| //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file provides internal interfaces used to implement the InstCombine. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |
| #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |
| |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| namespace llvm { |
| class CallSite; |
| class DataLayout; |
| class DominatorTree; |
| class TargetLibraryInfo; |
| class DbgDeclareInst; |
| class MemIntrinsic; |
| class MemSetInst; |
| |
| /// \brief Assign a complexity or rank value to LLVM Values. |
| /// |
| /// This routine maps IR values to various complexity ranks: |
| /// 0 -> undef |
| /// 1 -> Constants |
| /// 2 -> Other non-instructions |
| /// 3 -> Arguments |
| /// 3 -> Unary operations |
| /// 4 -> Other instructions |
| static inline unsigned getComplexity(Value *V) { |
| if (isa<Instruction>(V)) { |
| if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) || |
| BinaryOperator::isNot(V)) |
| return 3; |
| return 4; |
| } |
| if (isa<Argument>(V)) |
| return 3; |
| return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; |
| } |
| |
| /// \brief Add one to a Constant |
| static inline Constant *AddOne(Constant *C) { |
| return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); |
| } |
| /// \brief Subtract one from a Constant |
| static inline Constant *SubOne(Constant *C) { |
| return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); |
| } |
| |
| /// \brief Return true if the specified value is free to invert (apply ~ to). |
| /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses |
| /// is true, work under the assumption that the caller intends to remove all |
| /// uses of V and only keep uses of ~V. |
| /// |
| static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { |
| // ~(~(X)) -> X. |
| if (BinaryOperator::isNot(V)) |
| return true; |
| |
| // Constants can be considered to be not'ed values. |
| if (isa<ConstantInt>(V)) |
| return true; |
| |
| // Compares can be inverted if all of their uses are being modified to use the |
| // ~V. |
| if (isa<CmpInst>(V)) |
| return WillInvertAllUses; |
| |
| // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 |
| // - Constant) - A` if we are willing to invert all of the uses. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) |
| if (BO->getOpcode() == Instruction::Add || |
| BO->getOpcode() == Instruction::Sub) |
| if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1))) |
| return WillInvertAllUses; |
| |
| return false; |
| } |
| |
| |
| /// \brief Specific patterns of overflow check idioms that we match. |
| enum OverflowCheckFlavor { |
| OCF_UNSIGNED_ADD, |
| OCF_SIGNED_ADD, |
| OCF_UNSIGNED_SUB, |
| OCF_SIGNED_SUB, |
| OCF_UNSIGNED_MUL, |
| OCF_SIGNED_MUL, |
| |
| OCF_INVALID |
| }; |
| |
| /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op |
| /// intrinsic. |
| static inline OverflowCheckFlavor |
| IntrinsicIDToOverflowCheckFlavor(unsigned ID) { |
| switch (ID) { |
| default: |
| return OCF_INVALID; |
| case Intrinsic::uadd_with_overflow: |
| return OCF_UNSIGNED_ADD; |
| case Intrinsic::sadd_with_overflow: |
| return OCF_SIGNED_ADD; |
| case Intrinsic::usub_with_overflow: |
| return OCF_UNSIGNED_SUB; |
| case Intrinsic::ssub_with_overflow: |
| return OCF_SIGNED_SUB; |
| case Intrinsic::umul_with_overflow: |
| return OCF_UNSIGNED_MUL; |
| case Intrinsic::smul_with_overflow: |
| return OCF_SIGNED_MUL; |
| } |
| } |
| |
| /// \brief An IRBuilder inserter that adds new instructions to the instcombine |
| /// worklist. |
| class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter |
| : public IRBuilderDefaultInserter { |
| InstCombineWorklist &Worklist; |
| AssumptionCache *AC; |
| |
| public: |
| InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC) |
| : Worklist(WL), AC(AC) {} |
| |
| void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, |
| BasicBlock::iterator InsertPt) const { |
| IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); |
| Worklist.Add(I); |
| |
| using namespace llvm::PatternMatch; |
| if (match(I, m_Intrinsic<Intrinsic::assume>())) |
| AC->registerAssumption(cast<CallInst>(I)); |
| } |
| }; |
| |
| /// \brief The core instruction combiner logic. |
| /// |
| /// This class provides both the logic to recursively visit instructions and |
| /// combine them, as well as the pass infrastructure for running this as part |
| /// of the LLVM pass pipeline. |
| class LLVM_LIBRARY_VISIBILITY InstCombiner |
| : public InstVisitor<InstCombiner, Instruction *> { |
| // FIXME: These members shouldn't be public. |
| public: |
| /// \brief A worklist of the instructions that need to be simplified. |
| InstCombineWorklist &Worklist; |
| |
| /// \brief An IRBuilder that automatically inserts new instructions into the |
| /// worklist. |
| typedef IRBuilder<TargetFolder, InstCombineIRInserter> BuilderTy; |
| BuilderTy *Builder; |
| |
| private: |
| // Mode in which we are running the combiner. |
| const bool MinimizeSize; |
| /// Enable combines that trigger rarely but are costly in compiletime. |
| const bool ExpensiveCombines; |
| |
| AliasAnalysis *AA; |
| |
| // Required analyses. |
| // FIXME: These can never be null and should be references. |
| AssumptionCache *AC; |
| TargetLibraryInfo *TLI; |
| DominatorTree *DT; |
| const DataLayout &DL; |
| |
| // Optional analyses. When non-null, these can both be used to do better |
| // combining and will be updated to reflect any changes. |
| LoopInfo *LI; |
| |
| bool MadeIRChange; |
| |
| public: |
| InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder, |
| bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA, |
| AssumptionCache *AC, TargetLibraryInfo *TLI, |
| DominatorTree *DT, const DataLayout &DL, LoopInfo *LI) |
| : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), |
| ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT), |
| DL(DL), LI(LI), MadeIRChange(false) {} |
| |
| /// \brief Run the combiner over the entire worklist until it is empty. |
| /// |
| /// \returns true if the IR is changed. |
| bool run(); |
| |
| AssumptionCache *getAssumptionCache() const { return AC; } |
| |
| const DataLayout &getDataLayout() const { return DL; } |
| |
| DominatorTree *getDominatorTree() const { return DT; } |
| |
| LoopInfo *getLoopInfo() const { return LI; } |
| |
| TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } |
| |
| // Visitation implementation - Implement instruction combining for different |
| // instruction types. The semantics are as follows: |
| // Return Value: |
| // null - No change was made |
| // I - Change was made, I is still valid, I may be dead though |
| // otherwise - Change was made, replace I with returned instruction |
| // |
| Instruction *visitAdd(BinaryOperator &I); |
| Instruction *visitFAdd(BinaryOperator &I); |
| Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); |
| Instruction *visitSub(BinaryOperator &I); |
| Instruction *visitFSub(BinaryOperator &I); |
| Instruction *visitMul(BinaryOperator &I); |
| Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C, |
| Instruction *InsertBefore); |
| Instruction *visitFMul(BinaryOperator &I); |
| Instruction *visitURem(BinaryOperator &I); |
| Instruction *visitSRem(BinaryOperator &I); |
| Instruction *visitFRem(BinaryOperator &I); |
| bool SimplifyDivRemOfSelect(BinaryOperator &I); |
| Instruction *commonRemTransforms(BinaryOperator &I); |
| Instruction *commonIRemTransforms(BinaryOperator &I); |
| Instruction *commonDivTransforms(BinaryOperator &I); |
| Instruction *commonIDivTransforms(BinaryOperator &I); |
| Instruction *visitUDiv(BinaryOperator &I); |
| Instruction *visitSDiv(BinaryOperator &I); |
| Instruction *visitFDiv(BinaryOperator &I); |
| Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); |
| Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS); |
| Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS); |
| Instruction *visitAnd(BinaryOperator &I); |
| Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI); |
| Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS); |
| Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A, |
| Value *B, Value *C); |
| Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A, |
| Value *B, Value *C); |
| Instruction *visitOr(BinaryOperator &I); |
| Instruction *visitXor(BinaryOperator &I); |
| Instruction *visitShl(BinaryOperator &I); |
| Instruction *visitAShr(BinaryOperator &I); |
| Instruction *visitLShr(BinaryOperator &I); |
| Instruction *commonShiftTransforms(BinaryOperator &I); |
| Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, |
| Constant *RHSC); |
| Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, |
| GlobalVariable *GV, CmpInst &ICI, |
| ConstantInt *AndCst = nullptr); |
| Instruction *visitFCmpInst(FCmpInst &I); |
| Instruction *visitICmpInst(ICmpInst &I); |
| Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); |
| Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS, |
| ConstantInt *RHS); |
| Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, |
| ConstantInt *DivRHS); |
| Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI, |
| ConstantInt *DivRHS); |
| Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, |
| ConstantInt *CI1, ConstantInt *CI2); |
| Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, |
| ConstantInt *CI1, ConstantInt *CI2); |
| Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI, |
| ICmpInst::Predicate Pred); |
| Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
| ICmpInst::Predicate Cond, Instruction &I); |
| Instruction *FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, Value *Other); |
| Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, |
| BinaryOperator &I); |
| Instruction *commonCastTransforms(CastInst &CI); |
| Instruction *commonPointerCastTransforms(CastInst &CI); |
| Instruction *visitTrunc(TruncInst &CI); |
| Instruction *visitZExt(ZExtInst &CI); |
| Instruction *visitSExt(SExtInst &CI); |
| Instruction *visitFPTrunc(FPTruncInst &CI); |
| Instruction *visitFPExt(CastInst &CI); |
| Instruction *visitFPToUI(FPToUIInst &FI); |
| Instruction *visitFPToSI(FPToSIInst &FI); |
| Instruction *visitUIToFP(CastInst &CI); |
| Instruction *visitSIToFP(CastInst &CI); |
| Instruction *visitPtrToInt(PtrToIntInst &CI); |
| Instruction *visitIntToPtr(IntToPtrInst &CI); |
| Instruction *visitBitCast(BitCastInst &CI); |
| Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); |
| Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); |
| Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *); |
| Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, |
| Value *A, Value *B, Instruction &Outer, |
| SelectPatternFlavor SPF2, Value *C); |
| Instruction *FoldItoFPtoI(Instruction &FI); |
| Instruction *visitSelectInst(SelectInst &SI); |
| Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); |
| Instruction *visitCallInst(CallInst &CI); |
| Instruction *visitInvokeInst(InvokeInst &II); |
| |
| Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); |
| Instruction *visitPHINode(PHINode &PN); |
| Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); |
| Instruction *visitAllocaInst(AllocaInst &AI); |
| Instruction *visitAllocSite(Instruction &FI); |
| Instruction *visitFree(CallInst &FI); |
| Instruction *visitLoadInst(LoadInst &LI); |
| Instruction *visitStoreInst(StoreInst &SI); |
| Instruction *visitBranchInst(BranchInst &BI); |
| Instruction *visitSwitchInst(SwitchInst &SI); |
| Instruction *visitReturnInst(ReturnInst &RI); |
| Instruction *visitInsertValueInst(InsertValueInst &IV); |
| Instruction *visitInsertElementInst(InsertElementInst &IE); |
| Instruction *visitExtractElementInst(ExtractElementInst &EI); |
| Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| Instruction *visitExtractValueInst(ExtractValueInst &EV); |
| Instruction *visitLandingPadInst(LandingPadInst &LI); |
| Instruction *visitVAStartInst(VAStartInst &I); |
| Instruction *visitVACopyInst(VACopyInst &I); |
| |
| // visitInstruction - Specify what to return for unhandled instructions... |
| Instruction *visitInstruction(Instruction &I) { return nullptr; } |
| |
| // True when DB dominates all uses of DI execpt UI. |
| // UI must be in the same block as DI. |
| // The routine checks that the DI parent and DB are different. |
| bool dominatesAllUses(const Instruction *DI, const Instruction *UI, |
| const BasicBlock *DB) const; |
| |
| // Replace select with select operand SIOpd in SI-ICmp sequence when possible |
| bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, |
| const unsigned SIOpd); |
| |
| private: |
| bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const; |
| bool ShouldChangeType(Type *From, Type *To) const; |
| Value *dyn_castNegVal(Value *V) const; |
| Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const; |
| Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset, |
| SmallVectorImpl<Value *> &NewIndices); |
| Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); |
| |
| /// \brief Classify whether a cast is worth optimizing. |
| /// |
| /// Returns true if the cast from "V to Ty" actually results in any code |
| /// being generated and is interesting to optimize out. If the cast can be |
| /// eliminated by some other simple transformation, we prefer to do the |
| /// simplification first. |
| bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V, |
| Type *Ty); |
| |
| /// \brief Try to optimize a sequence of instructions checking if an operation |
| /// on LHS and RHS overflows. |
| /// |
| /// If this overflow check is done via one of the overflow check intrinsics, |
| /// then CtxI has to be the call instruction calling that intrinsic. If this |
| /// overflow check is done by arithmetic followed by a compare, then CtxI has |
| /// to be the arithmetic instruction. |
| /// |
| /// If a simplification is possible, stores the simplified result of the |
| /// operation in OperationResult and result of the overflow check in |
| /// OverflowResult, and return true. If no simplification is possible, |
| /// returns false. |
| bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS, |
| Instruction &CtxI, Value *&OperationResult, |
| Constant *&OverflowResult); |
| |
| Instruction *visitCallSite(CallSite CS); |
| Instruction *tryOptimizeCall(CallInst *CI); |
| bool transformConstExprCastCall(CallSite CS); |
| Instruction *transformCallThroughTrampoline(CallSite CS, |
| IntrinsicInst *Tramp); |
| Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, |
| bool DoXform = true); |
| Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); |
| bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI); |
| bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI); |
| bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI); |
| bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI); |
| Value *EmitGEPOffset(User *GEP); |
| Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); |
| Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask); |
| Instruction *foldCastedBitwiseLogic(BinaryOperator &I); |
| |
| public: |
| /// \brief Inserts an instruction \p New before instruction \p Old |
| /// |
| /// Also adds the new instruction to the worklist and returns \p New so that |
| /// it is suitable for use as the return from the visitation patterns. |
| Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { |
| assert(New && !New->getParent() && |
| "New instruction already inserted into a basic block!"); |
| BasicBlock *BB = Old.getParent(); |
| BB->getInstList().insert(Old.getIterator(), New); // Insert inst |
| Worklist.Add(New); |
| return New; |
| } |
| |
| /// \brief Same as InsertNewInstBefore, but also sets the debug loc. |
| Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { |
| New->setDebugLoc(Old.getDebugLoc()); |
| return InsertNewInstBefore(New, Old); |
| } |
| |
| /// \brief A combiner-aware RAUW-like routine. |
| /// |
| /// This method is to be used when an instruction is found to be dead, |
| /// replaceable with another preexisting expression. Here we add all uses of |
| /// I to the worklist, replace all uses of I with the new value, then return |
| /// I, so that the inst combiner will know that I was modified. |
| Instruction *replaceInstUsesWith(Instruction &I, Value *V) { |
| // If there are no uses to replace, then we return nullptr to indicate that |
| // no changes were made to the program. |
| if (I.use_empty()) return nullptr; |
| |
| Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. |
| |
| // If we are replacing the instruction with itself, this must be in a |
| // segment of unreachable code, so just clobber the instruction. |
| if (&I == V) |
| V = UndefValue::get(I.getType()); |
| |
| DEBUG(dbgs() << "IC: Replacing " << I << "\n" |
| << " with " << *V << '\n'); |
| |
| I.replaceAllUsesWith(V); |
| return &I; |
| } |
| |
| /// Creates a result tuple for an overflow intrinsic \p II with a given |
| /// \p Result and a constant \p Overflow value. |
| Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, |
| Constant *Overflow) { |
| Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; |
| StructType *ST = cast<StructType>(II->getType()); |
| Constant *Struct = ConstantStruct::get(ST, V); |
| return InsertValueInst::Create(Struct, Result, 0); |
| } |
| |
| /// \brief Combiner aware instruction erasure. |
| /// |
| /// When dealing with an instruction that has side effects or produces a void |
| /// value, we can't rely on DCE to delete the instruction. Instead, visit |
| /// methods should return the value returned by this function. |
| Instruction *eraseInstFromFunction(Instruction &I) { |
| DEBUG(dbgs() << "IC: ERASE " << I << '\n'); |
| |
| assert(I.use_empty() && "Cannot erase instruction that is used!"); |
| // Make sure that we reprocess all operands now that we reduced their |
| // use counts. |
| if (I.getNumOperands() < 8) { |
| for (Use &Operand : I.operands()) |
| if (auto *Inst = dyn_cast<Instruction>(Operand)) |
| Worklist.Add(Inst); |
| } |
| Worklist.Remove(&I); |
| I.eraseFromParent(); |
| MadeIRChange = true; |
| return nullptr; // Don't do anything with FI |
| } |
| |
| void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, |
| unsigned Depth, Instruction *CxtI) const { |
| return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI, |
| DT); |
| } |
| |
| bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0, |
| Instruction *CxtI = nullptr) const { |
| return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT); |
| } |
| unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0, |
| Instruction *CxtI = nullptr) const { |
| return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT); |
| } |
| void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, |
| unsigned Depth = 0, Instruction *CxtI = nullptr) const { |
| return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI, |
| DT); |
| } |
| OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS, |
| const Instruction *CxtI) { |
| return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT); |
| } |
| OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, |
| const Instruction *CxtI) { |
| return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT); |
| } |
| |
| private: |
| /// \brief Performs a few simplifications for operators which are associative |
| /// or commutative. |
| bool SimplifyAssociativeOrCommutative(BinaryOperator &I); |
| |
| /// \brief Tries to simplify binary operations which some other binary |
| /// operation distributes over. |
| /// |
| /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" |
| /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A |
| /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified |
| /// value, or null if it didn't simplify. |
| Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); |
| |
| /// \brief Attempts to replace V with a simpler value based on the demanded |
| /// bits. |
| Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero, |
| APInt &KnownOne, unsigned Depth, |
| Instruction *CxtI); |
| bool SimplifyDemandedBits(Use &U, const APInt &DemandedMask, APInt &KnownZero, |
| APInt &KnownOne, unsigned Depth = 0); |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded |
| /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. |
| Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl, |
| const APInt &DemandedMask, APInt &KnownZero, |
| APInt &KnownOne); |
| |
| /// \brief Tries to simplify operands to an integer instruction based on its |
| /// demanded bits. |
| bool SimplifyDemandedInstructionBits(Instruction &Inst); |
| |
| Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, |
| APInt &UndefElts, unsigned Depth = 0); |
| |
| Value *SimplifyVectorOp(BinaryOperator &Inst); |
| Value *SimplifyBSwap(BinaryOperator &Inst); |
| |
| // FoldOpIntoPhi - Given a binary operator, cast instruction, or select |
| // which has a PHI node as operand #0, see if we can fold the instruction |
| // into the PHI (which is only possible if all operands to the PHI are |
| // constants). |
| // |
| Instruction *FoldOpIntoPhi(Instruction &I); |
| |
| /// \brief Try to rotate an operation below a PHI node, using PHI nodes for |
| /// its operands. |
| Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN); |
| |
| Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, |
| ConstantInt *AndRHS, BinaryOperator &TheAnd); |
| |
| Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, |
| bool isSub, Instruction &I); |
| Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned, |
| bool Inside); |
| Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); |
| Instruction *MatchBSwap(BinaryOperator &I); |
| bool SimplifyStoreAtEndOfBlock(StoreInst &SI); |
| Instruction *SimplifyMemTransfer(MemIntrinsic *MI); |
| Instruction *SimplifyMemSet(MemSetInst *MI); |
| |
| Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); |
| |
| /// \brief Returns a value X such that Val = X * Scale, or null if none. |
| /// |
| /// If the multiplication is known not to overflow then NoSignedWrap is set. |
| Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); |
| }; |
| |
| } // end namespace llvm. |
| |
| #undef DEBUG_TYPE |
| |
| #endif |