| //===- InstCombineCasts.cpp -----------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for cast operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| /// Analyze 'Val', seeing if it is a simple linear expression. |
| /// If so, decompose it, returning some value X, such that Val is |
| /// X*Scale+Offset. |
| /// |
| static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, |
| uint64_t &Offset) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| Offset = CI->getZExtValue(); |
| Scale = 0; |
| return ConstantInt::get(Val->getType(), 0); |
| } |
| |
| if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { |
| // Cannot look past anything that might overflow. |
| OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); |
| if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { |
| Scale = 1; |
| Offset = 0; |
| return Val; |
| } |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| if (I->getOpcode() == Instruction::Shl) { |
| // This is a value scaled by '1 << the shift amt'. |
| Scale = UINT64_C(1) << RHS->getZExtValue(); |
| Offset = 0; |
| return I->getOperand(0); |
| } |
| |
| if (I->getOpcode() == Instruction::Mul) { |
| // This value is scaled by 'RHS'. |
| Scale = RHS->getZExtValue(); |
| Offset = 0; |
| return I->getOperand(0); |
| } |
| |
| if (I->getOpcode() == Instruction::Add) { |
| // We have X+C. Check to see if we really have (X*C2)+C1, |
| // where C1 is divisible by C2. |
| unsigned SubScale; |
| Value *SubVal = |
| decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); |
| Offset += RHS->getZExtValue(); |
| Scale = SubScale; |
| return SubVal; |
| } |
| } |
| } |
| |
| // Otherwise, we can't look past this. |
| Scale = 1; |
| Offset = 0; |
| return Val; |
| } |
| |
| /// If we find a cast of an allocation instruction, try to eliminate the cast by |
| /// moving the type information into the alloc. |
| Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, |
| AllocaInst &AI) { |
| PointerType *PTy = cast<PointerType>(CI.getType()); |
| |
| BuilderTy AllocaBuilder(*Builder); |
| AllocaBuilder.SetInsertPoint(&AI); |
| |
| // Get the type really allocated and the type casted to. |
| Type *AllocElTy = AI.getAllocatedType(); |
| Type *CastElTy = PTy->getElementType(); |
| if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; |
| |
| unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); |
| unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); |
| if (CastElTyAlign < AllocElTyAlign) return nullptr; |
| |
| // If the allocation has multiple uses, only promote it if we are strictly |
| // increasing the alignment of the resultant allocation. If we keep it the |
| // same, we open the door to infinite loops of various kinds. |
| if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; |
| |
| uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); |
| uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); |
| if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; |
| |
| // If the allocation has multiple uses, only promote it if we're not |
| // shrinking the amount of memory being allocated. |
| uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); |
| uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); |
| if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; |
| |
| // See if we can satisfy the modulus by pulling a scale out of the array |
| // size argument. |
| unsigned ArraySizeScale; |
| uint64_t ArrayOffset; |
| Value *NumElements = // See if the array size is a decomposable linear expr. |
| decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); |
| |
| // If we can now satisfy the modulus, by using a non-1 scale, we really can |
| // do the xform. |
| if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || |
| (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; |
| |
| unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; |
| Value *Amt = nullptr; |
| if (Scale == 1) { |
| Amt = NumElements; |
| } else { |
| Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); |
| // Insert before the alloca, not before the cast. |
| Amt = AllocaBuilder.CreateMul(Amt, NumElements); |
| } |
| |
| if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { |
| Value *Off = ConstantInt::get(AI.getArraySize()->getType(), |
| Offset, true); |
| Amt = AllocaBuilder.CreateAdd(Amt, Off); |
| } |
| |
| AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); |
| New->setAlignment(AI.getAlignment()); |
| New->takeName(&AI); |
| New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); |
| |
| // If the allocation has multiple real uses, insert a cast and change all |
| // things that used it to use the new cast. This will also hack on CI, but it |
| // will die soon. |
| if (!AI.hasOneUse()) { |
| // New is the allocation instruction, pointer typed. AI is the original |
| // allocation instruction, also pointer typed. Thus, cast to use is BitCast. |
| Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); |
| replaceInstUsesWith(AI, NewCast); |
| } |
| return replaceInstUsesWith(CI, New); |
| } |
| |
| /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns |
| /// true for, actually insert the code to evaluate the expression. |
| Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, |
| bool isSigned) { |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); |
| // If we got a constantexpr back, try to simplify it with DL info. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) |
| C = ConstantFoldConstantExpression(CE, DL, TLI); |
| return C; |
| } |
| |
| // Otherwise, it must be an instruction. |
| Instruction *I = cast<Instruction>(V); |
| Instruction *Res = nullptr; |
| unsigned Opc = I->getOpcode(); |
| switch (Opc) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::AShr: |
| case Instruction::LShr: |
| case Instruction::Shl: |
| case Instruction::UDiv: |
| case Instruction::URem: { |
| Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); |
| Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| break; |
| } |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| // If the source type of the cast is the type we're trying for then we can |
| // just return the source. There's no need to insert it because it is not |
| // new. |
| if (I->getOperand(0)->getType() == Ty) |
| return I->getOperand(0); |
| |
| // Otherwise, must be the same type of cast, so just reinsert a new one. |
| // This also handles the case of zext(trunc(x)) -> zext(x). |
| Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, |
| Opc == Instruction::SExt); |
| break; |
| case Instruction::Select: { |
| Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); |
| Res = SelectInst::Create(I->getOperand(0), True, False); |
| break; |
| } |
| case Instruction::PHI: { |
| PHINode *OPN = cast<PHINode>(I); |
| PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); |
| for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = |
| EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); |
| NPN->addIncoming(V, OPN->getIncomingBlock(i)); |
| } |
| Res = NPN; |
| break; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| llvm_unreachable("Unreachable!"); |
| } |
| |
| Res->takeName(I); |
| return InsertNewInstWith(Res, *I); |
| } |
| |
| |
| /// This function is a wrapper around CastInst::isEliminableCastPair. It |
| /// simply extracts arguments and returns what that function returns. |
| static Instruction::CastOps |
| isEliminableCastPair(const CastInst *CI, ///< First cast instruction |
| unsigned opcode, ///< Opcode for the second cast |
| Type *DstTy, ///< Target type for the second cast |
| const DataLayout &DL) { |
| Type *SrcTy = CI->getOperand(0)->getType(); // A from above |
| Type *MidTy = CI->getType(); // B from above |
| |
| // Get the opcodes of the two Cast instructions |
| Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); |
| Instruction::CastOps secondOp = Instruction::CastOps(opcode); |
| Type *SrcIntPtrTy = |
| SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; |
| Type *MidIntPtrTy = |
| MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; |
| Type *DstIntPtrTy = |
| DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; |
| unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, |
| DstTy, SrcIntPtrTy, MidIntPtrTy, |
| DstIntPtrTy); |
| |
| // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| // type that differs from the pointer size. |
| if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || |
| (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) |
| Res = 0; |
| |
| return Instruction::CastOps(Res); |
| } |
| |
| /// Return true if the cast from "V to Ty" actually results in any code being |
| /// generated and is interesting to optimize out. |
| /// If the cast can be eliminated by some other simple transformation, we prefer |
| /// to do the simplification first. |
| bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, |
| Type *Ty) { |
| // Noop casts and casts of constants should be eliminated trivially. |
| if (V->getType() == Ty || isa<Constant>(V)) return false; |
| |
| // If this is another cast that can be eliminated, we prefer to have it |
| // eliminated. |
| if (const CastInst *CI = dyn_cast<CastInst>(V)) |
| if (isEliminableCastPair(CI, opc, Ty, DL)) |
| return false; |
| |
| // If this is a vector sext from a compare, then we don't want to break the |
| // idiom where each element of the extended vector is either zero or all ones. |
| if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) |
| return false; |
| |
| return true; |
| } |
| |
| |
| /// @brief Implement the transforms common to all CastInst visitors. |
| Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { |
| Value *Src = CI.getOperand(0); |
| |
| // Many cases of "cast of a cast" are eliminable. If it's eliminable we just |
| // eliminate it now. |
| if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast |
| if (Instruction::CastOps opc = |
| isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { |
| // The first cast (CSrc) is eliminable so we need to fix up or replace |
| // the second cast (CI). CSrc will then have a good chance of being dead. |
| return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); |
| } |
| } |
| |
| // If we are casting a select then fold the cast into the select |
| if (SelectInst *SI = dyn_cast<SelectInst>(Src)) |
| if (Instruction *NV = FoldOpIntoSelect(CI, SI)) |
| return NV; |
| |
| // If we are casting a PHI then fold the cast into the PHI |
| if (isa<PHINode>(Src)) { |
| // We don't do this if this would create a PHI node with an illegal type if |
| // it is currently legal. |
| if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || |
| ShouldChangeType(CI.getType(), Src->getType())) |
| if (Instruction *NV = FoldOpIntoPhi(CI)) |
| return NV; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Return true if we can evaluate the specified expression tree as type Ty |
| /// instead of its larger type, and arrive with the same value. |
| /// This is used by code that tries to eliminate truncates. |
| /// |
| /// Ty will always be a type smaller than V. We should return true if trunc(V) |
| /// can be computed by computing V in the smaller type. If V is an instruction, |
| /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only |
| /// makes sense if x and y can be efficiently truncated. |
| /// |
| /// This function works on both vectors and scalars. |
| /// |
| static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, |
| Instruction *CxtI) { |
| // We can always evaluate constants in another type. |
| if (isa<Constant>(V)) |
| return true; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| |
| Type *OrigTy = V->getType(); |
| |
| // If this is an extension from the dest type, we can eliminate it, even if it |
| // has multiple uses. |
| if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && |
| I->getOperand(0)->getType() == Ty) |
| return true; |
| |
| // We can't extend or shrink something that has multiple uses: doing so would |
| // require duplicating the instruction in general, which isn't profitable. |
| if (!I->hasOneUse()) return false; |
| |
| unsigned Opc = I->getOpcode(); |
| switch (Opc) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // These operators can all arbitrarily be extended or truncated. |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| |
| case Instruction::UDiv: |
| case Instruction::URem: { |
| // UDiv and URem can be truncated if all the truncated bits are zero. |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| if (BitWidth < OrigBitWidth) { |
| APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); |
| if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && |
| IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| } |
| } |
| break; |
| } |
| case Instruction::Shl: |
| // If we are truncating the result of this SHL, and if it's a shift of a |
| // constant amount, we can always perform a SHL in a smaller type. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| if (CI->getLimitedValue(BitWidth) < BitWidth) |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); |
| } |
| break; |
| case Instruction::LShr: |
| // If this is a truncate of a logical shr, we can truncate it to a smaller |
| // lshr iff we know that the bits we would otherwise be shifting in are |
| // already zeros. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| if (IC.MaskedValueIsZero(I->getOperand(0), |
| APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && |
| CI->getLimitedValue(BitWidth) < BitWidth) { |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); |
| } |
| } |
| break; |
| case Instruction::Trunc: |
| // trunc(trunc(x)) -> trunc(x) |
| return true; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest |
| // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest |
| return true; |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && |
| canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); |
| } |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) |
| return false; |
| return true; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// Given a vector that is bitcast to an integer, optionally logically |
| /// right-shifted, and truncated, convert it to an extractelement. |
| /// Example (big endian): |
| /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 |
| /// ---> |
| /// extractelement <4 x i32> %X, 1 |
| static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, |
| const DataLayout &DL) { |
| Value *TruncOp = Trunc.getOperand(0); |
| Type *DestType = Trunc.getType(); |
| if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) |
| return nullptr; |
| |
| Value *VecInput = nullptr; |
| ConstantInt *ShiftVal = nullptr; |
| if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), |
| m_LShr(m_BitCast(m_Value(VecInput)), |
| m_ConstantInt(ShiftVal)))) || |
| !isa<VectorType>(VecInput->getType())) |
| return nullptr; |
| |
| VectorType *VecType = cast<VectorType>(VecInput->getType()); |
| unsigned VecWidth = VecType->getPrimitiveSizeInBits(); |
| unsigned DestWidth = DestType->getPrimitiveSizeInBits(); |
| unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; |
| |
| if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) |
| return nullptr; |
| |
| // If the element type of the vector doesn't match the result type, |
| // bitcast it to a vector type that we can extract from. |
| unsigned NumVecElts = VecWidth / DestWidth; |
| if (VecType->getElementType() != DestType) { |
| VecType = VectorType::get(DestType, NumVecElts); |
| VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); |
| } |
| |
| unsigned Elt = ShiftAmount / DestWidth; |
| if (DL.isBigEndian()) |
| Elt = NumVecElts - 1 - Elt; |
| |
| return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); |
| } |
| |
| Instruction *InstCombiner::visitTrunc(TruncInst &CI) { |
| if (Instruction *Result = commonCastTransforms(CI)) |
| return Result; |
| |
| // Test if the trunc is the user of a select which is part of a |
| // minimum or maximum operation. If so, don't do any more simplification. |
| // Even simplifying demanded bits can break the canonical form of a |
| // min/max. |
| Value *LHS, *RHS; |
| if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) |
| if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) |
| return nullptr; |
| |
| // See if we can simplify any instructions used by the input whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(CI)) |
| return &CI; |
| |
| Value *Src = CI.getOperand(0); |
| Type *DestTy = CI.getType(), *SrcTy = Src->getType(); |
| |
| // Attempt to truncate the entire input expression tree to the destination |
| // type. Only do this if the dest type is a simple type, don't convert the |
| // expression tree to something weird like i93 unless the source is also |
| // strange. |
| if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && |
| canEvaluateTruncated(Src, DestTy, *this, &CI)) { |
| |
| // If this cast is a truncate, evaluting in a different type always |
| // eliminates the cast, so it is always a win. |
| DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid cast: " << CI << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, false); |
| assert(Res->getType() == DestTy); |
| return replaceInstUsesWith(CI, Res); |
| } |
| |
| // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. |
| if (DestTy->getScalarSizeInBits() == 1) { |
| Constant *One = ConstantInt::get(SrcTy, 1); |
| Src = Builder->CreateAnd(Src, One); |
| Value *Zero = Constant::getNullValue(Src->getType()); |
| return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); |
| } |
| |
| // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. |
| Value *A = nullptr; ConstantInt *Cst = nullptr; |
| if (Src->hasOneUse() && |
| match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { |
| // We have three types to worry about here, the type of A, the source of |
| // the truncate (MidSize), and the destination of the truncate. We know that |
| // ASize < MidSize and MidSize > ResultSize, but don't know the relation |
| // between ASize and ResultSize. |
| unsigned ASize = A->getType()->getPrimitiveSizeInBits(); |
| |
| // If the shift amount is larger than the size of A, then the result is |
| // known to be zero because all the input bits got shifted out. |
| if (Cst->getZExtValue() >= ASize) |
| return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); |
| |
| // Since we're doing an lshr and a zero extend, and know that the shift |
| // amount is smaller than ASize, it is always safe to do the shift in A's |
| // type, then zero extend or truncate to the result. |
| Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); |
| Shift->takeName(Src); |
| return CastInst::CreateIntegerCast(Shift, DestTy, false); |
| } |
| |
| // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type |
| // conversion. |
| // It works because bits coming from sign extension have the same value as |
| // the sign bit of the original value; performing ashr instead of lshr |
| // generates bits of the same value as the sign bit. |
| if (Src->hasOneUse() && |
| match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && |
| cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { |
| const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); |
| // This optimization can be only performed when zero bits generated by |
| // the original lshr aren't pulled into the value after truncation, so we |
| // can only shift by values smaller than the size of destination type (in |
| // bits). |
| if (Cst->getValue().ult(ASize)) { |
| Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); |
| Shift->takeName(Src); |
| return CastInst::CreateIntegerCast(Shift, CI.getType(), true); |
| } |
| } |
| |
| // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest |
| // type isn't non-native. |
| if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && |
| ShouldChangeType(SrcTy, DestTy) && |
| match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { |
| Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); |
| return BinaryOperator::CreateAnd(NewTrunc, |
| ConstantExpr::getTrunc(Cst, DestTy)); |
| } |
| |
| if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) |
| return I; |
| |
| return nullptr; |
| } |
| |
| /// Transform (zext icmp) to bitwise / integer operations in order to eliminate |
| /// the icmp. |
| Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, |
| bool DoXform) { |
| // If we are just checking for a icmp eq of a single bit and zext'ing it |
| // to an integer, then shift the bit to the appropriate place and then |
| // cast to integer to avoid the comparison. |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| const APInt &Op1CV = Op1C->getValue(); |
| |
| // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. |
| if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || |
| (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { |
| if (!DoXform) return ICI; |
| |
| Value *In = ICI->getOperand(0); |
| Value *Sh = ConstantInt::get(In->getType(), |
| In->getType()->getScalarSizeInBits() - 1); |
| In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); |
| if (In->getType() != CI.getType()) |
| In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); |
| |
| if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { |
| Constant *One = ConstantInt::get(In->getType(), 1); |
| In = Builder->CreateXor(In, One, In->getName() + ".not"); |
| } |
| |
| return replaceInstUsesWith(CI, In); |
| } |
| |
| // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| // zext (X == 1) to i32 --> X iff X has only the low bit set. |
| // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. |
| // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. |
| // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| if ((Op1CV == 0 || Op1CV.isPowerOf2()) && |
| // This only works for EQ and NE |
| ICI->isEquality()) { |
| // If Op1C some other power of two, convert: |
| uint32_t BitWidth = Op1C->getType()->getBitWidth(); |
| APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); |
| |
| APInt KnownZeroMask(~KnownZero); |
| if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? |
| if (!DoXform) return ICI; |
| |
| bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; |
| if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { |
| // (X&4) == 2 --> false |
| // (X&4) != 2 --> true |
| Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), |
| isNE); |
| Res = ConstantExpr::getZExt(Res, CI.getType()); |
| return replaceInstUsesWith(CI, Res); |
| } |
| |
| uint32_t ShAmt = KnownZeroMask.logBase2(); |
| Value *In = ICI->getOperand(0); |
| if (ShAmt) { |
| // Perform a logical shr by shiftamt. |
| // Insert the shift to put the result in the low bit. |
| In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), |
| In->getName() + ".lobit"); |
| } |
| |
| if ((Op1CV != 0) == isNE) { // Toggle the low bit. |
| Constant *One = ConstantInt::get(In->getType(), 1); |
| In = Builder->CreateXor(In, One); |
| } |
| |
| if (CI.getType() == In->getType()) |
| return replaceInstUsesWith(CI, In); |
| return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); |
| } |
| } |
| } |
| |
| // icmp ne A, B is equal to xor A, B when A and B only really have one bit. |
| // It is also profitable to transform icmp eq into not(xor(A, B)) because that |
| // may lead to additional simplifications. |
| if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { |
| if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { |
| uint32_t BitWidth = ITy->getBitWidth(); |
| Value *LHS = ICI->getOperand(0); |
| Value *RHS = ICI->getOperand(1); |
| |
| APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); |
| APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); |
| computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); |
| computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); |
| |
| if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { |
| APInt KnownBits = KnownZeroLHS | KnownOneLHS; |
| APInt UnknownBit = ~KnownBits; |
| if (UnknownBit.countPopulation() == 1) { |
| if (!DoXform) return ICI; |
| |
| Value *Result = Builder->CreateXor(LHS, RHS); |
| |
| // Mask off any bits that are set and won't be shifted away. |
| if (KnownOneLHS.uge(UnknownBit)) |
| Result = Builder->CreateAnd(Result, |
| ConstantInt::get(ITy, UnknownBit)); |
| |
| // Shift the bit we're testing down to the lsb. |
| Result = Builder->CreateLShr( |
| Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); |
| |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); |
| Result->takeName(ICI); |
| return replaceInstUsesWith(CI, Result); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Determine if the specified value can be computed in the specified wider type |
| /// and produce the same low bits. If not, return false. |
| /// |
| /// If this function returns true, it can also return a non-zero number of bits |
| /// (in BitsToClear) which indicates that the value it computes is correct for |
| /// the zero extend, but that the additional BitsToClear bits need to be zero'd |
| /// out. For example, to promote something like: |
| /// |
| /// %B = trunc i64 %A to i32 |
| /// %C = lshr i32 %B, 8 |
| /// %E = zext i32 %C to i64 |
| /// |
| /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be |
| /// set to 8 to indicate that the promoted value needs to have bits 24-31 |
| /// cleared in addition to bits 32-63. Since an 'and' will be generated to |
| /// clear the top bits anyway, doing this has no extra cost. |
| /// |
| /// This function works on both vectors and scalars. |
| static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, |
| InstCombiner &IC, Instruction *CxtI) { |
| BitsToClear = 0; |
| if (isa<Constant>(V)) |
| return true; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| |
| // If the input is a truncate from the destination type, we can trivially |
| // eliminate it. |
| if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) |
| return true; |
| |
| // We can't extend or shrink something that has multiple uses: doing so would |
| // require duplicating the instruction in general, which isn't profitable. |
| if (!I->hasOneUse()) return false; |
| |
| unsigned Opc = I->getOpcode(), Tmp; |
| switch (Opc) { |
| case Instruction::ZExt: // zext(zext(x)) -> zext(x). |
| case Instruction::SExt: // zext(sext(x)) -> sext(x). |
| case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) |
| return true; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || |
| !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) |
| return false; |
| // These can all be promoted if neither operand has 'bits to clear'. |
| if (BitsToClear == 0 && Tmp == 0) |
| return true; |
| |
| // If the operation is an AND/OR/XOR and the bits to clear are zero in the |
| // other side, BitsToClear is ok. |
| if (Tmp == 0 && |
| (Opc == Instruction::And || Opc == Instruction::Or || |
| Opc == Instruction::Xor)) { |
| // We use MaskedValueIsZero here for generality, but the case we care |
| // about the most is constant RHS. |
| unsigned VSize = V->getType()->getScalarSizeInBits(); |
| if (IC.MaskedValueIsZero(I->getOperand(1), |
| APInt::getHighBitsSet(VSize, BitsToClear), |
| 0, CxtI)) |
| return true; |
| } |
| |
| // Otherwise, we don't know how to analyze this BitsToClear case yet. |
| return false; |
| |
| case Instruction::Shl: |
| // We can promote shl(x, cst) if we can promote x. Since shl overwrites the |
| // upper bits we can reduce BitsToClear by the shift amount. |
| if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; |
| return true; |
| } |
| return false; |
| case Instruction::LShr: |
| // We can promote lshr(x, cst) if we can promote x. This requires the |
| // ultimate 'and' to clear out the high zero bits we're clearing out though. |
| if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| BitsToClear += Amt->getZExtValue(); |
| if (BitsToClear > V->getType()->getScalarSizeInBits()) |
| BitsToClear = V->getType()->getScalarSizeInBits(); |
| return true; |
| } |
| // Cannot promote variable LSHR. |
| return false; |
| case Instruction::Select: |
| if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || |
| !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || |
| // TODO: If important, we could handle the case when the BitsToClear are |
| // known zero in the disagreeing side. |
| Tmp != BitsToClear) |
| return false; |
| return true; |
| |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || |
| // TODO: If important, we could handle the case when the BitsToClear |
| // are known zero in the disagreeing input. |
| Tmp != BitsToClear) |
| return false; |
| return true; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| return false; |
| } |
| } |
| |
| Instruction *InstCombiner::visitZExt(ZExtInst &CI) { |
| // If this zero extend is only used by a truncate, let the truncate be |
| // eliminated before we try to optimize this zext. |
| if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) |
| return nullptr; |
| |
| // If one of the common conversion will work, do it. |
| if (Instruction *Result = commonCastTransforms(CI)) |
| return Result; |
| |
| // See if we can simplify any instructions used by the input whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(CI)) |
| return &CI; |
| |
| Value *Src = CI.getOperand(0); |
| Type *SrcTy = Src->getType(), *DestTy = CI.getType(); |
| |
| // Attempt to extend the entire input expression tree to the destination |
| // type. Only do this if the dest type is a simple type, don't convert the |
| // expression tree to something weird like i93 unless the source is also |
| // strange. |
| unsigned BitsToClear; |
| if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && |
| canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { |
| assert(BitsToClear < SrcTy->getScalarSizeInBits() && |
| "Unreasonable BitsToClear"); |
| |
| // Okay, we can transform this! Insert the new expression now. |
| DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid zero extend: " << CI << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, false); |
| assert(Res->getType() == DestTy); |
| |
| uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; |
| uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| // If the high bits are already filled with zeros, just replace this |
| // cast with the result. |
| if (MaskedValueIsZero(Res, |
| APInt::getHighBitsSet(DestBitSize, |
| DestBitSize-SrcBitsKept), |
| 0, &CI)) |
| return replaceInstUsesWith(CI, Res); |
| |
| // We need to emit an AND to clear the high bits. |
| Constant *C = ConstantInt::get(Res->getType(), |
| APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); |
| return BinaryOperator::CreateAnd(Res, C); |
| } |
| |
| // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| // types and if the sizes are just right we can convert this into a logical |
| // 'and' which will be much cheaper than the pair of casts. |
| if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast |
| // TODO: Subsume this into EvaluateInDifferentType. |
| |
| // Get the sizes of the types involved. We know that the intermediate type |
| // will be smaller than A or C, but don't know the relation between A and C. |
| Value *A = CSrc->getOperand(0); |
| unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| unsigned DstSize = CI.getType()->getScalarSizeInBits(); |
| // If we're actually extending zero bits, then if |
| // SrcSize < DstSize: zext(a & mask) |
| // SrcSize == DstSize: a & mask |
| // SrcSize > DstSize: trunc(a) & mask |
| if (SrcSize < DstSize) { |
| APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| Constant *AndConst = ConstantInt::get(A->getType(), AndValue); |
| Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); |
| return new ZExtInst(And, CI.getType()); |
| } |
| |
| if (SrcSize == DstSize) { |
| APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), |
| AndValue)); |
| } |
| if (SrcSize > DstSize) { |
| Value *Trunc = Builder->CreateTrunc(A, CI.getType()); |
| APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); |
| return BinaryOperator::CreateAnd(Trunc, |
| ConstantInt::get(Trunc->getType(), |
| AndValue)); |
| } |
| } |
| |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) |
| return transformZExtICmp(ICI, CI); |
| |
| BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); |
| if (SrcI && SrcI->getOpcode() == Instruction::Or) { |
| // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one |
| // of the (zext icmp) will be transformed. |
| ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); |
| ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); |
| if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && |
| (transformZExtICmp(LHS, CI, false) || |
| transformZExtICmp(RHS, CI, false))) { |
| Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); |
| Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); |
| return BinaryOperator::Create(Instruction::Or, LCast, RCast); |
| } |
| } |
| |
| // zext(trunc(X) & C) -> (X & zext(C)). |
| Constant *C; |
| Value *X; |
| if (SrcI && |
| match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && |
| X->getType() == CI.getType()) |
| return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); |
| |
| // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). |
| Value *And; |
| if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && |
| match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && |
| X->getType() == CI.getType()) { |
| Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); |
| return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); |
| } |
| |
| // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 |
| if (SrcI && SrcI->hasOneUse() && |
| SrcI->getType()->getScalarType()->isIntegerTy(1) && |
| match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { |
| Value *New = Builder->CreateZExt(X, CI.getType()); |
| return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. |
| Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { |
| Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| |
| // Don't bother if Op1 isn't of vector or integer type. |
| if (!Op1->getType()->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative |
| // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive |
| if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || |
| (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { |
| |
| Value *Sh = ConstantInt::get(Op0->getType(), |
| Op0->getType()->getScalarSizeInBits()-1); |
| Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); |
| if (In->getType() != CI.getType()) |
| In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); |
| |
| if (Pred == ICmpInst::ICMP_SGT) |
| In = Builder->CreateNot(In, In->getName()+".not"); |
| return replaceInstUsesWith(CI, In); |
| } |
| } |
| |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| // If we know that only one bit of the LHS of the icmp can be set and we |
| // have an equality comparison with zero or a power of 2, we can transform |
| // the icmp and sext into bitwise/integer operations. |
| if (ICI->hasOneUse() && |
| ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ |
| unsigned BitWidth = Op1C->getType()->getBitWidth(); |
| APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); |
| |
| APInt KnownZeroMask(~KnownZero); |
| if (KnownZeroMask.isPowerOf2()) { |
| Value *In = ICI->getOperand(0); |
| |
| // If the icmp tests for a known zero bit we can constant fold it. |
| if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { |
| Value *V = Pred == ICmpInst::ICMP_NE ? |
| ConstantInt::getAllOnesValue(CI.getType()) : |
| ConstantInt::getNullValue(CI.getType()); |
| return replaceInstUsesWith(CI, V); |
| } |
| |
| if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { |
| // sext ((x & 2^n) == 0) -> (x >> n) - 1 |
| // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 |
| unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); |
| // Perform a right shift to place the desired bit in the LSB. |
| if (ShiftAmt) |
| In = Builder->CreateLShr(In, |
| ConstantInt::get(In->getType(), ShiftAmt)); |
| |
| // At this point "In" is either 1 or 0. Subtract 1 to turn |
| // {1, 0} -> {0, -1}. |
| In = Builder->CreateAdd(In, |
| ConstantInt::getAllOnesValue(In->getType()), |
| "sext"); |
| } else { |
| // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 |
| // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 |
| unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); |
| // Perform a left shift to place the desired bit in the MSB. |
| if (ShiftAmt) |
| In = Builder->CreateShl(In, |
| ConstantInt::get(In->getType(), ShiftAmt)); |
| |
| // Distribute the bit over the whole bit width. |
| In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), |
| BitWidth - 1), "sext"); |
| } |
| |
| if (CI.getType() == In->getType()) |
| return replaceInstUsesWith(CI, In); |
| return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Return true if we can take the specified value and return it as type Ty |
| /// without inserting any new casts and without changing the value of the common |
| /// low bits. This is used by code that tries to promote integer operations to |
| /// a wider types will allow us to eliminate the extension. |
| /// |
| /// This function works on both vectors and scalars. |
| /// |
| static bool canEvaluateSExtd(Value *V, Type *Ty) { |
| assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && |
| "Can't sign extend type to a smaller type"); |
| // If this is a constant, it can be trivially promoted. |
| if (isa<Constant>(V)) |
| return true; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| |
| // If this is a truncate from the dest type, we can trivially eliminate it. |
| if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) |
| return true; |
| |
| // We can't extend or shrink something that has multiple uses: doing so would |
| // require duplicating the instruction in general, which isn't profitable. |
| if (!I->hasOneUse()) return false; |
| |
| switch (I->getOpcode()) { |
| case Instruction::SExt: // sext(sext(x)) -> sext(x) |
| case Instruction::ZExt: // sext(zext(x)) -> zext(x) |
| case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) |
| return true; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // These operators can all arbitrarily be extended if their inputs can. |
| return canEvaluateSExtd(I->getOperand(0), Ty) && |
| canEvaluateSExtd(I->getOperand(1), Ty); |
| |
| //case Instruction::Shl: TODO |
| //case Instruction::LShr: TODO |
| |
| case Instruction::Select: |
| return canEvaluateSExtd(I->getOperand(1), Ty) && |
| canEvaluateSExtd(I->getOperand(2), Ty); |
| |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!canEvaluateSExtd(IncValue, Ty)) return false; |
| return true; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| break; |
| } |
| |
| return false; |
| } |
| |
| Instruction *InstCombiner::visitSExt(SExtInst &CI) { |
| // If this sign extend is only used by a truncate, let the truncate be |
| // eliminated before we try to optimize this sext. |
| if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) |
| return nullptr; |
| |
| if (Instruction *I = commonCastTransforms(CI)) |
| return I; |
| |
| // See if we can simplify any instructions used by the input whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(CI)) |
| return &CI; |
| |
| Value *Src = CI.getOperand(0); |
| Type *SrcTy = Src->getType(), *DestTy = CI.getType(); |
| |
| // If we know that the value being extended is positive, we can use a zext |
| // instead. |
| bool KnownZero, KnownOne; |
| ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); |
| if (KnownZero) { |
| Value *ZExt = Builder->CreateZExt(Src, DestTy); |
| return replaceInstUsesWith(CI, ZExt); |
| } |
| |
| // Attempt to extend the entire input expression tree to the destination |
| // type. Only do this if the dest type is a simple type, don't convert the |
| // expression tree to something weird like i93 unless the source is also |
| // strange. |
| if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && |
| canEvaluateSExtd(Src, DestTy)) { |
| // Okay, we can transform this! Insert the new expression now. |
| DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid sign extend: " << CI << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, true); |
| assert(Res->getType() == DestTy); |
| |
| uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); |
| uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| // If the high bits are already filled with sign bit, just replace this |
| // cast with the result. |
| if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) |
| return replaceInstUsesWith(CI, Res); |
| |
| // We need to emit a shl + ashr to do the sign extend. |
| Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); |
| return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), |
| ShAmt); |
| } |
| |
| // If this input is a trunc from our destination, then turn sext(trunc(x)) |
| // into shifts. |
| if (TruncInst *TI = dyn_cast<TruncInst>(Src)) |
| if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { |
| uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); |
| uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| // We need to emit a shl + ashr to do the sign extend. |
| Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); |
| Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); |
| return BinaryOperator::CreateAShr(Res, ShAmt); |
| } |
| |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) |
| return transformSExtICmp(ICI, CI); |
| |
| // If the input is a shl/ashr pair of a same constant, then this is a sign |
| // extension from a smaller value. If we could trust arbitrary bitwidth |
| // integers, we could turn this into a truncate to the smaller bit and then |
| // use a sext for the whole extension. Since we don't, look deeper and check |
| // for a truncate. If the source and dest are the same type, eliminate the |
| // trunc and extend and just do shifts. For example, turn: |
| // %a = trunc i32 %i to i8 |
| // %b = shl i8 %a, 6 |
| // %c = ashr i8 %b, 6 |
| // %d = sext i8 %c to i32 |
| // into: |
| // %a = shl i32 %i, 30 |
| // %d = ashr i32 %a, 30 |
| Value *A = nullptr; |
| // TODO: Eventually this could be subsumed by EvaluateInDifferentType. |
| ConstantInt *BA = nullptr, *CA = nullptr; |
| if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), |
| m_ConstantInt(CA))) && |
| BA == CA && A->getType() == CI.getType()) { |
| unsigned MidSize = Src->getType()->getScalarSizeInBits(); |
| unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); |
| unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; |
| Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); |
| A = Builder->CreateShl(A, ShAmtV, CI.getName()); |
| return BinaryOperator::CreateAShr(A, ShAmtV); |
| } |
| |
| return nullptr; |
| } |
| |
| |
| /// Return a Constant* for the specified floating-point constant if it fits |
| /// in the specified FP type without changing its value. |
| static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { |
| bool losesInfo; |
| APFloat F = CFP->getValueAPF(); |
| (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); |
| if (!losesInfo) |
| return ConstantFP::get(CFP->getContext(), F); |
| return nullptr; |
| } |
| |
| /// If this is a floating-point extension instruction, look |
| /// through it until we get the source value. |
| static Value *lookThroughFPExtensions(Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::FPExt) |
| return lookThroughFPExtensions(I->getOperand(0)); |
| |
| // If this value is a constant, return the constant in the smallest FP type |
| // that can accurately represent it. This allows us to turn |
| // (float)((double)X+2.0) into x+2.0f. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { |
| if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) |
| return V; // No constant folding of this. |
| // See if the value can be truncated to half and then reextended. |
| if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) |
| return V; |
| // See if the value can be truncated to float and then reextended. |
| if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) |
| return V; |
| if (CFP->getType()->isDoubleTy()) |
| return V; // Won't shrink. |
| if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) |
| return V; |
| // Don't try to shrink to various long double types. |
| } |
| |
| return V; |
| } |
| |
| Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { |
| if (Instruction *I = commonCastTransforms(CI)) |
| return I; |
| // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to |
| // simplify this expression to avoid one or more of the trunc/extend |
| // operations if we can do so without changing the numerical results. |
| // |
| // The exact manner in which the widths of the operands interact to limit |
| // what we can and cannot do safely varies from operation to operation, and |
| // is explained below in the various case statements. |
| BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); |
| if (OpI && OpI->hasOneUse()) { |
| Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); |
| Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); |
| unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); |
| unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); |
| unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); |
| unsigned SrcWidth = std::max(LHSWidth, RHSWidth); |
| unsigned DstWidth = CI.getType()->getFPMantissaWidth(); |
| switch (OpI->getOpcode()) { |
| default: break; |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| // For addition and subtraction, the infinitely precise result can |
| // essentially be arbitrarily wide; proving that double rounding |
| // will not occur because the result of OpI is exact (as we will for |
| // FMul, for example) is hopeless. However, we *can* nonetheless |
| // frequently know that double rounding cannot occur (or that it is |
| // innocuous) by taking advantage of the specific structure of |
| // infinitely-precise results that admit double rounding. |
| // |
| // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient |
| // to represent both sources, we can guarantee that the double |
| // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, |
| // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." |
| // for proof of this fact). |
| // |
| // Note: Figueroa does not consider the case where DstFormat != |
| // SrcFormat. It's possible (likely even!) that this analysis |
| // could be tightened for those cases, but they are rare (the main |
| // case of interest here is (float)((double)float + float)). |
| if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { |
| if (LHSOrig->getType() != CI.getType()) |
| LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); |
| if (RHSOrig->getType() != CI.getType()) |
| RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); |
| Instruction *RI = |
| BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); |
| RI->copyFastMathFlags(OpI); |
| return RI; |
| } |
| break; |
| case Instruction::FMul: |
| // For multiplication, the infinitely precise result has at most |
| // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient |
| // that such a value can be exactly represented, then no double |
| // rounding can possibly occur; we can safely perform the operation |
| // in the destination format if it can represent both sources. |
| if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { |
| if (LHSOrig->getType() != CI.getType()) |
| LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); |
| if (RHSOrig->getType() != CI.getType()) |
| RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); |
| Instruction *RI = |
| BinaryOperator::CreateFMul(LHSOrig, RHSOrig); |
| RI->copyFastMathFlags(OpI); |
| return RI; |
| } |
| break; |
| case Instruction::FDiv: |
| // For division, we use again use the bound from Figueroa's |
| // dissertation. I am entirely certain that this bound can be |
| // tightened in the unbalanced operand case by an analysis based on |
| // the diophantine rational approximation bound, but the well-known |
| // condition used here is a good conservative first pass. |
| // TODO: Tighten bound via rigorous analysis of the unbalanced case. |
| if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { |
| if (LHSOrig->getType() != CI.getType()) |
| LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); |
| if (RHSOrig->getType() != CI.getType()) |
| RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); |
| Instruction *RI = |
| BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); |
| RI->copyFastMathFlags(OpI); |
| return RI; |
| } |
| break; |
| case Instruction::FRem: |
| // Remainder is straightforward. Remainder is always exact, so the |
| // type of OpI doesn't enter into things at all. We simply evaluate |
| // in whichever source type is larger, then convert to the |
| // destination type. |
| if (SrcWidth == OpWidth) |
| break; |
| if (LHSWidth < SrcWidth) |
| LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); |
| else if (RHSWidth <= SrcWidth) |
| RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); |
| if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { |
| Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); |
| if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) |
| RI->copyFastMathFlags(OpI); |
| return CastInst::CreateFPCast(ExactResult, CI.getType()); |
| } |
| } |
| |
| // (fptrunc (fneg x)) -> (fneg (fptrunc x)) |
| if (BinaryOperator::isFNeg(OpI)) { |
| Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), |
| CI.getType()); |
| Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); |
| RI->copyFastMathFlags(OpI); |
| return RI; |
| } |
| } |
| |
| // (fptrunc (select cond, R1, Cst)) --> |
| // (select cond, (fptrunc R1), (fptrunc Cst)) |
| // |
| // - but only if this isn't part of a min/max operation, else we'll |
| // ruin min/max canonical form which is to have the select and |
| // compare's operands be of the same type with no casts to look through. |
| Value *LHS, *RHS; |
| SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); |
| if (SI && |
| (isa<ConstantFP>(SI->getOperand(1)) || |
| isa<ConstantFP>(SI->getOperand(2))) && |
| matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { |
| Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), |
| CI.getType()); |
| Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), |
| CI.getType()); |
| return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); |
| if (II) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::fabs: { |
| // (fptrunc (fabs x)) -> (fabs (fptrunc x)) |
| Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), |
| CI.getType()); |
| Type *IntrinsicType[] = { CI.getType() }; |
| Function *Overload = Intrinsic::getDeclaration( |
| CI.getModule(), II->getIntrinsicID(), IntrinsicType); |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| II->getOperandBundlesAsDefs(OpBundles); |
| |
| Value *Args[] = { InnerTrunc }; |
| return CallInst::Create(Overload, Args, OpBundles, II->getName()); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFPExt(CastInst &CI) { |
| return commonCastTransforms(CI); |
| } |
| |
| // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) |
| // This is safe if the intermediate type has enough bits in its mantissa to |
| // accurately represent all values of X. For example, this won't work with |
| // i64 -> float -> i64. |
| Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { |
| if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) |
| return nullptr; |
| Instruction *OpI = cast<Instruction>(FI.getOperand(0)); |
| |
| Value *SrcI = OpI->getOperand(0); |
| Type *FITy = FI.getType(); |
| Type *OpITy = OpI->getType(); |
| Type *SrcTy = SrcI->getType(); |
| bool IsInputSigned = isa<SIToFPInst>(OpI); |
| bool IsOutputSigned = isa<FPToSIInst>(FI); |
| |
| // We can safely assume the conversion won't overflow the output range, |
| // because (for example) (uint8_t)18293.f is undefined behavior. |
| |
| // Since we can assume the conversion won't overflow, our decision as to |
| // whether the input will fit in the float should depend on the minimum |
| // of the input range and output range. |
| |
| // This means this is also safe for a signed input and unsigned output, since |
| // a negative input would lead to undefined behavior. |
| int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; |
| int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; |
| int ActualSize = std::min(InputSize, OutputSize); |
| |
| if (ActualSize <= OpITy->getFPMantissaWidth()) { |
| if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { |
| if (IsInputSigned && IsOutputSigned) |
| return new SExtInst(SrcI, FITy); |
| return new ZExtInst(SrcI, FITy); |
| } |
| if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) |
| return new TruncInst(SrcI, FITy); |
| if (SrcTy == FITy) |
| return replaceInstUsesWith(FI, SrcI); |
| return new BitCastInst(SrcI, FITy); |
| } |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { |
| Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| if (!OpI) |
| return commonCastTransforms(FI); |
| |
| if (Instruction *I = FoldItoFPtoI(FI)) |
| return I; |
| |
| return commonCastTransforms(FI); |
| } |
| |
| Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { |
| Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| if (!OpI) |
| return commonCastTransforms(FI); |
| |
| if (Instruction *I = FoldItoFPtoI(FI)) |
| return I; |
| |
| return commonCastTransforms(FI); |
| } |
| |
| Instruction *InstCombiner::visitUIToFP(CastInst &CI) { |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombiner::visitSIToFP(CastInst &CI) { |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { |
| // If the source integer type is not the intptr_t type for this target, do a |
| // trunc or zext to the intptr_t type, then inttoptr of it. This allows the |
| // cast to be exposed to other transforms. |
| unsigned AS = CI.getAddressSpace(); |
| if (CI.getOperand(0)->getType()->getScalarSizeInBits() != |
| DL.getPointerSizeInBits(AS)) { |
| Type *Ty = DL.getIntPtrType(CI.getContext(), AS); |
| if (CI.getType()->isVectorTy()) // Handle vectors of pointers. |
| Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); |
| |
| Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); |
| return new IntToPtrInst(P, CI.getType()); |
| } |
| |
| if (Instruction *I = commonCastTransforms(CI)) |
| return I; |
| |
| return nullptr; |
| } |
| |
| /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) |
| Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { |
| Value *Src = CI.getOperand(0); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { |
| // If casting the result of a getelementptr instruction with no offset, turn |
| // this into a cast of the original pointer! |
| if (GEP->hasAllZeroIndices() && |
| // If CI is an addrspacecast and GEP changes the poiner type, merging |
| // GEP into CI would undo canonicalizing addrspacecast with different |
| // pointer types, causing infinite loops. |
| (!isa<AddrSpaceCastInst>(CI) || |
| GEP->getType() == GEP->getPointerOperand()->getType())) { |
| // Changing the cast operand is usually not a good idea but it is safe |
| // here because the pointer operand is being replaced with another |
| // pointer operand so the opcode doesn't need to change. |
| Worklist.Add(GEP); |
| CI.setOperand(0, GEP->getOperand(0)); |
| return &CI; |
| } |
| } |
| |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { |
| // If the destination integer type is not the intptr_t type for this target, |
| // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast |
| // to be exposed to other transforms. |
| |
| Type *Ty = CI.getType(); |
| unsigned AS = CI.getPointerAddressSpace(); |
| |
| if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) |
| return commonPointerCastTransforms(CI); |
| |
| Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); |
| if (Ty->isVectorTy()) // Handle vectors of pointers. |
| PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); |
| |
| Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); |
| return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); |
| } |
| |
| /// This input value (which is known to have vector type) is being zero extended |
| /// or truncated to the specified vector type. |
| /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. |
| /// |
| /// The source and destination vector types may have different element types. |
| static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, |
| InstCombiner &IC) { |
| // We can only do this optimization if the output is a multiple of the input |
| // element size, or the input is a multiple of the output element size. |
| // Convert the input type to have the same element type as the output. |
| VectorType *SrcTy = cast<VectorType>(InVal->getType()); |
| |
| if (SrcTy->getElementType() != DestTy->getElementType()) { |
| // The input types don't need to be identical, but for now they must be the |
| // same size. There is no specific reason we couldn't handle things like |
| // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten |
| // there yet. |
| if (SrcTy->getElementType()->getPrimitiveSizeInBits() != |
| DestTy->getElementType()->getPrimitiveSizeInBits()) |
| return nullptr; |
| |
| SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); |
| InVal = IC.Builder->CreateBitCast(InVal, SrcTy); |
| } |
| |
| // Now that the element types match, get the shuffle mask and RHS of the |
| // shuffle to use, which depends on whether we're increasing or decreasing the |
| // size of the input. |
| SmallVector<uint32_t, 16> ShuffleMask; |
| Value *V2; |
| |
| if (SrcTy->getNumElements() > DestTy->getNumElements()) { |
| // If we're shrinking the number of elements, just shuffle in the low |
| // elements from the input and use undef as the second shuffle input. |
| V2 = UndefValue::get(SrcTy); |
| for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) |
| ShuffleMask.push_back(i); |
| |
| } else { |
| // If we're increasing the number of elements, shuffle in all of the |
| // elements from InVal and fill the rest of the result elements with zeros |
| // from a constant zero. |
| V2 = Constant::getNullValue(SrcTy); |
| unsigned SrcElts = SrcTy->getNumElements(); |
| for (unsigned i = 0, e = SrcElts; i != e; ++i) |
| ShuffleMask.push_back(i); |
| |
| // The excess elements reference the first element of the zero input. |
| for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) |
| ShuffleMask.push_back(SrcElts); |
| } |
| |
| return new ShuffleVectorInst(InVal, V2, |
| ConstantDataVector::get(V2->getContext(), |
| ShuffleMask)); |
| } |
| |
| static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { |
| return Value % Ty->getPrimitiveSizeInBits() == 0; |
| } |
| |
| static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { |
| return Value / Ty->getPrimitiveSizeInBits(); |
| } |
| |
| /// V is a value which is inserted into a vector of VecEltTy. |
| /// Look through the value to see if we can decompose it into |
| /// insertions into the vector. See the example in the comment for |
| /// OptimizeIntegerToVectorInsertions for the pattern this handles. |
| /// The type of V is always a non-zero multiple of VecEltTy's size. |
| /// Shift is the number of bits between the lsb of V and the lsb of |
| /// the vector. |
| /// |
| /// This returns false if the pattern can't be matched or true if it can, |
| /// filling in Elements with the elements found here. |
| static bool collectInsertionElements(Value *V, unsigned Shift, |
| SmallVectorImpl<Value *> &Elements, |
| Type *VecEltTy, bool isBigEndian) { |
| assert(isMultipleOfTypeSize(Shift, VecEltTy) && |
| "Shift should be a multiple of the element type size"); |
| |
| // Undef values never contribute useful bits to the result. |
| if (isa<UndefValue>(V)) return true; |
| |
| // If we got down to a value of the right type, we win, try inserting into the |
| // right element. |
| if (V->getType() == VecEltTy) { |
| // Inserting null doesn't actually insert any elements. |
| if (Constant *C = dyn_cast<Constant>(V)) |
| if (C->isNullValue()) |
| return true; |
| |
| unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); |
| if (isBigEndian) |
| ElementIndex = Elements.size() - ElementIndex - 1; |
| |
| // Fail if multiple elements are inserted into this slot. |
| if (Elements[ElementIndex]) |
| return false; |
| |
| Elements[ElementIndex] = V; |
| return true; |
| } |
| |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| // Figure out the # elements this provides, and bitcast it or slice it up |
| // as required. |
| unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), |
| VecEltTy); |
| // If the constant is the size of a vector element, we just need to bitcast |
| // it to the right type so it gets properly inserted. |
| if (NumElts == 1) |
| return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), |
| Shift, Elements, VecEltTy, isBigEndian); |
| |
| // Okay, this is a constant that covers multiple elements. Slice it up into |
| // pieces and insert each element-sized piece into the vector. |
| if (!isa<IntegerType>(C->getType())) |
| C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), |
| C->getType()->getPrimitiveSizeInBits())); |
| unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); |
| Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| unsigned ShiftI = Shift+i*ElementSize; |
| Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), |
| ShiftI)); |
| Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); |
| if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, |
| isBigEndian)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (!V->hasOneUse()) return false; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| switch (I->getOpcode()) { |
| default: return false; // Unhandled case. |
| case Instruction::BitCast: |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::ZExt: |
| if (!isMultipleOfTypeSize( |
| I->getOperand(0)->getType()->getPrimitiveSizeInBits(), |
| VecEltTy)) |
| return false; |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::Or: |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian) && |
| collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::Shl: { |
| // Must be shifting by a constant that is a multiple of the element size. |
| ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); |
| if (!CI) return false; |
| Shift += CI->getZExtValue(); |
| if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| } |
| |
| } |
| } |
| |
| |
| /// If the input is an 'or' instruction, we may be doing shifts and ors to |
| /// assemble the elements of the vector manually. |
| /// Try to rip the code out and replace it with insertelements. This is to |
| /// optimize code like this: |
| /// |
| /// %tmp37 = bitcast float %inc to i32 |
| /// %tmp38 = zext i32 %tmp37 to i64 |
| /// %tmp31 = bitcast float %inc5 to i32 |
| /// %tmp32 = zext i32 %tmp31 to i64 |
| /// %tmp33 = shl i64 %tmp32, 32 |
| /// %ins35 = or i64 %tmp33, %tmp38 |
| /// %tmp43 = bitcast i64 %ins35 to <2 x float> |
| /// |
| /// Into two insertelements that do "buildvector{%inc, %inc5}". |
| static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, |
| InstCombiner &IC) { |
| VectorType *DestVecTy = cast<VectorType>(CI.getType()); |
| Value *IntInput = CI.getOperand(0); |
| |
| SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); |
| if (!collectInsertionElements(IntInput, 0, Elements, |
| DestVecTy->getElementType(), |
| IC.getDataLayout().isBigEndian())) |
| return nullptr; |
| |
| // If we succeeded, we know that all of the element are specified by Elements |
| // or are zero if Elements has a null entry. Recast this as a set of |
| // insertions. |
| Value *Result = Constant::getNullValue(CI.getType()); |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| if (!Elements[i]) continue; // Unset element. |
| |
| Result = IC.Builder->CreateInsertElement(Result, Elements[i], |
| IC.Builder->getInt32(i)); |
| } |
| |
| return Result; |
| } |
| |
| /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the |
| /// vector followed by extract element. The backend tends to handle bitcasts of |
| /// vectors better than bitcasts of scalars because vector registers are |
| /// usually not type-specific like scalar integer or scalar floating-point. |
| static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, |
| InstCombiner &IC, |
| const DataLayout &DL) { |
| // TODO: Create and use a pattern matcher for ExtractElementInst. |
| auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); |
| if (!ExtElt || !ExtElt->hasOneUse()) |
| return nullptr; |
| |
| // The bitcast must be to a vectorizable type, otherwise we can't make a new |
| // type to extract from. |
| Type *DestType = BitCast.getType(); |
| if (!VectorType::isValidElementType(DestType)) |
| return nullptr; |
| |
| unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); |
| auto *NewVecType = VectorType::get(DestType, NumElts); |
| auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), |
| NewVecType, "bc"); |
| return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); |
| } |
| |
| Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { |
| // If the operands are integer typed then apply the integer transforms, |
| // otherwise just apply the common ones. |
| Value *Src = CI.getOperand(0); |
| Type *SrcTy = Src->getType(); |
| Type *DestTy = CI.getType(); |
| |
| // Get rid of casts from one type to the same type. These are useless and can |
| // be replaced by the operand. |
| if (DestTy == Src->getType()) |
| return replaceInstUsesWith(CI, Src); |
| |
| if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { |
| PointerType *SrcPTy = cast<PointerType>(SrcTy); |
| Type *DstElTy = DstPTy->getElementType(); |
| Type *SrcElTy = SrcPTy->getElementType(); |
| |
| // If we are casting a alloca to a pointer to a type of the same |
| // size, rewrite the allocation instruction to allocate the "right" type. |
| // There is no need to modify malloc calls because it is their bitcast that |
| // needs to be cleaned up. |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) |
| if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) |
| return V; |
| |
| // When the type pointed to is not sized the cast cannot be |
| // turned into a gep. |
| Type *PointeeType = |
| cast<PointerType>(Src->getType()->getScalarType())->getElementType(); |
| if (!PointeeType->isSized()) |
| return nullptr; |
| |
| // If the source and destination are pointers, and this cast is equivalent |
| // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. |
| // This can enhance SROA and other transforms that want type-safe pointers. |
| unsigned NumZeros = 0; |
| while (SrcElTy != DstElTy && |
| isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && |
| SrcElTy->getNumContainedTypes() /* not "{}" */) { |
| SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); |
| ++NumZeros; |
| } |
| |
| // If we found a path from the src to dest, create the getelementptr now. |
| if (SrcElTy == DstElTy) { |
| SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); |
| return GetElementPtrInst::CreateInBounds(Src, Idxs); |
| } |
| } |
| |
| if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { |
| if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { |
| Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); |
| return InsertElementInst::Create(UndefValue::get(DestTy), Elem, |
| Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) |
| } |
| |
| if (isa<IntegerType>(SrcTy)) { |
| // If this is a cast from an integer to vector, check to see if the input |
| // is a trunc or zext of a bitcast from vector. If so, we can replace all |
| // the casts with a shuffle and (potentially) a bitcast. |
| if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { |
| CastInst *SrcCast = cast<CastInst>(Src); |
| if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) |
| if (isa<VectorType>(BCIn->getOperand(0)->getType())) |
| if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), |
| cast<VectorType>(DestTy), *this)) |
| return I; |
| } |
| |
| // If the input is an 'or' instruction, we may be doing shifts and ors to |
| // assemble the elements of the vector manually. Try to rip the code out |
| // and replace it with insertelements. |
| if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) |
| return replaceInstUsesWith(CI, V); |
| } |
| } |
| |
| if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { |
| if (SrcVTy->getNumElements() == 1) { |
| // If our destination is not a vector, then make this a straight |
| // scalar-scalar cast. |
| if (!DestTy->isVectorTy()) { |
| Value *Elem = |
| Builder->CreateExtractElement(Src, |
| Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| return CastInst::Create(Instruction::BitCast, Elem, DestTy); |
| } |
| |
| // Otherwise, see if our source is an insert. If so, then use the scalar |
| // component directly. |
| if (InsertElementInst *IEI = |
| dyn_cast<InsertElementInst>(CI.getOperand(0))) |
| return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), |
| DestTy); |
| } |
| } |
| |
| if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { |
| // Okay, we have (bitcast (shuffle ..)). Check to see if this is |
| // a bitcast to a vector with the same # elts. |
| if (SVI->hasOneUse() && DestTy->isVectorTy() && |
| DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && |
| SVI->getType()->getNumElements() == |
| SVI->getOperand(0)->getType()->getVectorNumElements()) { |
| BitCastInst *Tmp; |
| // If either of the operands is a cast from CI.getType(), then |
| // evaluating the shuffle in the casted destination's type will allow |
| // us to eliminate at least one cast. |
| if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && |
| Tmp->getOperand(0)->getType() == DestTy) || |
| ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && |
| Tmp->getOperand(0)->getType() == DestTy)) { |
| Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); |
| Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); |
| // Return a new shuffle vector. Use the same element ID's, as we |
| // know the vector types match #elts. |
| return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); |
| } |
| } |
| } |
| |
| if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) |
| return I; |
| |
| if (SrcTy->isPointerTy()) |
| return commonPointerCastTransforms(CI); |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { |
| // If the destination pointer element type is not the same as the source's |
| // first do a bitcast to the destination type, and then the addrspacecast. |
| // This allows the cast to be exposed to other transforms. |
| Value *Src = CI.getOperand(0); |
| PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); |
| PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); |
| |
| Type *DestElemTy = DestTy->getElementType(); |
| if (SrcTy->getElementType() != DestElemTy) { |
| Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); |
| if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { |
| // Handle vectors of pointers. |
| MidTy = VectorType::get(MidTy, VT->getNumElements()); |
| } |
| |
| Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); |
| return new AddrSpaceCastInst(NewBitCast, CI.getType()); |
| } |
| |
| return commonPointerCastTransforms(CI); |
| } |