CInt) |
| return nullptr; |
| |
| VectorType *VecTy = cast<VectorType>(II.getType()); |
| ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); |
| |
| // The immediate permute control byte looks like this: |
| // [1:0] - select 128 bits from sources for low half of destination |
| // [2] - ignore |
| // [3] - zero low half of destination |
| // [5:4] - select 128 bits from sources for high half of destination |
| // [6] - ignore |
| // [7] - zero high half of destination |
| |
| uint8_t Imm = CInt->getZExtValue(); |
| |
| bool LowHalfZero = Imm & 0x08; |
| bool HighHalfZero = Imm & 0x80; |
| |
| // If both zero mask bits are set, this was just a weird way to |
| // generate a zero vector. |
| if (LowHalfZero && HighHalfZero) |
| return ZeroVector; |
| |
| // If 0 or 1 zero mask bits are set, this is a simple shuffle. |
| unsigned NumElts = VecTy->getNumElements(); |
| unsigned HalfSize = NumElts / 2; |
| SmallVector<uint32_t, 8> ShuffleMask(NumElts); |
| |
| // The high bit of the selection field chooses the 1st or 2nd operand. |
| bool LowInputSelect = Imm & 0x02; |
| bool HighInputSelect = Imm & 0x20; |
| |
| // The low bit of the selection field chooses the low or high half |
| // of the selected operand. |
| bool LowHalfSelect = Imm & 0x01; |
| bool HighHalfSelect = Imm & 0x10; |
| |
| // Determine which operand(s) are actually in use for this instruction. |
| Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); |
| Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); |
| |
| // If needed, replace operands based on zero mask. |
| V0 = LowHalfZero ? ZeroVector : V0; |
| V1 = HighHalfZero ? ZeroVector : V1; |
| |
| // Permute low half of result. |
| unsigned StartIndex = LowHalfSelect ? HalfSize : 0; |
| for (unsigned i = 0; i < HalfSize; ++i) |
| ShuffleMask[i] = StartIndex + i; |
| |
| // Permute high half of result. |
| StartIndex = HighHalfSelect ? HalfSize : 0; |
| StartIndex += NumElts; |
| for (unsigned i = 0; i < HalfSize; ++i) |
| ShuffleMask[i + HalfSize] = StartIndex + i; |
| |
| return Builder.CreateShuffleVector(V0, V1, ShuffleMask); |
| } |
| |
| /// Decode XOP integer vector comparison intrinsics. |
| static Value *simplifyX86vpcom(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder, |
| bool IsSigned) { |
| if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) { |
| uint64_t Imm = CInt->getZExtValue() & 0x7; |
| VectorType *VecTy = cast<VectorType>(II.getType()); |
| CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| |
| switch (Imm) { |
| case 0x0: |
| Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| break; |
| case 0x1: |
| Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| break; |
| case 0x2: |
| Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| break; |
| case 0x3: |
| Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| break; |
| case 0x4: |
| Pred = ICmpInst::ICMP_EQ; break; |
| case 0x5: |
| Pred = ICmpInst::ICMP_NE; break; |
| case 0x6: |
| return ConstantInt::getSigned(VecTy, 0); // FALSE |
| case 0x7: |
| return ConstantInt::getSigned(VecTy, -1); // TRUE |
| } |
| |
| if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), |
| II.getArgOperand(1))) |
| return Builder.CreateSExtOrTrunc(Cmp, VecTy); |
| } |
| return nullptr; |
| } |
| |
| static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) { |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| |
| // fmin(x, x) -> x |
| if (Arg0 == Arg1) |
| return Arg0; |
| |
| const auto *C1 = dyn_cast<ConstantFP>(Arg1); |
| |
| // fmin(x, nan) -> x |
| if (C1 && C1->isNaN()) |
| return Arg0; |
| |
| // This is the value because if undef were NaN, we would return the other |
| // value and cannot return a NaN unless both operands are. |
| // |
| // fmin(undef, x) -> x |
| if (isa<UndefValue>(Arg0)) |
| return Arg1; |
| |
| // fmin(x, undef) -> x |
| if (isa<UndefValue>(Arg1)) |
| return Arg0; |
| |
| Value *X = nullptr; |
| Value *Y = nullptr; |
| if (II.getIntrinsicID() == Intrinsic::minnum) { |
| // fmin(x, fmin(x, y)) -> fmin(x, y) |
| // fmin(y, fmin(x, y)) -> fmin(x, y) |
| if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) { |
| if (Arg0 == X || Arg0 == Y) |
| return Arg1; |
| } |
| |
| // fmin(fmin(x, y), x) -> fmin(x, y) |
| // fmin(fmin(x, y), y) -> fmin(x, y) |
| if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) { |
| if (Arg1 == X || Arg1 == Y) |
| return Arg0; |
| } |
| |
| // TODO: fmin(nnan x, inf) -> x |
| // TODO: fmin(nnan ninf x, flt_max) -> x |
| if (C1 && C1->isInfinity()) { |
| // fmin(x, -inf) -> -inf |
| if (C1->isNegative()) |
| return Arg1; |
| } |
| } else { |
| assert(II.getIntrinsicID() == Intrinsic::maxnum); |
| // fmax(x, fmax(x, y)) -> fmax(x, y) |
| // fmax(y, fmax(x, y)) -> fmax(x, y) |
| if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) { |
| if (Arg0 == X || Arg0 == Y) |
| return Arg1; |
| } |
| |
| // fmax(fmax(x, y), x) -> fmax(x, y) |
| // fmax(fmax(x, y), y) -> fmax(x, y) |
| if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) { |
| if (Arg1 == X || Arg1 == Y) |
| return Arg0; |
| } |
| |
| // TODO: fmax(nnan x, -inf) -> x |
| // TODO: fmax(nnan ninf x, -flt_max) -> x |
| if (C1 && C1->isInfinity()) { |
| // fmax(x, inf) -> inf |
| if (!C1->isNegative()) |
| return Arg1; |
| } |
| } |
| return nullptr; |
| } |
| |
| static bool maskIsAllOneOrUndef(Value *Mask) { |
| auto *ConstMask = dyn_cast<Constant>(Mask); |
| if (!ConstMask) |
| return false; |
| if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) |
| return true; |
| for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; |
| ++I) { |
| if (auto *MaskElt = ConstMask->getAggregateElement(I)) |
| if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) |
| continue; |
| return false; |
| } |
| return true; |
| } |
| |
| static Value *simplifyMaskedLoad(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| // If the mask is all ones or undefs, this is a plain vector load of the 1st |
| // argument. |
| if (maskIsAllOneOrUndef(II.getArgOperand(2))) { |
| Value *LoadPtr = II.getArgOperand(0); |
| unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue(); |
| return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload"); |
| } |
| |
| return nullptr; |
| } |
| |
| static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) { |
| auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); |
| if (!ConstMask) |
| return nullptr; |
| |
| // If the mask is all zeros, this instruction does nothing. |
| if (ConstMask->isNullValue()) |
| return IC.eraseInstFromFunction(II); |
| |
| // If the mask is all ones, this is a plain vector store of the 1st argument. |
| if (ConstMask->isAllOnesValue()) { |
| Value *StorePtr = II.getArgOperand(1); |
| unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue(); |
| return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); |
| } |
| |
| return nullptr; |
| } |
| |
| static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) { |
| // If the mask is all zeros, return the "passthru" argument of the gather. |
| auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2)); |
| if (ConstMask && ConstMask->isNullValue()) |
| return IC.replaceInstUsesWith(II, II.getArgOperand(3)); |
| |
| return nullptr; |
| } |
| |
| static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) { |
| // If the mask is all zeros, a scatter does nothing. |
| auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); |
| if (ConstMask && ConstMask->isNullValue()) |
| return IC.eraseInstFromFunction(II); |
| |
| return nullptr; |
| } |
| |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { |
| Value *Ptr = II.getOperand(0); |
| Value *Mask = II.getOperand(1); |
| Constant *ZeroVec = Constant::getNullValue(II.getType()); |
| |
| // Special case a zero mask since that's not a ConstantDataVector. |
| // This masked load instruction creates a zero vector. |
| if (isa<ConstantAggregateZero>(Mask)) |
| return IC.replaceInstUsesWith(II, ZeroVec); |
| |
| auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); |
| if (!ConstMask) |
| return nullptr; |
| |
| // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic |
| // to allow target-independent optimizations. |
| |
| // First, cast the x86 intrinsic scalar pointer to a vector pointer to match |
| // the LLVM intrinsic definition for the pointer argument. |
| unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); |
| PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); |
| Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); |
| |
| // Second, convert the x86 XMM integer vector mask to a vector of bools based |
| // on each element's most significant bit (the sign bit). |
| Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); |
| |
| // The pass-through vector for an x86 masked load is a zero vector. |
| CallInst *NewMaskedLoad = |
| IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); |
| return IC.replaceInstUsesWith(II, NewMaskedLoad); |
| } |
| |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { |
| Value *Ptr = II.getOperand(0); |
| Value *Mask = II.getOperand(1); |
| Value *Vec = II.getOperand(2); |
| |
| // Special case a zero mask since that's not a ConstantDataVector: |
| // this masked store instruction does nothing. |
| if (isa<ConstantAggregateZero>(Mask)) { |
| IC.eraseInstFromFunction(II); |
| return true; |
| } |
| |
| // The SSE2 version is too weird (eg, unaligned but non-temporal) to do |
| // anything else at this level. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) |
| return false; |
| |
| auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); |
| if (!ConstMask) |
| return false; |
| |
| // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic |
| // to allow target-independent optimizations. |
| |
| // First, cast the x86 intrinsic scalar pointer to a vector pointer to match |
| // the LLVM intrinsic definition for the pointer argument. |
| unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); |
| PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); |
| Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); |
| |
| // Second, convert the x86 XMM integer vector mask to a vector of bools based |
| // on each element's most significant bit (the sign bit). |
| Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); |
| |
| IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask); |
| |
| // 'Replace uses' doesn't work for stores. Erase the original masked store. |
| IC.eraseInstFromFunction(II); |
| return true; |
| } |
| |
| // Returns true iff the 2 intrinsics have the same operands, limiting the |
| // comparison to the first NumOperands. |
| static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, |
| unsigned NumOperands) { |
| assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); |
| assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); |
| for (unsigned i = 0; i < NumOperands; i++) |
| if (I.getArgOperand(i) != E.getArgOperand(i)) |
| return false; |
| return true; |
| } |
| |
| // Remove trivially empty start/end intrinsic ranges, i.e. a start |
| // immediately followed by an end (ignoring debuginfo or other |
| // start/end intrinsics in between). As this handles only the most trivial |
| // cases, tracking the nesting level is not needed: |
| // |
| // call @llvm.foo.start(i1 0) ; &I |
| // call @llvm.foo.start(i1 0) |
| // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed |
| // call @llvm.foo.end(i1 0) |
| static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, |
| unsigned EndID, InstCombiner &IC) { |
| assert(I.getIntrinsicID() == StartID && |
| "Start intrinsic does not have expected ID"); |
| BasicBlock::iterator BI(I), BE(I.getParent()->end()); |
| for (++BI; BI != BE; ++BI) { |
| if (auto *E = dyn_cast<IntrinsicInst>(BI)) { |
| if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID) |
| continue; |
| if (E->getIntrinsicID() == EndID && |
| haveSameOperands(I, *E, E->getNumArgOperands())) { |
| IC.eraseInstFromFunction(*E); |
| IC.eraseInstFromFunction(I); |
| return true; |
| } |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { |
| removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { |
| removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); |
| return nullptr; |
| } |
| |
| /// CallInst simplification. This mostly only handles folding of intrinsic |
| /// instructions. For normal calls, it allows visitCallSite to do the heavy |
| /// lifting. |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) { |
| auto Args = CI.arg_operands(); |
| if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL, |
| TLI, DT, AC)) |
| return replaceInstUsesWith(CI, V); |
| |
| if (isFreeCall(&CI, TLI)) |
| return visitFree(CI); |
| |
| // If the caller function is nounwind, mark the call as nounwind, even if the |
| // callee isn't. |
| if (CI.getParent()->getParent()->doesNotThrow() && |
| !CI.doesNotThrow()) { |
| CI.setDoesNotThrow(); |
| return &CI; |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); |
| if (!II) return visitCallSite(&CI); |
| |
| // Intrinsics cannot occur in an invoke, so handle them here instead of in |
| // visitCallSite. |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { |
| bool Changed = false; |
| |
| // memmove/cpy/set of zero bytes is a noop. |
| if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { |
| if (NumBytes->isNullValue()) |
| return eraseInstFromFunction(CI); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) |
| if (CI->getZExtValue() == 1) { |
| // Replace the instruction with just byte operations. We would |
| // transform other cases to loads/stores, but we don't know if |
| // alignment is sufficient. |
| } |
| } |
| |
| // No other transformations apply to volatile transfers. |
| if (MI->isVolatile()) |
| return nullptr; |
| |
| // If we have a memmove and the source operation is a constant global, |
| // then the source and dest pointers can't alias, so we can change this |
| // into a call to memcpy. |
| if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { |
| if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) |
| if (GVSrc->isConstant()) { |
| Module *M = CI.getModule(); |
| Intrinsic::ID MemCpyID = Intrinsic::memcpy; |
| Type *Tys[3] = { CI.getArgOperand(0)->getType(), |
| CI.getArgOperand(1)->getType(), |
| CI.getArgOperand(2)->getType() }; |
| CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); |
| Changed = true; |
| } |
| } |
| |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { |
| // memmove(x,x,size) -> noop. |
| if (MTI->getSource() == MTI->getDest()) |
| return eraseInstFromFunction(CI); |
| } |
| |
| // If we can determine a pointer alignment that is bigger than currently |
| // set, update the alignment. |
| if (isa<MemTransferInst>(MI)) { |
| if (Instruction *I = SimplifyMemTransfer(MI)) |
| return I; |
| } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { |
| if (Instruction *I = SimplifyMemSet(MSI)) |
| return I; |
| } |
| |
| if (Changed) return II; |
| } |
| |
| auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, |
| unsigned DemandedWidth) { |
| APInt UndefElts(Width, 0); |
| APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); |
| return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); |
| }; |
| auto SimplifyDemandedVectorEltsHigh = [this](Value *Op, unsigned Width, |
| unsigned DemandedWidth) { |
| APInt UndefElts(Width, 0); |
| APInt DemandedElts = APInt::getHighBitsSet(Width, DemandedWidth); |
| return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); |
| }; |
| |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::objectsize: { |
| uint64_t Size; |
| if (getObjectSize(II->getArgOperand(0), Size, DL, TLI)) { |
| APInt APSize(II->getType()->getIntegerBitWidth(), Size); |
| // Equality check to be sure that `Size` can fit in a value of type |
| // `II->getType()` |
| if (APSize == Size) |
| return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), APSize)); |
| } |
| return nullptr; |
| } |
| case Intrinsic::bswap: { |
| Value *IIOperand = II->getArgOperand(0); |
| Value *X = nullptr; |
| |
| // bswap(bswap(x)) -> x |
| if (match(IIOperand, m_BSwap(m_Value(X)))) |
| return replaceInstUsesWith(CI, X); |
| |
| // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) |
| if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { |
| unsigned C = X->getType()->getPrimitiveSizeInBits() - |
| IIOperand->getType()->getPrimitiveSizeInBits(); |
| Value *CV = ConstantInt::get(X->getType(), C); |
| Value *V = Builder->CreateLShr(X, CV); |
| return new TruncInst(V, IIOperand->getType()); |
| } |
| break; |
| } |
| |
| case Intrinsic::bitreverse: { |
| Value *IIOperand = II->getArgOperand(0); |
| Value *X = nullptr; |
| |
| // bitreverse(bitreverse(x)) -> x |
| if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X)))) |
| return replaceInstUsesWith(CI, X); |
| break; |
| } |
| |
| case Intrinsic::masked_load: |
| if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder)) |
| return replaceInstUsesWith(CI, SimplifiedMaskedOp); |
| break; |
| case Intrinsic::masked_store: |
| return simplifyMaskedStore(*II, *this); |
| case Intrinsic::masked_gather: |
| return simplifyMaskedGather(*II, *this); |
| case Intrinsic::masked_scatter: |
| return simplifyMaskedScatter(*II, *this); |
| |
| case Intrinsic::powi: |
| if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { |
| // powi(x, 0) -> 1.0 |
| if (Power->isZero()) |
| return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); |
| // powi(x, 1) -> x |
| if (Power->isOne()) |
| return replaceInstUsesWith(CI, II->getArgOperand(0)); |
| // powi(x, -1) -> 1/x |
| if (Power->isAllOnesValue()) |
| return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), |
| II->getArgOperand(0)); |
| } |
| break; |
| case Intrinsic::cttz: { |
| // If all bits below the first known one are known zero, |
| // this value is constant. |
| IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); |
| // FIXME: Try to simplify vectors of integers. |
| if (!IT) break; |
| uint32_t BitWidth = IT->getBitWidth(); |
| APInt KnownZero(BitWidth, 0); |
| APInt KnownOne(BitWidth, 0); |
| computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II); |
| unsigned TrailingZeros = KnownOne.countTrailingZeros(); |
| APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); |
| if ((Mask & KnownZero) == Mask) |
| return replaceInstUsesWith(CI, ConstantInt::get(IT, |
| APInt(BitWidth, TrailingZeros))); |
| |
| } |
| break; |
| case Intrinsic::ctlz: { |
| // If all bits above the first known one are known zero, |
| // this value is constant. |
| IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); |
| // FIXME: Try to simplify vectors of integers. |
| if (!IT) break; |
| uint32_t BitWidth = IT->getBitWidth(); |
| APInt KnownZero(BitWidth, 0); |
| APInt KnownOne(BitWidth, 0); |
| computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II); |
| unsigned LeadingZeros = KnownOne.countLeadingZeros(); |
| APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); |
| if ((Mask & KnownZero) == Mask) |
| return replaceInstUsesWith(CI, ConstantInt::get(IT, |
| APInt(BitWidth, LeadingZeros))); |
| |
| } |
| break; |
| |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| if (isa<Constant>(II->getArgOperand(0)) && |
| !isa<Constant>(II->getArgOperand(1))) { |
| // Canonicalize constants into the RHS. |
| Value *LHS = II->getArgOperand(0); |
| II->setArgOperand(0, II->getArgOperand(1)); |
| II->setArgOperand(1, LHS); |
| return II; |
| } |
| // fall through |
| |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: { |
| OverflowCheckFlavor OCF = |
| IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID()); |
| assert(OCF != OCF_INVALID && "unexpected!"); |
| |
| Value *OperationResult = nullptr; |
| Constant *OverflowResult = nullptr; |
| if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1), |
| *II, OperationResult, OverflowResult)) |
| return CreateOverflowTuple(II, OperationResult, OverflowResult); |
| |
| break; |
| } |
| |
| case Intrinsic::minnum: |
| case Intrinsic::maxnum: { |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| // Canonicalize constants to the RHS. |
| if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) { |
| II->setArgOperand(0, Arg1); |
| II->setArgOperand(1, Arg0); |
| return II; |
| } |
| if (Value *V = simplifyMinnumMaxnum(*II)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| } |
| case Intrinsic::ppc_altivec_lvx: |
| case Intrinsic::ppc_altivec_lvxl: |
| // Turn PPC lvx -> load if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >= |
| 16) { |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), |
| PointerType::getUnqual(II->getType())); |
| return new LoadInst(Ptr); |
| } |
| break; |
| case Intrinsic::ppc_vsx_lxvw4x: |
| case Intrinsic::ppc_vsx_lxvd2x: { |
| // Turn PPC VSX loads into normal loads. |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), |
| PointerType::getUnqual(II->getType())); |
| return new LoadInst(Ptr, Twine(""), false, 1); |
| } |
| case Intrinsic::ppc_altivec_stvx: |
| case Intrinsic::ppc_altivec_stvxl: |
| // Turn stvx -> store if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >= |
| 16) { |
| Type *OpPtrTy = |
| PointerType::getUnqual(II->getArgOperand(0)->getType()); |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); |
| return new StoreInst(II->getArgOperand(0), Ptr); |
| } |
| break; |
| case Intrinsic::ppc_vsx_stxvw4x: |
| case Intrinsic::ppc_vsx_stxvd2x: { |
| // Turn PPC VSX stores into normal stores. |
| Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); |
| return new StoreInst(II->getArgOperand(0), Ptr, false, 1); |
| } |
| case Intrinsic::ppc_qpx_qvlfs: |
| // Turn PPC QPX qvlfs -> load if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >= |
| 16) { |
| Type *VTy = VectorType::get(Builder->getFloatTy(), |
| II->getType()->getVectorNumElements()); |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), |
| PointerType::getUnqual(VTy)); |
| Value *Load = Builder->CreateLoad(Ptr); |
| return new FPExtInst(Load, II->getType()); |
| } |
| break; |
| case Intrinsic::ppc_qpx_qvlfd: |
| // Turn PPC QPX qvlfd -> load if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >= |
| 32) { |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), |
| PointerType::getUnqual(II->getType())); |
| return new LoadInst(Ptr); |
| } |
| break; |
| case Intrinsic::ppc_qpx_qvstfs: |
| // Turn PPC QPX qvstfs -> store if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >= |
| 16) { |
| Type *VTy = VectorType::get(Builder->getFloatTy(), |
| II->getArgOperand(0)->getType()->getVectorNumElements()); |
| Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy); |
| Type *OpPtrTy = PointerType::getUnqual(VTy); |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); |
| return new StoreInst(TOp, Ptr); |
| } |
| break; |
| case Intrinsic::ppc_qpx_qvstfd: |
| // Turn PPC QPX qvstfd -> store if the pointer is known aligned. |
| if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >= |
| 32) { |
| Type *OpPtrTy = |
| PointerType::getUnqual(II->getArgOperand(0)->getType()); |
| Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); |
| return new StoreInst(II->getArgOperand(0), Ptr); |
| } |
| break; |
| |
| case Intrinsic::x86_vcvtph2ps_128: |
| case Intrinsic::x86_vcvtph2ps_256: { |
| auto Arg = II->getArgOperand(0); |
| auto ArgType = cast<VectorType>(Arg->getType()); |
| auto RetType = cast<VectorType>(II->getType()); |
| unsigned ArgWidth = ArgType->getNumElements(); |
| unsigned RetWidth = RetType->getNumElements(); |
| assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); |
| assert(ArgType->isIntOrIntVectorTy() && |
| ArgType->getScalarSizeInBits() == 16 && |
| "CVTPH2PS input type should be 16-bit integer vector"); |
| assert(RetType->getScalarType()->isFloatTy() && |
| "CVTPH2PS output type should be 32-bit float vector"); |
| |
| // Constant folding: Convert to generic half to single conversion. |
| if (isa<ConstantAggregateZero>(Arg)) |
| return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); |
| |
| if (isa<ConstantDataVector>(Arg)) { |
| auto VectorHalfAsShorts = Arg; |
| if (RetWidth < ArgWidth) { |
| SmallVector<uint32_t, 8> SubVecMask; |
| for (unsigned i = 0; i != RetWidth; ++i) |
| SubVecMask.push_back((int)i); |
| VectorHalfAsShorts = Builder->CreateShuffleVector( |
| Arg, UndefValue::get(ArgType), SubVecMask); |
| } |
| |
| auto VectorHalfType = |
| VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); |
| auto VectorHalfs = |
| Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType); |
| auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType); |
| return replaceInstUsesWith(*II, VectorFloats); |
| } |
| |
| // We only use the lowest lanes of the argument. |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { |
| II->setArgOperand(0, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse_cvtss2si: |
| case Intrinsic::x86_sse_cvtss2si64: |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse2_cvtsd2si: |
| case Intrinsic::x86_sse2_cvtsd2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: { |
| // These intrinsics only demand the 0th element of their input vectors. If |
| // we can simplify the input based on that, do so now. |
| Value *Arg = II->getArgOperand(0); |
| unsigned VWidth = Arg->getType()->getVectorNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { |
| II->setArgOperand(0, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_mmx_pmovmskb: |
| case Intrinsic::x86_sse_movmsk_ps: |
| case Intrinsic::x86_sse2_movmsk_pd: |
| case Intrinsic::x86_sse2_pmovmskb_128: |
| case Intrinsic::x86_avx_movmsk_pd_256: |
| case Intrinsic::x86_avx_movmsk_ps_256: |
| case Intrinsic::x86_avx2_pmovmskb: { |
| if (Value *V = simplifyX86movmsk(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| } |
| |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| // These intrinsics only demand the 0th element of their input vectors. If |
| // we can simplify the input based on that, do so now. |
| bool MadeChange = false; |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| unsigned VWidth = Arg0->getType()->getVectorNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { |
| II->setArgOperand(0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { |
| II->setArgOperand(1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) |
| return II; |
| break; |
| } |
| |
| case Intrinsic::x86_sse_add_ss: |
| case Intrinsic::x86_sse_sub_ss: |
| case Intrinsic::x86_sse_mul_ss: |
| case Intrinsic::x86_sse_div_ss: |
| case Intrinsic::x86_sse_min_ss: |
| case Intrinsic::x86_sse_max_ss: |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse2_add_sd: |
| case Intrinsic::x86_sse2_sub_sd: |
| case Intrinsic::x86_sse2_mul_sd: |
| case Intrinsic::x86_sse2_div_sd: |
| case Intrinsic::x86_sse2_min_sd: |
| case Intrinsic::x86_sse2_max_sd: |
| case Intrinsic::x86_sse2_cmp_sd: { |
| // These intrinsics only demand the lowest element of the second input |
| // vector. |
| Value *Arg1 = II->getArgOperand(1); |
| unsigned VWidth = Arg1->getType()->getVectorNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { |
| II->setArgOperand(1, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse41_round_ss: |
| case Intrinsic::x86_sse41_round_sd: { |
| // These intrinsics demand the upper elements of the first input vector and |
| // the lowest element of the second input vector. |
| bool MadeChange = false; |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| unsigned VWidth = Arg0->getType()->getVectorNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsHigh(Arg0, VWidth, VWidth - 1)) { |
| II->setArgOperand(0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { |
| II->setArgOperand(1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) |
| return II; |
| break; |
| } |
| |
| // Constant fold ashr( <A x Bi>, Ci ). |
| // Constant fold lshr( <A x Bi>, Ci ). |
| // Constant fold shl( <A x Bi>, Ci ). |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| if (Value *V = simplifyX86immShift(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: { |
| if (Value *V = simplifyX86immShift(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| |
| // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector |
| // operand to compute the shift amount. |
| Value *Arg1 = II->getArgOperand(1); |
| assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && |
| "Unexpected packed shift size"); |
| unsigned VWidth = Arg1->getType()->getVectorNumElements(); |
| |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { |
| II->setArgOperand(1, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| if (Value *V = simplifyX86varShift(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_sse41_insertps: |
| if (Value *V = simplifyX86insertps(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_sse4a_extrq: { |
| Value *Op0 = II->getArgOperand(0); |
| Value *Op1 = II->getArgOperand(1); |
| unsigned VWidth0 = Op0->getType()->getVectorNumElements(); |
| unsigned VWidth1 = Op1->getType()->getVectorNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| VWidth1 == 16 && "Unexpected operand sizes"); |
| |
| // See if we're dealing with constant values. |
| Constant *C1 = dyn_cast<Constant>(Op1); |
| ConstantInt *CILength = |
| C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0)) |
| : nullptr; |
| ConstantInt *CIIndex = |
| C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1)) |
| : nullptr; |
| |
| // Attempt to simplify to a constant, shuffle vector or EXTRQI call. |
| if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| |
| // EXTRQ only uses the lowest 64-bits of the first 128-bit vector |
| // operands and the lowest 16-bits of the second. |
| bool MadeChange = false; |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| II->setArgOperand(0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { |
| II->setArgOperand(1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) |
| return II; |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_extrqi: { |
| // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining |
| // bits of the lower 64-bits. The upper 64-bits are undefined. |
| Value *Op0 = II->getArgOperand(0); |
| unsigned VWidth = Op0->getType()->getVectorNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| "Unexpected operand size"); |
| |
| // See if we're dealing with constant values. |
| ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); |
| ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); |
| |
| // Attempt to simplify to a constant or shuffle vector. |
| if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| |
| // EXTRQI only uses the lowest 64-bits of the first 128-bit vector |
| // operand. |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| II->setArgOperand(0, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_insertq: { |
| Value *Op0 = II->getArgOperand(0); |
| Value *Op1 = II->getArgOperand(1); |
| unsigned VWidth = Op0->getType()->getVectorNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| Op1->getType()->getVectorNumElements() == 2 && |
| "Unexpected operand size"); |
| |
| // See if we're dealing with constant values. |
| Constant *C1 = dyn_cast<Constant>(Op1); |
| ConstantInt *CI11 = |
| C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1)) |
| : nullptr; |
| |
| // Attempt to simplify to a constant, shuffle vector or INSERTQI call. |
| if (CI11) { |
| const APInt &V11 = CI11->getValue(); |
| APInt Len = V11.zextOrTrunc(6); |
| APInt Idx = V11.lshr(8).zextOrTrunc(6); |
| if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| } |
| |
| // INSERTQ only uses the lowest 64-bits of the first 128-bit vector |
| // operand. |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| II->setArgOperand(0, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_insertqi: { |
| // INSERTQI: Extract lowest Length bits from lower half of second source and |
| // insert over first source starting at Index bit. The upper 64-bits are |
| // undefined. |
| Value *Op0 = II->getArgOperand(0); |
| Value *Op1 = II->getArgOperand(1); |
| unsigned VWidth0 = Op0->getType()->getVectorNumElements(); |
| unsigned VWidth1 = Op1->getType()->getVectorNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| VWidth1 == 2 && "Unexpected operand sizes"); |
| |
| // See if we're dealing with constant values. |
| ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); |
| ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); |
| |
| // Attempt to simplify to a constant or shuffle vector. |
| if (CILength && CIIndex) { |
| APInt Len = CILength->getValue().zextOrTrunc(6); |
| APInt Idx = CIIndex->getValue().zextOrTrunc(6); |
| if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| } |
| |
| // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector |
| // operands. |
| bool MadeChange = false; |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| II->setArgOperand(0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { |
| II->setArgOperand(1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) |
| return II; |
| break; |
| } |
| |
| case Intrinsic::x86_sse41_pblendvb: |
| case Intrinsic::x86_sse41_blendvps: |
| case Intrinsic::x86_sse41_blendvpd: |
| case Intrinsic::x86_avx_blendv_ps_256: |
| case Intrinsic::x86_avx_blendv_pd_256: |
| case Intrinsic::x86_avx2_pblendvb: { |
| // Convert blendv* to vector selects if the mask is constant. |
| // This optimization is convoluted because the intrinsic is defined as |
| // getting a vector of floats or doubles for the ps and pd versions. |
| // FIXME: That should be changed. |
| |
| Value *Op0 = II->getArgOperand(0); |
| Value *Op1 = II->getArgOperand(1); |
| Value *Mask = II->getArgOperand(2); |
| |
| // fold (blend A, A, Mask) -> A |
| if (Op0 == Op1) |
| return replaceInstUsesWith(CI, Op0); |
| |
| // Zero Mask - select 1st argument. |
| if (isa<ConstantAggregateZero>(Mask)) |
| return replaceInstUsesWith(CI, Op0); |
| |
| // Constant Mask - select 1st/2nd argument lane based on top bit of mask. |
| if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { |
| Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); |
| return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_ssse3_pshuf_b_128: |
| case Intrinsic::x86_avx2_pshuf_b: |
| if (Value *V = simplifyX86pshufb(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_avx_vpermilvar_ps: |
| case Intrinsic::x86_avx_vpermilvar_ps_256: |
| case Intrinsic::x86_avx_vpermilvar_pd: |
| case Intrinsic::x86_avx_vpermilvar_pd_256: |
| if (Value *V = simplifyX86vpermilvar(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_avx2_permd: |
| case Intrinsic::x86_avx2_permps: |
| if (Value *V = simplifyX86vpermv(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_avx_vperm2f128_pd_256: |
| case Intrinsic::x86_avx_vperm2f128_ps_256: |
| case Intrinsic::x86_avx_vperm2f128_si_256: |
| case Intrinsic::x86_avx2_vperm2i128: |
| if (Value *V = simplifyX86vperm2(*II, *Builder)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_avx_maskload_ps: |
| case Intrinsic::x86_avx_maskload_pd: |
| case Intrinsic::x86_avx_maskload_ps_256: |
| case Intrinsic::x86_avx_maskload_pd_256: |
| case Intrinsic::x86_avx2_maskload_d: |
| case Intrinsic::x86_avx2_maskload_q: |
| case Intrinsic::x86_avx2_maskload_d_256: |
| case Intrinsic::x86_avx2_maskload_q_256: |
| if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) |
| return I; |
| break; |
| |
| case Intrinsic::x86_sse2_maskmov_dqu: |
| case Intrinsic::x86_avx_maskstore_ps: |
| case Intrinsic::x86_avx_maskstore_pd: |
| case Intrinsic::x86_avx_maskstore_ps_256: |
| case Intrinsic::x86_avx_maskstore_pd_256: |
| case Intrinsic::x86_avx2_maskstore_d: |
| case Intrinsic::x86_avx2_maskstore_q: |
| case Intrinsic::x86_avx2_maskstore_d_256: |
| case Intrinsic::x86_avx2_maskstore_q_256: |
| if (simplifyX86MaskedStore(*II, *this)) |
| return nullptr; |
| break; |
| |
| case Intrinsic::x86_xop_vpcomb: |
| case Intrinsic::x86_xop_vpcomd: |
| case Intrinsic::x86_xop_vpcomq: |
| case Intrinsic::x86_xop_vpcomw: |
| if (Value *V = simplifyX86vpcom(*II, *Builder, true)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::x86_xop_vpcomub: |
| case Intrinsic::x86_xop_vpcomud: |
| case Intrinsic::x86_xop_vpcomuq: |
| case Intrinsic::x86_xop_vpcomuw: |
| if (Value *V = simplifyX86vpcom(*II, *Builder, false)) |
| return replaceInstUsesWith(*II, V); |
| break; |
| |
| case Intrinsic::ppc_altivec_vperm: |
| // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. |
| // Note that ppc_altivec_vperm has a big-endian bias, so when creating |
| // a vectorshuffle for little endian, we must undo the transformation |
| // performed on vec_perm in altivec.h. That is, we must complement |
| // the permutation mask with respect to 31 and reverse the order of |
| // V1 and V2. |
| if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { |
| assert(Mask->getType()->getVectorNumElements() == 16 && |
| "Bad type for intrinsic!"); |
| |
| // Check that all of the elements are integer constants or undefs. |
| bool AllEltsOk = true; |
| for (unsigned i = 0; i != 16; ++i) { |
| Constant *Elt = Mask->getAggregateElement(i); |
| if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { |
| AllEltsOk = false; |
| break; |
| } |
| } |
| |
| if (AllEltsOk) { |
| // Cast the input vectors to byte vectors. |
| Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), |
| Mask->getType()); |
| Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), |
| Mask->getType()); |
| Value *Result = UndefValue::get(Op0->getType()); |
| |
| // Only extract each element once. |
| Value *ExtractedElts[32]; |
| memset(ExtractedElts, 0, sizeof(ExtractedElts)); |
| |
| for (unsigned i = 0; i != 16; ++i) { |
| if (isa<UndefValue>(Mask->getAggregateElement(i))) |
| continue; |
| unsigned Idx = |
| cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); |
| Idx &= 31; // Match the hardware behavior. |
| if (DL.isLittleEndian()) |
| Idx = 31 - Idx; |
| |
| if (!ExtractedElts[Idx]) { |
| Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; |
| Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; |
| ExtractedElts[Idx] = |
| Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, |
| Builder->getInt32(Idx&15)); |
| } |
| |
| // Insert this value into the result vector. |
| Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], |
| Builder->getInt32(i)); |
| } |
| return CastInst::Create(Instruction::BitCast, Result, CI.getType()); |
| } |
| } |
| break; |
| |
| case Intrinsic::arm_neon_vld1: |
| case Intrinsic::arm_neon_vld2: |
| case Intrinsic::arm_neon_vld3: |
| case Intrinsic::arm_neon_vld4: |
| case Intrinsic::arm_neon_vld2lane: |
| case Intrinsic::arm_neon_vld3lane: |
| case Intrinsic::arm_neon_vld4lane: |
| case Intrinsic::arm_neon_vst1: |
| case Intrinsic::arm_neon_vst2: |
| case Intrinsic::arm_neon_vst3: |
| case Intrinsic::arm_neon_vst4: |
| case Intrinsic::arm_neon_vst2lane: |
| case Intrinsic::arm_neon_vst3lane: |
| case Intrinsic::arm_neon_vst4lane: { |
| unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT); |
| unsigned AlignArg = II->getNumArgOperands() - 1; |
| ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); |
| if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { |
| II->setArgOperand(AlignArg, |
| ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| MemAlign, false)); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::arm_neon_vmulls: |
| case Intrinsic::arm_neon_vmullu: |
| case Intrinsic::aarch64_neon_smull: |
| case Intrinsic::aarch64_neon_umull: { |
| Value *Arg0 = II->getArgOperand(0); |
| Value *Arg1 = II->getArgOperand(1); |
| |
| // Handle mul by zero first: |
| if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { |
| return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); |
| } |
| |
| // Check for constant LHS & RHS - in this case we just simplify. |
| bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu || |
| II->getIntrinsicID() == Intrinsic::aarch64_neon_umull); |
| VectorType *NewVT = cast<VectorType>(II->getType()); |
| if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { |
| if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { |
| CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); |
| CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); |
| |
| return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); |
| } |
| |
| // Couldn't simplify - canonicalize constant to the RHS. |
| std::swap(Arg0, Arg1); |
| } |
| |
| // Handle mul by one: |
| if (Constant *CV1 = dyn_cast<Constant>(Arg1)) |
| if (ConstantInt *Splat = |
| dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) |
| if (Splat->isOne()) |
| return CastInst::CreateIntegerCast(Arg0, II->getType(), |
| /*isSigned=*/!Zext); |
| |
| break; |
| } |
| |
| case Intrinsic::amdgcn_rcp: { |
| if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) { |
| const APFloat &ArgVal = C->getValueAPF(); |
| APFloat Val(ArgVal.getSemantics(), 1.0); |
| APFloat::opStatus Status = Val.divide(ArgVal, |
| APFloat::rmNearestTiesToEven); |
| // Only do this if it was exact and therefore not dependent on the |
| // rounding mode. |
| if (Status == APFloat::opOK) |
| return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); |
| } |
| |
| break; |
| } |
| case Intrinsic::amdgcn_frexp_mant: |
| case Intrinsic::amdgcn_frexp_exp: { |
| Value *Src = II->getArgOperand(0); |
| if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { |
| int Exp; |
| APFloat Significand = frexp(C->getValueAPF(), Exp, |
| APFloat::rmNearestTiesToEven); |
| |
| if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) { |
| return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), |
| Significand)); |
| } |
| |
| // Match instruction special case behavior. |
| if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) |
| Exp = 0; |
| |
| return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); |
| } |
| |
| if (isa<UndefValue>(Src)) |
| return replaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| |
| break; |
| } |
| case Intrinsic::stackrestore: { |
| // If the save is right next to the restore, remove the restore. This can |
| // happen when variable allocas are DCE'd. |
| if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { |
| if (SS->getIntrinsicID() == Intrinsic::stacksave) { |
| if (&*++SS->getIterator() == II) |
| return eraseInstFromFunction(CI); |
| } |
| } |
| |
| // Scan down this block to see if there is another stack restore in the |
| // same block without an intervening call/alloca. |
| BasicBlock::iterator BI(II); |
| TerminatorInst *TI = II->getParent()->getTerminator(); |
| bool CannotRemove = false; |
| for (++BI; &*BI != TI; ++BI) { |
| if (isa<AllocaInst>(BI)) { |
| CannotRemove = true; |
| break; |
| } |
| if (CallInst *BCI = dyn_cast<CallInst>(BI)) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { |
| // If there is a stackrestore below this one, remove this one. |
| if (II->getIntrinsicID() == Intrinsic::stackrestore) |
| return eraseInstFromFunction(CI); |
| |
| // Bail if we cross over an intrinsic with side effects, such as |
| // llvm.stacksave, llvm.read_register, or llvm.setjmp. |
| if (II->mayHaveSideEffects()) { |
| CannotRemove = true; |
| break; |
| } |
| } else { |
| // If we found a non-intrinsic call, we can't remove the stack |
| // restore. |
| CannotRemove = true; |
| break; |
| } |
| } |
| } |
| |
| // If the stack restore is in a return, resume, or unwind block and if there |
| // are no allocas or calls between the restore and the return, nuke the |
| // restore. |
| if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) |
| return eraseInstFromFunction(CI); |
| break; |
| } |
| case Intrinsic::lifetime_start: |
| if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, |
| Intrinsic::lifetime_end, *this)) |
| return nullptr; |
| break; |
| case Intrinsic::assume: { |
| Value *IIOperand = II->getArgOperand(0); |
| // Remove an assume if it is immediately followed by an identical assume. |
| if (match(II->getNextNode(), |
| m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) |
| return eraseInstFromFunction(CI); |
| |
| // Canonicalize assume(a && b) -> assume(a); assume(b); |
| // Note: New assumption intrinsics created here are registered by |
| // the InstCombineIRInserter object. |
| Value *AssumeIntrinsic = II->getCalledValue(), *A, *B; |
| if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { |
| Builder->CreateCall(AssumeIntrinsic, A, II->getName()); |
| Builder->CreateCall(AssumeIntrinsic, B, II->getName()); |
| return eraseInstFromFunction(*II); |
| } |
| // assume(!(a || b)) -> assume(!a); assume(!b); |
| if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { |
| Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A), |
| II->getName()); |
| Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B), |
| II->getName()); |
| return eraseInstFromFunction(*II); |
| } |
| |
| // assume( (load addr) != null ) -> add 'nonnull' metadata to load |
| // (if assume is valid at the load) |
| if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) { |
| Value *LHS = ICmp->getOperand(0); |
| Value *RHS = ICmp->getOperand(1); |
| if (ICmpInst::ICMP_NE == ICmp->getPredicate() && |
| isa<LoadInst>(LHS) && |
| isa<Constant>(RHS) && |
| RHS->getType()->isPointerTy() && |
| cast<Constant>(RHS)->isNullValue()) { |
| LoadInst* LI = cast<LoadInst>(LHS); |
| if (isValidAssumeForContext(II, LI, DT)) { |
| MDNode *MD = MDNode::get(II->getContext(), None); |
| LI->setMetadata(LLVMContext::MD_nonnull, MD); |
| return eraseInstFromFunction(*II); |
| } |
| } |
| // TODO: apply nonnull return attributes to calls and invokes |
| // TODO: apply range metadata for range check patterns? |
| } |
| // If there is a dominating assume with the same condition as this one, |
| // then this one is redundant, and should be removed. |
| APInt KnownZero(1, 0), KnownOne(1, 0); |
| computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II); |
| if (KnownOne.isAllOnesValue()) |
| return eraseInstFromFunction(*II); |
| |
| break; |
| } |
| case Intrinsic::experimental_gc_relocate: { |
| // Translate facts known about a pointer before relocating into |
| // facts about the relocate value, while being careful to |
| // preserve relocation semantics. |
| Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr(); |
| |
| // Remove the relocation if unused, note that this check is required |
| // to prevent the cases below from looping forever. |
| if (II->use_empty()) |
| return eraseInstFromFunction(*II); |
| |
| // Undef is undef, even after relocation. |
| // TODO: provide a hook for this in GCStrategy. This is clearly legal for |
| // most practical collectors, but there was discussion in the review thread |
| // about whether it was legal for all possible collectors. |
| if (isa<UndefValue>(DerivedPtr)) |
| // Use undef of gc_relocate's type to replace it. |
| return replaceInstUsesWith(*II, UndefValue::get(II->getType())); |
| |
| if (auto *PT = dyn_cast<PointerType>(II->getType())) { |
| // The relocation of null will be null for most any collector. |
| // TODO: provide a hook for this in GCStrategy. There might be some |
| // weird collector this property does not hold for. |
| if (isa<ConstantPointerNull>(DerivedPtr)) |
| // Use null-pointer of gc_relocate's type to replace it. |
| return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); |
| |
| // isKnownNonNull -> nonnull attribute |
| if (isKnownNonNullAt(DerivedPtr, II, DT)) |
| II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); |
| } |
| |
| // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) |
| // Canonicalize on the type from the uses to the defs |
| |
| // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) |
| break; |
| } |
| } |
| |
| return visitCallSite(II); |
| } |
| |
| // InvokeInst simplification |
| // |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { |
| return visitCallSite(&II); |
| } |
| |
| /// If this cast does not affect the value passed through the varargs area, we |
| /// can eliminate the use of the cast. |
| static bool isSafeToEliminateVarargsCast(const CallSite CS, |
| const DataLayout &DL, |
| const CastInst *const CI, |
| const int ix) { |
| if (!CI->isLosslessCast()) |
| return false; |
| |
| // If this is a GC intrinsic, avoid munging types. We need types for |
| // statepoint reconstruction in SelectionDAG. |
| // TODO: This is probably something which should be expanded to all |
| // intrinsics since the entire point of intrinsics is that |
| // they are understandable by the optimizer. |
| if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) |
| return false; |
| |
| // The size of ByVal or InAlloca arguments is derived from the type, so we |
| // can't change to a type with a different size. If the size were |
| // passed explicitly we could avoid this check. |
| if (!CS.isByValOrInAllocaArgument(ix)) |
| return true; |
| |
| Type* SrcTy = |
| cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); |
| Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); |
| if (!SrcTy->isSized() || !DstTy->isSized()) |
| return false; |
| if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) |
| return false; |
| return true; |
| } |
| |
| Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { |
| if (!CI->getCalledFunction()) return nullptr; |
| |
| auto InstCombineRAUW = [this](Instruction *From, Value *With) { |
| replaceInstUsesWith(*From, With); |
| }; |
| LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW); |
| if (Value *With = Simplifier.optimizeCall(CI)) { |
| ++NumSimplified; |
| return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); |
| } |
| |
| return nullptr; |
| } |
| |
| static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { |
| // Strip off at most one level of pointer casts, looking for an alloca. This |
| // is good enough in practice and simpler than handling any number of casts. |
| Value *Underlying = TrampMem->stripPointerCasts(); |
| if (Underlying != TrampMem && |
| (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) |
| return nullptr; |
| if (!isa<AllocaInst>(Underlying)) |
| return nullptr; |
| |
| IntrinsicInst *InitTrampoline = nullptr; |
| for (User *U : TrampMem->users()) { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); |
| if (!II) |
| return nullptr; |
| if (II->getIntrinsicID() == Intrinsic::init_trampoline) { |
| if (InitTrampoline) |
| // More than one init_trampoline writes to this value. Give up. |
| return nullptr; |
| InitTrampoline = II; |
| continue; |
| } |
| if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) |
| // Allow any number of calls to adjust.trampoline. |
| continue; |
| return nullptr; |
| } |
| |
| // No call to init.trampoline found. |
| if (!InitTrampoline) |
| return nullptr; |
| |
| // Check that the alloca is being used in the expected way. |
| if (InitTrampoline->getOperand(0) != TrampMem) |
| return nullptr; |
| |
| return InitTrampoline; |
| } |
| |
| static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, |
| Value *TrampMem) { |
| // Visit all the previous instructions in the basic block, and try to find a |
| // init.trampoline which has a direct path to the adjust.trampoline. |
| for (BasicBlock::iterator I = AdjustTramp->getIterator(), |
| E = AdjustTramp->getParent()->begin(); |
| I != E;) { |
| Instruction *Inst = &*--I; |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| if (II->getIntrinsicID() == Intrinsic::init_trampoline && |
| II->getOperand(0) == TrampMem) |
| return II; |
| if (Inst->mayWriteToMemory()) |
| return nullptr; |
| } |
| return nullptr; |
| } |
| |
| // Given a call to llvm.adjust.trampoline, find and return the corresponding |
| // call to llvm.init.trampoline if the call to the trampoline can be optimized |
| // to a direct call to a function. Otherwise return NULL. |
| // |
| static IntrinsicInst *findInitTrampoline(Value *Callee) { |
| Callee = Callee->stripPointerCasts(); |
| IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); |
| if (!AdjustTramp || |
| AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) |
| return nullptr; |
| |
| Value *TrampMem = AdjustTramp->getOperand(0); |
| |
| if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) |
| return IT; |
| if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) |
| return IT; |
| return nullptr; |
| } |
| |
| /// Improvements for call and invoke instructions. |
| Instruction *InstCombiner::visitCallSite(CallSite CS) { |
| |
| if (isAllocLikeFn(CS.getInstruction(), TLI)) |
| return visitAllocSite(*CS.getInstruction()); |
| |
| bool Changed = false; |
| |
| // Mark any parameters that are known to be non-null with the nonnull |
| // attribute. This is helpful for inlining calls to functions with null |
| // checks on their arguments. |
| SmallVector<unsigned, 4> Indices; |
| unsigned ArgNo = 0; |
| |
| for (Value *V : CS.args()) { |
| if (V->getType()->isPointerTy() && |
| !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) && |
| isKnownNonNullAt(V, CS.getInstruction(), DT)) |
| Indices.push_back(ArgNo + 1); |
| ArgNo++; |
| } |
| |
| assert(ArgNo == CS.arg_size() && "sanity check"); |
| |
| if (!Indices.empty()) { |
| AttributeSet AS = CS.getAttributes(); |
| LLVMContext &Ctx = CS.getInstruction()->getContext(); |
| AS = AS.addAttribute(Ctx, Indices, |
| Attribute::get(Ctx, Attribute::NonNull)); |
| CS.setAttributes(AS); |
| Changed = true; |
| } |
| |
| // If the callee is a pointer to a function, attempt to move any casts to the |
| // arguments of the call/invoke. |
| Value *Callee = CS.getCalledValue(); |
| if (!isa<Function>(Callee) && transformConstExprCastCall(CS)) |
| return nullptr; |
| |
| if (Function *CalleeF = dyn_cast<Function>(Callee)) { |
| // Remove the convergent attr on calls when the callee is not convergent. |
| if (CS.isConvergent() && !CalleeF->isConvergent() && |
| !CalleeF->isIntrinsic()) { |
| DEBUG(dbgs() << "Removing convergent attr from instr " |
| << CS.getInstruction() << "\n"); |
| CS.setNotConvergent(); |
| return CS.getInstruction(); |
| } |
| |
| // If the call and callee calling conventions don't match, this call must |
| // be unreachable, as the call is undefined. |
| if (CalleeF->getCallingConv() != CS.getCallingConv() && |
| // Only do this for calls to a function with a body. A prototype may |
| // not actually end up matching the implementation's calling conv for a |
| // variety of reasons (e.g. it may be written in assembly). |
| !CalleeF->isDeclaration()) { |
| Instruction *OldCall = CS.getInstruction(); |
| new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| OldCall); |
| // If OldCall does not return void then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!OldCall->getType()->isVoidTy()) |
| replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); |
| if (isa<CallInst>(OldCall)) |
| return eraseInstFromFunction(*OldCall); |
| |
| // We cannot remove an invoke, because it would change the CFG, just |
| // change the callee to a null pointer. |
| cast<InvokeInst>(OldCall)->setCalledFunction( |
| Constant::getNullValue(CalleeF->getType())); |
| return nullptr; |
| } |
| } |
| |
| if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { |
| // If CS does not return void then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!CS.getInstruction()->getType()->isVoidTy()) |
| replaceInstUsesWith(*CS.getInstruction(), |
| UndefValue::get(CS.getInstruction()->getType())); |
| |
| if (isa<InvokeInst>(CS.getInstruction())) { |
| // Can't remove an invoke because we cannot change the CFG. |
| return nullptr; |
| } |
| |
| // This instruction is not reachable, just remove it. We insert a store to |
| // undef so that we know that this code is not reachable, despite the fact |
| // that we can't modify the CFG here. |
| new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| CS.getInstruction()); |
| |
| return eraseInstFromFunction(*CS.getInstruction()); |
| } |
| |
| if (IntrinsicInst *II = findInitTrampoline(Callee)) |
| return transformCallThroughTrampoline(CS, II); |
| |
| PointerType *PTy = cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| if (FTy->isVarArg()) { |
| int ix = FTy->getNumParams(); |
| // See if we can optimize any arguments passed through the varargs area of |
| // the call. |
| for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(), |
| E = CS.arg_end(); I != E; ++I, ++ix) { |
| CastInst *CI = dyn_cast<CastInst>(*I); |
| if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) { |
| *I = CI->getOperand(0); |
| Changed = true; |
| } |
| } |
| } |
| |
| if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { |
| // Inline asm calls cannot throw - mark them 'nounwind'. |
| CS.setDoesNotThrow(); |
| Changed = true; |
| } |
| |
| // Try to optimize the call if possible, we require DataLayout for most of |
| // this. None of these calls are seen as possibly dead so go ahead and |
| // delete the instruction now. |
| if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { |
| Instruction *I = tryOptimizeCall(CI); |
| // If we changed something return the result, etc. Otherwise let |
| // the fallthrough check. |
| if (I) return eraseInstFromFunction(*I); |
| } |
| |
| return Changed ? CS.getInstruction() : nullptr; |
| } |
| |
| /// If the callee is a constexpr cast of a function, attempt to move the cast to |
| /// the arguments of the call/invoke. |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) { |
| Function *Callee = |
| dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); |
| if (!Callee) |
| return false; |
| // The prototype of thunks are a lie, don't try to directly call such |
| // functions. |
| if (Callee->hasFnAttribute("thunk")) |
| return false; |
| Instruction *Caller = CS.getInstruction(); |
| const AttributeSet &CallerPAL = CS.getAttributes(); |
| |
| // Okay, this is a cast from a function to a different type. Unless doing so |
| // would cause a type conversion of one of our arguments, change this call to |
| // be a direct call with arguments casted to the appropriate types. |
| // |
| FunctionType *FT = Callee->getFunctionType(); |
| Type *OldRetTy = Caller->getType(); |
| Type *NewRetTy = FT->getReturnType(); |
| |
| // Check to see if we are changing the return type... |
| if (OldRetTy != NewRetTy) { |
| |
| if (NewRetTy->isStructTy()) |
| return false; // TODO: Handle multiple return values. |
| |
| if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { |
| if (Callee->isDeclaration()) |
| return false; // Cannot transform this return value. |
| |
| if (!Caller->use_empty() && |
| // void -> non-void is handled specially |
| !NewRetTy->isVoidTy()) |
| return false; // Cannot transform this return value. |
| } |
| |
| if (!CallerPAL.isEmpty() && !Caller->use_empty()) { |
| AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); |
| if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) |
| return false; // Attribute not compatible with transformed value. |
| } |
| |
| // If the callsite is an invoke instruction, and the return value is used by |
| // a PHI node in a successor, we cannot change the return type of the call |
| // because there is no place to put the cast instruction (without breaking |
| // the critical edge). Bail out in this case. |
| if (!Caller->use_empty()) |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) |
| for (User *U : II->users()) |
| if (PHINode *PN = dyn_cast<PHINode>(U)) |
| if (PN->getParent() == II->getNormalDest() || |
| PN->getParent() == II->getUnwindDest()) |
| return false; |
| } |
| |
| unsigned NumActualArgs = CS.arg_size(); |
| unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); |
| |
| // Prevent us turning: |
| // declare void @takes_i32_inalloca(i32* inalloca) |
| // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) |
| // |
| // into: |
| // call void @takes_i32_inalloca(i32* null) |
| // |
| // Similarly, avoid folding away bitcasts of byval calls. |
| if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || |
| Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) |
| return false; |
| |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { |
| Type *ParamTy = FT->getParamType(i); |
| Type *ActTy = (*AI)->getType(); |
| |
| if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) |
| return false; // Cannot transform this parameter value. |
| |
| if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1). |
| overlaps(AttributeFuncs::typeIncompatible(ParamTy))) |
| return false; // Attribute not compatible with transformed value. |
| |
| if (CS.isInAllocaArgument(i)) |
| return false; // Cannot transform to and from inalloca. |
| |
| // If the parameter is passed as a byval argument, then we have to have a |
| // sized type and the sized type has to have the same size as the old type. |
| if (ParamTy != ActTy && |
| CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1, |
| Attribute::ByVal)) { |
| PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); |
| if (!ParamPTy || !ParamPTy->getElementType()->isSized()) |
| return false; |
| |
| Type *CurElTy = ActTy->getPointerElementType(); |
| if (DL.getTypeAllocSize(CurElTy) != |
| DL.getTypeAllocSize(ParamPTy->getElementType())) |
| return false; |
| } |
| } |
| |
| if (Callee->isDeclaration()) { |
| // Do not delete arguments unless we have a function body. |
| if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) |
| return false; |
| |
| // If the callee is just a declaration, don't change the varargsness of the |
| // call. We don't want to introduce a varargs call where one doesn't |
| // already exist. |
| PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType()); |
| if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) |
| return false; |
| |
| // If both the callee and the cast type are varargs, we still have to make |
| // sure the number of fixed parameters are the same or we have the same |
| // ABI issues as if we introduce a varargs call. |
| if (FT->isVarArg() && |
| cast<FunctionType>(APTy->getElementType())->isVarArg() && |
| FT->getNumParams() != |
| cast<FunctionType>(APTy->getElementType())->getNumParams()) |
| return false; |
| } |
| |
| if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && |
| !CallerPAL.isEmpty()) |
| // In this case we have more arguments than the new function type, but we |
| // won't be dropping them. Check that these extra arguments have attributes |
| // that are compatible with being a vararg call argument. |
| for (unsigned i = CallerPAL.getNumSlots(); i; --i) { |
| unsigned Index = CallerPAL.getSlotIndex(i - 1); |
| if (Index <= FT->getNumParams()) |
| break; |
| |
| // Check if it has an attribute that's incompatible with varargs. |
| AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1); |
| if (PAttrs.hasAttribute(Index, Attribute::StructRet)) |
| return false; |
| } |
| |
| |
| // Okay, we decided that this is a safe thing to do: go ahead and start |
| // inserting cast instructions as necessary. |
| std::vector<Value*> Args; |
| Args.reserve(NumActualArgs); |
| SmallVector<AttributeSet, 8> attrVec; |
| attrVec.reserve(NumCommonArgs); |
| |
| // Get any return attributes. |
| AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); |
| |
| // If the return value is not being used, the type may not be compatible |
| // with the existing attributes. Wipe out any problematic attributes. |
| RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); |
| |
| // Add the new return attributes. |
| if (RAttrs.hasAttributes()) |
| attrVec.push_back(AttributeSet::get(Caller->getContext(), |
| AttributeSet::ReturnIndex, RAttrs)); |
| |
| AI = CS.arg_begin(); |
| for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { |
| Type *ParamTy = FT->getParamType(i); |
| |
| if ((*AI)->getType() == ParamTy) { |
| Args.push_back(*AI); |
| } else { |
| Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy)); |
| } |
| |
| // Add any parameter attributes. |
| AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); |
| if (PAttrs.hasAttributes()) |
| attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1, |
| PAttrs)); |
| } |
| |
| // If the function takes more arguments than the call was taking, add them |
| // now. |
| for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) |
| Args.push_back(Constant::getNullValue(FT->getParamType(i))); |
| |
| // If we are removing arguments to the function, emit an obnoxious warning. |
| if (FT->getNumParams() < NumActualArgs) { |
| // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 |
| if (FT->isVarArg()) { |
| // Add all of the arguments in their promoted form to the arg list. |
| for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { |
| Type *PTy = getPromotedType((*AI)->getType()); |
| if (PTy != (*AI)->getType()) { |
| // Must promote to pass through va_arg area! |
| Instruction::CastOps opcode = |
| CastInst::getCastOpcode(*AI, false, PTy, false); |
| Args.push_back(Builder->CreateCast(opcode, *AI, PTy)); |
| } else { |
| Args.push_back(*AI); |
| } |
| |
| // Add any parameter attributes. |
| AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); |
| if (PAttrs.hasAttributes()) |
| attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1, |
| PAttrs)); |
| } |
| } |
| } |
| |
| AttributeSet FnAttrs = CallerPAL.getFnAttributes(); |
| if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex)) |
| attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs)); |
| |
| if (NewRetTy->isVoidTy()) |
| Caller->setName(""); // Void type should not have a name. |
| |
| const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(), |
| attrVec); |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| CS.getOperandBundlesAsDefs(OpBundles); |
| |
| Instruction *NC; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), |
| Args, OpBundles); |
| NC->takeName(II); |
| cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); |
| cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); |
| } else { |
| CallInst *CI = cast<CallInst>(Caller); |
| NC = Builder->CreateCall(Callee, Args, OpBundles); |
| NC->takeName(CI); |
| if (CI->isTailCall()) |
| cast<CallInst>(NC)->setTailCall(); |
| cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); |
| cast<CallInst>(NC)->setAttributes(NewCallerPAL); |
| } |
| |
| // Insert a cast of the return type as necessary. |
| Value *NV = NC; |
| if (OldRetTy != NV->getType() && !Caller->use_empty()) { |
| if (!NV->getType()->isVoidTy()) { |
| NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); |
| NC->setDebugLoc(Caller->getDebugLoc()); |
| |
| // If this is an invoke instruction, we should insert it after the first |
| // non-phi, instruction in the normal successor block. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); |
| InsertNewInstBefore(NC, *I); |
| } else { |
| // Otherwise, it's a call, just insert cast right after the call. |
| InsertNewInstBefore(NC, *Caller); |
| } |
| Worklist.AddUsersToWorkList(*Caller); |
| } else { |
| NV = UndefValue::get(Caller->getType()); |
| } |
| } |
| |
| if (!Caller->use_empty()) |
| replaceInstUsesWith(*Caller, NV); |
| else if (Caller->hasValueHandle()) { |
| if (OldRetTy == NV->getType()) |
| ValueHandleBase::ValueIsRAUWd(Caller, NV); |
| else |
| // We cannot call ValueIsRAUWd with a different type, and the |
| // actual tracked value will disappear. |
| ValueHandleBase::ValueIsDeleted(Caller); |
| } |
| |
| eraseInstFromFunction(*Caller); |
| return true; |
| } |
| |
| /// Turn a call to a function created by init_trampoline / adjust_trampoline |
| /// intrinsic pair into a direct call to the underlying function. |
| Instruction * |
| InstCombiner::transformCallThroughTrampoline(CallSite CS, |
| IntrinsicInst *Tramp) { |
| Value *Callee = CS.getCalledValue(); |
| PointerType *PTy = cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const AttributeSet &Attrs = CS.getAttributes(); |
| |
| // If the call already has the 'nest' attribute somewhere then give up - |
| // otherwise 'nest' would occur twice after splicing in the chain. |
| if (Attrs.hasAttrSomewhere(Attribute::Nest)) |
| return nullptr; |
| |
| assert(Tramp && |
| "transformCallThroughTrampoline called with incorrect CallSite."); |
| |
| Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts()); |
| FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType()); |
| |
| const AttributeSet &NestAttrs = NestF->getAttributes(); |
| if (!NestAttrs.isEmpty()) { |
| unsigned NestIdx = 1; |
| Type *NestTy = nullptr; |
| AttributeSet NestAttr; |
| |
| // Look for a parameter marked with the 'nest' attribute. |
| for (FunctionType::param_iterator I = NestFTy->param_begin(), |
| E = NestFTy->param_end(); I != E; ++NestIdx, ++I) |
| if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) { |
| // Record the parameter type and any other attributes. |
| NestTy = *I; |
| NestAttr = NestAttrs.getParamAttributes(NestIdx); |
| break; |
| } |
| |
| if (NestTy) { |
| Instruction *Caller = CS.getInstruction(); |
| std::vector<Value*> NewArgs; |
| NewArgs.reserve(CS.arg_size() + 1); |
| |
| SmallVector<AttributeSet, 8> NewAttrs; |
| NewAttrs.reserve(Attrs.getNumSlots() + 1); |
| |
| // Insert the nest argument into the call argument list, which may |
| // mean appending it. Likewise for attributes. |
| |
| // Add any result attributes. |
| if (Attrs.hasAttributes(AttributeSet::ReturnIndex)) |
| NewAttrs.push_back(AttributeSet::get(Caller->getContext(), |
| Attrs.getRetAttributes())); |
| |
| { |
| unsigned Idx = 1; |
| CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); |
| do { |
| if (Idx == NestIdx) { |
| // Add the chain argument and attributes. |
| Value *NestVal = Tramp->getArgOperand(2); |
| if (NestVal->getType() != NestTy) |
| NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest"); |
| NewArgs.push_back(NestVal); |
| NewAttrs.push_back(AttributeSet::get(Caller->getContext(), |
| NestAttr)); |
| } |
| |
| if (I == E) |
| break; |
| |
| // Add the original argument and attributes. |
| NewArgs.push_back(*I); |
| AttributeSet Attr = Attrs.getParamAttributes(Idx); |
| if (Attr.hasAttributes(Idx)) { |
| AttrBuilder B(Attr, Idx); |
| NewAttrs.push_back(AttributeSet::get(Caller->getContext(), |
| Idx + (Idx >= NestIdx), B)); |
| } |
| |
| ++Idx; |
| ++I; |
| } while (1); |
| } |
| |
| // Add any function attributes. |
| if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) |
| NewAttrs.push_back(AttributeSet::get(FTy->getContext(), |
| Attrs.getFnAttributes())); |
| |
| // The trampoline may have been bitcast to a bogus type (FTy). |
| // Handle this by synthesizing a new function type, equal to FTy |
| // with the chain parameter inserted. |
| |
| std::vector<Type*> NewTypes; |
| NewTypes.reserve(FTy->getNumParams()+1); |
| |
| // Insert the chain's type into the list of parameter types, which may |
| // mean appending it. |
| { |
| unsigned Idx = 1; |
| FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); |
| |
| do { |
| if (Idx == NestIdx) |
| // Add the chain's type. |
| NewTypes.push_back(NestTy); |
| |
| if (I == E) |
| break; |
| |
| // Add the original type. |
| NewTypes.push_back(*I); |
| |
| ++Idx; |
| ++I; |
| } while (1); |
| } |
| |
| // Replace the trampoline call with a direct call. Let the generic |
| // code sort out any function type mismatches. |
| FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, |
| FTy->isVarArg()); |
| Constant *NewCallee = |
| NestF->getType() == PointerType::getUnqual(NewFTy) ? |
| NestF : ConstantExpr::getBitCast(NestF, |
| PointerType::getUnqual(NewFTy)); |
| const AttributeSet &NewPAL = |
| AttributeSet::get(FTy->getContext(), NewAttrs); |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| CS.getOperandBundlesAsDefs(OpBundles); |
| |
| Instruction *NewCaller; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| NewCaller = InvokeInst::Create(NewCallee, |
| II->getNormalDest(), II->getUnwindDest(), |
| NewArgs, OpBundles); |
| cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); |
| cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); |
| } else { |
| NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles); |
| if (cast<CallInst>(Caller)->isTailCall()) |
| cast<CallInst>(NewCaller)->setTailCall(); |
| cast<CallInst>(NewCaller)-> |
| setCallingConv(cast<CallInst>(Caller)->getCallingConv()); |
| cast<CallInst>(NewCaller)->setAttributes(NewPAL); |
| } |
| |
| return NewCaller; |
| } |
| } |
| |
| // Replace the trampoline call with a direct call. Since there is no 'nest' |
| // parameter, there is no need to adjust the argument list. Let the generic |
| // code sort out any function type mismatches. |
| Constant *NewCallee = |
| NestF->getType() == PTy ? NestF : |
| ConstantExpr::getBitCast(NestF, PTy); |
| CS.setCalledFunction(NewCallee); |
| return CS.getInstruction(); |
| } |