| //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements some loop unrolling utilities for loops with run-time |
| // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time |
| // trip counts. |
| // |
| // The functions in this file are used to generate extra code when the |
| // run-time trip count modulo the unroll factor is not 0. When this is the |
| // case, we need to generate code to execute these 'left over' iterations. |
| // |
| // The current strategy generates an if-then-else sequence prior to the |
| // unrolled loop to execute the 'left over' iterations before or after the |
| // unrolled loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-unroll" |
| |
| STATISTIC(NumRuntimeUnrolled, |
| "Number of loops unrolled with run-time trip counts"); |
| |
| /// Connect the unrolling prolog code to the original loop. |
| /// The unrolling prolog code contains code to execute the |
| /// 'extra' iterations if the run-time trip count modulo the |
| /// unroll count is non-zero. |
| /// |
| /// This function performs the following: |
| /// - Create PHI nodes at prolog end block to combine values |
| /// that exit the prolog code and jump around the prolog. |
| /// - Add a PHI operand to a PHI node at the loop exit block |
| /// for values that exit the prolog and go around the loop. |
| /// - Branch around the original loop if the trip count is less |
| /// than the unroll factor. |
| /// |
| static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, |
| BasicBlock *PrologExit, BasicBlock *PreHeader, |
| BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, |
| DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch && "Loop must have a latch"); |
| BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); |
| |
| // Create a PHI node for each outgoing value from the original loop |
| // (which means it is an outgoing value from the prolog code too). |
| // The new PHI node is inserted in the prolog end basic block. |
| // The new PHI node value is added as an operand of a PHI node in either |
| // the loop header or the loop exit block. |
| for (BasicBlock *Succ : successors(Latch)) { |
| for (Instruction &BBI : *Succ) { |
| PHINode *PN = dyn_cast<PHINode>(&BBI); |
| // Exit when we passed all PHI nodes. |
| if (!PN) |
| break; |
| // Add a new PHI node to the prolog end block and add the |
| // appropriate incoming values. |
| PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", |
| PrologExit->getFirstNonPHI()); |
| // Adding a value to the new PHI node from the original loop preheader. |
| // This is the value that skips all the prolog code. |
| if (L->contains(PN)) { |
| NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), |
| PreHeader); |
| } else { |
| NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); |
| } |
| |
| Value *V = PN->getIncomingValueForBlock(Latch); |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (L->contains(I)) { |
| V = VMap.lookup(I); |
| } |
| } |
| // Adding a value to the new PHI node from the last prolog block |
| // that was created. |
| NewPN->addIncoming(V, PrologLatch); |
| |
| // Update the existing PHI node operand with the value from the |
| // new PHI node. How this is done depends on if the existing |
| // PHI node is in the original loop block, or the exit block. |
| if (L->contains(PN)) { |
| PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); |
| } else { |
| PN->addIncoming(NewPN, PrologExit); |
| } |
| } |
| } |
| |
| // Create a branch around the original loop, which is taken if there are no |
| // iterations remaining to be executed after running the prologue. |
| Instruction *InsertPt = PrologExit->getTerminator(); |
| IRBuilder<> B(InsertPt); |
| |
| assert(Count != 0 && "nonsensical Count!"); |
| |
| // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) |
| // This means %xtraiter is (BECount + 1) and all of the iterations of this |
| // loop were executed by the prologue. Note that if BECount <u (Count - 1) |
| // then (BECount + 1) cannot unsigned-overflow. |
| Value *BrLoopExit = |
| B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); |
| BasicBlock *Exit = L->getUniqueExitBlock(); |
| assert(Exit && "Loop must have a single exit block only"); |
| // Split the exit to maintain loop canonicalization guarantees |
| SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); |
| SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, |
| PreserveLCSSA); |
| // Add the branch to the exit block (around the unrolled loop) |
| B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); |
| InsertPt->eraseFromParent(); |
| } |
| |
| /// Connect the unrolling epilog code to the original loop. |
| /// The unrolling epilog code contains code to execute the |
| /// 'extra' iterations if the run-time trip count modulo the |
| /// unroll count is non-zero. |
| /// |
| /// This function performs the following: |
| /// - Update PHI nodes at the unrolling loop exit and epilog loop exit |
| /// - Create PHI nodes at the unrolling loop exit to combine |
| /// values that exit the unrolling loop code and jump around it. |
| /// - Update PHI operands in the epilog loop by the new PHI nodes |
| /// - Branch around the epilog loop if extra iters (ModVal) is zero. |
| /// |
| static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, |
| BasicBlock *Exit, BasicBlock *PreHeader, |
| BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, |
| ValueToValueMapTy &VMap, DominatorTree *DT, |
| LoopInfo *LI, bool PreserveLCSSA) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| assert(Latch && "Loop must have a latch"); |
| BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); |
| |
| // Loop structure should be the following: |
| // |
| // PreHeader |
| // NewPreHeader |
| // Header |
| // ... |
| // Latch |
| // NewExit (PN) |
| // EpilogPreHeader |
| // EpilogHeader |
| // ... |
| // EpilogLatch |
| // Exit (EpilogPN) |
| |
| // Update PHI nodes at NewExit and Exit. |
| for (Instruction &BBI : *NewExit) { |
| PHINode *PN = dyn_cast<PHINode>(&BBI); |
| // Exit when we passed all PHI nodes. |
| if (!PN) |
| break; |
| // PN should be used in another PHI located in Exit block as |
| // Exit was split by SplitBlockPredecessors into Exit and NewExit |
| // Basicaly it should look like: |
| // NewExit: |
| // PN = PHI [I, Latch] |
| // ... |
| // Exit: |
| // EpilogPN = PHI [PN, EpilogPreHeader] |
| // |
| // There is EpilogPreHeader incoming block instead of NewExit as |
| // NewExit was spilt 1 more time to get EpilogPreHeader. |
| assert(PN->hasOneUse() && "The phi should have 1 use"); |
| PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); |
| assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); |
| |
| // Add incoming PreHeader from branch around the Loop |
| PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); |
| |
| Value *V = PN->getIncomingValueForBlock(Latch); |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I && L->contains(I)) |
| // If value comes from an instruction in the loop add VMap value. |
| V = VMap.lookup(I); |
| // For the instruction out of the loop, constant or undefined value |
| // insert value itself. |
| EpilogPN->addIncoming(V, EpilogLatch); |
| |
| assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && |
| "EpilogPN should have EpilogPreHeader incoming block"); |
| // Change EpilogPreHeader incoming block to NewExit. |
| EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), |
| NewExit); |
| // Now PHIs should look like: |
| // NewExit: |
| // PN = PHI [I, Latch], [undef, PreHeader] |
| // ... |
| // Exit: |
| // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] |
| } |
| |
| // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). |
| // Update corresponding PHI nodes in epilog loop. |
| for (BasicBlock *Succ : successors(Latch)) { |
| // Skip this as we already updated phis in exit blocks. |
| if (!L->contains(Succ)) |
| continue; |
| for (Instruction &BBI : *Succ) { |
| PHINode *PN = dyn_cast<PHINode>(&BBI); |
| // Exit when we passed all PHI nodes. |
| if (!PN) |
| break; |
| // Add new PHI nodes to the loop exit block and update epilog |
| // PHIs with the new PHI values. |
| PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", |
| NewExit->getFirstNonPHI()); |
| // Adding a value to the new PHI node from the unrolling loop preheader. |
| NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); |
| // Adding a value to the new PHI node from the unrolling loop latch. |
| NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); |
| |
| // Update the existing PHI node operand with the value from the new PHI |
| // node. Corresponding instruction in epilog loop should be PHI. |
| PHINode *VPN = cast<PHINode>(VMap[&BBI]); |
| VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); |
| } |
| } |
| |
| Instruction *InsertPt = NewExit->getTerminator(); |
| IRBuilder<> B(InsertPt); |
| Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); |
| assert(Exit && "Loop must have a single exit block only"); |
| // Split the exit to maintain loop canonicalization guarantees |
| SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); |
| SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, |
| PreserveLCSSA); |
| // Add the branch to the exit block (around the unrolling loop) |
| B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); |
| InsertPt->eraseFromParent(); |
| } |
| |
| /// Create a clone of the blocks in a loop and connect them together. |
| /// If CreateRemainderLoop is false, loop structure will not be cloned, |
| /// otherwise a new loop will be created including all cloned blocks, and the |
| /// iterator of it switches to count NewIter down to 0. |
| /// The cloned blocks should be inserted between InsertTop and InsertBot. |
| /// If loop structure is cloned InsertTop should be new preheader, InsertBot |
| /// new loop exit. |
| /// |
| static void CloneLoopBlocks(Loop *L, Value *NewIter, |
| const bool CreateRemainderLoop, |
| const bool UseEpilogRemainder, |
| BasicBlock *InsertTop, BasicBlock *InsertBot, |
| BasicBlock *Preheader, |
| std::vector<BasicBlock *> &NewBlocks, |
| LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, |
| LoopInfo *LI) { |
| StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| Function *F = Header->getParent(); |
| LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
| Loop *NewLoop = nullptr; |
| Loop *ParentLoop = L->getParentLoop(); |
| if (CreateRemainderLoop) { |
| NewLoop = new Loop(); |
| if (ParentLoop) |
| ParentLoop->addChildLoop(NewLoop); |
| else |
| LI->addTopLevelLoop(NewLoop); |
| } |
| |
| // For each block in the original loop, create a new copy, |
| // and update the value map with the newly created values. |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); |
| NewBlocks.push_back(NewBB); |
| |
| if (NewLoop) |
| NewLoop->addBasicBlockToLoop(NewBB, *LI); |
| else if (ParentLoop) |
| ParentLoop->addBasicBlockToLoop(NewBB, *LI); |
| |
| VMap[*BB] = NewBB; |
| if (Header == *BB) { |
| // For the first block, add a CFG connection to this newly |
| // created block. |
| InsertTop->getTerminator()->setSuccessor(0, NewBB); |
| } |
| |
| if (Latch == *BB) { |
| // For the last block, if CreateRemainderLoop is false, create a direct |
| // jump to InsertBot. If not, create a loop back to cloned head. |
| VMap.erase((*BB)->getTerminator()); |
| BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); |
| BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); |
| IRBuilder<> Builder(LatchBR); |
| if (!CreateRemainderLoop) { |
| Builder.CreateBr(InsertBot); |
| } else { |
| PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, |
| suffix + ".iter", |
| FirstLoopBB->getFirstNonPHI()); |
| Value *IdxSub = |
| Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), |
| NewIdx->getName() + ".sub"); |
| Value *IdxCmp = |
| Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); |
| Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); |
| NewIdx->addIncoming(NewIter, InsertTop); |
| NewIdx->addIncoming(IdxSub, NewBB); |
| } |
| LatchBR->eraseFromParent(); |
| } |
| } |
| |
| // Change the incoming values to the ones defined in the preheader or |
| // cloned loop. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *NewPHI = cast<PHINode>(VMap[&*I]); |
| if (!CreateRemainderLoop) { |
| if (UseEpilogRemainder) { |
| unsigned idx = NewPHI->getBasicBlockIndex(Preheader); |
| NewPHI->setIncomingBlock(idx, InsertTop); |
| NewPHI->removeIncomingValue(Latch, false); |
| } else { |
| VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); |
| cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); |
| } |
| } else { |
| unsigned idx = NewPHI->getBasicBlockIndex(Preheader); |
| NewPHI->setIncomingBlock(idx, InsertTop); |
| BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); |
| idx = NewPHI->getBasicBlockIndex(Latch); |
| Value *InVal = NewPHI->getIncomingValue(idx); |
| NewPHI->setIncomingBlock(idx, NewLatch); |
| if (Value *V = VMap.lookup(InVal)) |
| NewPHI->setIncomingValue(idx, V); |
| } |
| } |
| if (NewLoop) { |
| // Add unroll disable metadata to disable future unrolling for this loop. |
| SmallVector<Metadata *, 4> MDs; |
| // Reserve first location for self reference to the LoopID metadata node. |
| MDs.push_back(nullptr); |
| MDNode *LoopID = NewLoop->getLoopID(); |
| if (LoopID) { |
| // First remove any existing loop unrolling metadata. |
| for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { |
| bool IsUnrollMetadata = false; |
| MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
| if (MD) { |
| const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
| IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); |
| } |
| if (!IsUnrollMetadata) |
| MDs.push_back(LoopID->getOperand(i)); |
| } |
| } |
| |
| LLVMContext &Context = NewLoop->getHeader()->getContext(); |
| SmallVector<Metadata *, 1> DisableOperands; |
| DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); |
| MDNode *DisableNode = MDNode::get(Context, DisableOperands); |
| MDs.push_back(DisableNode); |
| |
| MDNode *NewLoopID = MDNode::get(Context, MDs); |
| // Set operand 0 to refer to the loop id itself. |
| NewLoopID->replaceOperandWith(0, NewLoopID); |
| NewLoop->setLoopID(NewLoopID); |
| } |
| } |
| |
| /// Insert code in the prolog/epilog code when unrolling a loop with a |
| /// run-time trip-count. |
| /// |
| /// This method assumes that the loop unroll factor is total number |
| /// of loop bodies in the loop after unrolling. (Some folks refer |
| /// to the unroll factor as the number of *extra* copies added). |
| /// We assume also that the loop unroll factor is a power-of-two. So, after |
| /// unrolling the loop, the number of loop bodies executed is 2, |
| /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch |
| /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for |
| /// the switch instruction is generated. |
| /// |
| /// ***Prolog case*** |
| /// extraiters = tripcount % loopfactor |
| /// if (extraiters == 0) jump Loop: |
| /// else jump Prol: |
| /// Prol: LoopBody; |
| /// extraiters -= 1 // Omitted if unroll factor is 2. |
| /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. |
| /// if (tripcount < loopfactor) jump End: |
| /// Loop: |
| /// ... |
| /// End: |
| /// |
| /// ***Epilog case*** |
| /// extraiters = tripcount % loopfactor |
| /// if (tripcount < loopfactor) jump LoopExit: |
| /// unroll_iters = tripcount - extraiters |
| /// Loop: LoopBody; (executes unroll_iter times); |
| /// unroll_iter -= 1 |
| /// if (unroll_iter != 0) jump Loop: |
| /// LoopExit: |
| /// if (extraiters == 0) jump EpilExit: |
| /// Epil: LoopBody; (executes extraiters times) |
| /// extraiters -= 1 // Omitted if unroll factor is 2. |
| /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. |
| /// EpilExit: |
| |
| bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, |
| bool AllowExpensiveTripCount, |
| bool UseEpilogRemainder, |
| LoopInfo *LI, ScalarEvolution *SE, |
| DominatorTree *DT, bool PreserveLCSSA) { |
| // for now, only unroll loops that contain a single exit |
| if (!L->getExitingBlock()) |
| return false; |
| |
| // Make sure the loop is in canonical form, and there is a single |
| // exit block only. |
| if (!L->isLoopSimplifyForm()) |
| return false; |
| BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop |
| if (!Exit) |
| return false; |
| |
| // Use Scalar Evolution to compute the trip count. This allows more loops to |
| // be unrolled than relying on induction var simplification. |
| if (!SE) |
| return false; |
| |
| // Only unroll loops with a computable trip count, and the trip count needs |
| // to be an int value (allowing a pointer type is a TODO item). |
| const SCEV *BECountSC = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BECountSC) || |
| !BECountSC->getType()->isIntegerTy()) |
| return false; |
| |
| unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); |
| |
| // Add 1 since the backedge count doesn't include the first loop iteration. |
| const SCEV *TripCountSC = |
| SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); |
| if (isa<SCEVCouldNotCompute>(TripCountSC)) |
| return false; |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); |
| const DataLayout &DL = Header->getModule()->getDataLayout(); |
| SCEVExpander Expander(*SE, DL, "loop-unroll"); |
| if (!AllowExpensiveTripCount && |
| Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) |
| return false; |
| |
| // This constraint lets us deal with an overflowing trip count easily; see the |
| // comment on ModVal below. |
| if (Log2_32(Count) > BEWidth) |
| return false; |
| |
| // If this loop is nested, then the loop unroller changes the code in the |
| // parent loop, so the Scalar Evolution pass needs to be run again. |
| if (Loop *ParentLoop = L->getParentLoop()) |
| SE->forgetLoop(ParentLoop); |
| |
| BasicBlock *Latch = L->getLoopLatch(); |
| |
| // Loop structure is the following: |
| // |
| // PreHeader |
| // Header |
| // ... |
| // Latch |
| // Exit |
| |
| BasicBlock *NewPreHeader; |
| BasicBlock *NewExit = nullptr; |
| BasicBlock *PrologExit = nullptr; |
| BasicBlock *EpilogPreHeader = nullptr; |
| BasicBlock *PrologPreHeader = nullptr; |
| |
| if (UseEpilogRemainder) { |
| // If epilog remainder |
| // Split PreHeader to insert a branch around loop for unrolling. |
| NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); |
| NewPreHeader->setName(PreHeader->getName() + ".new"); |
| // Split Exit to create phi nodes from branch above. |
| SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); |
| NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", |
| DT, LI, PreserveLCSSA); |
| // Split NewExit to insert epilog remainder loop. |
| EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); |
| EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); |
| } else { |
| // If prolog remainder |
| // Split the original preheader twice to insert prolog remainder loop |
| PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); |
| PrologPreHeader->setName(Header->getName() + ".prol.preheader"); |
| PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), |
| DT, LI); |
| PrologExit->setName(Header->getName() + ".prol.loopexit"); |
| // Split PrologExit to get NewPreHeader. |
| NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); |
| NewPreHeader->setName(PreHeader->getName() + ".new"); |
| } |
| // Loop structure should be the following: |
| // Epilog Prolog |
| // |
| // PreHeader PreHeader |
| // *NewPreHeader *PrologPreHeader |
| // Header *PrologExit |
| // ... *NewPreHeader |
| // Latch Header |
| // *NewExit ... |
| // *EpilogPreHeader Latch |
| // Exit Exit |
| |
| // Calculate conditions for branch around loop for unrolling |
| // in epilog case and around prolog remainder loop in prolog case. |
| // Compute the number of extra iterations required, which is: |
| // extra iterations = run-time trip count % loop unroll factor |
| PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); |
| Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), |
| PreHeaderBR); |
| Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), |
| PreHeaderBR); |
| IRBuilder<> B(PreHeaderBR); |
| Value *ModVal; |
| // Calculate ModVal = (BECount + 1) % Count. |
| // Note that TripCount is BECount + 1. |
| if (isPowerOf2_32(Count)) { |
| // When Count is power of 2 we don't BECount for epilog case, however we'll |
| // need it for a branch around unrolling loop for prolog case. |
| ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); |
| // 1. There are no iterations to be run in the prolog/epilog loop. |
| // OR |
| // 2. The addition computing TripCount overflowed. |
| // |
| // If (2) is true, we know that TripCount really is (1 << BEWidth) and so |
| // the number of iterations that remain to be run in the original loop is a |
| // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we |
| // explicitly check this above). |
| } else { |
| // As (BECount + 1) can potentially unsigned overflow we count |
| // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. |
| Value *ModValTmp = B.CreateURem(BECount, |
| ConstantInt::get(BECount->getType(), |
| Count)); |
| Value *ModValAdd = B.CreateAdd(ModValTmp, |
| ConstantInt::get(ModValTmp->getType(), 1)); |
| // At that point (BECount % Count) + 1 could be equal to Count. |
| // To handle this case we need to take mod by Count one more time. |
| ModVal = B.CreateURem(ModValAdd, |
| ConstantInt::get(BECount->getType(), Count), |
| "xtraiter"); |
| } |
| Value *BranchVal = |
| UseEpilogRemainder ? B.CreateICmpULT(BECount, |
| ConstantInt::get(BECount->getType(), |
| Count - 1)) : |
| B.CreateIsNotNull(ModVal, "lcmp.mod"); |
| BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; |
| BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; |
| // Branch to either remainder (extra iterations) loop or unrolling loop. |
| B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); |
| PreHeaderBR->eraseFromParent(); |
| Function *F = Header->getParent(); |
| // Get an ordered list of blocks in the loop to help with the ordering of the |
| // cloned blocks in the prolog/epilog code |
| LoopBlocksDFS LoopBlocks(L); |
| LoopBlocks.perform(LI); |
| |
| // |
| // For each extra loop iteration, create a copy of the loop's basic blocks |
| // and generate a condition that branches to the copy depending on the |
| // number of 'left over' iterations. |
| // |
| std::vector<BasicBlock *> NewBlocks; |
| ValueToValueMapTy VMap; |
| |
| // For unroll factor 2 remainder loop will have 1 iterations. |
| // Do not create 1 iteration loop. |
| bool CreateRemainderLoop = (Count != 2); |
| |
| // Clone all the basic blocks in the loop. If Count is 2, we don't clone |
| // the loop, otherwise we create a cloned loop to execute the extra |
| // iterations. This function adds the appropriate CFG connections. |
| BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit; |
| BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; |
| CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, |
| InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI); |
| |
| // Insert the cloned blocks into the function. |
| F->getBasicBlockList().splice(InsertBot->getIterator(), |
| F->getBasicBlockList(), |
| NewBlocks[0]->getIterator(), |
| F->end()); |
| |
| // Loop structure should be the following: |
| // Epilog Prolog |
| // |
| // PreHeader PreHeader |
| // NewPreHeader PrologPreHeader |
| // Header PrologHeader |
| // ... ... |
| // Latch PrologLatch |
| // NewExit PrologExit |
| // EpilogPreHeader NewPreHeader |
| // EpilogHeader Header |
| // ... ... |
| // EpilogLatch Latch |
| // Exit Exit |
| |
| // Rewrite the cloned instruction operands to use the values created when the |
| // clone is created. |
| for (BasicBlock *BB : NewBlocks) { |
| for (Instruction &I : *BB) { |
| RemapInstruction(&I, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| } |
| } |
| |
| if (UseEpilogRemainder) { |
| // Connect the epilog code to the original loop and update the |
| // PHI functions. |
| ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader, |
| EpilogPreHeader, NewPreHeader, VMap, DT, LI, |
| PreserveLCSSA); |
| |
| // Update counter in loop for unrolling. |
| // I should be multiply of Count. |
| IRBuilder<> B2(NewPreHeader->getTerminator()); |
| Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); |
| BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); |
| B2.SetInsertPoint(LatchBR); |
| PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", |
| Header->getFirstNonPHI()); |
| Value *IdxSub = |
| B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), |
| NewIdx->getName() + ".nsub"); |
| Value *IdxCmp; |
| if (LatchBR->getSuccessor(0) == Header) |
| IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); |
| else |
| IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); |
| NewIdx->addIncoming(TestVal, NewPreHeader); |
| NewIdx->addIncoming(IdxSub, Latch); |
| LatchBR->setCondition(IdxCmp); |
| } else { |
| // Connect the prolog code to the original loop and update the |
| // PHI functions. |
| ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, |
| VMap, DT, LI, PreserveLCSSA); |
| } |
| NumRuntimeUnrolled++; |
| return true; |
| } |