| //===-- PGOInstrumentation.cpp - MST-based PGO Instrumentation ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements PGO instrumentation using a minimum spanning tree based |
| // on the following paper: |
| // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points |
| // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, |
| // Issue 3, pp 313-322 |
| // The idea of the algorithm based on the fact that for each node (except for |
| // the entry and exit), the sum of incoming edge counts equals the sum of |
| // outgoing edge counts. The count of edge on spanning tree can be derived from |
| // those edges not on the spanning tree. Knuth proves this method instruments |
| // the minimum number of edges. |
| // |
| // The minimal spanning tree here is actually a maximum weight tree -- on-tree |
| // edges have higher frequencies (more likely to execute). The idea is to |
| // instrument those less frequently executed edges to reduce the runtime |
| // overhead of instrumented binaries. |
| // |
| // This file contains two passes: |
| // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge |
| // count profile, and generates the instrumentation for indirect call |
| // profiling. |
| // (2) Pass PGOInstrumentationUse which reads the edge count profile and |
| // annotates the branch weights. It also reads the indirect call value |
| // profiling records and annotate the indirect call instructions. |
| // |
| // To get the precise counter information, These two passes need to invoke at |
| // the same compilation point (so they see the same IR). For pass |
| // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For |
| // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and |
| // the profile is opened in module level and passed to each PGOUseFunc instance. |
| // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put |
| // in class FuncPGOInstrumentation. |
| // |
| // Class PGOEdge represents a CFG edge and some auxiliary information. Class |
| // BBInfo contains auxiliary information for each BB. These two classes are used |
| // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived |
| // class of PGOEdge and BBInfo, respectively. They contains extra data structure |
| // used in populating profile counters. |
| // The MST implementation is in Class CFGMST (CFGMST.h). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/PGOInstrumentation.h" |
| #include "CFGMST.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/IndirectCallSiteVisitor.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/ProfileData/InstrProfReader.h" |
| #include "llvm/ProfileData/ProfileCommon.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/JamCRC.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <algorithm> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "pgo-instrumentation" |
| |
| STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); |
| STATISTIC(NumOfPGOEdge, "Number of edges."); |
| STATISTIC(NumOfPGOBB, "Number of basic-blocks."); |
| STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); |
| STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); |
| STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); |
| STATISTIC(NumOfPGOMissing, "Number of functions without profile."); |
| STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); |
| |
| // Command line option to specify the file to read profile from. This is |
| // mainly used for testing. |
| static cl::opt<std::string> |
| PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, |
| cl::value_desc("filename"), |
| cl::desc("Specify the path of profile data file. This is" |
| "mainly for test purpose.")); |
| |
| // Command line option to disable value profiling. The default is false: |
| // i.e. value profiling is enabled by default. This is for debug purpose. |
| static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false), |
| cl::Hidden, |
| cl::desc("Disable Value Profiling")); |
| |
| // Command line option to set the maximum number of VP annotations to write to |
| // the metadata for a single indirect call callsite. |
| static cl::opt<unsigned> MaxNumAnnotations( |
| "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Max number of annotations for a single indirect " |
| "call callsite")); |
| |
| // Command line option to enable/disable the warning about missing profile |
| // information. |
| static cl::opt<bool> NoPGOWarnMissing("no-pgo-warn-missing", cl::init(false), |
| cl::Hidden); |
| |
| // Command line option to enable/disable the warning about a hash mismatch in |
| // the profile data. |
| static cl::opt<bool> NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), |
| cl::Hidden); |
| |
| namespace { |
| class PGOInstrumentationGenLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| PGOInstrumentationGenLegacyPass() : ModulePass(ID) { |
| initializePGOInstrumentationGenLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| const char *getPassName() const override { |
| return "PGOInstrumentationGenPass"; |
| } |
| |
| private: |
| bool runOnModule(Module &M) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
| } |
| }; |
| |
| class PGOInstrumentationUseLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| // Provide the profile filename as the parameter. |
| PGOInstrumentationUseLegacyPass(std::string Filename = "") |
| : ModulePass(ID), ProfileFileName(std::move(Filename)) { |
| if (!PGOTestProfileFile.empty()) |
| ProfileFileName = PGOTestProfileFile; |
| initializePGOInstrumentationUseLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| const char *getPassName() const override { |
| return "PGOInstrumentationUsePass"; |
| } |
| |
| private: |
| std::string ProfileFileName; |
| |
| bool runOnModule(Module &M) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| char PGOInstrumentationGenLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", |
| "PGO instrumentation.", false, false) |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) |
| INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", |
| "PGO instrumentation.", false, false) |
| |
| ModulePass *llvm::createPGOInstrumentationGenLegacyPass() { |
| return new PGOInstrumentationGenLegacyPass(); |
| } |
| |
| char PGOInstrumentationUseLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", |
| "Read PGO instrumentation profile.", false, false) |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) |
| INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", |
| "Read PGO instrumentation profile.", false, false) |
| |
| ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename) { |
| return new PGOInstrumentationUseLegacyPass(Filename.str()); |
| } |
| |
| namespace { |
| /// \brief An MST based instrumentation for PGO |
| /// |
| /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO |
| /// in the function level. |
| struct PGOEdge { |
| // This class implements the CFG edges. Note the CFG can be a multi-graph. |
| // So there might be multiple edges with same SrcBB and DestBB. |
| const BasicBlock *SrcBB; |
| const BasicBlock *DestBB; |
| uint64_t Weight; |
| bool InMST; |
| bool Removed; |
| bool IsCritical; |
| PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1) |
| : SrcBB(Src), DestBB(Dest), Weight(W), InMST(false), Removed(false), |
| IsCritical(false) {} |
| // Return the information string of an edge. |
| const std::string infoString() const { |
| return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + |
| (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); |
| } |
| }; |
| |
| // This class stores the auxiliary information for each BB. |
| struct BBInfo { |
| BBInfo *Group; |
| uint32_t Index; |
| uint32_t Rank; |
| |
| BBInfo(unsigned IX) : Group(this), Index(IX), Rank(0) {} |
| |
| // Return the information string of this object. |
| const std::string infoString() const { |
| return (Twine("Index=") + Twine(Index)).str(); |
| } |
| }; |
| |
| // This class implements the CFG edges. Note the CFG can be a multi-graph. |
| template <class Edge, class BBInfo> class FuncPGOInstrumentation { |
| private: |
| Function &F; |
| void computeCFGHash(); |
| |
| public: |
| std::string FuncName; |
| GlobalVariable *FuncNameVar; |
| // CFG hash value for this function. |
| uint64_t FunctionHash; |
| |
| // The Minimum Spanning Tree of function CFG. |
| CFGMST<Edge, BBInfo> MST; |
| |
| // Give an edge, find the BB that will be instrumented. |
| // Return nullptr if there is no BB to be instrumented. |
| BasicBlock *getInstrBB(Edge *E); |
| |
| // Return the auxiliary BB information. |
| BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } |
| |
| // Dump edges and BB information. |
| void dumpInfo(std::string Str = "") const { |
| MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + |
| Twine(FunctionHash) + "\t" + Str); |
| } |
| |
| FuncPGOInstrumentation(Function &Func, bool CreateGlobalVar = false, |
| BranchProbabilityInfo *BPI = nullptr, |
| BlockFrequencyInfo *BFI = nullptr) |
| : F(Func), FunctionHash(0), MST(F, BPI, BFI) { |
| FuncName = getPGOFuncName(F); |
| computeCFGHash(); |
| DEBUG(dumpInfo("after CFGMST")); |
| |
| NumOfPGOBB += MST.BBInfos.size(); |
| for (auto &E : MST.AllEdges) { |
| if (E->Removed) |
| continue; |
| NumOfPGOEdge++; |
| if (!E->InMST) |
| NumOfPGOInstrument++; |
| } |
| |
| if (CreateGlobalVar) |
| FuncNameVar = createPGOFuncNameVar(F, FuncName); |
| } |
| }; |
| |
| // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index |
| // value of each BB in the CFG. The higher 32 bits record the number of edges. |
| template <class Edge, class BBInfo> |
| void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { |
| std::vector<char> Indexes; |
| JamCRC JC; |
| for (auto &BB : F) { |
| const TerminatorInst *TI = BB.getTerminator(); |
| for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { |
| BasicBlock *Succ = TI->getSuccessor(I); |
| uint32_t Index = getBBInfo(Succ).Index; |
| for (int J = 0; J < 4; J++) |
| Indexes.push_back((char)(Index >> (J * 8))); |
| } |
| } |
| JC.update(Indexes); |
| FunctionHash = (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); |
| } |
| |
| // Given a CFG E to be instrumented, find which BB to place the instrumented |
| // code. The function will split the critical edge if necessary. |
| template <class Edge, class BBInfo> |
| BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { |
| if (E->InMST || E->Removed) |
| return nullptr; |
| |
| BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); |
| BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); |
| // For a fake edge, instrument the real BB. |
| if (SrcBB == nullptr) |
| return DestBB; |
| if (DestBB == nullptr) |
| return SrcBB; |
| |
| // Instrument the SrcBB if it has a single successor, |
| // otherwise, the DestBB if this is not a critical edge. |
| TerminatorInst *TI = SrcBB->getTerminator(); |
| if (TI->getNumSuccessors() <= 1) |
| return SrcBB; |
| if (!E->IsCritical) |
| return DestBB; |
| |
| // For a critical edge, we have to split. Instrument the newly |
| // created BB. |
| NumOfPGOSplit++; |
| DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> " |
| << getBBInfo(DestBB).Index << "\n"); |
| unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); |
| BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum); |
| assert(InstrBB && "Critical edge is not split"); |
| |
| E->Removed = true; |
| return InstrBB; |
| } |
| |
| // Visit all edge and instrument the edges not in MST, and do value profiling. |
| // Critical edges will be split. |
| static void instrumentOneFunc(Function &F, Module *M, |
| BranchProbabilityInfo *BPI, |
| BlockFrequencyInfo *BFI) { |
| unsigned NumCounters = 0; |
| FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, true, BPI, BFI); |
| for (auto &E : FuncInfo.MST.AllEdges) { |
| if (!E->InMST && !E->Removed) |
| NumCounters++; |
| } |
| |
| uint32_t I = 0; |
| Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); |
| for (auto &E : FuncInfo.MST.AllEdges) { |
| BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get()); |
| if (!InstrBB) |
| continue; |
| |
| IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); |
| assert(Builder.GetInsertPoint() != InstrBB->end() && |
| "Cannot get the Instrumentation point"); |
| Builder.CreateCall( |
| Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), |
| {llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), |
| Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), |
| Builder.getInt32(I++)}); |
| } |
| |
| if (DisableValueProfiling) |
| return; |
| |
| unsigned NumIndirectCallSites = 0; |
| for (auto &I : findIndirectCallSites(F)) { |
| CallSite CS(I); |
| Value *Callee = CS.getCalledValue(); |
| DEBUG(dbgs() << "Instrument one indirect call: CallSite Index = " |
| << NumIndirectCallSites << "\n"); |
| IRBuilder<> Builder(I); |
| assert(Builder.GetInsertPoint() != I->getParent()->end() && |
| "Cannot get the Instrumentation point"); |
| Builder.CreateCall( |
| Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), |
| {llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), |
| Builder.getInt64(FuncInfo.FunctionHash), |
| Builder.CreatePtrToInt(Callee, Builder.getInt64Ty()), |
| Builder.getInt32(llvm::InstrProfValueKind::IPVK_IndirectCallTarget), |
| Builder.getInt32(NumIndirectCallSites++)}); |
| } |
| NumOfPGOICall += NumIndirectCallSites; |
| } |
| |
| // This class represents a CFG edge in profile use compilation. |
| struct PGOUseEdge : public PGOEdge { |
| bool CountValid; |
| uint64_t CountValue; |
| PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1) |
| : PGOEdge(Src, Dest, W), CountValid(false), CountValue(0) {} |
| |
| // Set edge count value |
| void setEdgeCount(uint64_t Value) { |
| CountValue = Value; |
| CountValid = true; |
| } |
| |
| // Return the information string for this object. |
| const std::string infoString() const { |
| if (!CountValid) |
| return PGOEdge::infoString(); |
| return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) |
| .str(); |
| } |
| }; |
| |
| typedef SmallVector<PGOUseEdge *, 2> DirectEdges; |
| |
| // This class stores the auxiliary information for each BB. |
| struct UseBBInfo : public BBInfo { |
| uint64_t CountValue; |
| bool CountValid; |
| int32_t UnknownCountInEdge; |
| int32_t UnknownCountOutEdge; |
| DirectEdges InEdges; |
| DirectEdges OutEdges; |
| UseBBInfo(unsigned IX) |
| : BBInfo(IX), CountValue(0), CountValid(false), UnknownCountInEdge(0), |
| UnknownCountOutEdge(0) {} |
| UseBBInfo(unsigned IX, uint64_t C) |
| : BBInfo(IX), CountValue(C), CountValid(true), UnknownCountInEdge(0), |
| UnknownCountOutEdge(0) {} |
| |
| // Set the profile count value for this BB. |
| void setBBInfoCount(uint64_t Value) { |
| CountValue = Value; |
| CountValid = true; |
| } |
| |
| // Return the information string of this object. |
| const std::string infoString() const { |
| if (!CountValid) |
| return BBInfo::infoString(); |
| return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); |
| } |
| }; |
| |
| // Sum up the count values for all the edges. |
| static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { |
| uint64_t Total = 0; |
| for (auto &E : Edges) { |
| if (E->Removed) |
| continue; |
| Total += E->CountValue; |
| } |
| return Total; |
| } |
| |
| class PGOUseFunc { |
| public: |
| PGOUseFunc(Function &Func, Module *Modu, BranchProbabilityInfo *BPI = nullptr, |
| BlockFrequencyInfo *BFI = nullptr) |
| : F(Func), M(Modu), FuncInfo(Func, false, BPI, BFI), |
| FreqAttr(FFA_Normal) {} |
| |
| // Read counts for the instrumented BB from profile. |
| bool readCounters(IndexedInstrProfReader *PGOReader); |
| |
| // Populate the counts for all BBs. |
| void populateCounters(); |
| |
| // Set the branch weights based on the count values. |
| void setBranchWeights(); |
| |
| // Annotate the indirect call sites. |
| void annotateIndirectCallSites(); |
| |
| // The hotness of the function from the profile count. |
| enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; |
| |
| // Return the function hotness from the profile. |
| FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } |
| |
| // Return the profile record for this function; |
| InstrProfRecord &getProfileRecord() { return ProfileRecord; } |
| |
| private: |
| Function &F; |
| Module *M; |
| // This member stores the shared information with class PGOGenFunc. |
| FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; |
| |
| // Return the auxiliary BB information. |
| UseBBInfo &getBBInfo(const BasicBlock *BB) const { |
| return FuncInfo.getBBInfo(BB); |
| } |
| |
| // The maximum count value in the profile. This is only used in PGO use |
| // compilation. |
| uint64_t ProgramMaxCount; |
| |
| // ProfileRecord for this function. |
| InstrProfRecord ProfileRecord; |
| |
| // Function hotness info derived from profile. |
| FuncFreqAttr FreqAttr; |
| |
| // Find the Instrumented BB and set the value. |
| void setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); |
| |
| // Set the edge counter value for the unknown edge -- there should be only |
| // one unknown edge. |
| void setEdgeCount(DirectEdges &Edges, uint64_t Value); |
| |
| // Return FuncName string; |
| const std::string getFuncName() const { return FuncInfo.FuncName; } |
| |
| // Set the hot/cold inline hints based on the count values. |
| // FIXME: This function should be removed once the functionality in |
| // the inliner is implemented. |
| void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { |
| if (ProgramMaxCount == 0) |
| return; |
| // Threshold of the hot functions. |
| const BranchProbability HotFunctionThreshold(1, 100); |
| // Threshold of the cold functions. |
| const BranchProbability ColdFunctionThreshold(2, 10000); |
| if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount)) |
| FreqAttr = FFA_Hot; |
| else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount)) |
| FreqAttr = FFA_Cold; |
| } |
| }; |
| |
| // Visit all the edges and assign the count value for the instrumented |
| // edges and the BB. |
| void PGOUseFunc::setInstrumentedCounts( |
| const std::vector<uint64_t> &CountFromProfile) { |
| |
| // Use a worklist as we will update the vector during the iteration. |
| std::vector<PGOUseEdge *> WorkList; |
| for (auto &E : FuncInfo.MST.AllEdges) |
| WorkList.push_back(E.get()); |
| |
| uint32_t I = 0; |
| for (auto &E : WorkList) { |
| BasicBlock *InstrBB = FuncInfo.getInstrBB(E); |
| if (!InstrBB) |
| continue; |
| uint64_t CountValue = CountFromProfile[I++]; |
| if (!E->Removed) { |
| getBBInfo(InstrBB).setBBInfoCount(CountValue); |
| E->setEdgeCount(CountValue); |
| continue; |
| } |
| |
| // Need to add two new edges. |
| BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); |
| BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); |
| // Add new edge of SrcBB->InstrBB. |
| PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0); |
| NewEdge.setEdgeCount(CountValue); |
| // Add new edge of InstrBB->DestBB. |
| PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0); |
| NewEdge1.setEdgeCount(CountValue); |
| NewEdge1.InMST = true; |
| getBBInfo(InstrBB).setBBInfoCount(CountValue); |
| } |
| } |
| |
| // Set the count value for the unknown edge. There should be one and only one |
| // unknown edge in Edges vector. |
| void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { |
| for (auto &E : Edges) { |
| if (E->CountValid) |
| continue; |
| E->setEdgeCount(Value); |
| |
| getBBInfo(E->SrcBB).UnknownCountOutEdge--; |
| getBBInfo(E->DestBB).UnknownCountInEdge--; |
| return; |
| } |
| llvm_unreachable("Cannot find the unknown count edge"); |
| } |
| |
| // Read the profile from ProfileFileName and assign the value to the |
| // instrumented BB and the edges. This function also updates ProgramMaxCount. |
| // Return true if the profile are successfully read, and false on errors. |
| bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader) { |
| auto &Ctx = M->getContext(); |
| Expected<InstrProfRecord> Result = |
| PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); |
| if (Error E = Result.takeError()) { |
| handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { |
| auto Err = IPE.get(); |
| bool SkipWarning = false; |
| if (Err == instrprof_error::unknown_function) { |
| NumOfPGOMissing++; |
| SkipWarning = NoPGOWarnMissing; |
| } else if (Err == instrprof_error::hash_mismatch || |
| Err == instrprof_error::malformed) { |
| NumOfPGOMismatch++; |
| SkipWarning = NoPGOWarnMismatch; |
| } |
| |
| if (SkipWarning) |
| return; |
| |
| std::string Msg = IPE.message() + std::string(" ") + F.getName().str(); |
| Ctx.diagnose( |
| DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); |
| }); |
| return false; |
| } |
| ProfileRecord = std::move(Result.get()); |
| std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts; |
| |
| NumOfPGOFunc++; |
| DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); |
| uint64_t ValueSum = 0; |
| for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { |
| DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); |
| ValueSum += CountFromProfile[I]; |
| } |
| |
| DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); |
| |
| getBBInfo(nullptr).UnknownCountOutEdge = 2; |
| getBBInfo(nullptr).UnknownCountInEdge = 2; |
| |
| setInstrumentedCounts(CountFromProfile); |
| ProgramMaxCount = PGOReader->getMaximumFunctionCount(); |
| return true; |
| } |
| |
| // Populate the counters from instrumented BBs to all BBs. |
| // In the end of this operation, all BBs should have a valid count value. |
| void PGOUseFunc::populateCounters() { |
| // First set up Count variable for all BBs. |
| for (auto &E : FuncInfo.MST.AllEdges) { |
| if (E->Removed) |
| continue; |
| |
| const BasicBlock *SrcBB = E->SrcBB; |
| const BasicBlock *DestBB = E->DestBB; |
| UseBBInfo &SrcInfo = getBBInfo(SrcBB); |
| UseBBInfo &DestInfo = getBBInfo(DestBB); |
| SrcInfo.OutEdges.push_back(E.get()); |
| DestInfo.InEdges.push_back(E.get()); |
| SrcInfo.UnknownCountOutEdge++; |
| DestInfo.UnknownCountInEdge++; |
| |
| if (!E->CountValid) |
| continue; |
| DestInfo.UnknownCountInEdge--; |
| SrcInfo.UnknownCountOutEdge--; |
| } |
| |
| bool Changes = true; |
| unsigned NumPasses = 0; |
| while (Changes) { |
| NumPasses++; |
| Changes = false; |
| |
| // For efficient traversal, it's better to start from the end as most |
| // of the instrumented edges are at the end. |
| for (auto &BB : reverse(F)) { |
| UseBBInfo &Count = getBBInfo(&BB); |
| if (!Count.CountValid) { |
| if (Count.UnknownCountOutEdge == 0) { |
| Count.CountValue = sumEdgeCount(Count.OutEdges); |
| Count.CountValid = true; |
| Changes = true; |
| } else if (Count.UnknownCountInEdge == 0) { |
| Count.CountValue = sumEdgeCount(Count.InEdges); |
| Count.CountValid = true; |
| Changes = true; |
| } |
| } |
| if (Count.CountValid) { |
| if (Count.UnknownCountOutEdge == 1) { |
| uint64_t Total = Count.CountValue - sumEdgeCount(Count.OutEdges); |
| setEdgeCount(Count.OutEdges, Total); |
| Changes = true; |
| } |
| if (Count.UnknownCountInEdge == 1) { |
| uint64_t Total = Count.CountValue - sumEdgeCount(Count.InEdges); |
| setEdgeCount(Count.InEdges, Total); |
| Changes = true; |
| } |
| } |
| } |
| } |
| |
| DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); |
| #ifndef NDEBUG |
| // Assert every BB has a valid counter. |
| for (auto &BB : F) |
| assert(getBBInfo(&BB).CountValid && "BB count is not valid"); |
| #endif |
| uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; |
| F.setEntryCount(FuncEntryCount); |
| uint64_t FuncMaxCount = FuncEntryCount; |
| for (auto &BB : F) |
| FuncMaxCount = std::max(FuncMaxCount, getBBInfo(&BB).CountValue); |
| markFunctionAttributes(FuncEntryCount, FuncMaxCount); |
| |
| DEBUG(FuncInfo.dumpInfo("after reading profile.")); |
| } |
| |
| // Assign the scaled count values to the BB with multiple out edges. |
| void PGOUseFunc::setBranchWeights() { |
| // Generate MD_prof metadata for every branch instruction. |
| DEBUG(dbgs() << "\nSetting branch weights.\n"); |
| MDBuilder MDB(M->getContext()); |
| for (auto &BB : F) { |
| TerminatorInst *TI = BB.getTerminator(); |
| if (TI->getNumSuccessors() < 2) |
| continue; |
| if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) |
| continue; |
| if (getBBInfo(&BB).CountValue == 0) |
| continue; |
| |
| // We have a non-zero Branch BB. |
| const UseBBInfo &BBCountInfo = getBBInfo(&BB); |
| unsigned Size = BBCountInfo.OutEdges.size(); |
| SmallVector<unsigned, 2> EdgeCounts(Size, 0); |
| uint64_t MaxCount = 0; |
| for (unsigned s = 0; s < Size; s++) { |
| const PGOUseEdge *E = BBCountInfo.OutEdges[s]; |
| const BasicBlock *SrcBB = E->SrcBB; |
| const BasicBlock *DestBB = E->DestBB; |
| if (DestBB == nullptr) |
| continue; |
| unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); |
| uint64_t EdgeCount = E->CountValue; |
| if (EdgeCount > MaxCount) |
| MaxCount = EdgeCount; |
| EdgeCounts[SuccNum] = EdgeCount; |
| } |
| assert(MaxCount > 0 && "Bad max count"); |
| uint64_t Scale = calculateCountScale(MaxCount); |
| SmallVector<unsigned, 4> Weights; |
| for (const auto &ECI : EdgeCounts) |
| Weights.push_back(scaleBranchCount(ECI, Scale)); |
| |
| TI->setMetadata(llvm::LLVMContext::MD_prof, |
| MDB.createBranchWeights(Weights)); |
| DEBUG(dbgs() << "Weight is: "; |
| for (const auto &W : Weights) { dbgs() << W << " "; } |
| dbgs() << "\n";); |
| } |
| } |
| |
| // Traverse all the indirect callsites and annotate the instructions. |
| void PGOUseFunc::annotateIndirectCallSites() { |
| if (DisableValueProfiling) |
| return; |
| |
| // Create the PGOFuncName meta data. |
| createPGOFuncNameMetadata(F, FuncInfo.FuncName); |
| |
| unsigned IndirectCallSiteIndex = 0; |
| auto IndirectCallSites = findIndirectCallSites(F); |
| unsigned NumValueSites = |
| ProfileRecord.getNumValueSites(IPVK_IndirectCallTarget); |
| if (NumValueSites != IndirectCallSites.size()) { |
| std::string Msg = |
| std::string("Inconsistent number of indirect call sites: ") + |
| F.getName().str(); |
| auto &Ctx = M->getContext(); |
| Ctx.diagnose( |
| DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); |
| return; |
| } |
| |
| for (auto &I : IndirectCallSites) { |
| DEBUG(dbgs() << "Read one indirect call instrumentation: Index=" |
| << IndirectCallSiteIndex << " out of " << NumValueSites |
| << "\n"); |
| annotateValueSite(*M, *I, ProfileRecord, IPVK_IndirectCallTarget, |
| IndirectCallSiteIndex, MaxNumAnnotations); |
| IndirectCallSiteIndex++; |
| } |
| } |
| } // end anonymous namespace |
| |
| // Create a COMDAT variable IR_LEVEL_PROF_VARNAME to make the runtime |
| // aware this is an ir_level profile so it can set the version flag. |
| static void createIRLevelProfileFlagVariable(Module &M) { |
| Type *IntTy64 = Type::getInt64Ty(M.getContext()); |
| uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); |
| auto IRLevelVersionVariable = new GlobalVariable( |
| M, IntTy64, true, GlobalVariable::ExternalLinkage, |
| Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), |
| INSTR_PROF_QUOTE(IR_LEVEL_PROF_VERSION_VAR)); |
| IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); |
| Triple TT(M.getTargetTriple()); |
| if (!TT.supportsCOMDAT()) |
| IRLevelVersionVariable->setLinkage(GlobalValue::WeakAnyLinkage); |
| else |
| IRLevelVersionVariable->setComdat(M.getOrInsertComdat( |
| StringRef(INSTR_PROF_QUOTE(IR_LEVEL_PROF_VERSION_VAR)))); |
| } |
| |
| static bool InstrumentAllFunctions( |
| Module &M, function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, |
| function_ref<BlockFrequencyInfo *(Function &)> LookupBFI) { |
| createIRLevelProfileFlagVariable(M); |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| auto *BPI = LookupBPI(F); |
| auto *BFI = LookupBFI(F); |
| instrumentOneFunc(F, &M, BPI, BFI); |
| } |
| return true; |
| } |
| |
| bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { |
| if (skipModule(M)) |
| return false; |
| |
| auto LookupBPI = [this](Function &F) { |
| return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); |
| }; |
| auto LookupBFI = [this](Function &F) { |
| return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); |
| }; |
| return InstrumentAllFunctions(M, LookupBPI, LookupBFI); |
| } |
| |
| PreservedAnalyses PGOInstrumentationGen::run(Module &M, |
| AnalysisManager<Module> &AM) { |
| |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| auto LookupBPI = [&FAM](Function &F) { |
| return &FAM.getResult<BranchProbabilityAnalysis>(F); |
| }; |
| |
| auto LookupBFI = [&FAM](Function &F) { |
| return &FAM.getResult<BlockFrequencyAnalysis>(F); |
| }; |
| |
| if (!InstrumentAllFunctions(M, LookupBPI, LookupBFI)) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |
| |
| static bool annotateAllFunctions( |
| Module &M, StringRef ProfileFileName, |
| function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, |
| function_ref<BlockFrequencyInfo *(Function &)> LookupBFI) { |
| DEBUG(dbgs() << "Read in profile counters: "); |
| auto &Ctx = M.getContext(); |
| // Read the counter array from file. |
| auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName); |
| if (Error E = ReaderOrErr.takeError()) { |
| handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { |
| Ctx.diagnose( |
| DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); |
| }); |
| return false; |
| } |
| |
| std::unique_ptr<IndexedInstrProfReader> PGOReader = |
| std::move(ReaderOrErr.get()); |
| if (!PGOReader) { |
| Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), |
| StringRef("Cannot get PGOReader"))); |
| return false; |
| } |
| // TODO: might need to change the warning once the clang option is finalized. |
| if (!PGOReader->isIRLevelProfile()) { |
| Ctx.diagnose(DiagnosticInfoPGOProfile( |
| ProfileFileName.data(), "Not an IR level instrumentation profile")); |
| return false; |
| } |
| |
| std::vector<Function *> HotFunctions; |
| std::vector<Function *> ColdFunctions; |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| auto *BPI = LookupBPI(F); |
| auto *BFI = LookupBFI(F); |
| PGOUseFunc Func(F, &M, BPI, BFI); |
| if (!Func.readCounters(PGOReader.get())) |
| continue; |
| Func.populateCounters(); |
| Func.setBranchWeights(); |
| Func.annotateIndirectCallSites(); |
| PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); |
| if (FreqAttr == PGOUseFunc::FFA_Cold) |
| ColdFunctions.push_back(&F); |
| else if (FreqAttr == PGOUseFunc::FFA_Hot) |
| HotFunctions.push_back(&F); |
| } |
| M.setProfileSummary(PGOReader->getSummary().getMD(M.getContext())); |
| // Set function hotness attribute from the profile. |
| // We have to apply these attributes at the end because their presence |
| // can affect the BranchProbabilityInfo of any callers, resulting in an |
| // inconsistent MST between prof-gen and prof-use. |
| for (auto &F : HotFunctions) { |
| F->addFnAttr(llvm::Attribute::InlineHint); |
| DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() |
| << "\n"); |
| } |
| for (auto &F : ColdFunctions) { |
| F->addFnAttr(llvm::Attribute::Cold); |
| DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() << "\n"); |
| } |
| |
| return true; |
| } |
| |
| PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename) |
| : ProfileFileName(std::move(Filename)) { |
| if (!PGOTestProfileFile.empty()) |
| ProfileFileName = PGOTestProfileFile; |
| } |
| |
| PreservedAnalyses PGOInstrumentationUse::run(Module &M, |
| AnalysisManager<Module> &AM) { |
| |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| auto LookupBPI = [&FAM](Function &F) { |
| return &FAM.getResult<BranchProbabilityAnalysis>(F); |
| }; |
| |
| auto LookupBFI = [&FAM](Function &F) { |
| return &FAM.getResult<BlockFrequencyAnalysis>(F); |
| }; |
| |
| if (!annotateAllFunctions(M, ProfileFileName, LookupBPI, LookupBFI)) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |
| |
| bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { |
| if (skipModule(M)) |
| return false; |
| |
| auto LookupBPI = [this](Function &F) { |
| return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); |
| }; |
| auto LookupBFI = [this](Function &F) { |
| return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); |
| }; |
| |
| return annotateAllFunctions(M, ProfileFileName, LookupBPI, LookupBFI); |
| } |