| /* |
| ** $Id: lgc.c $ |
| ** Garbage Collector |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lgc_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| |
| #include "lua.h" |
| |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lfunc.h" |
| #include "lgc.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "ltm.h" |
| |
| |
| /* |
| ** Maximum number of elements to sweep in each single step. |
| ** (Large enough to dissipate fixed overheads but small enough |
| ** to allow small steps for the collector.) |
| */ |
| #define GCSWEEPMAX 100 |
| |
| /* |
| ** Maximum number of finalizers to call in each single step. |
| */ |
| #define GCFINMAX 10 |
| |
| |
| /* |
| ** Cost of calling one finalizer. |
| */ |
| #define GCFINALIZECOST 50 |
| |
| |
| /* |
| ** The equivalent, in bytes, of one unit of "work" (visiting a slot, |
| ** sweeping an object, etc.) |
| */ |
| #define WORK2MEM sizeof(TValue) |
| |
| |
| /* |
| ** macro to adjust 'pause': 'pause' is actually used like |
| ** 'pause / PAUSEADJ' (value chosen by tests) |
| */ |
| #define PAUSEADJ 100 |
| |
| |
| /* mask with all color bits */ |
| #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) |
| |
| /* mask with all GC bits */ |
| #define maskgcbits (maskcolors | AGEBITS) |
| |
| |
| /* macro to erase all color bits then set only the current white bit */ |
| #define makewhite(g,x) \ |
| (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) |
| |
| /* make an object gray (neither white nor black) */ |
| #define set2gray(x) resetbits(x->marked, maskcolors) |
| |
| |
| /* make an object black (coming from any color) */ |
| #define set2black(x) \ |
| (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) |
| |
| |
| #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) |
| |
| #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) |
| |
| |
| /* |
| ** Protected access to objects in values |
| */ |
| #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) |
| |
| |
| #define markvalue(g,o) { checkliveness(g->mainthread,o); \ |
| if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } |
| |
| #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } |
| |
| #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } |
| |
| /* |
| ** mark an object that can be NULL (either because it is really optional, |
| ** or it was stripped as debug info, or inside an uncompleted structure) |
| */ |
| #define markobjectN(g,t) { if (t) markobject(g,t); } |
| |
| static void reallymarkobject (global_State *g, GCObject *o); |
| static lu_mem atomic (lua_State *L); |
| static void entersweep (lua_State *L); |
| |
| |
| /* |
| ** {====================================================== |
| ** Generic functions |
| ** ======================================================= |
| */ |
| |
| |
| /* |
| ** one after last element in a hash array |
| */ |
| #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) |
| |
| |
| static GCObject **getgclist (GCObject *o) { |
| switch (o->tt) { |
| case LUA_VTABLE: return &gco2t(o)->gclist; |
| case LUA_VLCL: return &gco2lcl(o)->gclist; |
| case LUA_VCCL: return &gco2ccl(o)->gclist; |
| case LUA_VTHREAD: return &gco2th(o)->gclist; |
| case LUA_VPROTO: return &gco2p(o)->gclist; |
| case LUA_VUSERDATA: { |
| Udata *u = gco2u(o); |
| lua_assert(u->nuvalue > 0); |
| return &u->gclist; |
| } |
| default: lua_assert(0); return 0; |
| } |
| } |
| |
| |
| /* |
| ** Link a collectable object 'o' with a known type into the list 'p'. |
| ** (Must be a macro to access the 'gclist' field in different types.) |
| */ |
| #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) |
| |
| static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { |
| lua_assert(!isgray(o)); /* cannot be in a gray list */ |
| *pnext = *list; |
| *list = o; |
| set2gray(o); /* now it is */ |
| } |
| |
| |
| /* |
| ** Link a generic collectable object 'o' into the list 'p'. |
| */ |
| #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) |
| |
| |
| |
| /* |
| ** Clear keys for empty entries in tables. If entry is empty |
| ** and its key is not marked, mark its entry as dead. This allows the |
| ** collection of the key, but keeps its entry in the table (its removal |
| ** could break a chain). The main feature of a dead key is that it must |
| ** be different from any other value, to do not disturb searches. |
| ** Other places never manipulate dead keys, because its associated empty |
| ** value is enough to signal that the entry is logically empty. |
| */ |
| static void clearkey (Node *n) { |
| lua_assert(isempty(gval(n))); |
| if (keyiswhite(n)) |
| setdeadkey(n); /* unused and unmarked key; remove it */ |
| } |
| |
| |
| /* |
| ** tells whether a key or value can be cleared from a weak |
| ** table. Non-collectable objects are never removed from weak |
| ** tables. Strings behave as 'values', so are never removed too. for |
| ** other objects: if really collected, cannot keep them; for objects |
| ** being finalized, keep them in keys, but not in values |
| */ |
| static int iscleared (global_State *g, const GCObject *o) { |
| if (o == NULL) return 0; /* non-collectable value */ |
| else if (novariant(o->tt) == LUA_TSTRING) { |
| markobject(g, o); /* strings are 'values', so are never weak */ |
| return 0; |
| } |
| else return iswhite(o); |
| } |
| |
| |
| /* |
| ** Barrier that moves collector forward, that is, marks the white object |
| ** 'v' being pointed by the black object 'o'. In the generational |
| ** mode, 'v' must also become old, if 'o' is old; however, it cannot |
| ** be changed directly to OLD, because it may still point to non-old |
| ** objects. So, it is marked as OLD0. In the next cycle it will become |
| ** OLD1, and in the next it will finally become OLD (regular old). By |
| ** then, any object it points to will also be old. If called in the |
| ** incremental sweep phase, it clears the black object to white (sweep |
| ** it) to avoid other barrier calls for this same object. (That cannot |
| ** be done is generational mode, as its sweep does not distinguish |
| ** whites from deads.) |
| */ |
| void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { |
| global_State *g = G(L); |
| lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); |
| if (keepinvariant(g)) { /* must keep invariant? */ |
| reallymarkobject(g, v); /* restore invariant */ |
| if (isold(o)) { |
| lua_assert(!isold(v)); /* white object could not be old */ |
| setage(v, G_OLD0); /* restore generational invariant */ |
| } |
| } |
| else { /* sweep phase */ |
| lua_assert(issweepphase(g)); |
| if (g->gckind == KGC_INC) /* incremental mode? */ |
| makewhite(g, o); /* mark 'o' as white to avoid other barriers */ |
| } |
| } |
| |
| |
| /* |
| ** barrier that moves collector backward, that is, mark the black object |
| ** pointing to a white object as gray again. |
| */ |
| void luaC_barrierback_ (lua_State *L, GCObject *o) { |
| global_State *g = G(L); |
| lua_assert(isblack(o) && !isdead(g, o)); |
| lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); |
| if (getage(o) == G_TOUCHED2) /* already in gray list? */ |
| set2gray(o); /* make it gray to become touched1 */ |
| else /* link it in 'grayagain' and paint it gray */ |
| linkobjgclist(o, g->grayagain); |
| if (isold(o)) /* generational mode? */ |
| setage(o, G_TOUCHED1); /* touched in current cycle */ |
| } |
| |
| |
| void luaC_fix (lua_State *L, GCObject *o) { |
| global_State *g = G(L); |
| lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ |
| set2gray(o); /* they will be gray forever */ |
| setage(o, G_OLD); /* and old forever */ |
| g->allgc = o->next; /* remove object from 'allgc' list */ |
| o->next = g->fixedgc; /* link it to 'fixedgc' list */ |
| g->fixedgc = o; |
| } |
| |
| |
| /* |
| ** create a new collectable object (with given type and size) and link |
| ** it to 'allgc' list. |
| */ |
| GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { |
| global_State *g = G(L); |
| GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); |
| o->marked = luaC_white(g); |
| o->tt = tt; |
| o->next = g->allgc; |
| g->allgc = o; |
| return o; |
| } |
| |
| /* }====================================================== */ |
| |
| |
| |
| /* |
| ** {====================================================== |
| ** Mark functions |
| ** ======================================================= |
| */ |
| |
| |
| /* |
| ** Mark an object. Userdata with no user values, strings, and closed |
| ** upvalues are visited and turned black here. Open upvalues are |
| ** already indirectly linked through their respective threads in the |
| ** 'twups' list, so they don't go to the gray list; nevertheless, they |
| ** are kept gray to avoid barriers, as their values will be revisited |
| ** by the thread or by 'remarkupvals'. Other objects are added to the |
| ** gray list to be visited (and turned black) later. Both userdata and |
| ** upvalues can call this function recursively, but this recursion goes |
| ** for at most two levels: An upvalue cannot refer to another upvalue |
| ** (only closures can), and a userdata's metatable must be a table. |
| */ |
| static void reallymarkobject (global_State *g, GCObject *o) { |
| switch (o->tt) { |
| case LUA_VSHRSTR: |
| case LUA_VLNGSTR: { |
| set2black(o); /* nothing to visit */ |
| break; |
| } |
| case LUA_VUPVAL: { |
| UpVal *uv = gco2upv(o); |
| if (upisopen(uv)) |
| set2gray(uv); /* open upvalues are kept gray */ |
| else |
| set2black(o); /* closed upvalues are visited here */ |
| markvalue(g, uv->v); /* mark its content */ |
| break; |
| } |
| case LUA_VUSERDATA: { |
| Udata *u = gco2u(o); |
| if (u->nuvalue == 0) { /* no user values? */ |
| markobjectN(g, u->metatable); /* mark its metatable */ |
| set2black(o); /* nothing else to mark */ |
| break; |
| } |
| /* else... */ |
| } /* FALLTHROUGH */ |
| case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: |
| case LUA_VTHREAD: case LUA_VPROTO: { |
| linkobjgclist(o, g->gray); /* to be visited later */ |
| break; |
| } |
| default: lua_assert(0); break; |
| } |
| } |
| |
| |
| /* |
| ** mark metamethods for basic types |
| */ |
| static void markmt (global_State *g) { |
| int i; |
| for (i=0; i < LUA_NUMTAGS; i++) |
| markobjectN(g, g->mt[i]); |
| } |
| |
| |
| /* |
| ** mark all objects in list of being-finalized |
| */ |
| static lu_mem markbeingfnz (global_State *g) { |
| GCObject *o; |
| lu_mem count = 0; |
| for (o = g->tobefnz; o != NULL; o = o->next) { |
| count++; |
| markobject(g, o); |
| } |
| return count; |
| } |
| |
| |
| /* |
| ** For each non-marked thread, simulates a barrier between each open |
| ** upvalue and its value. (If the thread is collected, the value will be |
| ** assigned to the upvalue, but then it can be too late for the barrier |
| ** to act. The "barrier" does not need to check colors: A non-marked |
| ** thread must be young; upvalues cannot be older than their threads; so |
| ** any visited upvalue must be young too.) Also removes the thread from |
| ** the list, as it was already visited. Removes also threads with no |
| ** upvalues, as they have nothing to be checked. (If the thread gets an |
| ** upvalue later, it will be linked in the list again.) |
| */ |
| static int remarkupvals (global_State *g) { |
| lua_State *thread; |
| lua_State **p = &g->twups; |
| int work = 0; /* estimate of how much work was done here */ |
| while ((thread = *p) != NULL) { |
| work++; |
| if (!iswhite(thread) && thread->openupval != NULL) |
| p = &thread->twups; /* keep marked thread with upvalues in the list */ |
| else { /* thread is not marked or without upvalues */ |
| UpVal *uv; |
| lua_assert(!isold(thread) || thread->openupval == NULL); |
| *p = thread->twups; /* remove thread from the list */ |
| thread->twups = thread; /* mark that it is out of list */ |
| for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { |
| lua_assert(getage(uv) <= getage(thread)); |
| work++; |
| if (!iswhite(uv)) { /* upvalue already visited? */ |
| lua_assert(upisopen(uv) && isgray(uv)); |
| markvalue(g, uv->v); /* mark its value */ |
| } |
| } |
| } |
| } |
| return work; |
| } |
| |
| |
| static void cleargraylists (global_State *g) { |
| g->gray = g->grayagain = NULL; |
| g->weak = g->allweak = g->ephemeron = NULL; |
| } |
| |
| |
| /* |
| ** mark root set and reset all gray lists, to start a new collection |
| */ |
| static void restartcollection (global_State *g) { |
| cleargraylists(g); |
| markobject(g, g->mainthread); |
| markvalue(g, &g->l_registry); |
| markmt(g); |
| markbeingfnz(g); /* mark any finalizing object left from previous cycle */ |
| } |
| |
| /* }====================================================== */ |
| |
| |
| /* |
| ** {====================================================== |
| ** Traverse functions |
| ** ======================================================= |
| */ |
| |
| |
| /* |
| ** Check whether object 'o' should be kept in the 'grayagain' list for |
| ** post-processing by 'correctgraylist'. (It could put all old objects |
| ** in the list and leave all the work to 'correctgraylist', but it is |
| ** more efficient to avoid adding elements that will be removed.) Only |
| ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go |
| ** back to a gray list, but then it must become OLD. (That is what |
| ** 'correctgraylist' does when it finds a TOUCHED2 object.) |
| */ |
| static void genlink (global_State *g, GCObject *o) { |
| lua_assert(isblack(o)); |
| if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ |
| linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ |
| } /* everything else do not need to be linked back */ |
| else if (getage(o) == G_TOUCHED2) |
| changeage(o, G_TOUCHED2, G_OLD); /* advance age */ |
| } |
| |
| |
| /* |
| ** Traverse a table with weak values and link it to proper list. During |
| ** propagate phase, keep it in 'grayagain' list, to be revisited in the |
| ** atomic phase. In the atomic phase, if table has any white value, |
| ** put it in 'weak' list, to be cleared. |
| */ |
| static void traverseweakvalue (global_State *g, Table *h) { |
| Node *n, *limit = gnodelast(h); |
| /* if there is array part, assume it may have white values (it is not |
| worth traversing it now just to check) */ |
| int hasclears = (h->alimit > 0); |
| for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
| if (isempty(gval(n))) /* entry is empty? */ |
| clearkey(n); /* clear its key */ |
| else { |
| lua_assert(!keyisnil(n)); |
| markkey(g, n); |
| if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ |
| hasclears = 1; /* table will have to be cleared */ |
| } |
| } |
| if (g->gcstate == GCSatomic && hasclears) |
| linkgclist(h, g->weak); /* has to be cleared later */ |
| else |
| linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
| } |
| |
| |
| /* |
| ** Traverse an ephemeron table and link it to proper list. Returns true |
| ** iff any object was marked during this traversal (which implies that |
| ** convergence has to continue). During propagation phase, keep table |
| ** in 'grayagain' list, to be visited again in the atomic phase. In |
| ** the atomic phase, if table has any white->white entry, it has to |
| ** be revisited during ephemeron convergence (as that key may turn |
| ** black). Otherwise, if it has any white key, table has to be cleared |
| ** (in the atomic phase). In generational mode, some tables |
| ** must be kept in some gray list for post-processing; this is done |
| ** by 'genlink'. |
| */ |
| static int traverseephemeron (global_State *g, Table *h, int inv) { |
| int marked = 0; /* true if an object is marked in this traversal */ |
| int hasclears = 0; /* true if table has white keys */ |
| int hasww = 0; /* true if table has entry "white-key -> white-value" */ |
| unsigned int i; |
| unsigned int asize = luaH_realasize(h); |
| unsigned int nsize = sizenode(h); |
| /* traverse array part */ |
| for (i = 0; i < asize; i++) { |
| if (valiswhite(&h->array[i])) { |
| marked = 1; |
| reallymarkobject(g, gcvalue(&h->array[i])); |
| } |
| } |
| /* traverse hash part; if 'inv', traverse descending |
| (see 'convergeephemerons') */ |
| for (i = 0; i < nsize; i++) { |
| Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); |
| if (isempty(gval(n))) /* entry is empty? */ |
| clearkey(n); /* clear its key */ |
| else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ |
| hasclears = 1; /* table must be cleared */ |
| if (valiswhite(gval(n))) /* value not marked yet? */ |
| hasww = 1; /* white-white entry */ |
| } |
| else if (valiswhite(gval(n))) { /* value not marked yet? */ |
| marked = 1; |
| reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ |
| } |
| } |
| /* link table into proper list */ |
| if (g->gcstate == GCSpropagate) |
| linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
| else if (hasww) /* table has white->white entries? */ |
| linkgclist(h, g->ephemeron); /* have to propagate again */ |
| else if (hasclears) /* table has white keys? */ |
| linkgclist(h, g->allweak); /* may have to clean white keys */ |
| else |
| genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ |
| return marked; |
| } |
| |
| |
| static void traversestrongtable (global_State *g, Table *h) { |
| Node *n, *limit = gnodelast(h); |
| unsigned int i; |
| unsigned int asize = luaH_realasize(h); |
| for (i = 0; i < asize; i++) /* traverse array part */ |
| markvalue(g, &h->array[i]); |
| for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
| if (isempty(gval(n))) /* entry is empty? */ |
| clearkey(n); /* clear its key */ |
| else { |
| lua_assert(!keyisnil(n)); |
| markkey(g, n); |
| markvalue(g, gval(n)); |
| } |
| } |
| genlink(g, obj2gco(h)); |
| } |
| |
| |
| static lu_mem traversetable (global_State *g, Table *h) { |
| const char *weakkey, *weakvalue; |
| const TValue *mode = gfasttm(g, h->metatable, TM_MODE); |
| markobjectN(g, h->metatable); |
| if (mode && ttisstring(mode) && /* is there a weak mode? */ |
| (cast_void(weakkey = strchr(svalue(mode), 'k')), |
| cast_void(weakvalue = strchr(svalue(mode), 'v')), |
| (weakkey || weakvalue))) { /* is really weak? */ |
| if (!weakkey) /* strong keys? */ |
| traverseweakvalue(g, h); |
| else if (!weakvalue) /* strong values? */ |
| traverseephemeron(g, h, 0); |
| else /* all weak */ |
| linkgclist(h, g->allweak); /* nothing to traverse now */ |
| } |
| else /* not weak */ |
| traversestrongtable(g, h); |
| return 1 + h->alimit + 2 * allocsizenode(h); |
| } |
| |
| |
| static int traverseudata (global_State *g, Udata *u) { |
| int i; |
| markobjectN(g, u->metatable); /* mark its metatable */ |
| for (i = 0; i < u->nuvalue; i++) |
| markvalue(g, &u->uv[i].uv); |
| genlink(g, obj2gco(u)); |
| return 1 + u->nuvalue; |
| } |
| |
| |
| /* |
| ** Traverse a prototype. (While a prototype is being build, its |
| ** arrays can be larger than needed; the extra slots are filled with |
| ** NULL, so the use of 'markobjectN') |
| */ |
| static int traverseproto (global_State *g, Proto *f) { |
| int i; |
| markobjectN(g, f->source); |
| for (i = 0; i < f->sizek; i++) /* mark literals */ |
| markvalue(g, &f->k[i]); |
| for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ |
| markobjectN(g, f->upvalues[i].name); |
| for (i = 0; i < f->sizep; i++) /* mark nested protos */ |
| markobjectN(g, f->p[i]); |
| for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ |
| markobjectN(g, f->locvars[i].varname); |
| return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; |
| } |
| |
| |
| static int traverseCclosure (global_State *g, CClosure *cl) { |
| int i; |
| for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ |
| markvalue(g, &cl->upvalue[i]); |
| return 1 + cl->nupvalues; |
| } |
| |
| /* |
| ** Traverse a Lua closure, marking its prototype and its upvalues. |
| ** (Both can be NULL while closure is being created.) |
| */ |
| static int traverseLclosure (global_State *g, LClosure *cl) { |
| int i; |
| markobjectN(g, cl->p); /* mark its prototype */ |
| for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ |
| UpVal *uv = cl->upvals[i]; |
| markobjectN(g, uv); /* mark upvalue */ |
| } |
| return 1 + cl->nupvalues; |
| } |
| |
| |
| /* |
| ** Traverse a thread, marking the elements in the stack up to its top |
| ** and cleaning the rest of the stack in the final traversal. That |
| ** ensures that the entire stack have valid (non-dead) objects. |
| ** Threads have no barriers. In gen. mode, old threads must be visited |
| ** at every cycle, because they might point to young objects. In inc. |
| ** mode, the thread can still be modified before the end of the cycle, |
| ** and therefore it must be visited again in the atomic phase. To ensure |
| ** these visits, threads must return to a gray list if they are not new |
| ** (which can only happen in generational mode) or if the traverse is in |
| ** the propagate phase (which can only happen in incremental mode). |
| */ |
| static int traversethread (global_State *g, lua_State *th) { |
| UpVal *uv; |
| StkId o = th->stack; |
| if (isold(th) || g->gcstate == GCSpropagate) |
| linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
| if (o == NULL) |
| return 1; /* stack not completely built yet */ |
| lua_assert(g->gcstate == GCSatomic || |
| th->openupval == NULL || isintwups(th)); |
| for (; o < th->top; o++) /* mark live elements in the stack */ |
| markvalue(g, s2v(o)); |
| for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) |
| markobject(g, uv); /* open upvalues cannot be collected */ |
| if (g->gcstate == GCSatomic) { /* final traversal? */ |
| StkId lim = th->stack + th->stacksize; /* real end of stack */ |
| for (; o < lim; o++) /* clear not-marked stack slice */ |
| setnilvalue(s2v(o)); |
| /* 'remarkupvals' may have removed thread from 'twups' list */ |
| if (!isintwups(th) && th->openupval != NULL) { |
| th->twups = g->twups; /* link it back to the list */ |
| g->twups = th; |
| } |
| } |
| else if (!g->gcemergency) |
| luaD_shrinkstack(th); /* do not change stack in emergency cycle */ |
| return 1 + th->stacksize; |
| } |
| |
| |
| /* |
| ** traverse one gray object, turning it to black. |
| */ |
| static lu_mem propagatemark (global_State *g) { |
| GCObject *o = g->gray; |
| nw2black(o); |
| g->gray = *getgclist(o); /* remove from 'gray' list */ |
| switch (o->tt) { |
| case LUA_VTABLE: return traversetable(g, gco2t(o)); |
| case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); |
| case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); |
| case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); |
| case LUA_VPROTO: return traverseproto(g, gco2p(o)); |
| case LUA_VTHREAD: return traversethread(g, gco2th(o)); |
| default: lua_assert(0); return 0; |
| } |
| } |
| |
| |
| static lu_mem propagateall (global_State *g) { |
| lu_mem tot = 0; |
| while (g->gray) |
| tot += propagatemark(g); |
| return tot; |
| } |
| |
| |
| /* |
| ** Traverse all ephemeron tables propagating marks from keys to values. |
| ** Repeat until it converges, that is, nothing new is marked. 'dir' |
| ** inverts the direction of the traversals, trying to speed up |
| ** convergence on chains in the same table. |
| ** |
| */ |
| static void convergeephemerons (global_State *g) { |
| int changed; |
| int dir = 0; |
| do { |
| GCObject *w; |
| GCObject *next = g->ephemeron; /* get ephemeron list */ |
| g->ephemeron = NULL; /* tables may return to this list when traversed */ |
| changed = 0; |
| while ((w = next) != NULL) { /* for each ephemeron table */ |
| Table *h = gco2t(w); |
| next = h->gclist; /* list is rebuilt during loop */ |
| nw2black(h); /* out of the list (for now) */ |
| if (traverseephemeron(g, h, dir)) { /* marked some value? */ |
| propagateall(g); /* propagate changes */ |
| changed = 1; /* will have to revisit all ephemeron tables */ |
| } |
| } |
| dir = !dir; /* invert direction next time */ |
| } while (changed); /* repeat until no more changes */ |
| } |
| |
| /* }====================================================== */ |
| |
| |
| /* |
| ** {====================================================== |
| ** Sweep Functions |
| ** ======================================================= |
| */ |
| |
| |
| /* |
| ** clear entries with unmarked keys from all weaktables in list 'l' |
| */ |
| static void clearbykeys (global_State *g, GCObject *l) { |
| for (; l; l = gco2t(l)->gclist) { |
| Table *h = gco2t(l); |
| Node *limit = gnodelast(h); |
| Node *n; |
| for (n = gnode(h, 0); n < limit; n++) { |
| if (iscleared(g, gckeyN(n))) /* unmarked key? */ |
| setempty(gval(n)); /* remove entry */ |
| if (isempty(gval(n))) /* is entry empty? */ |
| clearkey(n); /* clear its key */ |
| } |
| } |
| } |
| |
| |
| /* |
| ** clear entries with unmarked values from all weaktables in list 'l' up |
| ** to element 'f' |
| */ |
| static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { |
| for (; l != f; l = gco2t(l)->gclist) { |
| Table *h = gco2t(l); |
| Node *n, *limit = gnodelast(h); |
| unsigned int i; |
| unsigned int asize = luaH_realasize(h); |
| for (i = 0; i < asize; i++) { |
| TValue *o = &h->array[i]; |
| if (iscleared(g, gcvalueN(o))) /* value was collected? */ |
| setempty(o); /* remove entry */ |
| } |
| for (n = gnode(h, 0); n < limit; n++) { |
| if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ |
| setempty(gval(n)); /* remove entry */ |
| if (isempty(gval(n))) /* is entry empty? */ |
| clearkey(n); /* clear its key */ |
| } |
| } |
| } |
| |
| |
| static void freeupval (lua_State *L, UpVal *uv) { |
| if (upisopen(uv)) |
| luaF_unlinkupval(uv); |
| luaM_free(L, uv); |
| } |
| |
| |
| static void freeobj (lua_State *L, GCObject *o) { |
| switch (o->tt) { |
| case LUA_VPROTO: |
| luaF_freeproto(L, gco2p(o)); |
| break; |
| case LUA_VUPVAL: |
| freeupval(L, gco2upv(o)); |
| break; |
| case LUA_VLCL: |
| luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues)); |
| break; |
| case LUA_VCCL: |
| luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues)); |
| break; |
| case LUA_VTABLE: |
| luaH_free(L, gco2t(o)); |
| break; |
| case LUA_VTHREAD: |
| luaE_freethread(L, gco2th(o)); |
| break; |
| case LUA_VUSERDATA: { |
| Udata *u = gco2u(o); |
| luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); |
| break; |
| } |
| case LUA_VSHRSTR: |
| luaS_remove(L, gco2ts(o)); /* remove it from hash table */ |
| luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen)); |
| break; |
| case LUA_VLNGSTR: |
| luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen)); |
| break; |
| default: lua_assert(0); |
| } |
| } |
| |
| |
| /* |
| ** sweep at most 'countin' elements from a list of GCObjects erasing dead |
| ** objects, where a dead object is one marked with the old (non current) |
| ** white; change all non-dead objects back to white, preparing for next |
| ** collection cycle. Return where to continue the traversal or NULL if |
| ** list is finished. ('*countout' gets the number of elements traversed.) |
| */ |
| static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, |
| int *countout) { |
| global_State *g = G(L); |
| int ow = otherwhite(g); |
| int i; |
| int white = luaC_white(g); /* current white */ |
| for (i = 0; *p != NULL && i < countin; i++) { |
| GCObject *curr = *p; |
| int marked = curr->marked; |
| if (isdeadm(ow, marked)) { /* is 'curr' dead? */ |
| *p = curr->next; /* remove 'curr' from list */ |
| freeobj(L, curr); /* erase 'curr' */ |
| } |
| else { /* change mark to 'white' */ |
| curr->marked = cast_byte((marked & ~maskgcbits) | white); |
| p = &curr->next; /* go to next element */ |
| } |
| } |
| if (countout) |
| *countout = i; /* number of elements traversed */ |
| return (*p == NULL) ? NULL : p; |
| } |
| |
| |
| /* |
| ** sweep a list until a live object (or end of list) |
| */ |
| static GCObject **sweeptolive (lua_State *L, GCObject **p) { |
| GCObject **old = p; |
| do { |
| p = sweeplist(L, p, 1, NULL); |
| } while (p == old); |
| return p; |
| } |
| |
| /* }====================================================== */ |
| |
| |
| /* |
| ** {====================================================== |
| ** Finalization |
| ** ======================================================= |
| */ |
| |
| /* |
| ** If possible, shrink string table. |
| */ |
| static void checkSizes (lua_State *L, global_State *g) { |
| if (!g->gcemergency) { |
| if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ |
| l_mem olddebt = g->GCdebt; |
| luaS_resize(L, g->strt.size / 2); |
| g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ |
| } |
| } |
| } |
| |
| |
| /* |
| ** Get the next udata to be finalized from the 'tobefnz' list, and |
| ** link it back into the 'allgc' list. |
| */ |
| static GCObject *udata2finalize (global_State *g) { |
| GCObject *o = g->tobefnz; /* get first element */ |
| lua_assert(tofinalize(o)); |
| g->tobefnz = o->next; /* remove it from 'tobefnz' list */ |
| o->next = g->allgc; /* return it to 'allgc' list */ |
| g->allgc = o; |
| resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ |
| if (issweepphase(g)) |
| makewhite(g, o); /* "sweep" object */ |
| else if (getage(o) == G_OLD1) |
| g->firstold1 = o; /* it is the first OLD1 object in the list */ |
| return o; |
| } |
| |
| |
| static void dothecall (lua_State *L, void *ud) { |
| UNUSED(ud); |
| luaD_callnoyield(L, L->top - 2, 0); |
| } |
| |
| |
| static void GCTM (lua_State *L) { |
| global_State *g = G(L); |
| const TValue *tm; |
| TValue v; |
| lua_assert(!g->gcemergency); |
| setgcovalue(L, &v, udata2finalize(g)); |
| tm = luaT_gettmbyobj(L, &v, TM_GC); |
| if (!notm(tm)) { /* is there a finalizer? */ |
| int status; |
| lu_byte oldah = L->allowhook; |
| int running = g->gcrunning; |
| L->allowhook = 0; /* stop debug hooks during GC metamethod */ |
| g->gcrunning = 0; /* avoid GC steps */ |
| setobj2s(L, L->top++, tm); /* push finalizer... */ |
| setobj2s(L, L->top++, &v); /* ... and its argument */ |
| L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ |
| status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); |
| L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ |
| L->allowhook = oldah; /* restore hooks */ |
| g->gcrunning = running; /* restore state */ |
| if (unlikely(status != LUA_OK)) { /* error while running __gc? */ |
| luaE_warnerror(L, "__gc metamethod"); |
| L->top--; /* pops error object */ |
| } |
| } |
| } |
| |
| |
| /* |
| ** Call a few finalizers |
| */ |
| static int runafewfinalizers (lua_State *L, int n) { |
| global_State *g = G(L); |
| int i; |
| for (i = 0; i < n && g->tobefnz; i++) |
| GCTM(L); /* call one finalizer */ |
| return i; |
| } |
| |
| |
| /* |
| ** call all pending finalizers |
| */ |
| static void callallpendingfinalizers (lua_State *L) { |
| global_State *g = G(L); |
| while (g->tobefnz) |
| GCTM(L); |
| } |
| |
| |
| /* |
| ** find last 'next' field in list 'p' list (to add elements in its end) |
| */ |
| static GCObject **findlast (GCObject **p) { |
| while (*p != NULL) |
| p = &(*p)->next; |
| return p; |
| } |
| |
| |
| /* |
| ** Move all unreachable objects (or 'all' objects) that need |
| ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). |
| ** (Note that objects after 'finobjold1' cannot be white, so they |
| ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, |
| ** so the whole list is traversed.) |
| */ |
| static void separatetobefnz (global_State *g, int all) { |
| GCObject *curr; |
| GCObject **p = &g->finobj; |
| GCObject **lastnext = findlast(&g->tobefnz); |
| while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ |
| lua_assert(tofinalize(curr)); |
| if (!(iswhite(curr) || all)) /* not being collected? */ |
| p = &curr->next; /* don't bother with it */ |
| else { |
| if (curr == g->finobjsur) /* removing 'finobjsur'? */ |
| g->finobjsur = curr->next; /* correct it */ |
| *p = curr->next; /* remove 'curr' from 'finobj' list */ |
| curr->next = *lastnext; /* link at the end of 'tobefnz' list */ |
| *lastnext = curr; |
| lastnext = &curr->next; |
| } |
| } |
| } |
| |
| |
| /* |
| ** If pointer 'p' points to 'o', move it to the next element. |
| */ |
| static void checkpointer (GCObject **p, GCObject *o) { |
| if (o == *p) |
| *p = o->next; |
| } |
| |
| |
| /* |
| ** Correct pointers to objects inside 'allgc' list when |
| ** object 'o' is being removed from the list. |
| */ |
| static void correctpointers (global_State *g, GCObject *o) { |
| checkpointer(&g->survival, o); |
| checkpointer(&g->old1, o); |
| checkpointer(&g->reallyold, o); |
| checkpointer(&g->firstold1, o); |
| } |
| |
| |
| /* |
| ** if object 'o' has a finalizer, remove it from 'allgc' list (must |
| ** search the list to find it) and link it in 'finobj' list. |
| */ |
| void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { |
| global_State *g = G(L); |
| if (tofinalize(o) || /* obj. is already marked... */ |
| gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */ |
| return; /* nothing to be done */ |
| else { /* move 'o' to 'finobj' list */ |
| GCObject **p; |
| if (issweepphase(g)) { |
| makewhite(g, o); /* "sweep" object 'o' */ |
| if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ |
| g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ |
| } |
| else |
| correctpointers(g, o); |
| /* search for pointer pointing to 'o' */ |
| for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } |
| *p = o->next; /* remove 'o' from 'allgc' list */ |
| o->next = g->finobj; /* link it in 'finobj' list */ |
| g->finobj = o; |
| l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ |
| } |
| } |
| |
| /* }====================================================== */ |
| |
| |
| /* |
| ** {====================================================== |
| ** Generational Collector |
| ** ======================================================= |
| */ |
| |
| static void setpause (global_State *g); |
| |
| |
| /* |
| ** Sweep a list of objects to enter generational mode. Deletes dead |
| ** objects and turns the non dead to old. All non-dead threads---which |
| ** are now old---must be in a gray list. Everything else is not in a |
| ** gray list. Open upvalues are also kept gray. |
| */ |
| static void sweep2old (lua_State *L, GCObject **p) { |
| GCObject *curr; |
| global_State *g = G(L); |
| while ((curr = *p) != NULL) { |
| if (iswhite(curr)) { /* is 'curr' dead? */ |
| lua_assert(isdead(g, curr)); |
| *p = curr->next; /* remove 'curr' from list */ |
| freeobj(L, curr); /* erase 'curr' */ |
| } |
| else { /* all surviving objects become old */ |
| setage(curr, G_OLD); |
| if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ |
| lua_State *th = gco2th(curr); |
| linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
| } |
| else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) |
| set2gray(curr); /* open upvalues are always gray */ |
| else /* everything else is black */ |
| nw2black(curr); |
| p = &curr->next; /* go to next element */ |
| } |
| } |
| } |
| |
| |
| /* |
| ** Sweep for generational mode. Delete dead objects. (Because the |
| ** collection is not incremental, there are no "new white" objects |
| ** during the sweep. So, any white object must be dead.) For |
| ** non-dead objects, advance their ages and clear the color of |
| ** new objects. (Old objects keep their colors.) |
| ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced |
| ** here, because these old-generation objects are usually not swept |
| ** here. They will all be advanced in 'correctgraylist'. That function |
| ** will also remove objects turned white here from any gray list. |
| */ |
| static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, |
| GCObject *limit, GCObject **pfirstold1) { |
| static const lu_byte nextage[] = { |
| G_SURVIVAL, /* from G_NEW */ |
| G_OLD1, /* from G_SURVIVAL */ |
| G_OLD1, /* from G_OLD0 */ |
| G_OLD, /* from G_OLD1 */ |
| G_OLD, /* from G_OLD (do not change) */ |
| G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ |
| G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ |
| }; |
| int white = luaC_white(g); |
| GCObject *curr; |
| while ((curr = *p) != limit) { |
| if (iswhite(curr)) { /* is 'curr' dead? */ |
| lua_assert(!isold(curr) && isdead(g, curr)); |
| *p = curr->next; /* remove 'curr' from list */ |
| freeobj(L, curr); /* erase 'curr' */ |
| } |
| else { /* correct mark and age */ |
| if (getage(curr) == G_NEW) { /* new objects go back to white */ |
| int marked = curr->marked & ~maskgcbits; /* erase GC bits */ |
| curr->marked = cast_byte(marked | G_SURVIVAL | white); |
| } |
| else { /* all other objects will be old, and so keep their color */ |
| setage(curr, nextage[getage(curr)]); |
| if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) |
| *pfirstold1 = curr; /* first OLD1 object in the list */ |
| } |
| p = &curr->next; /* go to next element */ |
| } |
| } |
| return p; |
| } |
| |
| |
| /* |
| ** Traverse a list making all its elements white and clearing their |
| ** age. In incremental mode, all objects are 'new' all the time, |
| ** except for fixed strings (which are always old). |
| */ |
| static void whitelist (global_State *g, GCObject *p) { |
| int white = luaC_white(g); |
| for (; p != NULL; p = p->next) |
| p->marked = cast_byte((p->marked & ~maskgcbits) | white); |
| } |
| |
| |
| /* |
| ** Correct a list of gray objects. Return pointer to where rest of the |
| ** list should be linked. |
| ** Because this correction is done after sweeping, young objects might |
| ** be turned white and still be in the list. They are only removed. |
| ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; |
| ** Non-white threads also remain on the list; 'TOUCHED2' objects become |
| ** regular old; they and anything else are removed from the list. |
| */ |
| static GCObject **correctgraylist (GCObject **p) { |
| GCObject *curr; |
| while ((curr = *p) != NULL) { |
| GCObject **next = getgclist(curr); |
| if (iswhite(curr)) |
| goto remove; /* remove all white objects */ |
| else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ |
| lua_assert(isgray(curr)); |
| nw2black(curr); /* make it black, for next barrier */ |
| changeage(curr, G_TOUCHED1, G_TOUCHED2); |
| goto remain; /* keep it in the list and go to next element */ |
| } |
| else if (curr->tt == LUA_VTHREAD) { |
| lua_assert(isgray(curr)); |
| goto remain; /* keep non-white threads on the list */ |
| } |
| else { /* everything else is removed */ |
| lua_assert(isold(curr)); /* young objects should be white here */ |
| if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ |
| changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ |
| nw2black(curr); /* make object black (to be removed) */ |
| goto remove; |
| } |
| remove: *p = *next; continue; |
| remain: p = next; continue; |
| } |
| return p; |
| } |
| |
| |
| /* |
| ** Correct all gray lists, coalescing them into 'grayagain'. |
| */ |
| static void correctgraylists (global_State *g) { |
| GCObject **list = correctgraylist(&g->grayagain); |
| *list = g->weak; g->weak = NULL; |
| list = correctgraylist(list); |
| *list = g->allweak; g->allweak = NULL; |
| list = correctgraylist(list); |
| *list = g->ephemeron; g->ephemeron = NULL; |
| correctgraylist(list); |
| } |
| |
| |
| /* |
| ** Mark black 'OLD1' objects when starting a new young collection. |
| ** Gray objects are already in some gray list, and so will be visited |
| ** in the atomic step. |
| */ |
| static void markold (global_State *g, GCObject *from, GCObject *to) { |
| GCObject *p; |
| for (p = from; p != to; p = p->next) { |
| if (getage(p) == G_OLD1) { |
| lua_assert(!iswhite(p)); |
| changeage(p, G_OLD1, G_OLD); /* now they are old */ |
| if (isblack(p)) |
| reallymarkobject(g, p); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Finish a young-generation collection. |
| */ |
| static void finishgencycle (lua_State *L, global_State *g) { |
| correctgraylists(g); |
| checkSizes(L, g); |
| g->gcstate = GCSpropagate; /* skip restart */ |
| if (!g->gcemergency) |
| callallpendingfinalizers(L); |
| } |
| |
| |
| /* |
| ** Does a young collection. First, mark 'OLD1' objects. Then does the |
| ** atomic step. Then, sweep all lists and advance pointers. Finally, |
| ** finish the collection. |
| */ |
| static void youngcollection (lua_State *L, global_State *g) { |
| GCObject **psurvival; /* to point to first non-dead survival object */ |
| GCObject *dummy; /* dummy out parameter to 'sweepgen' */ |
| lua_assert(g->gcstate == GCSpropagate); |
| if (g->firstold1) { /* are there regular OLD1 objects? */ |
| markold(g, g->firstold1, g->reallyold); /* mark them */ |
| g->firstold1 = NULL; /* no more OLD1 objects (for now) */ |
| } |
| markold(g, g->finobj, g->finobjrold); |
| markold(g, g->tobefnz, NULL); |
| atomic(L); |
| |
| /* sweep nursery and get a pointer to its last live element */ |
| g->gcstate = GCSswpallgc; |
| psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); |
| /* sweep 'survival' */ |
| sweepgen(L, g, psurvival, g->old1, &g->firstold1); |
| g->reallyold = g->old1; |
| g->old1 = *psurvival; /* 'survival' survivals are old now */ |
| g->survival = g->allgc; /* all news are survivals */ |
| |
| /* repeat for 'finobj' lists */ |
| dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ |
| psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); |
| /* sweep 'survival' */ |
| sweepgen(L, g, psurvival, g->finobjold1, &dummy); |
| g->finobjrold = g->finobjold1; |
| g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ |
| g->finobjsur = g->finobj; /* all news are survivals */ |
| |
| sweepgen(L, g, &g->tobefnz, NULL, &dummy); |
| finishgencycle(L, g); |
| } |
| |
| |
| /* |
| ** Clears all gray lists, sweeps objects, and prepare sublists to enter |
| ** generational mode. The sweeps remove dead objects and turn all |
| ** surviving objects to old. Threads go back to 'grayagain'; everything |
| ** else is turned black (not in any gray list). |
| */ |
| static void atomic2gen (lua_State *L, global_State *g) { |
| cleargraylists(g); |
| /* sweep all elements making them old */ |
| g->gcstate = GCSswpallgc; |
| sweep2old(L, &g->allgc); |
| /* everything alive now is old */ |
| g->reallyold = g->old1 = g->survival = g->allgc; |
| g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ |
| |
| /* repeat for 'finobj' lists */ |
| sweep2old(L, &g->finobj); |
| g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; |
| |
| sweep2old(L, &g->tobefnz); |
| |
| g->gckind = KGC_GEN; |
| g->lastatomic = 0; |
| g->GCestimate = gettotalbytes(g); /* base for memory control */ |
| finishgencycle(L, g); |
| } |
| |
| |
| /* |
| ** Enter generational mode. Must go until the end of an atomic cycle |
| ** to ensure that all objects are correctly marked and weak tables |
| ** are cleared. Then, turn all objects into old and finishes the |
| ** collection. |
| */ |
| static lu_mem entergen (lua_State *L, global_State *g) { |
| lu_mem numobjs; |
| luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ |
| luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
| numobjs = atomic(L); /* propagates all and then do the atomic stuff */ |
| atomic2gen(L, g); |
| return numobjs; |
| } |
| |
| |
| /* |
| ** Enter incremental mode. Turn all objects white, make all |
| ** intermediate lists point to NULL (to avoid invalid pointers), |
| ** and go to the pause state. |
| */ |
| static void enterinc (global_State *g) { |
| whitelist(g, g->allgc); |
| g->reallyold = g->old1 = g->survival = NULL; |
| whitelist(g, g->finobj); |
| whitelist(g, g->tobefnz); |
| g->finobjrold = g->finobjold1 = g->finobjsur = NULL; |
| g->gcstate = GCSpause; |
| g->gckind = KGC_INC; |
| g->lastatomic = 0; |
| } |
| |
| |
| /* |
| ** Change collector mode to 'newmode'. |
| */ |
| void luaC_changemode (lua_State *L, int newmode) { |
| global_State *g = G(L); |
| if (newmode != g->gckind) { |
| if (newmode == KGC_GEN) /* entering generational mode? */ |
| entergen(L, g); |
| else |
| enterinc(g); /* entering incremental mode */ |
| } |
| g->lastatomic = 0; |
| } |
| |
| |
| /* |
| ** Does a full collection in generational mode. |
| */ |
| static lu_mem fullgen (lua_State *L, global_State *g) { |
| enterinc(g); |
| return entergen(L, g); |
| } |
| |
| |
| /* |
| ** Set debt for the next minor collection, which will happen when |
| ** memory grows 'genminormul'%. |
| */ |
| static void setminordebt (global_State *g) { |
| luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); |
| } |
| |
| |
| /* |
| ** Does a major collection after last collection was a "bad collection". |
| ** |
| ** When the program is building a big structure, it allocates lots of |
| ** memory but generates very little garbage. In those scenarios, |
| ** the generational mode just wastes time doing small collections, and |
| ** major collections are frequently what we call a "bad collection", a |
| ** collection that frees too few objects. To avoid the cost of switching |
| ** between generational mode and the incremental mode needed for full |
| ** (major) collections, the collector tries to stay in incremental mode |
| ** after a bad collection, and to switch back to generational mode only |
| ** after a "good" collection (one that traverses less than 9/8 objects |
| ** of the previous one). |
| ** The collector must choose whether to stay in incremental mode or to |
| ** switch back to generational mode before sweeping. At this point, it |
| ** does not know the real memory in use, so it cannot use memory to |
| ** decide whether to return to generational mode. Instead, it uses the |
| ** number of objects traversed (returned by 'atomic') as a proxy. The |
| ** field 'g->lastatomic' keeps this count from the last collection. |
| ** ('g->lastatomic != 0' also means that the last collection was bad.) |
| */ |
| static void stepgenfull (lua_State *L, global_State *g) { |
| lu_mem newatomic; /* count of traversed objects */ |
| lu_mem lastatomic = g->lastatomic; /* count from last collection */ |
| if (g->gckind == KGC_GEN) /* still in generational mode? */ |
| enterinc(g); /* enter incremental mode */ |
| luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
| newatomic = atomic(L); /* mark everybody */ |
| if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ |
| atomic2gen(L, g); /* return to generational mode */ |
| setminordebt(g); |
| } |
| else { /* another bad collection; stay in incremental mode */ |
| g->GCestimate = gettotalbytes(g); /* first estimate */; |
| entersweep(L); |
| luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
| setpause(g); |
| g->lastatomic = newatomic; |
| } |
| } |
| |
| |
| /* |
| ** Does a generational "step". |
| ** Usually, this means doing a minor collection and setting the debt to |
| ** make another collection when memory grows 'genminormul'% larger. |
| ** |
| ** However, there are exceptions. If memory grows 'genmajormul'% |
| ** larger than it was at the end of the last major collection (kept |
| ** in 'g->GCestimate'), the function does a major collection. At the |
| ** end, it checks whether the major collection was able to free a |
| ** decent amount of memory (at least half the growth in memory since |
| ** previous major collection). If so, the collector keeps its state, |
| ** and the next collection will probably be minor again. Otherwise, |
| ** we have what we call a "bad collection". In that case, set the field |
| ** 'g->lastatomic' to signal that fact, so that the next collection will |
| ** go to 'stepgenfull'. |
| ** |
| ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; |
| ** in that case, do a minor collection. |
| */ |
| static void genstep (lua_State *L, global_State *g) { |
| if (g->lastatomic != 0) /* last collection was a bad one? */ |
| stepgenfull(L, g); /* do a full step */ |
| else { |
| lu_mem majorbase = g->GCestimate; /* memory after last major collection */ |
| lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); |
| if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { |
| lu_mem numobjs = fullgen(L, g); /* do a major collection */ |
| if (gettotalbytes(g) < majorbase + (majorinc / 2)) { |
| /* collected at least half of memory growth since last major |
| collection; keep doing minor collections */ |
| setminordebt(g); |
| } |
| else { /* bad collection */ |
| g->lastatomic = numobjs; /* signal that last collection was bad */ |
| setpause(g); /* do a long wait for next (major) collection */ |
| } |
| } |
| else { /* regular case; do a minor collection */ |
| youngcollection(L, g); |
| setminordebt(g); |
| g->GCestimate = majorbase; /* preserve base value */ |
| } |
| } |
| lua_assert(isdecGCmodegen(g)); |
| } |
| |
| /* }====================================================== */ |
| |
| |
| /* |
| ** {====================================================== |
| ** GC control |
| ** ======================================================= |
| */ |
| |
| |
| /* |
| ** Set the "time" to wait before starting a new GC cycle; cycle will |
| ** start when memory use hits the threshold of ('estimate' * pause / |
| ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, |
| ** because Lua cannot even start with less than PAUSEADJ bytes). |
| */ |
| static void setpause (global_State *g) { |
| l_mem threshold, debt; |
| int pause = getgcparam(g->gcpause); |
| l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ |
| lua_assert(estimate > 0); |
| threshold = (pause < MAX_LMEM / estimate) /* overflow? */ |
| ? estimate * pause /* no overflow */ |
| : MAX_LMEM; /* overflow; truncate to maximum */ |
| debt = gettotalbytes(g) - threshold; |
| if (debt > 0) debt = 0; |
| luaE_setdebt(g, debt); |
| } |
| |
| |
| /* |
| ** Enter first sweep phase. |
| ** The call to 'sweeptolive' makes the pointer point to an object |
| ** inside the list (instead of to the header), so that the real sweep do |
| ** not need to skip objects created between "now" and the start of the |
| ** real sweep. |
| */ |
| static void entersweep (lua_State *L) { |
| global_State *g = G(L); |
| g->gcstate = GCSswpallgc; |
| lua_assert(g->sweepgc == NULL); |
| g->sweepgc = sweeptolive(L, &g->allgc); |
| } |
| |
| |
| /* |
| ** Delete all objects in list 'p' until (but not including) object |
| ** 'limit'. |
| */ |
| static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { |
| while (p != limit) { |
| GCObject *next = p->next; |
| freeobj(L, p); |
| p = next; |
| } |
| } |
| |
| |
| /* |
| ** Call all finalizers of the objects in the given Lua state, and |
| ** then free all objects, except for the main thread. |
| */ |
| void luaC_freeallobjects (lua_State *L) { |
| global_State *g = G(L); |
| luaC_changemode(L, KGC_INC); |
| separatetobefnz(g, 1); /* separate all objects with finalizers */ |
| lua_assert(g->finobj == NULL); |
| callallpendingfinalizers(L); |
| deletelist(L, g->allgc, obj2gco(g->mainthread)); |
| deletelist(L, g->finobj, NULL); |
| deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ |
| lua_assert(g->strt.nuse == 0); |
| } |
| |
| |
| static lu_mem atomic (lua_State *L) { |
| global_State *g = G(L); |
| lu_mem work = 0; |
| GCObject *origweak, *origall; |
| GCObject *grayagain = g->grayagain; /* save original list */ |
| g->grayagain = NULL; |
| lua_assert(g->ephemeron == NULL && g->weak == NULL); |
| lua_assert(!iswhite(g->mainthread)); |
| g->gcstate = GCSatomic; |
| markobject(g, L); /* mark running thread */ |
| /* registry and global metatables may be changed by API */ |
| markvalue(g, &g->l_registry); |
| markmt(g); /* mark global metatables */ |
| work += propagateall(g); /* empties 'gray' list */ |
| /* remark occasional upvalues of (maybe) dead threads */ |
| work += remarkupvals(g); |
| work += propagateall(g); /* propagate changes */ |
| g->gray = grayagain; |
| work += propagateall(g); /* traverse 'grayagain' list */ |
| convergeephemerons(g); |
| /* at this point, all strongly accessible objects are marked. */ |
| /* Clear values from weak tables, before checking finalizers */ |
| clearbyvalues(g, g->weak, NULL); |
| clearbyvalues(g, g->allweak, NULL); |
| origweak = g->weak; origall = g->allweak; |
| separatetobefnz(g, 0); /* separate objects to be finalized */ |
| work += markbeingfnz(g); /* mark objects that will be finalized */ |
| work += propagateall(g); /* remark, to propagate 'resurrection' */ |
| convergeephemerons(g); |
| /* at this point, all resurrected objects are marked. */ |
| /* remove dead objects from weak tables */ |
| clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ |
| clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ |
| /* clear values from resurrected weak tables */ |
| clearbyvalues(g, g->weak, origweak); |
| clearbyvalues(g, g->allweak, origall); |
| luaS_clearcache(g); |
| g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ |
| lua_assert(g->gray == NULL); |
| return work; /* estimate of slots marked by 'atomic' */ |
| } |
| |
| |
| static int sweepstep (lua_State *L, global_State *g, |
| int nextstate, GCObject **nextlist) { |
| if (g->sweepgc) { |
| l_mem olddebt = g->GCdebt; |
| int count; |
| g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); |
| g->GCestimate += g->GCdebt - olddebt; /* update estimate */ |
| return count; |
| } |
| else { /* enter next state */ |
| g->gcstate = nextstate; |
| g->sweepgc = nextlist; |
| return 0; /* no work done */ |
| } |
| } |
| |
| |
| static lu_mem singlestep (lua_State *L) { |
| global_State *g = G(L); |
| switch (g->gcstate) { |
| case GCSpause: { |
| restartcollection(g); |
| g->gcstate = GCSpropagate; |
| return 1; |
| } |
| case GCSpropagate: { |
| if (g->gray == NULL) { /* no more gray objects? */ |
| g->gcstate = GCSenteratomic; /* finish propagate phase */ |
| return 0; |
| } |
| else |
| return propagatemark(g); /* traverse one gray object */ |
| } |
| case GCSenteratomic: { |
| lu_mem work = atomic(L); /* work is what was traversed by 'atomic' */ |
| entersweep(L); |
| g->GCestimate = gettotalbytes(g); /* first estimate */; |
| return work; |
| } |
| case GCSswpallgc: { /* sweep "regular" objects */ |
| return sweepstep(L, g, GCSswpfinobj, &g->finobj); |
| } |
| case GCSswpfinobj: { /* sweep objects with finalizers */ |
| return sweepstep(L, g, GCSswptobefnz, &g->tobefnz); |
| } |
| case GCSswptobefnz: { /* sweep objects to be finalized */ |
| return sweepstep(L, g, GCSswpend, NULL); |
| } |
| case GCSswpend: { /* finish sweeps */ |
| checkSizes(L, g); |
| g->gcstate = GCScallfin; |
| return 0; |
| } |
| case GCScallfin: { /* call remaining finalizers */ |
| if (g->tobefnz && !g->gcemergency) { |
| int n = runafewfinalizers(L, GCFINMAX); |
| return n * GCFINALIZECOST; |
| } |
| else { /* emergency mode or no more finalizers */ |
| g->gcstate = GCSpause; /* finish collection */ |
| return 0; |
| } |
| } |
| default: lua_assert(0); return 0; |
| } |
| } |
| |
| |
| /* |
| ** advances the garbage collector until it reaches a state allowed |
| ** by 'statemask' |
| */ |
| void luaC_runtilstate (lua_State *L, int statesmask) { |
| global_State *g = G(L); |
| while (!testbit(statesmask, g->gcstate)) |
| singlestep(L); |
| } |
| |
| |
| /* |
| ** Performs a basic incremental step. The debt and step size are |
| ** converted from bytes to "units of work"; then the function loops |
| ** running single steps until adding that many units of work or |
| ** finishing a cycle (pause state). Finally, it sets the debt that |
| ** controls when next step will be performed. |
| */ |
| static void incstep (lua_State *L, global_State *g) { |
| int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ |
| l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; |
| l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) |
| ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul |
| : MAX_LMEM; /* overflow; keep maximum value */ |
| do { /* repeat until pause or enough "credit" (negative debt) */ |
| lu_mem work = singlestep(L); /* perform one single step */ |
| debt -= work; |
| } while (debt > -stepsize && g->gcstate != GCSpause); |
| if (g->gcstate == GCSpause) |
| setpause(g); /* pause until next cycle */ |
| else { |
| debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ |
| luaE_setdebt(g, debt); |
| } |
| } |
| |
| /* |
| ** performs a basic GC step if collector is running |
| */ |
| void luaC_step (lua_State *L) { |
| global_State *g = G(L); |
| lua_assert(!g->gcemergency); |
| if (g->gcrunning) { /* running? */ |
| if(isdecGCmodegen(g)) |
| genstep(L, g); |
| else |
| incstep(L, g); |
| } |
| } |
| |
| |
| /* |
| ** Perform a full collection in incremental mode. |
| ** Before running the collection, check 'keepinvariant'; if it is true, |
| ** there may be some objects marked as black, so the collector has |
| ** to sweep all objects to turn them back to white (as white has not |
| ** changed, nothing will be collected). |
| */ |
| static void fullinc (lua_State *L, global_State *g) { |
| if (keepinvariant(g)) /* black objects? */ |
| entersweep(L); /* sweep everything to turn them back to white */ |
| /* finish any pending sweep phase to start a new cycle */ |
| luaC_runtilstate(L, bitmask(GCSpause)); |
| luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ |
| /* estimate must be correct after a full GC cycle */ |
| lua_assert(g->GCestimate == gettotalbytes(g)); |
| luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
| setpause(g); |
| } |
| |
| |
| /* |
| ** Performs a full GC cycle; if 'isemergency', set a flag to avoid |
| ** some operations which could change the interpreter state in some |
| ** unexpected ways (running finalizers and shrinking some structures). |
| */ |
| void luaC_fullgc (lua_State *L, int isemergency) { |
| global_State *g = G(L); |
| lua_assert(!g->gcemergency); |
| g->gcemergency = isemergency; /* set flag */ |
| if (g->gckind == KGC_INC) |
| fullinc(L, g); |
| else |
| fullgen(L, g); |
| g->gcemergency = 0; |
| } |
| |
| /* }====================================================== */ |
| |
| |