| //===- InstCombineMulDivRem.cpp -------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, |
| // srem, urem, frem. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| |
| /// The specific integer value is used in a context where it is known to be |
| /// non-zero. If this allows us to simplify the computation, do so and return |
| /// the new operand, otherwise return null. |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, |
| Instruction &CxtI) { |
| // If V has multiple uses, then we would have to do more analysis to determine |
| // if this is safe. For example, the use could be in dynamically unreached |
| // code. |
| if (!V->hasOneUse()) return nullptr; |
| |
| bool MadeChange = false; |
| |
| // ((1 << A) >>u B) --> (1 << (A-B)) |
| // Because V cannot be zero, we know that B is less than A. |
| Value *A = nullptr, *B = nullptr, *One = nullptr; |
| if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && |
| match(One, m_One())) { |
| A = IC.Builder->CreateSub(A, B); |
| return IC.Builder->CreateShl(One, A); |
| } |
| |
| // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it |
| // inexact. Similarly for <<. |
| BinaryOperator *I = dyn_cast<BinaryOperator>(V); |
| if (I && I->isLogicalShift() && |
| isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0, |
| IC.getAssumptionCache(), &CxtI, |
| IC.getDominatorTree())) { |
| // We know that this is an exact/nuw shift and that the input is a |
| // non-zero context as well. |
| if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { |
| I->setOperand(0, V2); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::LShr && !I->isExact()) { |
| I->setIsExact(); |
| MadeChange = true; |
| } |
| |
| if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { |
| I->setHasNoUnsignedWrap(); |
| MadeChange = true; |
| } |
| } |
| |
| // TODO: Lots more we could do here: |
| // If V is a phi node, we can call this on each of its operands. |
| // "select cond, X, 0" can simplify to "X". |
| |
| return MadeChange ? V : nullptr; |
| } |
| |
| |
| /// True if the multiply can not be expressed in an int this size. |
| static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, |
| bool IsSigned) { |
| bool Overflow; |
| if (IsSigned) |
| Product = C1.smul_ov(C2, Overflow); |
| else |
| Product = C1.umul_ov(C2, Overflow); |
| |
| return Overflow; |
| } |
| |
| /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1. |
| static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, |
| bool IsSigned) { |
| assert(C1.getBitWidth() == C2.getBitWidth() && |
| "Inconsistent width of constants!"); |
| |
| // Bail if we will divide by zero. |
| if (C2.isMinValue()) |
| return false; |
| |
| // Bail if we would divide INT_MIN by -1. |
| if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue()) |
| return false; |
| |
| APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned); |
| if (IsSigned) |
| APInt::sdivrem(C1, C2, Quotient, Remainder); |
| else |
| APInt::udivrem(C1, C2, Quotient, Remainder); |
| |
| return Remainder.isMinValue(); |
| } |
| |
| /// \brief A helper routine of InstCombiner::visitMul(). |
| /// |
| /// If C is a vector of known powers of 2, then this function returns |
| /// a new vector obtained from C replacing each element with its logBase2. |
| /// Return a null pointer otherwise. |
| static Constant *getLogBase2Vector(ConstantDataVector *CV) { |
| const APInt *IVal; |
| SmallVector<Constant *, 4> Elts; |
| |
| for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { |
| Constant *Elt = CV->getElementAsConstant(I); |
| if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) |
| return nullptr; |
| Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2())); |
| } |
| |
| return ConstantVector::get(Elts); |
| } |
| |
| /// \brief Return true if we can prove that: |
| /// (mul LHS, RHS) === (mul nsw LHS, RHS) |
| bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, |
| Instruction &CxtI) { |
| // Multiplying n * m significant bits yields a result of n + m significant |
| // bits. If the total number of significant bits does not exceed the |
| // result bit width (minus 1), there is no overflow. |
| // This means if we have enough leading sign bits in the operands |
| // we can guarantee that the result does not overflow. |
| // Ref: "Hacker's Delight" by Henry Warren |
| unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); |
| |
| // Note that underestimating the number of sign bits gives a more |
| // conservative answer. |
| unsigned SignBits = |
| ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI); |
| |
| // First handle the easy case: if we have enough sign bits there's |
| // definitely no overflow. |
| if (SignBits > BitWidth + 1) |
| return true; |
| |
| // There are two ambiguous cases where there can be no overflow: |
| // SignBits == BitWidth + 1 and |
| // SignBits == BitWidth |
| // The second case is difficult to check, therefore we only handle the |
| // first case. |
| if (SignBits == BitWidth + 1) { |
| // It overflows only when both arguments are negative and the true |
| // product is exactly the minimum negative number. |
| // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 |
| // For simplicity we just check if at least one side is not negative. |
| bool LHSNonNegative, LHSNegative; |
| bool RHSNonNegative, RHSNegative; |
| ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI); |
| ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI); |
| if (LHSNonNegative || RHSNonNegative) |
| return true; |
| } |
| return false; |
| } |
| |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| // X * -1 == 0 - X |
| if (match(Op1, m_AllOnes())) { |
| BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); |
| if (I.hasNoSignedWrap()) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| |
| // Also allow combining multiply instructions on vectors. |
| { |
| Value *NewOp; |
| Constant *C1, *C2; |
| const APInt *IVal; |
| if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), |
| m_Constant(C1))) && |
| match(C1, m_APInt(IVal))) { |
| // ((X << C2)*C1) == (X * (C1 << C2)) |
| Constant *Shl = ConstantExpr::getShl(C1, C2); |
| BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); |
| BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); |
| if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) |
| BO->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && |
| Shl->isNotMinSignedValue()) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| |
| if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { |
| Constant *NewCst = nullptr; |
| if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2()) |
| // Replace X*(2^C) with X << C, where C is either a scalar or a splat. |
| NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2()); |
| else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1)) |
| // Replace X*(2^C) with X << C, where C is a vector of known |
| // constant powers of 2. |
| NewCst = getLogBase2Vector(CV); |
| |
| if (NewCst) { |
| unsigned Width = NewCst->getType()->getPrimitiveSizeInBits(); |
| BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); |
| |
| if (I.hasNoUnsignedWrap()) |
| Shl->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap()) { |
| uint64_t V; |
| if (match(NewCst, m_ConstantInt(V)) && V != Width - 1) |
| Shl->setHasNoSignedWrap(); |
| } |
| |
| return Shl; |
| } |
| } |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n |
| // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n |
| // The "* (2**n)" thus becomes a potential shifting opportunity. |
| { |
| const APInt & Val = CI->getValue(); |
| const APInt &PosVal = Val.abs(); |
| if (Val.isNegative() && PosVal.isPowerOf2()) { |
| Value *X = nullptr, *Y = nullptr; |
| if (Op0->hasOneUse()) { |
| ConstantInt *C1; |
| Value *Sub = nullptr; |
| if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) |
| Sub = Builder->CreateSub(X, Y, "suba"); |
| else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) |
| Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); |
| if (Sub) |
| return |
| BinaryOperator::CreateMul(Sub, |
| ConstantInt::get(Y->getType(), PosVal)); |
| } |
| } |
| } |
| } |
| |
| // Simplify mul instructions with a constant RHS. |
| if (isa<Constant>(Op1)) { |
| // Try to fold constant mul into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| // Canonicalize (X+C1)*CI -> X*CI+C1*CI. |
| { |
| Value *X; |
| Constant *C1; |
| if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { |
| Value *Mul = Builder->CreateMul(C1, Op1); |
| // Only go forward with the transform if C1*CI simplifies to a tidier |
| // constant. |
| if (!match(Mul, m_Mul(m_Value(), m_Value()))) |
| return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul); |
| } |
| } |
| } |
| |
| if (Value *Op0v = dyn_castNegVal(Op0)) { // -X * -Y = X*Y |
| if (Value *Op1v = dyn_castNegVal(Op1)) { |
| BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v); |
| if (I.hasNoSignedWrap() && |
| match(Op0, m_NSWSub(m_Value(), m_Value())) && |
| match(Op1, m_NSWSub(m_Value(), m_Value()))) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| } |
| |
| // (X / Y) * Y = X - (X % Y) |
| // (X / Y) * -Y = (X % Y) - X |
| { |
| Value *Op1C = Op1; |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); |
| if (!BO || |
| (BO->getOpcode() != Instruction::UDiv && |
| BO->getOpcode() != Instruction::SDiv)) { |
| Op1C = Op0; |
| BO = dyn_cast<BinaryOperator>(Op1); |
| } |
| Value *Neg = dyn_castNegVal(Op1C); |
| if (BO && BO->hasOneUse() && |
| (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && |
| (BO->getOpcode() == Instruction::UDiv || |
| BO->getOpcode() == Instruction::SDiv)) { |
| Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); |
| |
| // If the division is exact, X % Y is zero, so we end up with X or -X. |
| if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) |
| if (SDiv->isExact()) { |
| if (Op1BO == Op1C) |
| return replaceInstUsesWith(I, Op0BO); |
| return BinaryOperator::CreateNeg(Op0BO); |
| } |
| |
| Value *Rem; |
| if (BO->getOpcode() == Instruction::UDiv) |
| Rem = Builder->CreateURem(Op0BO, Op1BO); |
| else |
| Rem = Builder->CreateSRem(Op0BO, Op1BO); |
| Rem->takeName(BO); |
| |
| if (Op1BO == Op1C) |
| return BinaryOperator::CreateSub(Op0BO, Rem); |
| return BinaryOperator::CreateSub(Rem, Op0BO); |
| } |
| } |
| |
| /// i1 mul -> i1 and. |
| if (I.getType()->getScalarType()->isIntegerTy(1)) |
| return BinaryOperator::CreateAnd(Op0, Op1); |
| |
| // X*(1 << Y) --> X << Y |
| // (1 << Y)*X --> X << Y |
| { |
| Value *Y; |
| BinaryOperator *BO = nullptr; |
| bool ShlNSW = false; |
| if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { |
| BO = BinaryOperator::CreateShl(Op1, Y); |
| ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); |
| } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { |
| BO = BinaryOperator::CreateShl(Op0, Y); |
| ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); |
| } |
| if (BO) { |
| if (I.hasNoUnsignedWrap()) |
| BO->setHasNoUnsignedWrap(); |
| if (I.hasNoSignedWrap() && ShlNSW) |
| BO->setHasNoSignedWrap(); |
| return BO; |
| } |
| } |
| |
| // If one of the operands of the multiply is a cast from a boolean value, then |
| // we know the bool is either zero or one, so this is a 'masking' multiply. |
| // X * Y (where Y is 0 or 1) -> X & (0-Y) |
| if (!I.getType()->isVectorTy()) { |
| // -2 is "-1 << 1" so it is all bits set except the low one. |
| APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); |
| |
| Value *BoolCast = nullptr, *OtherOp = nullptr; |
| if (MaskedValueIsZero(Op0, Negative2, 0, &I)) { |
| BoolCast = Op0; |
| OtherOp = Op1; |
| } else if (MaskedValueIsZero(Op1, Negative2, 0, &I)) { |
| BoolCast = Op1; |
| OtherOp = Op0; |
| } |
| |
| if (BoolCast) { |
| Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), |
| BoolCast); |
| return BinaryOperator::CreateAnd(V, OtherOp); |
| } |
| } |
| |
| if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) { |
| Changed = true; |
| I.setHasNoSignedWrap(true); |
| } |
| |
| if (!I.hasNoUnsignedWrap() && |
| computeOverflowForUnsignedMul(Op0, Op1, &I) == |
| OverflowResult::NeverOverflows) { |
| Changed = true; |
| I.setHasNoUnsignedWrap(true); |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| /// Detect pattern log2(Y * 0.5) with corresponding fast math flags. |
| static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { |
| if (!Op->hasOneUse()) |
| return; |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op); |
| if (!II) |
| return; |
| if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra()) |
| return; |
| Log2 = II; |
| |
| Value *OpLog2Of = II->getArgOperand(0); |
| if (!OpLog2Of->hasOneUse()) |
| return; |
| |
| Instruction *I = dyn_cast<Instruction>(OpLog2Of); |
| if (!I) |
| return; |
| if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) |
| return; |
| |
| if (match(I->getOperand(0), m_SpecificFP(0.5))) |
| Y = I->getOperand(1); |
| else if (match(I->getOperand(1), m_SpecificFP(0.5))) |
| Y = I->getOperand(0); |
| } |
| |
| static bool isFiniteNonZeroFp(Constant *C) { |
| if (C->getType()->isVectorTy()) { |
| for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; |
| ++I) { |
| ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I)); |
| if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) |
| return false; |
| } |
| return true; |
| } |
| |
| return isa<ConstantFP>(C) && |
| cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero(); |
| } |
| |
| static bool isNormalFp(Constant *C) { |
| if (C->getType()->isVectorTy()) { |
| for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; |
| ++I) { |
| ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I)); |
| if (!CFP || !CFP->getValueAPF().isNormal()) |
| return false; |
| } |
| return true; |
| } |
| |
| return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal(); |
| } |
| |
| /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns |
| /// true iff the given value is FMul or FDiv with one and only one operand |
| /// being a normal constant (i.e. not Zero/NaN/Infinity). |
| static bool isFMulOrFDivWithConstant(Value *V) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || (I->getOpcode() != Instruction::FMul && |
| I->getOpcode() != Instruction::FDiv)) |
| return false; |
| |
| Constant *C0 = dyn_cast<Constant>(I->getOperand(0)); |
| Constant *C1 = dyn_cast<Constant>(I->getOperand(1)); |
| |
| if (C0 && C1) |
| return false; |
| |
| return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1)); |
| } |
| |
| /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). |
| /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand |
| /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). |
| /// This function is to simplify "FMulOrDiv * C" and returns the |
| /// resulting expression. Note that this function could return NULL in |
| /// case the constants cannot be folded into a normal floating-point. |
| /// |
| Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C, |
| Instruction *InsertBefore) { |
| assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); |
| |
| Value *Opnd0 = FMulOrDiv->getOperand(0); |
| Value *Opnd1 = FMulOrDiv->getOperand(1); |
| |
| Constant *C0 = dyn_cast<Constant>(Opnd0); |
| Constant *C1 = dyn_cast<Constant>(Opnd1); |
| |
| BinaryOperator *R = nullptr; |
| |
| // (X * C0) * C => X * (C0*C) |
| if (FMulOrDiv->getOpcode() == Instruction::FMul) { |
| Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); |
| if (isNormalFp(F)) |
| R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); |
| } else { |
| if (C0) { |
| // (C0 / X) * C => (C0 * C) / X |
| if (FMulOrDiv->hasOneUse()) { |
| // It would otherwise introduce another div. |
| Constant *F = ConstantExpr::getFMul(C0, C); |
| if (isNormalFp(F)) |
| R = BinaryOperator::CreateFDiv(F, Opnd1); |
| } |
| } else { |
| // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal |
| Constant *F = ConstantExpr::getFDiv(C, C1); |
| if (isNormalFp(F)) { |
| R = BinaryOperator::CreateFMul(Opnd0, F); |
| } else { |
| // (X / C1) * C => X / (C1/C) |
| Constant *F = ConstantExpr::getFDiv(C1, C); |
| if (isNormalFp(F)) |
| R = BinaryOperator::CreateFDiv(Opnd0, F); |
| } |
| } |
| } |
| |
| if (R) { |
| R->setHasUnsafeAlgebra(true); |
| InsertNewInstWith(R, *InsertBefore); |
| } |
| |
| return R; |
| } |
| |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) { |
| bool Changed = SimplifyAssociativeOrCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (isa<Constant>(Op0)) |
| std::swap(Op0, Op1); |
| |
| if (Value *V = |
| SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| bool AllowReassociate = I.hasUnsafeAlgebra(); |
| |
| // Simplify mul instructions with a constant RHS. |
| if (isa<Constant>(Op1)) { |
| // Try to fold constant mul into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| // (fmul X, -1.0) --> (fsub -0.0, X) |
| if (match(Op1, m_SpecificFP(-1.0))) { |
| Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType()); |
| Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0); |
| RI->copyFastMathFlags(&I); |
| return RI; |
| } |
| |
| Constant *C = cast<Constant>(Op1); |
| if (AllowReassociate && isFiniteNonZeroFp(C)) { |
| // Let MDC denote an expression in one of these forms: |
| // X * C, C/X, X/C, where C is a constant. |
| // |
| // Try to simplify "MDC * Constant" |
| if (isFMulOrFDivWithConstant(Op0)) |
| if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I)) |
| return replaceInstUsesWith(I, V); |
| |
| // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) |
| Instruction *FAddSub = dyn_cast<Instruction>(Op0); |
| if (FAddSub && |
| (FAddSub->getOpcode() == Instruction::FAdd || |
| FAddSub->getOpcode() == Instruction::FSub)) { |
| Value *Opnd0 = FAddSub->getOperand(0); |
| Value *Opnd1 = FAddSub->getOperand(1); |
| Constant *C0 = dyn_cast<Constant>(Opnd0); |
| Constant *C1 = dyn_cast<Constant>(Opnd1); |
| bool Swap = false; |
| if (C0) { |
| std::swap(C0, C1); |
| std::swap(Opnd0, Opnd1); |
| Swap = true; |
| } |
| |
| if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) { |
| Value *M1 = ConstantExpr::getFMul(C1, C); |
| Value *M0 = isNormalFp(cast<Constant>(M1)) ? |
| foldFMulConst(cast<Instruction>(Opnd0), C, &I) : |
| nullptr; |
| if (M0 && M1) { |
| if (Swap && FAddSub->getOpcode() == Instruction::FSub) |
| std::swap(M0, M1); |
| |
| Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd) |
| ? BinaryOperator::CreateFAdd(M0, M1) |
| : BinaryOperator::CreateFSub(M0, M1); |
| RI->copyFastMathFlags(&I); |
| return RI; |
| } |
| } |
| } |
| } |
| } |
| |
| if (Op0 == Op1) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { |
| // sqrt(X) * sqrt(X) -> X |
| if (AllowReassociate && II->getIntrinsicID() == Intrinsic::sqrt) |
| return replaceInstUsesWith(I, II->getOperand(0)); |
| |
| // fabs(X) * fabs(X) -> X * X |
| if (II->getIntrinsicID() == Intrinsic::fabs) { |
| Instruction *FMulVal = BinaryOperator::CreateFMul(II->getOperand(0), |
| II->getOperand(0), |
| I.getName()); |
| FMulVal->copyFastMathFlags(&I); |
| return FMulVal; |
| } |
| } |
| } |
| |
| // Under unsafe algebra do: |
| // X * log2(0.5*Y) = X*log2(Y) - X |
| if (AllowReassociate) { |
| Value *OpX = nullptr; |
| Value *OpY = nullptr; |
| IntrinsicInst *Log2; |
| detectLog2OfHalf(Op0, OpY, Log2); |
| if (OpY) { |
| OpX = Op1; |
| } else { |
| detectLog2OfHalf(Op1, OpY, Log2); |
| if (OpY) { |
| OpX = Op0; |
| } |
| } |
| // if pattern detected emit alternate sequence |
| if (OpX && OpY) { |
| BuilderTy::FastMathFlagGuard Guard(*Builder); |
| Builder->setFastMathFlags(Log2->getFastMathFlags()); |
| Log2->setArgOperand(0, OpY); |
| Value *FMulVal = Builder->CreateFMul(OpX, Log2); |
| Value *FSub = Builder->CreateFSub(FMulVal, OpX); |
| FSub->takeName(&I); |
| return replaceInstUsesWith(I, FSub); |
| } |
| } |
| |
| // Handle symmetric situation in a 2-iteration loop |
| Value *Opnd0 = Op0; |
| Value *Opnd1 = Op1; |
| for (int i = 0; i < 2; i++) { |
| bool IgnoreZeroSign = I.hasNoSignedZeros(); |
| if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { |
| BuilderTy::FastMathFlagGuard Guard(*Builder); |
| Builder->setFastMathFlags(I.getFastMathFlags()); |
| |
| Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); |
| Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); |
| |
| // -X * -Y => X*Y |
| if (N1) { |
| Value *FMul = Builder->CreateFMul(N0, N1); |
| FMul->takeName(&I); |
| return replaceInstUsesWith(I, FMul); |
| } |
| |
| if (Opnd0->hasOneUse()) { |
| // -X * Y => -(X*Y) (Promote negation as high as possible) |
| Value *T = Builder->CreateFMul(N0, Opnd1); |
| Value *Neg = Builder->CreateFNeg(T); |
| Neg->takeName(&I); |
| return replaceInstUsesWith(I, Neg); |
| } |
| } |
| |
| // (X*Y) * X => (X*X) * Y where Y != X |
| // The purpose is two-fold: |
| // 1) to form a power expression (of X). |
| // 2) potentially shorten the critical path: After transformation, the |
| // latency of the instruction Y is amortized by the expression of X*X, |
| // and therefore Y is in a "less critical" position compared to what it |
| // was before the transformation. |
| // |
| if (AllowReassociate) { |
| Value *Opnd0_0, *Opnd0_1; |
| if (Opnd0->hasOneUse() && |
| match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { |
| Value *Y = nullptr; |
| if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) |
| Y = Opnd0_1; |
| else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) |
| Y = Opnd0_0; |
| |
| if (Y) { |
| BuilderTy::FastMathFlagGuard Guard(*Builder); |
| Builder->setFastMathFlags(I.getFastMathFlags()); |
| Value *T = Builder->CreateFMul(Opnd1, Opnd1); |
| |
| Value *R = Builder->CreateFMul(T, Y); |
| R->takeName(&I); |
| return replaceInstUsesWith(I, R); |
| } |
| } |
| } |
| |
| if (!isa<Constant>(Op1)) |
| std::swap(Opnd0, Opnd1); |
| else |
| break; |
| } |
| |
| return Changed ? &I : nullptr; |
| } |
| |
| /// Try to fold a divide or remainder of a select instruction. |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { |
| SelectInst *SI = cast<SelectInst>(I.getOperand(1)); |
| |
| // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y |
| int NonNullOperand = -1; |
| if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) |
| if (ST->isNullValue()) |
| NonNullOperand = 2; |
| // div/rem X, (Cond ? Y : 0) -> div/rem X, Y |
| if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) |
| if (ST->isNullValue()) |
| NonNullOperand = 1; |
| |
| if (NonNullOperand == -1) |
| return false; |
| |
| Value *SelectCond = SI->getOperand(0); |
| |
| // Change the div/rem to use 'Y' instead of the select. |
| I.setOperand(1, SI->getOperand(NonNullOperand)); |
| |
| // Okay, we know we replace the operand of the div/rem with 'Y' with no |
| // problem. However, the select, or the condition of the select may have |
| // multiple uses. Based on our knowledge that the operand must be non-zero, |
| // propagate the known value for the select into other uses of it, and |
| // propagate a known value of the condition into its other users. |
| |
| // If the select and condition only have a single use, don't bother with this, |
| // early exit. |
| if (SI->use_empty() && SelectCond->hasOneUse()) |
| return true; |
| |
| // Scan the current block backward, looking for other uses of SI. |
| BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); |
| |
| while (BBI != BBFront) { |
| --BBI; |
| // If we found a call to a function, we can't assume it will return, so |
| // information from below it cannot be propagated above it. |
| if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) |
| break; |
| |
| // Replace uses of the select or its condition with the known values. |
| for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); |
| I != E; ++I) { |
| if (*I == SI) { |
| *I = SI->getOperand(NonNullOperand); |
| Worklist.Add(&*BBI); |
| } else if (*I == SelectCond) { |
| *I = Builder->getInt1(NonNullOperand == 1); |
| Worklist.Add(&*BBI); |
| } |
| } |
| |
| // If we past the instruction, quit looking for it. |
| if (&*BBI == SI) |
| SI = nullptr; |
| if (&*BBI == SelectCond) |
| SelectCond = nullptr; |
| |
| // If we ran out of things to eliminate, break out of the loop. |
| if (!SelectCond && !SI) |
| break; |
| |
| } |
| return true; |
| } |
| |
| |
| /// This function implements the transforms common to both integer division |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer |
| /// division instructions. |
| /// @brief Common integer divide transforms |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { |
| I.setOperand(1, V); |
| return &I; |
| } |
| |
| // Handle cases involving: [su]div X, (select Cond, Y, Z) |
| // This does not apply for fdiv. |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| if (Instruction *LHS = dyn_cast<Instruction>(Op0)) { |
| const APInt *C2; |
| if (match(Op1, m_APInt(C2))) { |
| Value *X; |
| const APInt *C1; |
| bool IsSigned = I.getOpcode() == Instruction::SDiv; |
| |
| // (X / C1) / C2 -> X / (C1*C2) |
| if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) || |
| (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) { |
| APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); |
| if (!MultiplyOverflows(*C1, *C2, Product, IsSigned)) |
| return BinaryOperator::Create(I.getOpcode(), X, |
| ConstantInt::get(I.getType(), Product)); |
| } |
| |
| if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) || |
| (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) { |
| APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); |
| |
| // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. |
| if (IsMultiple(*C2, *C1, Quotient, IsSigned)) { |
| BinaryOperator *BO = BinaryOperator::Create( |
| I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient)); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| |
| // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. |
| if (IsMultiple(*C1, *C2, Quotient, IsSigned)) { |
| BinaryOperator *BO = BinaryOperator::Create( |
| Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient)); |
| BO->setHasNoUnsignedWrap( |
| !IsSigned && |
| cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap()); |
| BO->setHasNoSignedWrap( |
| cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap()); |
| return BO; |
| } |
| } |
| |
| if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) && |
| *C1 != C1->getBitWidth() - 1) || |
| (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) { |
| APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); |
| APInt C1Shifted = APInt::getOneBitSet( |
| C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue())); |
| |
| // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1. |
| if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) { |
| BinaryOperator *BO = BinaryOperator::Create( |
| I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient)); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| |
| // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2. |
| if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) { |
| BinaryOperator *BO = BinaryOperator::Create( |
| Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient)); |
| BO->setHasNoUnsignedWrap( |
| !IsSigned && |
| cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap()); |
| BO->setHasNoSignedWrap( |
| cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap()); |
| return BO; |
| } |
| } |
| |
| if (*C2 != 0) { // avoid X udiv 0 |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| } |
| } |
| |
| if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) { |
| if (One->isOne() && !I.getType()->isIntegerTy(1)) { |
| bool isSigned = I.getOpcode() == Instruction::SDiv; |
| if (isSigned) { |
| // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the |
| // result is one, if Op1 is -1 then the result is minus one, otherwise |
| // it's zero. |
| Value *Inc = Builder->CreateAdd(Op1, One); |
| Value *Cmp = Builder->CreateICmpULT( |
| Inc, ConstantInt::get(I.getType(), 3)); |
| return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0)); |
| } else { |
| // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the |
| // result is one, otherwise it's zero. |
| return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType()); |
| } |
| } |
| } |
| |
| // See if we can fold away this div instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y |
| Value *X = nullptr, *Z = nullptr; |
| if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 |
| bool isSigned = I.getOpcode() == Instruction::SDiv; |
| if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || |
| (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) |
| return BinaryOperator::Create(I.getOpcode(), X, Op1); |
| } |
| |
| return nullptr; |
| } |
| |
| /// dyn_castZExtVal - Checks if V is a zext or constant that can |
| /// be truncated to Ty without losing bits. |
| static Value *dyn_castZExtVal(Value *V, Type *Ty) { |
| if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { |
| if (Z->getSrcTy() == Ty) |
| return Z->getOperand(0); |
| } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { |
| if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) |
| return ConstantExpr::getTrunc(C, Ty); |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| const unsigned MaxDepth = 6; |
| typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1, |
| const BinaryOperator &I, |
| InstCombiner &IC); |
| |
| /// \brief Used to maintain state for visitUDivOperand(). |
| struct UDivFoldAction { |
| FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this |
| ///< operand. This can be zero if this action |
| ///< joins two actions together. |
| |
| Value *OperandToFold; ///< Which operand to fold. |
| union { |
| Instruction *FoldResult; ///< The instruction returned when FoldAction is |
| ///< invoked. |
| |
| size_t SelectLHSIdx; ///< Stores the LHS action index if this action |
| ///< joins two actions together. |
| }; |
| |
| UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) |
| : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} |
| UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) |
| : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} |
| }; |
| } |
| |
| // X udiv 2^C -> X >> C |
| static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, |
| const BinaryOperator &I, InstCombiner &IC) { |
| const APInt &C = cast<Constant>(Op1)->getUniqueInteger(); |
| BinaryOperator *LShr = BinaryOperator::CreateLShr( |
| Op0, ConstantInt::get(Op0->getType(), C.logBase2())); |
| if (I.isExact()) |
| LShr->setIsExact(); |
| return LShr; |
| } |
| |
| // X udiv C, where C >= signbit |
| static Instruction *foldUDivNegCst(Value *Op0, Value *Op1, |
| const BinaryOperator &I, InstCombiner &IC) { |
| Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1)); |
| |
| return SelectInst::Create(ICI, Constant::getNullValue(I.getType()), |
| ConstantInt::get(I.getType(), 1)); |
| } |
| |
| // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, |
| InstCombiner &IC) { |
| Instruction *ShiftLeft = cast<Instruction>(Op1); |
| if (isa<ZExtInst>(ShiftLeft)) |
| ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0)); |
| |
| const APInt &CI = |
| cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger(); |
| Value *N = ShiftLeft->getOperand(1); |
| if (CI != 1) |
| N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2())); |
| if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) |
| N = IC.Builder->CreateZExt(N, Z->getDestTy()); |
| BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); |
| if (I.isExact()) |
| LShr->setIsExact(); |
| return LShr; |
| } |
| |
| // \brief Recursively visits the possible right hand operands of a udiv |
| // instruction, seeing through select instructions, to determine if we can |
| // replace the udiv with something simpler. If we find that an operand is not |
| // able to simplify the udiv, we abort the entire transformation. |
| static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, |
| SmallVectorImpl<UDivFoldAction> &Actions, |
| unsigned Depth = 0) { |
| // Check to see if this is an unsigned division with an exact power of 2, |
| // if so, convert to a right shift. |
| if (match(Op1, m_Power2())) { |
| Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); |
| return Actions.size(); |
| } |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) |
| // X udiv C, where C >= signbit |
| if (C->getValue().isNegative()) { |
| Actions.push_back(UDivFoldAction(foldUDivNegCst, C)); |
| return Actions.size(); |
| } |
| |
| // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| if (match(Op1, m_Shl(m_Power2(), m_Value())) || |
| match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { |
| Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); |
| return Actions.size(); |
| } |
| |
| // The remaining tests are all recursive, so bail out if we hit the limit. |
| if (Depth++ == MaxDepth) |
| return 0; |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (size_t LHSIdx = |
| visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) |
| if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { |
| Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); |
| return Actions.size(); |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| // (x lshr C1) udiv C2 --> x udiv (C2 << C1) |
| { |
| Value *X; |
| const APInt *C1, *C2; |
| if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && |
| match(Op1, m_APInt(C2))) { |
| bool Overflow; |
| APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); |
| if (!Overflow) { |
| bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); |
| BinaryOperator *BO = BinaryOperator::CreateUDiv( |
| X, ConstantInt::get(X->getType(), C2ShlC1)); |
| if (IsExact) |
| BO->setIsExact(); |
| return BO; |
| } |
| } |
| } |
| |
| // (zext A) udiv (zext B) --> zext (A udiv B) |
| if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| return new ZExtInst( |
| Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()), |
| I.getType()); |
| |
| // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) |
| SmallVector<UDivFoldAction, 6> UDivActions; |
| if (visitUDivOperand(Op0, Op1, I, UDivActions)) |
| for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { |
| FoldUDivOperandCb Action = UDivActions[i].FoldAction; |
| Value *ActionOp1 = UDivActions[i].OperandToFold; |
| Instruction *Inst; |
| if (Action) |
| Inst = Action(Op0, ActionOp1, I, *this); |
| else { |
| // This action joins two actions together. The RHS of this action is |
| // simply the last action we processed, we saved the LHS action index in |
| // the joining action. |
| size_t SelectRHSIdx = i - 1; |
| Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; |
| size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; |
| Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; |
| Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), |
| SelectLHS, SelectRHS); |
| } |
| |
| // If this is the last action to process, return it to the InstCombiner. |
| // Otherwise, we insert it before the UDiv and record it so that we may |
| // use it as part of a joining action (i.e., a SelectInst). |
| if (e - i != 1) { |
| Inst->insertBefore(&I); |
| UDivActions[i].FoldResult = Inst; |
| } else |
| return Inst; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // Handle the integer div common cases |
| if (Instruction *Common = commonIDivTransforms(I)) |
| return Common; |
| |
| const APInt *Op1C; |
| if (match(Op1, m_APInt(Op1C))) { |
| // sdiv X, -1 == -X |
| if (Op1C->isAllOnesValue()) |
| return BinaryOperator::CreateNeg(Op0); |
| |
| // sdiv exact X, C --> ashr exact X, log2(C) |
| if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) { |
| Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2()); |
| return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); |
| } |
| |
| // If the dividend is sign-extended and the constant divisor is small enough |
| // to fit in the source type, shrink the division to the narrower type: |
| // (sext X) sdiv C --> sext (X sdiv C) |
| Value *Op0Src; |
| if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && |
| Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { |
| |
| // In the general case, we need to make sure that the dividend is not the |
| // minimum signed value because dividing that by -1 is UB. But here, we |
| // know that the -1 divisor case is already handled above. |
| |
| Constant *NarrowDivisor = |
| ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); |
| Value *NarrowOp = Builder->CreateSDiv(Op0Src, NarrowDivisor); |
| return new SExtInst(NarrowOp, Op0->getType()); |
| } |
| } |
| |
| if (Constant *RHS = dyn_cast<Constant>(Op1)) { |
| // X/INT_MIN -> X == INT_MIN |
| if (RHS->isMinSignedValue()) |
| return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType()); |
| |
| // -X/C --> X/-C provided the negation doesn't overflow. |
| Value *X; |
| if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { |
| auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS)); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| } |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a udiv. |
| if (I.getType()->isIntegerTy()) { |
| APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| if (MaskedValueIsZero(Op0, Mask, 0, &I)) { |
| if (MaskedValueIsZero(Op1, Mask, 0, &I)) { |
| // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set |
| auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| |
| if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) { |
| // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) |
| // Safe because the only negative value (1 << Y) can take on is |
| // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have |
| // the sign bit set. |
| auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| BO->setIsExact(I.isExact()); |
| return BO; |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special |
| /// FP value and: |
| /// 1) 1/C is exact, or |
| /// 2) reciprocal is allowed. |
| /// If the conversion was successful, the simplified expression "X * 1/C" is |
| /// returned; otherwise, NULL is returned. |
| /// |
| static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor, |
| bool AllowReciprocal) { |
| if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors. |
| return nullptr; |
| |
| const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF(); |
| APFloat Reciprocal(FpVal.getSemantics()); |
| bool Cvt = FpVal.getExactInverse(&Reciprocal); |
| |
| if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) { |
| Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); |
| (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); |
| Cvt = !Reciprocal.isDenormal(); |
| } |
| |
| if (!Cvt) |
| return nullptr; |
| |
| ConstantFP *R; |
| R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); |
| return BinaryOperator::CreateFMul(Dividend, R); |
| } |
| |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(), |
| DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| bool AllowReassociate = I.hasUnsafeAlgebra(); |
| bool AllowReciprocal = I.hasAllowReciprocal(); |
| |
| if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (AllowReassociate) { |
| Constant *C1 = nullptr; |
| Constant *C2 = Op1C; |
| Value *X; |
| Instruction *Res = nullptr; |
| |
| if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) { |
| // (X*C1)/C2 => X * (C1/C2) |
| // |
| Constant *C = ConstantExpr::getFDiv(C1, C2); |
| if (isNormalFp(C)) |
| Res = BinaryOperator::CreateFMul(X, C); |
| } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { |
| // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] |
| // |
| Constant *C = ConstantExpr::getFMul(C1, C2); |
| if (isNormalFp(C)) { |
| Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal); |
| if (!Res) |
| Res = BinaryOperator::CreateFDiv(X, C); |
| } |
| } |
| |
| if (Res) { |
| Res->setFastMathFlags(I.getFastMathFlags()); |
| return Res; |
| } |
| } |
| |
| // X / C => X * 1/C |
| if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) { |
| T->copyFastMathFlags(&I); |
| return T; |
| } |
| |
| return nullptr; |
| } |
| |
| if (AllowReassociate && isa<Constant>(Op0)) { |
| Constant *C1 = cast<Constant>(Op0), *C2; |
| Constant *Fold = nullptr; |
| Value *X; |
| bool CreateDiv = true; |
| |
| // C1 / (X*C2) => (C1/C2) / X |
| if (match(Op1, m_FMul(m_Value(X), m_Constant(C2)))) |
| Fold = ConstantExpr::getFDiv(C1, C2); |
| else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) { |
| // C1 / (X/C2) => (C1*C2) / X |
| Fold = ConstantExpr::getFMul(C1, C2); |
| } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) { |
| // C1 / (C2/X) => (C1/C2) * X |
| Fold = ConstantExpr::getFDiv(C1, C2); |
| CreateDiv = false; |
| } |
| |
| if (Fold && isNormalFp(Fold)) { |
| Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X) |
| : BinaryOperator::CreateFMul(X, Fold); |
| R->setFastMathFlags(I.getFastMathFlags()); |
| return R; |
| } |
| return nullptr; |
| } |
| |
| if (AllowReassociate) { |
| Value *X, *Y; |
| Value *NewInst = nullptr; |
| Instruction *SimpR = nullptr; |
| |
| if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { |
| // (X/Y) / Z => X / (Y*Z) |
| // |
| if (!isa<Constant>(Y) || !isa<Constant>(Op1)) { |
| NewInst = Builder->CreateFMul(Y, Op1); |
| if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { |
| FastMathFlags Flags = I.getFastMathFlags(); |
| Flags &= cast<Instruction>(Op0)->getFastMathFlags(); |
| RI->setFastMathFlags(Flags); |
| } |
| SimpR = BinaryOperator::CreateFDiv(X, NewInst); |
| } |
| } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { |
| // Z / (X/Y) => Z*Y / X |
| // |
| if (!isa<Constant>(Y) || !isa<Constant>(Op0)) { |
| NewInst = Builder->CreateFMul(Op0, Y); |
| if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { |
| FastMathFlags Flags = I.getFastMathFlags(); |
| Flags &= cast<Instruction>(Op1)->getFastMathFlags(); |
| RI->setFastMathFlags(Flags); |
| } |
| SimpR = BinaryOperator::CreateFDiv(NewInst, X); |
| } |
| } |
| |
| if (NewInst) { |
| if (Instruction *T = dyn_cast<Instruction>(NewInst)) |
| T->setDebugLoc(I.getDebugLoc()); |
| SimpR->setFastMathFlags(I.getFastMathFlags()); |
| return SimpR; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// This function implements the transforms common to both integer remainder |
| /// instructions (urem and srem). It is called by the visitors to those integer |
| /// remainder instructions. |
| /// @brief Common integer remainder transforms |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // The RHS is known non-zero. |
| if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { |
| I.setOperand(1, V); |
| return &I; |
| } |
| |
| // Handle cases involving: rem X, (select Cond, Y, Z) |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| if (isa<Constant>(Op1)) { |
| if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| } else if (isa<PHINode>(Op0I)) { |
| using namespace llvm::PatternMatch; |
| const APInt *Op1Int; |
| if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && |
| (I.getOpcode() == Instruction::URem || |
| !Op1Int->isMinSignedValue())) { |
| // FoldOpIntoPhi will speculate instructions to the end of the PHI's |
| // predecessor blocks, so do this only if we know the srem or urem |
| // will not fault. |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| } |
| |
| // See if we can fold away this rem instruction. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *common = commonIRemTransforms(I)) |
| return common; |
| |
| // (zext A) urem (zext B) --> zext (A urem B) |
| if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), |
| I.getType()); |
| |
| // X urem Y -> X and Y-1, where Y is a power of 2, |
| if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) { |
| Constant *N1 = Constant::getAllOnesValue(I.getType()); |
| Value *Add = Builder->CreateAdd(Op1, N1); |
| return BinaryOperator::CreateAnd(Op0, Add); |
| } |
| |
| // 1 urem X -> zext(X != 1) |
| if (match(Op0, m_One())) { |
| Value *Cmp = Builder->CreateICmpNE(Op1, Op0); |
| Value *Ext = Builder->CreateZExt(Cmp, I.getType()); |
| return replaceInstUsesWith(I, Ext); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // Handle the integer rem common cases |
| if (Instruction *Common = commonIRemTransforms(I)) |
| return Common; |
| |
| { |
| const APInt *Y; |
| // X % -Y -> X % Y |
| if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) { |
| Worklist.AddValue(I.getOperand(1)); |
| I.setOperand(1, ConstantInt::get(I.getType(), -*Y)); |
| return &I; |
| } |
| } |
| |
| // If the sign bits of both operands are zero (i.e. we can prove they are |
| // unsigned inputs), turn this into a urem. |
| if (I.getType()->isIntegerTy()) { |
| APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| if (MaskedValueIsZero(Op1, Mask, 0, &I) && |
| MaskedValueIsZero(Op0, Mask, 0, &I)) { |
| // X srem Y -> X urem Y, iff X and Y don't have sign bit set |
| return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
| } |
| } |
| |
| // If it's a constant vector, flip any negative values positive. |
| if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { |
| Constant *C = cast<Constant>(Op1); |
| unsigned VWidth = C->getType()->getVectorNumElements(); |
| |
| bool hasNegative = false; |
| bool hasMissing = false; |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) { |
| hasMissing = true; |
| break; |
| } |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) |
| if (RHS->isNegative()) |
| hasNegative = true; |
| } |
| |
| if (hasNegative && !hasMissing) { |
| SmallVector<Constant *, 16> Elts(VWidth); |
| for (unsigned i = 0; i != VWidth; ++i) { |
| Elts[i] = C->getAggregateElement(i); // Handle undef, etc. |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { |
| if (RHS->isNegative()) |
| Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
| } |
| } |
| |
| Constant *NewRHSV = ConstantVector::get(Elts); |
| if (NewRHSV != C) { // Don't loop on -MININT |
| Worklist.AddValue(I.getOperand(1)); |
| I.setOperand(1, NewRHSV); |
| return &I; |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyVectorOp(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(), |
| DL, TLI, DT, AC)) |
| return replaceInstUsesWith(I, V); |
| |
| // Handle cases involving: rem X, (select Cond, Y, Z) |
| if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| return &I; |
| |
| return nullptr; |
| } |