| /* |
| * This file is part of ltrace. |
| * Copyright (C) 2006,2010,2011,2012,2013 Petr Machata, Red Hat Inc. |
| * Copyright (C) 2010 Zachary T Welch, CodeSourcery |
| * Copyright (C) 2010 Joe Damato |
| * Copyright (C) 1997,1998,2001,2004,2007,2008,2009 Juan Cespedes |
| * Copyright (C) 2006 Olaf Hering, SUSE Linux GmbH |
| * Copyright (C) 2006 Eric Vaitl, Cisco Systems, Inc. |
| * Copyright (C) 2006 Paul Gilliam, IBM Corporation |
| * Copyright (C) 2006 Ian Wienand |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
| * 02110-1301 USA |
| */ |
| |
| #include "config.h" |
| |
| #include <assert.h> |
| #ifdef __linux__ |
| #include <endian.h> |
| #endif |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <gelf.h> |
| #include <inttypes.h> |
| #include <search.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <strings.h> |
| #include <unistd.h> |
| |
| #include "backend.h" |
| #include "filter.h" |
| #include "library.h" |
| #include "ltrace-elf.h" |
| #include "proc.h" |
| #include "debug.h" |
| #include "options.h" |
| |
| #ifndef ARCH_HAVE_LTELF_DATA |
| int |
| arch_elf_init(struct ltelf *lte, struct library *lib) |
| { |
| return 0; |
| } |
| |
| void |
| arch_elf_destroy(struct ltelf *lte) |
| { |
| } |
| #endif |
| |
| #ifndef OS_HAVE_ADD_PLT_ENTRY |
| enum plt_status |
| os_elf_add_plt_entry(struct process *proc, struct ltelf *lte, |
| const char *a_name, GElf_Rela *rela, size_t ndx, |
| struct library_symbol **ret) |
| { |
| return PLT_DEFAULT; |
| } |
| #endif |
| |
| #ifndef ARCH_HAVE_ADD_PLT_ENTRY |
| enum plt_status |
| arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte, |
| const char *a_name, GElf_Rela *rela, size_t ndx, |
| struct library_symbol **ret) |
| { |
| return PLT_DEFAULT; |
| } |
| #endif |
| |
| #ifndef OS_HAVE_ADD_FUNC_ENTRY |
| enum plt_status |
| os_elf_add_func_entry(struct process *proc, struct ltelf *lte, |
| const GElf_Sym *sym, |
| arch_addr_t addr, const char *name, |
| struct library_symbol **ret) |
| { |
| if (GELF_ST_TYPE(sym->st_info) != STT_FUNC) { |
| *ret = NULL; |
| return PLT_OK; |
| } else { |
| return PLT_DEFAULT; |
| } |
| } |
| #endif |
| |
| #ifndef ARCH_HAVE_ADD_FUNC_ENTRY |
| enum plt_status |
| arch_elf_add_func_entry(struct process *proc, struct ltelf *lte, |
| const GElf_Sym *sym, |
| arch_addr_t addr, const char *name, |
| struct library_symbol **ret) |
| { |
| return PLT_DEFAULT; |
| } |
| #endif |
| |
| Elf_Data * |
| elf_loaddata(Elf_Scn *scn, GElf_Shdr *shdr) |
| { |
| Elf_Data *data = elf_getdata(scn, NULL); |
| if (data == NULL || elf_getdata(scn, data) != NULL |
| || data->d_off || data->d_size != shdr->sh_size) |
| return NULL; |
| return data; |
| } |
| |
| static int |
| elf_get_section_if(struct ltelf *lte, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr, |
| int (*predicate)(Elf_Scn *, GElf_Shdr *, void *data), |
| void *data) |
| { |
| int i; |
| for (i = 1; i < lte->ehdr.e_shnum; ++i) { |
| Elf_Scn *scn; |
| GElf_Shdr shdr; |
| |
| scn = elf_getscn(lte->elf, i); |
| if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { |
| debug(1, "Couldn't read section or header."); |
| return -1; |
| } |
| if (predicate(scn, &shdr, data)) { |
| *tgt_sec = scn; |
| *tgt_shdr = shdr; |
| return 0; |
| } |
| } |
| |
| *tgt_sec = NULL; |
| return 0; |
| } |
| |
| static int |
| inside_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) |
| { |
| GElf_Addr addr = *(GElf_Addr *)data; |
| return addr >= shdr->sh_addr |
| && addr < shdr->sh_addr + shdr->sh_size; |
| } |
| |
| int |
| elf_get_section_covering(struct ltelf *lte, GElf_Addr addr, |
| Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) |
| { |
| return elf_get_section_if(lte, tgt_sec, tgt_shdr, |
| &inside_p, &addr); |
| } |
| |
| static int |
| type_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) |
| { |
| GElf_Word type = *(GElf_Word *)data; |
| return shdr->sh_type == type; |
| } |
| |
| int |
| elf_get_section_type(struct ltelf *lte, GElf_Word type, |
| Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) |
| { |
| return elf_get_section_if(lte, tgt_sec, tgt_shdr, |
| &type_p, &type); |
| } |
| |
| struct section_named_data { |
| struct ltelf *lte; |
| const char *name; |
| }; |
| |
| static int |
| name_p(Elf_Scn *scn, GElf_Shdr *shdr, void *d) |
| { |
| struct section_named_data *data = d; |
| const char *name = elf_strptr(data->lte->elf, |
| data->lte->ehdr.e_shstrndx, |
| shdr->sh_name); |
| return strcmp(name, data->name) == 0; |
| } |
| |
| int |
| elf_get_section_named(struct ltelf *lte, const char *name, |
| Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) |
| { |
| struct section_named_data data = { |
| .lte = lte, |
| .name = name, |
| }; |
| return elf_get_section_if(lte, tgt_sec, tgt_shdr, |
| &name_p, &data); |
| } |
| |
| static struct elf_each_symbol_t |
| each_symbol_in(Elf_Data *symtab, const char *strtab, size_t count, |
| unsigned i, |
| enum callback_status (*cb)(GElf_Sym *symbol, |
| const char *name, void *data), |
| void *data) |
| { |
| for (; i < count; ++i) { |
| GElf_Sym sym; |
| if (gelf_getsym(symtab, i, &sym) == NULL) |
| return (struct elf_each_symbol_t){ i, -2 }; |
| |
| switch (cb(&sym, strtab + sym.st_name, data)) { |
| case CBS_FAIL: |
| return (struct elf_each_symbol_t){ i, -1 }; |
| case CBS_STOP: |
| return (struct elf_each_symbol_t){ i + 1, 0 }; |
| case CBS_CONT: |
| break; |
| } |
| } |
| |
| return (struct elf_each_symbol_t){ 0, 0 }; |
| } |
| |
| /* N.B.: gelf_getsym takes integer argument. Since negative values |
| * are invalid as indices, we can use the extra bit to encode which |
| * symbol table we are looking into. ltrace currently doesn't handle |
| * more than two symbol tables anyway, nor does it handle the xindex |
| * stuff. */ |
| struct elf_each_symbol_t |
| elf_each_symbol(struct ltelf *lte, unsigned start_after, |
| enum callback_status (*cb)(GElf_Sym *symbol, |
| const char *name, void *data), |
| void *data) |
| { |
| unsigned index = start_after == 0 ? 0 : start_after >> 1; |
| |
| /* Go through static symbol table first. */ |
| if ((start_after & 0x1) == 0) { |
| struct elf_each_symbol_t st |
| = each_symbol_in(lte->symtab, lte->strtab, |
| lte->symtab_count, index, cb, data); |
| |
| /* If the iteration stopped prematurely, bail out. */ |
| if (st.restart != 0) |
| return ((struct elf_each_symbol_t) |
| { st.restart << 1, st.status }); |
| } |
| |
| struct elf_each_symbol_t st |
| = each_symbol_in(lte->dynsym, lte->dynstr, lte->dynsym_count, |
| index, cb, data); |
| if (st.restart != 0) |
| return ((struct elf_each_symbol_t) |
| { st.restart << 1 | 0x1, st.status }); |
| |
| return (struct elf_each_symbol_t){ 0, 0 }; |
| } |
| |
| int |
| elf_can_read_next(Elf_Data *data, GElf_Xword offset, GElf_Xword size) |
| { |
| assert(data != NULL); |
| if (data->d_size < size || offset > data->d_size - size) { |
| debug(1, "Not enough data to read %"PRId64"-byte value" |
| " at offset %"PRId64".", size, offset); |
| return 0; |
| } |
| return 1; |
| } |
| |
| #define DEF_READER(NAME, SIZE) \ |
| int \ |
| NAME(Elf_Data *data, GElf_Xword offset, uint##SIZE##_t *retp) \ |
| { \ |
| if (!elf_can_read_next(data, offset, SIZE / 8)) \ |
| return -1; \ |
| \ |
| if (data->d_buf == NULL) /* NODATA section */ { \ |
| *retp = 0; \ |
| return 0; \ |
| } \ |
| \ |
| union { \ |
| uint##SIZE##_t dst; \ |
| char buf[0]; \ |
| } u; \ |
| memcpy(u.buf, data->d_buf + offset, sizeof(u.dst)); \ |
| *retp = u.dst; \ |
| return 0; \ |
| } |
| |
| DEF_READER(elf_read_u8, 8) |
| DEF_READER(elf_read_u16, 16) |
| DEF_READER(elf_read_u32, 32) |
| DEF_READER(elf_read_u64, 64) |
| |
| #undef DEF_READER |
| |
| #define DEF_READER(NAME, SIZE) \ |
| int \ |
| NAME(Elf_Data *data, GElf_Xword *offset, uint##SIZE##_t *retp) \ |
| { \ |
| int rc = elf_read_u##SIZE(data, *offset, retp); \ |
| if (rc < 0) \ |
| return rc; \ |
| *offset += SIZE / 8; \ |
| return 0; \ |
| } |
| |
| DEF_READER(elf_read_next_u8, 8) |
| DEF_READER(elf_read_next_u16, 16) |
| DEF_READER(elf_read_next_u32, 32) |
| DEF_READER(elf_read_next_u64, 64) |
| |
| #undef DEF_READER |
| |
| int |
| elf_read_next_uleb128(Elf_Data *data, GElf_Xword *offset, uint64_t *retp) |
| { |
| uint64_t result = 0; |
| int shift = 0; |
| int size = 8 * sizeof result; |
| |
| while (1) { |
| uint8_t byte; |
| if (elf_read_next_u8(data, offset, &byte) < 0) |
| return -1; |
| |
| uint8_t payload = byte & 0x7f; |
| result |= (uint64_t)payload << shift; |
| shift += 7; |
| if (shift > size && byte != 0x1) |
| return -1; |
| if ((byte & 0x80) == 0) |
| break; |
| } |
| |
| if (retp != NULL) |
| *retp = result; |
| return 0; |
| } |
| |
| int |
| elf_read_uleb128(Elf_Data *data, GElf_Xword offset, uint64_t *retp) |
| { |
| return elf_read_next_uleb128(data, &offset, retp); |
| } |
| |
| int |
| ltelf_init(struct ltelf *lte, const char *filename) |
| { |
| memset(lte, 0, sizeof *lte); |
| lte->fd = open(filename, O_RDONLY); |
| if (lte->fd == -1) { |
| fprintf(stderr, "Can't open %s: %s\n", filename, |
| strerror(errno)); |
| return 1; |
| } |
| |
| elf_version(EV_CURRENT); |
| |
| #ifdef HAVE_ELF_C_READ_MMAP |
| lte->elf = elf_begin(lte->fd, ELF_C_READ_MMAP, NULL); |
| #else |
| lte->elf = elf_begin(lte->fd, ELF_C_READ, NULL); |
| #endif |
| |
| if (lte->elf == NULL || elf_kind(lte->elf) != ELF_K_ELF) { |
| fprintf(stderr, "\"%s\" is not an ELF file\n", filename); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (gelf_getehdr(lte->elf, <e->ehdr) == NULL) { |
| fprintf(stderr, "can't read ELF header of \"%s\": %s\n", |
| filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (lte->ehdr.e_type != ET_EXEC && lte->ehdr.e_type != ET_DYN) { |
| fprintf(stderr, "\"%s\" is neither an ELF executable" |
| " nor a shared library\n", filename); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (1 |
| #ifdef LT_ELF_MACHINE |
| && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS |
| || lte->ehdr.e_machine != LT_ELF_MACHINE) |
| #endif |
| #ifdef LT_ELF_MACHINE2 |
| && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS2 |
| || lte->ehdr.e_machine != LT_ELF_MACHINE2) |
| #endif |
| #ifdef LT_ELF_MACHINE3 |
| && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS3 |
| || lte->ehdr.e_machine != LT_ELF_MACHINE3) |
| #endif |
| ) { |
| fprintf(stderr, |
| "\"%s\" is ELF from incompatible architecture\n", |
| filename); |
| exit(EXIT_FAILURE); |
| } |
| |
| VECT_INIT(<e->plt_relocs, GElf_Rela); |
| |
| return 0; |
| } |
| |
| void |
| ltelf_destroy(struct ltelf *lte) |
| { |
| debug(DEBUG_FUNCTION, "close_elf()"); |
| elf_end(lte->elf); |
| close(lte->fd); |
| VECT_DESTROY(<e->plt_relocs, GElf_Rela, NULL, NULL); |
| } |
| |
| static void |
| read_symbol_table(struct ltelf *lte, const char *filename, |
| Elf_Scn *scn, GElf_Shdr *shdr, const char *name, |
| Elf_Data **datap, size_t *countp, const char **strsp) |
| { |
| *datap = elf_getdata(scn, NULL); |
| *countp = shdr->sh_size / shdr->sh_entsize; |
| if ((*datap == NULL || elf_getdata(scn, *datap) != NULL) |
| && options.static_filter != NULL) { |
| fprintf(stderr, "Couldn't get data of section" |
| " %s from \"%s\": %s\n", |
| name, filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| scn = elf_getscn(lte->elf, shdr->sh_link); |
| GElf_Shdr shdr2; |
| if (scn == NULL || gelf_getshdr(scn, &shdr2) == NULL) { |
| fprintf(stderr, "Couldn't get header of section" |
| " #%d from \"%s\": %s\n", |
| shdr->sh_link, filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| Elf_Data *data = elf_getdata(scn, NULL); |
| if (data == NULL || elf_getdata(scn, data) != NULL |
| || shdr2.sh_size != data->d_size || data->d_off) { |
| fprintf(stderr, "Couldn't get data of section" |
| " #%d from \"%s\": %s\n", |
| shdr2.sh_link, filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| *strsp = data->d_buf; |
| } |
| |
| static int |
| rel_to_rela(struct ltelf *lte, const GElf_Rel *rel, GElf_Rela *rela) |
| { |
| rela->r_offset = rel->r_offset; |
| rela->r_info = rel->r_info; |
| |
| Elf_Scn *sec; |
| GElf_Shdr shdr; |
| if (elf_get_section_covering(lte, rel->r_offset, &sec, &shdr) < 0 |
| || sec == NULL) |
| return -1; |
| |
| Elf_Data *data = elf_loaddata(sec, &shdr); |
| if (data == NULL) |
| return -1; |
| |
| GElf_Xword offset = rel->r_offset - shdr.sh_addr - data->d_off; |
| uint64_t value; |
| if (lte->ehdr.e_ident[EI_CLASS] == ELFCLASS32) { |
| uint32_t tmp; |
| if (elf_read_u32(data, offset, &tmp) < 0) |
| return -1; |
| value = tmp; |
| } else if (elf_read_u64(data, offset, &value) < 0) { |
| return -1; |
| } |
| |
| rela->r_addend = value; |
| return 0; |
| } |
| |
| int |
| elf_read_relocs(struct ltelf *lte, Elf_Scn *scn, GElf_Shdr *shdr, |
| struct vect *rela_vec) |
| { |
| if (vect_reserve_additional(rela_vec, lte->ehdr.e_shnum) < 0) |
| return -1; |
| |
| Elf_Data *relplt = elf_loaddata(scn, shdr); |
| if (relplt == NULL) { |
| fprintf(stderr, "Couldn't load .rel*.plt data.\n"); |
| return -1; |
| } |
| |
| if ((shdr->sh_size % shdr->sh_entsize) != 0) { |
| fprintf(stderr, ".rel*.plt size (%" PRIx64 "d) not a multiple " |
| "of its sh_entsize (%" PRIx64 "d).\n", |
| shdr->sh_size, shdr->sh_entsize); |
| return -1; |
| } |
| |
| GElf_Xword relplt_count = shdr->sh_size / shdr->sh_entsize; |
| GElf_Xword i; |
| for (i = 0; i < relplt_count; ++i) { |
| GElf_Rela rela; |
| if (relplt->d_type == ELF_T_REL) { |
| GElf_Rel rel; |
| if (gelf_getrel(relplt, i, &rel) == NULL |
| || rel_to_rela(lte, &rel, &rela) < 0) |
| return -1; |
| |
| } else if (gelf_getrela(relplt, i, &rela) == NULL) { |
| return -1; |
| } |
| |
| if (VECT_PUSHBACK(rela_vec, &rela) < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int |
| elf_load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep) |
| { |
| Elf_Scn *scn; |
| GElf_Shdr shdr; |
| if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0 |
| || scn == NULL) { |
| fail: |
| fprintf(stderr, "Couldn't get SHT_DYNAMIC: %s\n", |
| elf_errmsg(-1)); |
| return -1; |
| } |
| |
| Elf_Data *data = elf_loaddata(scn, &shdr); |
| if (data == NULL) |
| goto fail; |
| |
| size_t j; |
| for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { |
| GElf_Dyn dyn; |
| if (gelf_getdyn(data, j, &dyn) == NULL) |
| goto fail; |
| |
| if(dyn.d_tag == tag) { |
| *valuep = dyn.d_un.d_ptr; |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int |
| ltelf_read_elf(struct ltelf *lte, const char *filename) |
| { |
| int i; |
| GElf_Addr relplt_addr = 0; |
| GElf_Addr soname_offset = 0; |
| GElf_Xword relplt_size = 0; |
| |
| debug(DEBUG_FUNCTION, "ltelf_read_elf(filename=%s)", filename); |
| debug(1, "Reading ELF from %s...", filename); |
| |
| for (i = 1; i < lte->ehdr.e_shnum; ++i) { |
| Elf_Scn *scn; |
| GElf_Shdr shdr; |
| const char *name; |
| |
| scn = elf_getscn(lte->elf, i); |
| if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { |
| fprintf(stderr, "Couldn't get section #%d from" |
| " \"%s\": %s\n", i, filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| name = elf_strptr(lte->elf, lte->ehdr.e_shstrndx, shdr.sh_name); |
| if (name == NULL) { |
| fprintf(stderr, "Couldn't get name of section #%d from" |
| " \"%s\": %s\n", i, filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (shdr.sh_type == SHT_SYMTAB) { |
| read_symbol_table(lte, filename, |
| scn, &shdr, name, <e->symtab, |
| <e->symtab_count, <e->strtab); |
| |
| } else if (shdr.sh_type == SHT_DYNSYM) { |
| read_symbol_table(lte, filename, |
| scn, &shdr, name, <e->dynsym, |
| <e->dynsym_count, <e->dynstr); |
| |
| } else if (shdr.sh_type == SHT_DYNAMIC) { |
| Elf_Data *data; |
| size_t j; |
| |
| lte->dyn_addr = shdr.sh_addr + lte->bias; |
| lte->dyn_sz = shdr.sh_size; |
| |
| data = elf_getdata(scn, NULL); |
| if (data == NULL || elf_getdata(scn, data) != NULL) { |
| fprintf(stderr, "Couldn't get .dynamic data" |
| " from \"%s\": %s\n", |
| filename, strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| |
| for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { |
| GElf_Dyn dyn; |
| |
| if (gelf_getdyn(data, j, &dyn) == NULL) { |
| fprintf(stderr, "Couldn't get .dynamic" |
| " data from \"%s\": %s\n", |
| filename, strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| if (dyn.d_tag == DT_JMPREL) |
| relplt_addr = dyn.d_un.d_ptr; |
| else if (dyn.d_tag == DT_PLTRELSZ) |
| relplt_size = dyn.d_un.d_val; |
| else if (dyn.d_tag == DT_SONAME) |
| soname_offset = dyn.d_un.d_val; |
| } |
| } else if (shdr.sh_type == SHT_PROGBITS |
| || shdr.sh_type == SHT_NOBITS) { |
| if (strcmp(name, ".plt") == 0) { |
| lte->plt_addr = shdr.sh_addr; |
| lte->plt_size = shdr.sh_size; |
| lte->plt_data = elf_loaddata(scn, &shdr); |
| if (lte->plt_data == NULL) |
| fprintf(stderr, |
| "Can't load .plt data\n"); |
| lte->plt_flags = shdr.sh_flags; |
| } |
| #ifdef ARCH_SUPPORTS_OPD |
| else if (strcmp(name, ".opd") == 0) { |
| lte->opd_addr = (GElf_Addr *) (long) shdr.sh_addr; |
| lte->opd_size = shdr.sh_size; |
| lte->opd = elf_rawdata(scn, NULL); |
| } |
| #endif |
| } |
| } |
| |
| if (lte->dynsym == NULL || lte->dynstr == NULL) { |
| fprintf(stderr, "Couldn't find .dynsym or .dynstr in \"%s\"\n", |
| filename); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (!relplt_addr || !lte->plt_addr) { |
| debug(1, "%s has no PLT relocations", filename); |
| } else if (relplt_size == 0) { |
| debug(1, "%s has unknown PLT size", filename); |
| } else { |
| for (i = 1; i < lte->ehdr.e_shnum; ++i) { |
| Elf_Scn *scn; |
| GElf_Shdr shdr; |
| |
| scn = elf_getscn(lte->elf, i); |
| if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { |
| fprintf(stderr, "Couldn't get section header" |
| " from \"%s\": %s\n", |
| filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| if (shdr.sh_addr == relplt_addr |
| && shdr.sh_size == relplt_size) { |
| if (elf_read_relocs(lte, scn, &shdr, |
| <e->plt_relocs) < 0) { |
| fprintf(stderr, "Couldn't get .rel*.plt" |
| " data from \"%s\": %s\n", |
| filename, elf_errmsg(-1)); |
| exit(EXIT_FAILURE); |
| } |
| break; |
| } |
| } |
| |
| if (i == lte->ehdr.e_shnum) { |
| fprintf(stderr, |
| "Couldn't find .rel*.plt section in \"%s\"\n", |
| filename); |
| exit(EXIT_FAILURE); |
| } |
| } |
| debug(1, "%s %zd PLT relocations", filename, |
| vect_size(<e->plt_relocs)); |
| |
| if (soname_offset != 0) |
| lte->soname = lte->dynstr + soname_offset; |
| |
| return 0; |
| } |
| |
| #ifndef ARCH_HAVE_GET_SYMINFO |
| int |
| arch_get_sym_info(struct ltelf *lte, const char *filename, |
| size_t sym_index, GElf_Rela *rela, GElf_Sym *sym) |
| { |
| return gelf_getsym(lte->dynsym, |
| ELF64_R_SYM(rela->r_info), sym) != NULL ? 0 : -1; |
| } |
| #endif |
| |
| int |
| default_elf_add_plt_entry(struct process *proc, struct ltelf *lte, |
| const char *a_name, GElf_Rela *rela, size_t ndx, |
| struct library_symbol **ret) |
| { |
| char *name = strdup(a_name); |
| if (name == NULL) { |
| fail_message: |
| fprintf(stderr, "Couldn't create symbol for PLT entry: %s\n", |
| strerror(errno)); |
| fail: |
| free(name); |
| return -1; |
| } |
| |
| GElf_Addr addr = arch_plt_sym_val(lte, ndx, rela); |
| |
| struct library_symbol *libsym = malloc(sizeof(*libsym)); |
| if (libsym == NULL) |
| goto fail_message; |
| |
| /* XXX The double cast should be removed when |
| * arch_addr_t becomes integral type. */ |
| arch_addr_t taddr = (arch_addr_t) |
| (uintptr_t)(addr + lte->bias); |
| |
| if (library_symbol_init(libsym, taddr, name, 1, LS_TOPLT_EXEC) < 0) { |
| free(libsym); |
| goto fail; |
| } |
| |
| libsym->next = *ret; |
| *ret = libsym; |
| return 0; |
| } |
| |
| int |
| elf_add_plt_entry(struct process *proc, struct ltelf *lte, |
| const char *name, GElf_Rela *rela, size_t idx, |
| struct library_symbol **ret) |
| { |
| enum plt_status plts |
| = arch_elf_add_plt_entry(proc, lte, name, rela, idx, ret); |
| |
| if (plts == PLT_DEFAULT) |
| plts = os_elf_add_plt_entry(proc, lte, name, rela, idx, ret); |
| |
| switch (plts) { |
| case PLT_DEFAULT: |
| return default_elf_add_plt_entry(proc, lte, name, |
| rela, idx, ret); |
| case PLT_FAIL: |
| return -1; |
| case PLT_OK: |
| return 0; |
| } |
| |
| assert(! "Invalid return from X_elf_add_plt_entry!"); |
| abort(); |
| } |
| |
| static void |
| mark_chain_latent(struct library_symbol *libsym) |
| { |
| for (; libsym != NULL; libsym = libsym->next) { |
| debug(DEBUG_FUNCTION, "marking %s latent", libsym->name); |
| libsym->latent = 1; |
| } |
| } |
| |
| static void |
| filter_symbol_chain(struct filter *filter, |
| struct library_symbol **libsymp, struct library *lib) |
| { |
| assert(libsymp != NULL); |
| struct library_symbol **ptr = libsymp; |
| while (*ptr != NULL) { |
| if (filter_matches_symbol(filter, (*ptr)->name, lib)) { |
| ptr = &(*ptr)->next; |
| } else { |
| struct library_symbol *sym = *ptr; |
| *ptr = (*ptr)->next; |
| library_symbol_destroy(sym); |
| free(sym); |
| } |
| } |
| } |
| |
| static int |
| populate_plt(struct process *proc, const char *filename, |
| struct ltelf *lte, struct library *lib) |
| { |
| const bool latent_plts = options.export_filter != NULL; |
| const size_t count = vect_size(<e->plt_relocs); |
| |
| size_t i; |
| for (i = 0; i < count; ++i) { |
| GElf_Rela *rela = VECT_ELEMENT(<e->plt_relocs, GElf_Rela, i); |
| GElf_Sym sym; |
| |
| switch (arch_get_sym_info(lte, filename, i, rela, &sym)) { |
| default: |
| fprintf(stderr, |
| "Couldn't get relocation for symbol #%zd" |
| " from \"%s\": %s\n", |
| i, filename, elf_errmsg(-1)); |
| /* Fall through. */ |
| case 1: |
| continue; /* Skip this entry. */ |
| case 0: |
| break; |
| } |
| |
| char const *name = lte->dynstr + sym.st_name; |
| int matched = filter_matches_symbol(options.plt_filter, |
| name, lib); |
| |
| struct library_symbol *libsym = NULL; |
| if (elf_add_plt_entry(proc, lte, name, rela, i, &libsym) < 0) |
| return -1; |
| |
| /* If we didn't match the PLT entry, filter the chain |
| * to only include the matching symbols (but include |
| * all if we are adding latent symbols) to allow |
| * backends to override the PLT symbol's name. */ |
| |
| if (! matched && ! latent_plts) |
| filter_symbol_chain(options.plt_filter, &libsym, lib); |
| |
| if (libsym != NULL) { |
| /* If we are adding those symbols just for |
| * tracing exports, mark them all latent. */ |
| if (! matched && latent_plts) |
| mark_chain_latent(libsym); |
| library_add_symbol(lib, libsym); |
| } |
| } |
| return 0; |
| } |
| |
| static void |
| delete_symbol_chain(struct library_symbol *libsym) |
| { |
| while (libsym != NULL) { |
| struct library_symbol *tmp = libsym->next; |
| library_symbol_destroy(libsym); |
| free(libsym); |
| libsym = tmp; |
| } |
| } |
| |
| /* When -x rules result in request to trace several aliases, we only |
| * want to add such symbol once. The only way that those symbols |
| * differ in is their name, e.g. in glibc you have __GI___libc_free, |
| * __cfree, __free, __libc_free, cfree and free all defined on the |
| * same address. So instead we keep this unique symbol struct for |
| * each address, and replace name in libsym with a shorter variant if |
| * we find it. */ |
| struct unique_symbol { |
| arch_addr_t addr; |
| struct library_symbol *libsym; |
| }; |
| |
| static int |
| unique_symbol_cmp(const void *key, const void *val) |
| { |
| const struct unique_symbol *sym_key = key; |
| const struct unique_symbol *sym_val = val; |
| return sym_key->addr != sym_val->addr; |
| } |
| |
| static enum callback_status |
| symbol_with_address(struct library_symbol *sym, void *addrptr) |
| { |
| return sym->enter_addr == *(arch_addr_t *)addrptr |
| ? CBS_STOP : CBS_CONT; |
| } |
| |
| static int |
| populate_this_symtab(struct process *proc, const char *filename, |
| struct ltelf *lte, struct library *lib, |
| Elf_Data *symtab, const char *strtab, size_t count, |
| struct library_exported_name **names) |
| { |
| /* If a valid NAMES is passed, we pass in *NAMES a list of |
| * symbol names that this library exports. */ |
| if (names != NULL) |
| *names = NULL; |
| |
| /* Using sorted array would be arguably better, but this |
| * should be well enough for the number of symbols that we |
| * typically deal with. */ |
| size_t num_symbols = 0; |
| struct unique_symbol *symbols = malloc(sizeof(*symbols) * count); |
| if (symbols == NULL) { |
| fprintf(stderr, "couldn't insert symbols for -x: %s\n", |
| strerror(errno)); |
| return -1; |
| } |
| |
| GElf_Word secflags[lte->ehdr.e_shnum]; |
| size_t i; |
| for (i = 1; i < lte->ehdr.e_shnum; ++i) { |
| Elf_Scn *scn = elf_getscn(lte->elf, i); |
| GElf_Shdr shdr; |
| if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) |
| secflags[i] = 0; |
| else |
| secflags[i] = shdr.sh_flags; |
| } |
| |
| for (i = 0; i < count; ++i) { |
| GElf_Sym sym; |
| if (gelf_getsym(symtab, i, &sym) == NULL) { |
| fprintf(stderr, |
| "couldn't get symbol #%zd from %s: %s\n", |
| i, filename, elf_errmsg(-1)); |
| continue; |
| } |
| |
| if (sym.st_value == 0 || sym.st_shndx == STN_UNDEF |
| /* Also ignore any special values besides direct |
| * section references. */ |
| || sym.st_shndx >= lte->ehdr.e_shnum) |
| continue; |
| |
| /* Find symbol name and snip version. */ |
| const char *orig_name = strtab + sym.st_name; |
| const char *version = strchr(orig_name, '@'); |
| size_t len = version != NULL ? (assert(version > orig_name), |
| (size_t)(version - orig_name)) |
| : strlen(orig_name); |
| char name[len + 1]; |
| memcpy(name, orig_name, len); |
| name[len] = 0; |
| |
| /* If we are interested in exports, store this name. */ |
| if (names != NULL) { |
| struct library_exported_name *export |
| = malloc(sizeof *export); |
| char *name_copy = strdup(name); |
| |
| if (name_copy == NULL || export == NULL) { |
| free(name_copy); |
| free(export); |
| fprintf(stderr, "Couldn't store symbol %s. " |
| "Tracing may be incomplete.\n", name); |
| } else { |
| export->name = name_copy; |
| export->own_name = 1; |
| export->next = *names; |
| *names = export; |
| } |
| } |
| |
| /* If the symbol is not matched, skip it. We already |
| * stored it to export list above. */ |
| if (!filter_matches_symbol(options.static_filter, name, lib)) |
| continue; |
| |
| arch_addr_t addr = (arch_addr_t) |
| (uintptr_t)(sym.st_value + lte->bias); |
| arch_addr_t naddr; |
| |
| /* On arches that support OPD, the value of typical |
| * function symbol will be a pointer to .opd, but some |
| * will point directly to .text. We don't want to |
| * translate those. */ |
| if (secflags[sym.st_shndx] & SHF_EXECINSTR) { |
| naddr = addr; |
| } else if (arch_translate_address(lte, addr, &naddr) < 0) { |
| fprintf(stderr, |
| "couldn't translate address of %s@%s: %s\n", |
| name, lib->soname, strerror(errno)); |
| continue; |
| } |
| |
| char *full_name = strdup(name); |
| if (full_name == NULL) { |
| fprintf(stderr, "couldn't copy name of %s@%s: %s\n", |
| name, lib->soname, strerror(errno)); |
| continue; |
| } |
| |
| struct library_symbol *libsym = NULL; |
| enum plt_status plts |
| = arch_elf_add_func_entry(proc, lte, &sym, |
| naddr, full_name, &libsym); |
| if (plts == PLT_DEFAULT) |
| plts = os_elf_add_func_entry(proc, lte, &sym, |
| naddr, full_name, &libsym); |
| |
| switch (plts) { |
| case PLT_DEFAULT:; |
| /* Put the default symbol to the chain. */ |
| struct library_symbol *tmp = malloc(sizeof *tmp); |
| if (tmp == NULL |
| || library_symbol_init(tmp, naddr, full_name, 1, |
| LS_TOPLT_NONE) < 0) { |
| free(tmp); |
| |
| /* Either add the whole bunch, or none |
| * of it. Note that for PLT_FAIL we |
| * don't do this--it's the callee's |
| * job to clean up after itself before |
| * it bails out. */ |
| delete_symbol_chain(libsym); |
| libsym = NULL; |
| |
| case PLT_FAIL: |
| fprintf(stderr, "Couldn't add symbol %s@%s " |
| "for tracing.\n", name, lib->soname); |
| |
| break; |
| } |
| |
| full_name = NULL; |
| tmp->next = libsym; |
| libsym = tmp; |
| break; |
| |
| case PLT_OK: |
| break; |
| } |
| |
| free(full_name); |
| |
| struct library_symbol *tmp; |
| for (tmp = libsym; tmp != NULL; ) { |
| /* Look whether we already have a symbol for |
| * this address. If not, add this one. If |
| * yes, look if we should pick the new symbol |
| * name. */ |
| |
| struct unique_symbol key = { tmp->enter_addr, NULL }; |
| struct unique_symbol *unique |
| = lsearch(&key, symbols, &num_symbols, |
| sizeof *symbols, &unique_symbol_cmp); |
| |
| if (unique->libsym == NULL) { |
| unique->libsym = tmp; |
| unique->addr = tmp->enter_addr; |
| tmp = tmp->next; |
| unique->libsym->next = NULL; |
| } else { |
| if (strlen(tmp->name) |
| < strlen(unique->libsym->name)) { |
| library_symbol_set_name |
| (unique->libsym, tmp->name, 1); |
| tmp->name = NULL; |
| } |
| struct library_symbol *next = tmp->next; |
| library_symbol_destroy(tmp); |
| free(tmp); |
| tmp = next; |
| } |
| } |
| } |
| |
| /* Now we do the union of this set of unique symbols with |
| * what's already in the library. */ |
| for (i = 0; i < num_symbols; ++i) { |
| struct library_symbol *this_sym = symbols[i].libsym; |
| assert(this_sym != NULL); |
| struct library_symbol *other |
| = library_each_symbol(lib, NULL, symbol_with_address, |
| &this_sym->enter_addr); |
| if (other != NULL) { |
| library_symbol_destroy(this_sym); |
| free(this_sym); |
| symbols[i].libsym = NULL; |
| } |
| } |
| |
| for (i = 0; i < num_symbols; ++i) |
| if (symbols[i].libsym != NULL) |
| library_add_symbol(lib, symbols[i].libsym); |
| |
| free(symbols); |
| return 0; |
| } |
| |
| static int |
| populate_symtab(struct process *proc, const char *filename, |
| struct ltelf *lte, struct library *lib, |
| int symtabs, int exports) |
| { |
| int status; |
| if (symtabs && lte->symtab != NULL && lte->strtab != NULL |
| && (status = populate_this_symtab(proc, filename, lte, lib, |
| lte->symtab, lte->strtab, |
| lte->symtab_count, NULL)) < 0) |
| return status; |
| |
| /* Check whether we want to trace symbols implemented by this |
| * library (-l). */ |
| struct library_exported_name **names = NULL; |
| if (exports) { |
| debug(DEBUG_FUNCTION, "-l matches %s", lib->soname); |
| names = &lib->exported_names; |
| } |
| |
| return populate_this_symtab(proc, filename, lte, lib, |
| lte->dynsym, lte->dynstr, |
| lte->dynsym_count, names); |
| } |
| |
| static int |
| read_module(struct library *lib, struct process *proc, |
| const char *filename, GElf_Addr bias, int main) |
| { |
| struct ltelf lte; |
| if (ltelf_init(<e, filename) < 0) |
| return -1; |
| |
| /* XXX When we abstract ABI into a module, this should instead |
| * become something like |
| * |
| * proc->abi = arch_get_abi(lte.ehdr); |
| * |
| * The code in ltelf_init needs to be replaced by this logic. |
| * Be warned that libltrace.c calls ltelf_init as well to |
| * determine whether ABI is supported. This is to get |
| * reasonable error messages when trying to run 64-bit binary |
| * with 32-bit ltrace. It is desirable to preserve this. */ |
| proc->e_machine = lte.ehdr.e_machine; |
| proc->e_class = lte.ehdr.e_ident[EI_CLASS]; |
| get_arch_dep(proc); |
| |
| /* Find out the base address. For PIE main binaries we look |
| * into auxv, otherwise we scan phdrs. */ |
| if (main && lte.ehdr.e_type == ET_DYN) { |
| arch_addr_t entry; |
| if (process_get_entry(proc, &entry, NULL) < 0) { |
| fprintf(stderr, "Couldn't find entry of PIE %s\n", |
| filename); |
| fail: |
| ltelf_destroy(<e); |
| return -1; |
| } |
| /* XXX The double cast should be removed when |
| * arch_addr_t becomes integral type. */ |
| lte.entry_addr = (GElf_Addr)(uintptr_t)entry; |
| lte.bias = (GElf_Addr)(uintptr_t)entry - lte.ehdr.e_entry; |
| |
| } else { |
| GElf_Phdr phdr; |
| size_t i; |
| for (i = 0; gelf_getphdr (lte.elf, i, &phdr) != NULL; ++i) { |
| if (phdr.p_type == PT_LOAD) { |
| lte.base_addr = phdr.p_vaddr + bias; |
| break; |
| } |
| } |
| |
| lte.bias = bias; |
| lte.entry_addr = lte.ehdr.e_entry + lte.bias; |
| |
| if (lte.base_addr == 0) { |
| fprintf(stderr, |
| "Couldn't determine base address of %s\n", |
| filename); |
| goto fail; |
| } |
| } |
| |
| if (ltelf_read_elf(<e, filename) < 0) |
| goto fail; |
| |
| if (arch_elf_init(<e, lib) < 0) { |
| fprintf(stderr, "Backend initialization failed.\n"); |
| goto fail; |
| } |
| |
| if (lib == NULL) |
| goto fail; |
| |
| /* Note that we set soname and pathname as soon as they are |
| * allocated, so in case of further errors, this get released |
| * when LIB is released, which should happen in the caller |
| * when we return error. */ |
| |
| if (lib->pathname == NULL) { |
| char *pathname = strdup(filename); |
| if (pathname == NULL) |
| goto fail; |
| library_set_pathname(lib, pathname, 1); |
| } |
| |
| if (lte.soname != NULL) { |
| char *soname = strdup(lte.soname); |
| if (soname == NULL) |
| goto fail; |
| library_set_soname(lib, soname, 1); |
| } else { |
| const char *soname = rindex(lib->pathname, '/'); |
| if (soname != NULL) |
| soname += 1; |
| else |
| soname = lib->pathname; |
| library_set_soname(lib, soname, 0); |
| } |
| |
| /* XXX The double cast should be removed when |
| * arch_addr_t becomes integral type. */ |
| arch_addr_t entry = (arch_addr_t)(uintptr_t)lte.entry_addr; |
| if (arch_translate_address(<e, entry, &entry) < 0) |
| goto fail; |
| |
| /* XXX The double cast should be removed when |
| * arch_addr_t becomes integral type. */ |
| lib->base = (arch_addr_t)(uintptr_t)lte.base_addr; |
| lib->entry = entry; |
| /* XXX The double cast should be removed when |
| * arch_addr_t becomes integral type. */ |
| lib->dyn_addr = (arch_addr_t)(uintptr_t)lte.dyn_addr; |
| |
| /* There are two reasons that we need to inspect symbol tables |
| * or populate PLT entries. Either the user requested |
| * corresponding tracing features (respectively -x and -e), or |
| * they requested tracing exported symbols (-l). |
| * |
| * In the latter case we need to keep even those PLT slots |
| * that are not requested by -e (but we keep them latent). We |
| * also need to inspect .dynsym to find what exports this |
| * library provide, to turn on existing latent PLT |
| * entries. */ |
| |
| int plts = filter_matches_library(options.plt_filter, lib); |
| if ((plts || options.export_filter != NULL) |
| && populate_plt(proc, filename, <e, lib) < 0) |
| goto fail; |
| |
| int exports = filter_matches_library(options.export_filter, lib); |
| int symtabs = filter_matches_library(options.static_filter, lib); |
| if ((symtabs || exports) |
| && populate_symtab(proc, filename, <e, lib, |
| symtabs, exports) < 0) |
| goto fail; |
| |
| arch_elf_destroy(<e); |
| ltelf_destroy(<e); |
| return 0; |
| } |
| |
| int |
| ltelf_read_library(struct library *lib, struct process *proc, |
| const char *filename, GElf_Addr bias) |
| { |
| return read_module(lib, proc, filename, bias, 0); |
| } |
| |
| |
| struct library * |
| ltelf_read_main_binary(struct process *proc, const char *path) |
| { |
| struct library *lib = malloc(sizeof(*lib)); |
| if (lib == NULL || library_init(lib, LT_LIBTYPE_MAIN) < 0) { |
| free(lib); |
| return NULL; |
| } |
| library_set_pathname(lib, path, 0); |
| |
| /* There is a race between running the process and reading its |
| * binary for internal consumption. So open the binary from |
| * the /proc filesystem. XXX Note that there is similar race |
| * for libraries, but there we don't have a nice answer like |
| * that. Presumably we could read the DSOs from the process |
| * memory image, but that's not currently done. */ |
| char *fname = pid2name(proc->pid); |
| if (fname == NULL |
| || read_module(lib, proc, fname, 0, 1) < 0) { |
| library_destroy(lib); |
| free(lib); |
| lib = NULL; |
| } |
| |
| free(fname); |
| return lib; |
| } |