| /* |
| ** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $ |
| ** Code generator for Lua |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lcode_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| |
| #include <math.h> |
| #include <stdlib.h> |
| |
| #include "lua.h" |
| |
| #include "lcode.h" |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lgc.h" |
| #include "llex.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lopcodes.h" |
| #include "lparser.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "lvm.h" |
| |
| |
| /* Maximum number of registers in a Lua function (must fit in 8 bits) */ |
| #define MAXREGS 255 |
| |
| |
| #define hasjumps(e) ((e)->t != (e)->f) |
| |
| |
| /* |
| ** If expression is a numeric constant, fills 'v' with its value |
| ** and returns 1. Otherwise, returns 0. |
| */ |
| static int tonumeral(const expdesc *e, TValue *v) { |
| if (hasjumps(e)) |
| return 0; /* not a numeral */ |
| switch (e->k) { |
| case VKINT: |
| if (v) setivalue(v, e->u.ival); |
| return 1; |
| case VKFLT: |
| if (v) setfltvalue(v, e->u.nval); |
| return 1; |
| default: return 0; |
| } |
| } |
| |
| |
| /* |
| ** Create a OP_LOADNIL instruction, but try to optimize: if the previous |
| ** instruction is also OP_LOADNIL and ranges are compatible, adjust |
| ** range of previous instruction instead of emitting a new one. (For |
| ** instance, 'local a; local b' will generate a single opcode.) |
| */ |
| void luaK_nil (FuncState *fs, int from, int n) { |
| Instruction *previous; |
| int l = from + n - 1; /* last register to set nil */ |
| if (fs->pc > fs->lasttarget) { /* no jumps to current position? */ |
| previous = &fs->f->code[fs->pc-1]; |
| if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ |
| int pfrom = GETARG_A(*previous); /* get previous range */ |
| int pl = pfrom + GETARG_B(*previous); |
| if ((pfrom <= from && from <= pl + 1) || |
| (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ |
| if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ |
| if (pl > l) l = pl; /* l = max(l, pl) */ |
| SETARG_A(*previous, from); |
| SETARG_B(*previous, l - from); |
| return; |
| } |
| } /* else go through */ |
| } |
| luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ |
| } |
| |
| |
| /* |
| ** Gets the destination address of a jump instruction. Used to traverse |
| ** a list of jumps. |
| */ |
| static int getjump (FuncState *fs, int pc) { |
| int offset = GETARG_sBx(fs->f->code[pc]); |
| if (offset == NO_JUMP) /* point to itself represents end of list */ |
| return NO_JUMP; /* end of list */ |
| else |
| return (pc+1)+offset; /* turn offset into absolute position */ |
| } |
| |
| |
| /* |
| ** Fix jump instruction at position 'pc' to jump to 'dest'. |
| ** (Jump addresses are relative in Lua) |
| */ |
| static void fixjump (FuncState *fs, int pc, int dest) { |
| Instruction *jmp = &fs->f->code[pc]; |
| int offset = dest - (pc + 1); |
| lua_assert(dest != NO_JUMP); |
| if (abs(offset) > MAXARG_sBx) |
| luaX_syntaxerror(fs->ls, "control structure too long"); |
| SETARG_sBx(*jmp, offset); |
| } |
| |
| |
| /* |
| ** Concatenate jump-list 'l2' into jump-list 'l1' |
| */ |
| void luaK_concat (FuncState *fs, int *l1, int l2) { |
| if (l2 == NO_JUMP) return; /* nothing to concatenate? */ |
| else if (*l1 == NO_JUMP) /* no original list? */ |
| *l1 = l2; /* 'l1' points to 'l2' */ |
| else { |
| int list = *l1; |
| int next; |
| while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ |
| list = next; |
| fixjump(fs, list, l2); /* last element links to 'l2' */ |
| } |
| } |
| |
| |
| /* |
| ** Create a jump instruction and return its position, so its destination |
| ** can be fixed later (with 'fixjump'). If there are jumps to |
| ** this position (kept in 'jpc'), link them all together so that |
| ** 'patchlistaux' will fix all them directly to the final destination. |
| */ |
| int luaK_jump (FuncState *fs) { |
| int jpc = fs->jpc; /* save list of jumps to here */ |
| int j; |
| fs->jpc = NO_JUMP; /* no more jumps to here */ |
| j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP); |
| luaK_concat(fs, &j, jpc); /* keep them on hold */ |
| return j; |
| } |
| |
| |
| /* |
| ** Code a 'return' instruction |
| */ |
| void luaK_ret (FuncState *fs, int first, int nret) { |
| luaK_codeABC(fs, OP_RETURN, first, nret+1, 0); |
| } |
| |
| |
| /* |
| ** Code a "conditional jump", that is, a test or comparison opcode |
| ** followed by a jump. Return jump position. |
| */ |
| static int condjump (FuncState *fs, OpCode op, int A, int B, int C) { |
| luaK_codeABC(fs, op, A, B, C); |
| return luaK_jump(fs); |
| } |
| |
| |
| /* |
| ** returns current 'pc' and marks it as a jump target (to avoid wrong |
| ** optimizations with consecutive instructions not in the same basic block). |
| */ |
| int luaK_getlabel (FuncState *fs) { |
| fs->lasttarget = fs->pc; |
| return fs->pc; |
| } |
| |
| |
| /* |
| ** Returns the position of the instruction "controlling" a given |
| ** jump (that is, its condition), or the jump itself if it is |
| ** unconditional. |
| */ |
| static Instruction *getjumpcontrol (FuncState *fs, int pc) { |
| Instruction *pi = &fs->f->code[pc]; |
| if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) |
| return pi-1; |
| else |
| return pi; |
| } |
| |
| |
| /* |
| ** Patch destination register for a TESTSET instruction. |
| ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). |
| ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination |
| ** register. Otherwise, change instruction to a simple 'TEST' (produces |
| ** no register value) |
| */ |
| static int patchtestreg (FuncState *fs, int node, int reg) { |
| Instruction *i = getjumpcontrol(fs, node); |
| if (GET_OPCODE(*i) != OP_TESTSET) |
| return 0; /* cannot patch other instructions */ |
| if (reg != NO_REG && reg != GETARG_B(*i)) |
| SETARG_A(*i, reg); |
| else { |
| /* no register to put value or register already has the value; |
| change instruction to simple test */ |
| *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i)); |
| } |
| return 1; |
| } |
| |
| |
| /* |
| ** Traverse a list of tests ensuring no one produces a value |
| */ |
| static void removevalues (FuncState *fs, int list) { |
| for (; list != NO_JUMP; list = getjump(fs, list)) |
| patchtestreg(fs, list, NO_REG); |
| } |
| |
| |
| /* |
| ** Traverse a list of tests, patching their destination address and |
| ** registers: tests producing values jump to 'vtarget' (and put their |
| ** values in 'reg'), other tests jump to 'dtarget'. |
| */ |
| static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, |
| int dtarget) { |
| while (list != NO_JUMP) { |
| int next = getjump(fs, list); |
| if (patchtestreg(fs, list, reg)) |
| fixjump(fs, list, vtarget); |
| else |
| fixjump(fs, list, dtarget); /* jump to default target */ |
| list = next; |
| } |
| } |
| |
| |
| /* |
| ** Ensure all pending jumps to current position are fixed (jumping |
| ** to current position with no values) and reset list of pending |
| ** jumps |
| */ |
| static void dischargejpc (FuncState *fs) { |
| patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc); |
| fs->jpc = NO_JUMP; |
| } |
| |
| |
| /* |
| ** Add elements in 'list' to list of pending jumps to "here" |
| ** (current position) |
| */ |
| void luaK_patchtohere (FuncState *fs, int list) { |
| luaK_getlabel(fs); /* mark "here" as a jump target */ |
| luaK_concat(fs, &fs->jpc, list); |
| } |
| |
| |
| /* |
| ** Path all jumps in 'list' to jump to 'target'. |
| ** (The assert means that we cannot fix a jump to a forward address |
| ** because we only know addresses once code is generated.) |
| */ |
| void luaK_patchlist (FuncState *fs, int list, int target) { |
| if (target == fs->pc) /* 'target' is current position? */ |
| luaK_patchtohere(fs, list); /* add list to pending jumps */ |
| else { |
| lua_assert(target < fs->pc); |
| patchlistaux(fs, list, target, NO_REG, target); |
| } |
| } |
| |
| |
| /* |
| ** Path all jumps in 'list' to close upvalues up to given 'level' |
| ** (The assertion checks that jumps either were closing nothing |
| ** or were closing higher levels, from inner blocks.) |
| */ |
| void luaK_patchclose (FuncState *fs, int list, int level) { |
| level++; /* argument is +1 to reserve 0 as non-op */ |
| for (; list != NO_JUMP; list = getjump(fs, list)) { |
| lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP && |
| (GETARG_A(fs->f->code[list]) == 0 || |
| GETARG_A(fs->f->code[list]) >= level)); |
| SETARG_A(fs->f->code[list], level); |
| } |
| } |
| |
| |
| /* |
| ** Emit instruction 'i', checking for array sizes and saving also its |
| ** line information. Return 'i' position. |
| */ |
| static int luaK_code (FuncState *fs, Instruction i) { |
| Proto *f = fs->f; |
| dischargejpc(fs); /* 'pc' will change */ |
| /* put new instruction in code array */ |
| luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, |
| MAX_INT, "opcodes"); |
| f->code[fs->pc] = i; |
| /* save corresponding line information */ |
| luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int, |
| MAX_INT, "opcodes"); |
| f->lineinfo[fs->pc] = fs->ls->lastline; |
| return fs->pc++; |
| } |
| |
| |
| /* |
| ** Format and emit an 'iABC' instruction. (Assertions check consistency |
| ** of parameters versus opcode.) |
| */ |
| int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { |
| lua_assert(getOpMode(o) == iABC); |
| lua_assert(getBMode(o) != OpArgN || b == 0); |
| lua_assert(getCMode(o) != OpArgN || c == 0); |
| lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C); |
| return luaK_code(fs, CREATE_ABC(o, a, b, c)); |
| } |
| |
| |
| /* |
| ** Format and emit an 'iABx' instruction. |
| */ |
| int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { |
| lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx); |
| lua_assert(getCMode(o) == OpArgN); |
| lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); |
| return luaK_code(fs, CREATE_ABx(o, a, bc)); |
| } |
| |
| |
| /* |
| ** Emit an "extra argument" instruction (format 'iAx') |
| */ |
| static int codeextraarg (FuncState *fs, int a) { |
| lua_assert(a <= MAXARG_Ax); |
| return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); |
| } |
| |
| |
| /* |
| ** Emit a "load constant" instruction, using either 'OP_LOADK' |
| ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' |
| ** instruction with "extra argument". |
| */ |
| int luaK_codek (FuncState *fs, int reg, int k) { |
| if (k <= MAXARG_Bx) |
| return luaK_codeABx(fs, OP_LOADK, reg, k); |
| else { |
| int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); |
| codeextraarg(fs, k); |
| return p; |
| } |
| } |
| |
| |
| /* |
| ** Check register-stack level, keeping track of its maximum size |
| ** in field 'maxstacksize' |
| */ |
| void luaK_checkstack (FuncState *fs, int n) { |
| int newstack = fs->freereg + n; |
| if (newstack > fs->f->maxstacksize) { |
| if (newstack >= MAXREGS) |
| luaX_syntaxerror(fs->ls, |
| "function or expression needs too many registers"); |
| fs->f->maxstacksize = cast_byte(newstack); |
| } |
| } |
| |
| |
| /* |
| ** Reserve 'n' registers in register stack |
| */ |
| void luaK_reserveregs (FuncState *fs, int n) { |
| luaK_checkstack(fs, n); |
| fs->freereg += n; |
| } |
| |
| |
| /* |
| ** Free register 'reg', if it is neither a constant index nor |
| ** a local variable. |
| ) |
| */ |
| static void freereg (FuncState *fs, int reg) { |
| if (!ISK(reg) && reg >= fs->nactvar) { |
| fs->freereg--; |
| lua_assert(reg == fs->freereg); |
| } |
| } |
| |
| |
| /* |
| ** Free register used by expression 'e' (if any) |
| */ |
| static void freeexp (FuncState *fs, expdesc *e) { |
| if (e->k == VNONRELOC) |
| freereg(fs, e->u.info); |
| } |
| |
| |
| /* |
| ** Free registers used by expressions 'e1' and 'e2' (if any) in proper |
| ** order. |
| */ |
| static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { |
| int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; |
| int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; |
| if (r1 > r2) { |
| freereg(fs, r1); |
| freereg(fs, r2); |
| } |
| else { |
| freereg(fs, r2); |
| freereg(fs, r1); |
| } |
| } |
| |
| |
| /* |
| ** Add constant 'v' to prototype's list of constants (field 'k'). |
| ** Use scanner's table to cache position of constants in constant list |
| ** and try to reuse constants. Because some values should not be used |
| ** as keys (nil cannot be a key, integer keys can collapse with float |
| ** keys), the caller must provide a useful 'key' for indexing the cache. |
| */ |
| static int addk (FuncState *fs, TValue *key, TValue *v) { |
| lua_State *L = fs->ls->L; |
| Proto *f = fs->f; |
| TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */ |
| int k, oldsize; |
| if (ttisinteger(idx)) { /* is there an index there? */ |
| k = cast_int(ivalue(idx)); |
| /* correct value? (warning: must distinguish floats from integers!) */ |
| if (k < fs->nk && ttype(&f->k[k]) == ttype(v) && |
| luaV_rawequalobj(&f->k[k], v)) |
| return k; /* reuse index */ |
| } |
| /* constant not found; create a new entry */ |
| oldsize = f->sizek; |
| k = fs->nk; |
| /* numerical value does not need GC barrier; |
| table has no metatable, so it does not need to invalidate cache */ |
| setivalue(idx, k); |
| luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); |
| while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); |
| setobj(L, &f->k[k], v); |
| fs->nk++; |
| luaC_barrier(L, f, v); |
| return k; |
| } |
| |
| |
| /* |
| ** Add a string to list of constants and return its index. |
| */ |
| int luaK_stringK (FuncState *fs, TString *s) { |
| TValue o; |
| setsvalue(fs->ls->L, &o, s); |
| return addk(fs, &o, &o); /* use string itself as key */ |
| } |
| |
| |
| /* |
| ** Add an integer to list of constants and return its index. |
| ** Integers use userdata as keys to avoid collision with floats with |
| ** same value; conversion to 'void*' is used only for hashing, so there |
| ** are no "precision" problems. |
| */ |
| int luaK_intK (FuncState *fs, lua_Integer n) { |
| TValue k, o; |
| setpvalue(&k, cast(void*, cast(size_t, n))); |
| setivalue(&o, n); |
| return addk(fs, &k, &o); |
| } |
| |
| /* |
| ** Add a float to list of constants and return its index. |
| */ |
| static int luaK_numberK (FuncState *fs, lua_Number r) { |
| TValue o; |
| setfltvalue(&o, r); |
| return addk(fs, &o, &o); /* use number itself as key */ |
| } |
| |
| |
| /* |
| ** Add a boolean to list of constants and return its index. |
| */ |
| static int boolK (FuncState *fs, int b) { |
| TValue o; |
| setbvalue(&o, b); |
| return addk(fs, &o, &o); /* use boolean itself as key */ |
| } |
| |
| |
| /* |
| ** Add nil to list of constants and return its index. |
| */ |
| static int nilK (FuncState *fs) { |
| TValue k, v; |
| setnilvalue(&v); |
| /* cannot use nil as key; instead use table itself to represent nil */ |
| sethvalue(fs->ls->L, &k, fs->ls->h); |
| return addk(fs, &k, &v); |
| } |
| |
| |
| /* |
| ** Fix an expression to return the number of results 'nresults'. |
| ** Either 'e' is a multi-ret expression (function call or vararg) |
| ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that). |
| */ |
| void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { |
| if (e->k == VCALL) { /* expression is an open function call? */ |
| SETARG_C(getinstruction(fs, e), nresults + 1); |
| } |
| else if (e->k == VVARARG) { |
| Instruction *pc = &getinstruction(fs, e); |
| SETARG_B(*pc, nresults + 1); |
| SETARG_A(*pc, fs->freereg); |
| luaK_reserveregs(fs, 1); |
| } |
| else lua_assert(nresults == LUA_MULTRET); |
| } |
| |
| |
| /* |
| ** Fix an expression to return one result. |
| ** If expression is not a multi-ret expression (function call or |
| ** vararg), it already returns one result, so nothing needs to be done. |
| ** Function calls become VNONRELOC expressions (as its result comes |
| ** fixed in the base register of the call), while vararg expressions |
| ** become VRELOCABLE (as OP_VARARG puts its results where it wants). |
| ** (Calls are created returning one result, so that does not need |
| ** to be fixed.) |
| */ |
| void luaK_setoneret (FuncState *fs, expdesc *e) { |
| if (e->k == VCALL) { /* expression is an open function call? */ |
| /* already returns 1 value */ |
| lua_assert(GETARG_C(getinstruction(fs, e)) == 2); |
| e->k = VNONRELOC; /* result has fixed position */ |
| e->u.info = GETARG_A(getinstruction(fs, e)); |
| } |
| else if (e->k == VVARARG) { |
| SETARG_B(getinstruction(fs, e), 2); |
| e->k = VRELOCABLE; /* can relocate its simple result */ |
| } |
| } |
| |
| |
| /* |
| ** Ensure that expression 'e' is not a variable. |
| */ |
| void luaK_dischargevars (FuncState *fs, expdesc *e) { |
| switch (e->k) { |
| case VLOCAL: { /* already in a register */ |
| e->k = VNONRELOC; /* becomes a non-relocatable value */ |
| break; |
| } |
| case VUPVAL: { /* move value to some (pending) register */ |
| e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); |
| e->k = VRELOCABLE; |
| break; |
| } |
| case VINDEXED: { |
| OpCode op; |
| freereg(fs, e->u.ind.idx); |
| if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */ |
| freereg(fs, e->u.ind.t); |
| op = OP_GETTABLE; |
| } |
| else { |
| lua_assert(e->u.ind.vt == VUPVAL); |
| op = OP_GETTABUP; /* 't' is in an upvalue */ |
| } |
| e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx); |
| e->k = VRELOCABLE; |
| break; |
| } |
| case VVARARG: case VCALL: { |
| luaK_setoneret(fs, e); |
| break; |
| } |
| default: break; /* there is one value available (somewhere) */ |
| } |
| } |
| |
| |
| /* |
| ** Ensures expression value is in register 'reg' (and therefore |
| ** 'e' will become a non-relocatable expression). |
| */ |
| static void discharge2reg (FuncState *fs, expdesc *e, int reg) { |
| luaK_dischargevars(fs, e); |
| switch (e->k) { |
| case VNIL: { |
| luaK_nil(fs, reg, 1); |
| break; |
| } |
| case VFALSE: case VTRUE: { |
| luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0); |
| break; |
| } |
| case VK: { |
| luaK_codek(fs, reg, e->u.info); |
| break; |
| } |
| case VKFLT: { |
| luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval)); |
| break; |
| } |
| case VKINT: { |
| luaK_codek(fs, reg, luaK_intK(fs, e->u.ival)); |
| break; |
| } |
| case VRELOCABLE: { |
| Instruction *pc = &getinstruction(fs, e); |
| SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ |
| break; |
| } |
| case VNONRELOC: { |
| if (reg != e->u.info) |
| luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); |
| break; |
| } |
| default: { |
| lua_assert(e->k == VJMP); |
| return; /* nothing to do... */ |
| } |
| } |
| e->u.info = reg; |
| e->k = VNONRELOC; |
| } |
| |
| |
| /* |
| ** Ensures expression value is in any register. |
| */ |
| static void discharge2anyreg (FuncState *fs, expdesc *e) { |
| if (e->k != VNONRELOC) { /* no fixed register yet? */ |
| luaK_reserveregs(fs, 1); /* get a register */ |
| discharge2reg(fs, e, fs->freereg-1); /* put value there */ |
| } |
| } |
| |
| |
| static int code_loadbool (FuncState *fs, int A, int b, int jump) { |
| luaK_getlabel(fs); /* those instructions may be jump targets */ |
| return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump); |
| } |
| |
| |
| /* |
| ** check whether list has any jump that do not produce a value |
| ** or produce an inverted value |
| */ |
| static int need_value (FuncState *fs, int list) { |
| for (; list != NO_JUMP; list = getjump(fs, list)) { |
| Instruction i = *getjumpcontrol(fs, list); |
| if (GET_OPCODE(i) != OP_TESTSET) return 1; |
| } |
| return 0; /* not found */ |
| } |
| |
| |
| /* |
| ** Ensures final expression result (including results from its jump |
| ** lists) is in register 'reg'. |
| ** If expression has jumps, need to patch these jumps either to |
| ** its final position or to "load" instructions (for those tests |
| ** that do not produce values). |
| */ |
| static void exp2reg (FuncState *fs, expdesc *e, int reg) { |
| discharge2reg(fs, e, reg); |
| if (e->k == VJMP) /* expression itself is a test? */ |
| luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ |
| if (hasjumps(e)) { |
| int final; /* position after whole expression */ |
| int p_f = NO_JUMP; /* position of an eventual LOAD false */ |
| int p_t = NO_JUMP; /* position of an eventual LOAD true */ |
| if (need_value(fs, e->t) || need_value(fs, e->f)) { |
| int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); |
| p_f = code_loadbool(fs, reg, 0, 1); |
| p_t = code_loadbool(fs, reg, 1, 0); |
| luaK_patchtohere(fs, fj); |
| } |
| final = luaK_getlabel(fs); |
| patchlistaux(fs, e->f, final, reg, p_f); |
| patchlistaux(fs, e->t, final, reg, p_t); |
| } |
| e->f = e->t = NO_JUMP; |
| e->u.info = reg; |
| e->k = VNONRELOC; |
| } |
| |
| |
| /* |
| ** Ensures final expression result (including results from its jump |
| ** lists) is in next available register. |
| */ |
| void luaK_exp2nextreg (FuncState *fs, expdesc *e) { |
| luaK_dischargevars(fs, e); |
| freeexp(fs, e); |
| luaK_reserveregs(fs, 1); |
| exp2reg(fs, e, fs->freereg - 1); |
| } |
| |
| |
| /* |
| ** Ensures final expression result (including results from its jump |
| ** lists) is in some (any) register and return that register. |
| */ |
| int luaK_exp2anyreg (FuncState *fs, expdesc *e) { |
| luaK_dischargevars(fs, e); |
| if (e->k == VNONRELOC) { /* expression already has a register? */ |
| if (!hasjumps(e)) /* no jumps? */ |
| return e->u.info; /* result is already in a register */ |
| if (e->u.info >= fs->nactvar) { /* reg. is not a local? */ |
| exp2reg(fs, e, e->u.info); /* put final result in it */ |
| return e->u.info; |
| } |
| } |
| luaK_exp2nextreg(fs, e); /* otherwise, use next available register */ |
| return e->u.info; |
| } |
| |
| |
| /* |
| ** Ensures final expression result is either in a register or in an |
| ** upvalue. |
| */ |
| void luaK_exp2anyregup (FuncState *fs, expdesc *e) { |
| if (e->k != VUPVAL || hasjumps(e)) |
| luaK_exp2anyreg(fs, e); |
| } |
| |
| |
| /* |
| ** Ensures final expression result is either in a register or it is |
| ** a constant. |
| */ |
| void luaK_exp2val (FuncState *fs, expdesc *e) { |
| if (hasjumps(e)) |
| luaK_exp2anyreg(fs, e); |
| else |
| luaK_dischargevars(fs, e); |
| } |
| |
| |
| /* |
| ** Ensures final expression result is in a valid R/K index |
| ** (that is, it is either in a register or in 'k' with an index |
| ** in the range of R/K indices). |
| ** Returns R/K index. |
| */ |
| int luaK_exp2RK (FuncState *fs, expdesc *e) { |
| luaK_exp2val(fs, e); |
| switch (e->k) { /* move constants to 'k' */ |
| case VTRUE: e->u.info = boolK(fs, 1); goto vk; |
| case VFALSE: e->u.info = boolK(fs, 0); goto vk; |
| case VNIL: e->u.info = nilK(fs); goto vk; |
| case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk; |
| case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk; |
| case VK: |
| vk: |
| e->k = VK; |
| if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */ |
| return RKASK(e->u.info); |
| else break; |
| default: break; |
| } |
| /* not a constant in the right range: put it in a register */ |
| return luaK_exp2anyreg(fs, e); |
| } |
| |
| |
| /* |
| ** Generate code to store result of expression 'ex' into variable 'var'. |
| */ |
| void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { |
| switch (var->k) { |
| case VLOCAL: { |
| freeexp(fs, ex); |
| exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */ |
| return; |
| } |
| case VUPVAL: { |
| int e = luaK_exp2anyreg(fs, ex); |
| luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); |
| break; |
| } |
| case VINDEXED: { |
| OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP; |
| int e = luaK_exp2RK(fs, ex); |
| luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e); |
| break; |
| } |
| default: lua_assert(0); /* invalid var kind to store */ |
| } |
| freeexp(fs, ex); |
| } |
| |
| |
| /* |
| ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). |
| */ |
| void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { |
| int ereg; |
| luaK_exp2anyreg(fs, e); |
| ereg = e->u.info; /* register where 'e' was placed */ |
| freeexp(fs, e); |
| e->u.info = fs->freereg; /* base register for op_self */ |
| e->k = VNONRELOC; /* self expression has a fixed register */ |
| luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ |
| luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key)); |
| freeexp(fs, key); |
| } |
| |
| |
| /* |
| ** Negate condition 'e' (where 'e' is a comparison). |
| */ |
| static void negatecondition (FuncState *fs, expdesc *e) { |
| Instruction *pc = getjumpcontrol(fs, e->u.info); |
| lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && |
| GET_OPCODE(*pc) != OP_TEST); |
| SETARG_A(*pc, !(GETARG_A(*pc))); |
| } |
| |
| |
| /* |
| ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' |
| ** is true, code will jump if 'e' is true.) Return jump position. |
| ** Optimize when 'e' is 'not' something, inverting the condition |
| ** and removing the 'not'. |
| */ |
| static int jumponcond (FuncState *fs, expdesc *e, int cond) { |
| if (e->k == VRELOCABLE) { |
| Instruction ie = getinstruction(fs, e); |
| if (GET_OPCODE(ie) == OP_NOT) { |
| fs->pc--; /* remove previous OP_NOT */ |
| return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond); |
| } |
| /* else go through */ |
| } |
| discharge2anyreg(fs, e); |
| freeexp(fs, e); |
| return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond); |
| } |
| |
| |
| /* |
| ** Emit code to go through if 'e' is true, jump otherwise. |
| */ |
| void luaK_goiftrue (FuncState *fs, expdesc *e) { |
| int pc; /* pc of new jump */ |
| luaK_dischargevars(fs, e); |
| switch (e->k) { |
| case VJMP: { /* condition? */ |
| negatecondition(fs, e); /* jump when it is false */ |
| pc = e->u.info; /* save jump position */ |
| break; |
| } |
| case VK: case VKFLT: case VKINT: case VTRUE: { |
| pc = NO_JUMP; /* always true; do nothing */ |
| break; |
| } |
| default: { |
| pc = jumponcond(fs, e, 0); /* jump when false */ |
| break; |
| } |
| } |
| luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ |
| luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ |
| e->t = NO_JUMP; |
| } |
| |
| |
| /* |
| ** Emit code to go through if 'e' is false, jump otherwise. |
| */ |
| void luaK_goiffalse (FuncState *fs, expdesc *e) { |
| int pc; /* pc of new jump */ |
| luaK_dischargevars(fs, e); |
| switch (e->k) { |
| case VJMP: { |
| pc = e->u.info; /* already jump if true */ |
| break; |
| } |
| case VNIL: case VFALSE: { |
| pc = NO_JUMP; /* always false; do nothing */ |
| break; |
| } |
| default: { |
| pc = jumponcond(fs, e, 1); /* jump if true */ |
| break; |
| } |
| } |
| luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ |
| luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ |
| e->f = NO_JUMP; |
| } |
| |
| |
| /* |
| ** Code 'not e', doing constant folding. |
| */ |
| static void codenot (FuncState *fs, expdesc *e) { |
| luaK_dischargevars(fs, e); |
| switch (e->k) { |
| case VNIL: case VFALSE: { |
| e->k = VTRUE; /* true == not nil == not false */ |
| break; |
| } |
| case VK: case VKFLT: case VKINT: case VTRUE: { |
| e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ |
| break; |
| } |
| case VJMP: { |
| negatecondition(fs, e); |
| break; |
| } |
| case VRELOCABLE: |
| case VNONRELOC: { |
| discharge2anyreg(fs, e); |
| freeexp(fs, e); |
| e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); |
| e->k = VRELOCABLE; |
| break; |
| } |
| default: lua_assert(0); /* cannot happen */ |
| } |
| /* interchange true and false lists */ |
| { int temp = e->f; e->f = e->t; e->t = temp; } |
| removevalues(fs, e->f); /* values are useless when negated */ |
| removevalues(fs, e->t); |
| } |
| |
| |
| /* |
| ** Create expression 't[k]'. 't' must have its final result already in a |
| ** register or upvalue. |
| */ |
| void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { |
| lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL)); |
| t->u.ind.t = t->u.info; /* register or upvalue index */ |
| t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */ |
| t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL; |
| t->k = VINDEXED; |
| } |
| |
| |
| /* |
| ** Return false if folding can raise an error. |
| ** Bitwise operations need operands convertible to integers; division |
| ** operations cannot have 0 as divisor. |
| */ |
| static int validop (int op, TValue *v1, TValue *v2) { |
| switch (op) { |
| case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: |
| case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ |
| lua_Integer i; |
| return (tointeger(v1, &i) && tointeger(v2, &i)); |
| } |
| case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ |
| return (nvalue(v2) != 0); |
| default: return 1; /* everything else is valid */ |
| } |
| } |
| |
| |
| /* |
| ** Try to "constant-fold" an operation; return 1 iff successful. |
| ** (In this case, 'e1' has the final result.) |
| */ |
| static int constfolding (FuncState *fs, int op, expdesc *e1, |
| const expdesc *e2) { |
| TValue v1, v2, res; |
| if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) |
| return 0; /* non-numeric operands or not safe to fold */ |
| luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ |
| if (ttisinteger(&res)) { |
| e1->k = VKINT; |
| e1->u.ival = ivalue(&res); |
| } |
| else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ |
| lua_Number n = fltvalue(&res); |
| if (luai_numisnan(n) || n == 0) |
| return 0; |
| e1->k = VKFLT; |
| e1->u.nval = n; |
| } |
| return 1; |
| } |
| |
| |
| /* |
| ** Emit code for unary expressions that "produce values" |
| ** (everything but 'not'). |
| ** Expression to produce final result will be encoded in 'e'. |
| */ |
| static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { |
| int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ |
| freeexp(fs, e); |
| e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ |
| e->k = VRELOCABLE; /* all those operations are relocatable */ |
| luaK_fixline(fs, line); |
| } |
| |
| |
| /* |
| ** Emit code for binary expressions that "produce values" |
| ** (everything but logical operators 'and'/'or' and comparison |
| ** operators). |
| ** Expression to produce final result will be encoded in 'e1'. |
| ** Because 'luaK_exp2RK' can free registers, its calls must be |
| ** in "stack order" (that is, first on 'e2', which may have more |
| ** recent registers to be released). |
| */ |
| static void codebinexpval (FuncState *fs, OpCode op, |
| expdesc *e1, expdesc *e2, int line) { |
| int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */ |
| int rk1 = luaK_exp2RK(fs, e1); |
| freeexps(fs, e1, e2); |
| e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */ |
| e1->k = VRELOCABLE; /* all those operations are relocatable */ |
| luaK_fixline(fs, line); |
| } |
| |
| |
| /* |
| ** Emit code for comparisons. |
| ** 'e1' was already put in R/K form by 'luaK_infix'. |
| */ |
| static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { |
| int rk1 = (e1->k == VK) ? RKASK(e1->u.info) |
| : check_exp(e1->k == VNONRELOC, e1->u.info); |
| int rk2 = luaK_exp2RK(fs, e2); |
| freeexps(fs, e1, e2); |
| switch (opr) { |
| case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */ |
| e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2); |
| break; |
| } |
| case OPR_GT: case OPR_GE: { |
| /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */ |
| OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); |
| e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */ |
| break; |
| } |
| default: { /* '==', '<', '<=' use their own opcodes */ |
| OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); |
| e1->u.info = condjump(fs, op, 1, rk1, rk2); |
| break; |
| } |
| } |
| e1->k = VJMP; |
| } |
| |
| |
| /* |
| ** Aplly prefix operation 'op' to expression 'e'. |
| */ |
| void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { |
| static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; |
| switch (op) { |
| case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ |
| if (constfolding(fs, op + LUA_OPUNM, e, &ef)) |
| break; |
| /* FALLTHROUGH */ |
| case OPR_LEN: |
| codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); |
| break; |
| case OPR_NOT: codenot(fs, e); break; |
| default: lua_assert(0); |
| } |
| } |
| |
| |
| /* |
| ** Process 1st operand 'v' of binary operation 'op' before reading |
| ** 2nd operand. |
| */ |
| void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { |
| switch (op) { |
| case OPR_AND: { |
| luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ |
| break; |
| } |
| case OPR_OR: { |
| luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ |
| break; |
| } |
| case OPR_CONCAT: { |
| luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */ |
| break; |
| } |
| case OPR_ADD: case OPR_SUB: |
| case OPR_MUL: case OPR_DIV: case OPR_IDIV: |
| case OPR_MOD: case OPR_POW: |
| case OPR_BAND: case OPR_BOR: case OPR_BXOR: |
| case OPR_SHL: case OPR_SHR: { |
| if (!tonumeral(v, NULL)) |
| luaK_exp2RK(fs, v); |
| /* else keep numeral, which may be folded with 2nd operand */ |
| break; |
| } |
| default: { |
| luaK_exp2RK(fs, v); |
| break; |
| } |
| } |
| } |
| |
| |
| /* |
| ** Finalize code for binary operation, after reading 2nd operand. |
| ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because |
| ** concatenation is right associative), merge second CONCAT into first |
| ** one. |
| */ |
| void luaK_posfix (FuncState *fs, BinOpr op, |
| expdesc *e1, expdesc *e2, int line) { |
| switch (op) { |
| case OPR_AND: { |
| lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */ |
| luaK_dischargevars(fs, e2); |
| luaK_concat(fs, &e2->f, e1->f); |
| *e1 = *e2; |
| break; |
| } |
| case OPR_OR: { |
| lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */ |
| luaK_dischargevars(fs, e2); |
| luaK_concat(fs, &e2->t, e1->t); |
| *e1 = *e2; |
| break; |
| } |
| case OPR_CONCAT: { |
| luaK_exp2val(fs, e2); |
| if (e2->k == VRELOCABLE && |
| GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) { |
| lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1); |
| freeexp(fs, e1); |
| SETARG_B(getinstruction(fs, e2), e1->u.info); |
| e1->k = VRELOCABLE; e1->u.info = e2->u.info; |
| } |
| else { |
| luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */ |
| codebinexpval(fs, OP_CONCAT, e1, e2, line); |
| } |
| break; |
| } |
| case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: |
| case OPR_IDIV: case OPR_MOD: case OPR_POW: |
| case OPR_BAND: case OPR_BOR: case OPR_BXOR: |
| case OPR_SHL: case OPR_SHR: { |
| if (!constfolding(fs, op + LUA_OPADD, e1, e2)) |
| codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line); |
| break; |
| } |
| case OPR_EQ: case OPR_LT: case OPR_LE: |
| case OPR_NE: case OPR_GT: case OPR_GE: { |
| codecomp(fs, op, e1, e2); |
| break; |
| } |
| default: lua_assert(0); |
| } |
| } |
| |
| |
| /* |
| ** Change line information associated with current position. |
| */ |
| void luaK_fixline (FuncState *fs, int line) { |
| fs->f->lineinfo[fs->pc - 1] = line; |
| } |
| |
| |
| /* |
| ** Emit a SETLIST instruction. |
| ** 'base' is register that keeps table; |
| ** 'nelems' is #table plus those to be stored now; |
| ** 'tostore' is number of values (in registers 'base + 1',...) to add to |
| ** table (or LUA_MULTRET to add up to stack top). |
| */ |
| void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { |
| int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1; |
| int b = (tostore == LUA_MULTRET) ? 0 : tostore; |
| lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); |
| if (c <= MAXARG_C) |
| luaK_codeABC(fs, OP_SETLIST, base, b, c); |
| else if (c <= MAXARG_Ax) { |
| luaK_codeABC(fs, OP_SETLIST, base, b, 0); |
| codeextraarg(fs, c); |
| } |
| else |
| luaX_syntaxerror(fs->ls, "constructor too long"); |
| fs->freereg = base + 1; /* free registers with list values */ |
| } |
| |