| //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Dead Loop Deletion Pass. This pass is responsible |
| // for eliminating loops with non-infinite computable trip counts that have no |
| // side effects or volatile instructions, and do not contribute to the |
| // computation of the function's return value. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/LoopDeletion.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/LoopPassManager.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-delete" |
| |
| STATISTIC(NumDeleted, "Number of loops deleted"); |
| |
| /// isLoopDead - Determined if a loop is dead. This assumes that we've already |
| /// checked for unique exit and exiting blocks, and that the code is in LCSSA |
| /// form. |
| bool LoopDeletionPass::isLoopDead(Loop *L, ScalarEvolution &SE, |
| SmallVectorImpl<BasicBlock *> &exitingBlocks, |
| SmallVectorImpl<BasicBlock *> &exitBlocks, |
| bool &Changed, BasicBlock *Preheader) { |
| BasicBlock *exitBlock = exitBlocks[0]; |
| |
| // Make sure that all PHI entries coming from the loop are loop invariant. |
| // Because the code is in LCSSA form, any values used outside of the loop |
| // must pass through a PHI in the exit block, meaning that this check is |
| // sufficient to guarantee that no loop-variant values are used outside |
| // of the loop. |
| BasicBlock::iterator BI = exitBlock->begin(); |
| bool AllEntriesInvariant = true; |
| bool AllOutgoingValuesSame = true; |
| while (PHINode *P = dyn_cast<PHINode>(BI)) { |
| Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]); |
| |
| // Make sure all exiting blocks produce the same incoming value for the exit |
| // block. If there are different incoming values for different exiting |
| // blocks, then it is impossible to statically determine which value should |
| // be used. |
| AllOutgoingValuesSame = |
| all_of(makeArrayRef(exitingBlocks).slice(1), [&](BasicBlock *BB) { |
| return incoming == P->getIncomingValueForBlock(BB); |
| }); |
| |
| if (!AllOutgoingValuesSame) |
| break; |
| |
| if (Instruction *I = dyn_cast<Instruction>(incoming)) |
| if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { |
| AllEntriesInvariant = false; |
| break; |
| } |
| |
| ++BI; |
| } |
| |
| if (Changed) |
| SE.forgetLoopDispositions(L); |
| |
| if (!AllEntriesInvariant || !AllOutgoingValuesSame) |
| return false; |
| |
| // Make sure that no instructions in the block have potential side-effects. |
| // This includes instructions that could write to memory, and loads that are |
| // marked volatile. This could be made more aggressive by using aliasing |
| // information to identify readonly and readnone calls. |
| for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); |
| LI != LE; ++LI) { |
| for (Instruction &I : **LI) { |
| if (I.mayHaveSideEffects()) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Remove dead loops, by which we mean loops that do not impact the observable |
| /// behavior of the program other than finite running time. Note we do ensure |
| /// that this never remove a loop that might be infinite, as doing so could |
| /// change the halting/non-halting nature of a program. NOTE: This entire |
| /// process relies pretty heavily on LoopSimplify and LCSSA in order to make |
| /// various safety checks work. |
| bool LoopDeletionPass::runImpl(Loop *L, DominatorTree &DT, ScalarEvolution &SE, |
| LoopInfo &loopInfo) { |
| assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); |
| |
| // We can only remove the loop if there is a preheader that we can |
| // branch from after removing it. |
| BasicBlock *preheader = L->getLoopPreheader(); |
| if (!preheader) |
| return false; |
| |
| // If LoopSimplify form is not available, stay out of trouble. |
| if (!L->hasDedicatedExits()) |
| return false; |
| |
| // We can't remove loops that contain subloops. If the subloops were dead, |
| // they would already have been removed in earlier executions of this pass. |
| if (L->begin() != L->end()) |
| return false; |
| |
| SmallVector<BasicBlock *, 4> exitingBlocks; |
| L->getExitingBlocks(exitingBlocks); |
| |
| SmallVector<BasicBlock *, 4> exitBlocks; |
| L->getUniqueExitBlocks(exitBlocks); |
| |
| // We require that the loop only have a single exit block. Otherwise, we'd |
| // be in the situation of needing to be able to solve statically which exit |
| // block will be branched to, or trying to preserve the branching logic in |
| // a loop invariant manner. |
| if (exitBlocks.size() != 1) |
| return false; |
| |
| // Finally, we have to check that the loop really is dead. |
| bool Changed = false; |
| if (!isLoopDead(L, SE, exitingBlocks, exitBlocks, Changed, preheader)) |
| return Changed; |
| |
| // Don't remove loops for which we can't solve the trip count. |
| // They could be infinite, in which case we'd be changing program behavior. |
| const SCEV *S = SE.getMaxBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(S)) |
| return Changed; |
| |
| // Now that we know the removal is safe, remove the loop by changing the |
| // branch from the preheader to go to the single exit block. |
| BasicBlock *exitBlock = exitBlocks[0]; |
| |
| // Because we're deleting a large chunk of code at once, the sequence in which |
| // we remove things is very important to avoid invalidation issues. Don't |
| // mess with this unless you have good reason and know what you're doing. |
| |
| // Tell ScalarEvolution that the loop is deleted. Do this before |
| // deleting the loop so that ScalarEvolution can look at the loop |
| // to determine what it needs to clean up. |
| SE.forgetLoop(L); |
| |
| // Connect the preheader directly to the exit block. |
| TerminatorInst *TI = preheader->getTerminator(); |
| TI->replaceUsesOfWith(L->getHeader(), exitBlock); |
| |
| // Rewrite phis in the exit block to get their inputs from |
| // the preheader instead of the exiting block. |
| BasicBlock *exitingBlock = exitingBlocks[0]; |
| BasicBlock::iterator BI = exitBlock->begin(); |
| while (PHINode *P = dyn_cast<PHINode>(BI)) { |
| int j = P->getBasicBlockIndex(exitingBlock); |
| assert(j >= 0 && "Can't find exiting block in exit block's phi node!"); |
| P->setIncomingBlock(j, preheader); |
| for (unsigned i = 1; i < exitingBlocks.size(); ++i) |
| P->removeIncomingValue(exitingBlocks[i]); |
| ++BI; |
| } |
| |
| // Update the dominator tree and remove the instructions and blocks that will |
| // be deleted from the reference counting scheme. |
| SmallVector<DomTreeNode*, 8> ChildNodes; |
| for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); |
| LI != LE; ++LI) { |
| // Move all of the block's children to be children of the preheader, which |
| // allows us to remove the domtree entry for the block. |
| ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end()); |
| for (DomTreeNode *ChildNode : ChildNodes) { |
| DT.changeImmediateDominator(ChildNode, DT[preheader]); |
| } |
| |
| ChildNodes.clear(); |
| DT.eraseNode(*LI); |
| |
| // Remove the block from the reference counting scheme, so that we can |
| // delete it freely later. |
| (*LI)->dropAllReferences(); |
| } |
| |
| // Erase the instructions and the blocks without having to worry |
| // about ordering because we already dropped the references. |
| // NOTE: This iteration is safe because erasing the block does not remove its |
| // entry from the loop's block list. We do that in the next section. |
| for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); |
| LI != LE; ++LI) |
| (*LI)->eraseFromParent(); |
| |
| // Finally, the blocks from loopinfo. This has to happen late because |
| // otherwise our loop iterators won't work. |
| |
| SmallPtrSet<BasicBlock *, 8> blocks; |
| blocks.insert(L->block_begin(), L->block_end()); |
| for (BasicBlock *BB : blocks) |
| loopInfo.removeBlock(BB); |
| |
| // The last step is to update LoopInfo now that we've eliminated this loop. |
| loopInfo.markAsRemoved(L); |
| Changed = true; |
| |
| ++NumDeleted; |
| |
| return Changed; |
| } |
| |
| PreservedAnalyses LoopDeletionPass::run(Loop &L, AnalysisManager<Loop> &AM) { |
| auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); |
| Function *F = L.getHeader()->getParent(); |
| |
| auto &DT = *FAM.getCachedResult<DominatorTreeAnalysis>(*F); |
| auto &SE = *FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); |
| auto &LI = *FAM.getCachedResult<LoopAnalysis>(*F); |
| |
| bool Changed = runImpl(&L, DT, SE, LI); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| return getLoopPassPreservedAnalyses(); |
| } |
| |
| namespace { |
| class LoopDeletionLegacyPass : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| LoopDeletionLegacyPass() : LoopPass(ID) { |
| initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // Possibly eliminate loop L if it is dead. |
| bool runOnLoop(Loop *L, LPPassManager &) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| } |
| |
| char LoopDeletionLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", |
| "Delete dead loops", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", |
| "Delete dead loops", false, false) |
| |
| Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } |
| |
| bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) { |
| if (skipLoop(L)) |
| return false; |
| |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| |
| LoopDeletionPass Impl; |
| return Impl.runImpl(L, DT, SE, loopInfo); |
| } |