| /* |
| ** $Id: ltable.c $ |
| ** Lua tables (hash) |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define ltable_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| |
| /* |
| ** Implementation of tables (aka arrays, objects, or hash tables). |
| ** Tables keep its elements in two parts: an array part and a hash part. |
| ** Non-negative integer keys are all candidates to be kept in the array |
| ** part. The actual size of the array is the largest 'n' such that |
| ** more than half the slots between 1 and n are in use. |
| ** Hash uses a mix of chained scatter table with Brent's variation. |
| ** A main invariant of these tables is that, if an element is not |
| ** in its main position (i.e. the 'original' position that its hash gives |
| ** to it), then the colliding element is in its own main position. |
| ** Hence even when the load factor reaches 100%, performance remains good. |
| */ |
| |
| #include <math.h> |
| #include <limits.h> |
| |
| #include "lua.h" |
| |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lgc.h" |
| #include "lmem.h" |
| #include "lobject.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "lvm.h" |
| |
| |
| /* |
| ** MAXABITS is the largest integer such that MAXASIZE fits in an |
| ** unsigned int. |
| */ |
| #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
| |
| |
| /* |
| ** MAXASIZE is the maximum size of the array part. It is the minimum |
| ** between 2^MAXABITS and the maximum size that, measured in bytes, |
| ** fits in a 'size_t'. |
| */ |
| #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) |
| |
| /* |
| ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a |
| ** signed int. |
| */ |
| #define MAXHBITS (MAXABITS - 1) |
| |
| |
| /* |
| ** MAXHSIZE is the maximum size of the hash part. It is the minimum |
| ** between 2^MAXHBITS and the maximum size such that, measured in bytes, |
| ** it fits in a 'size_t'. |
| */ |
| #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) |
| |
| |
| #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
| |
| #define hashstr(t,str) hashpow2(t, (str)->hash) |
| #define hashboolean(t,p) hashpow2(t, p) |
| #define hashint(t,i) hashpow2(t, i) |
| |
| |
| /* |
| ** for some types, it is better to avoid modulus by power of 2, as |
| ** they tend to have many 2 factors. |
| */ |
| #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
| |
| |
| #define hashpointer(t,p) hashmod(t, point2uint(p)) |
| |
| |
| #define dummynode (&dummynode_) |
| |
| static const Node dummynode_ = { |
| {{NULL}, LUA_VEMPTY, /* value's value and type */ |
| LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ |
| }; |
| |
| |
| static const TValue absentkey = {ABSTKEYCONSTANT}; |
| |
| |
| |
| /* |
| ** Hash for floating-point numbers. |
| ** The main computation should be just |
| ** n = frexp(n, &i); return (n * INT_MAX) + i |
| ** but there are some numerical subtleties. |
| ** In a two-complement representation, INT_MAX does not has an exact |
| ** representation as a float, but INT_MIN does; because the absolute |
| ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
| ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
| ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
| ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
| ** INT_MIN. |
| */ |
| #if !defined(l_hashfloat) |
| static int l_hashfloat (lua_Number n) { |
| int i; |
| lua_Integer ni; |
| n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
| if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
| lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
| return 0; |
| } |
| else { /* normal case */ |
| unsigned int u = cast_uint(i) + cast_uint(ni); |
| return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** returns the 'main' position of an element in a table (that is, |
| ** the index of its hash value). The key comes broken (tag in 'ktt' |
| ** and value in 'vkl') so that we can call it on keys inserted into |
| ** nodes. |
| */ |
| static Node *mainposition (const Table *t, int ktt, const Value *kvl) { |
| switch (withvariant(ktt)) { |
| case LUA_VNUMINT: |
| return hashint(t, ivalueraw(*kvl)); |
| case LUA_VNUMFLT: |
| return hashmod(t, l_hashfloat(fltvalueraw(*kvl))); |
| case LUA_VSHRSTR: |
| return hashstr(t, tsvalueraw(*kvl)); |
| case LUA_VLNGSTR: |
| return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl))); |
| case LUA_VFALSE: |
| return hashboolean(t, 0); |
| case LUA_VTRUE: |
| return hashboolean(t, 1); |
| case LUA_VLIGHTUSERDATA: |
| return hashpointer(t, pvalueraw(*kvl)); |
| case LUA_VLCF: |
| return hashpointer(t, fvalueraw(*kvl)); |
| default: |
| return hashpointer(t, gcvalueraw(*kvl)); |
| } |
| } |
| |
| |
| /* |
| ** Returns the main position of an element given as a 'TValue' |
| */ |
| static Node *mainpositionTV (const Table *t, const TValue *key) { |
| return mainposition(t, rawtt(key), valraw(key)); |
| } |
| |
| |
| /* |
| ** Check whether key 'k1' is equal to the key in node 'n2'. |
| ** This equality is raw, so there are no metamethods. Floats |
| ** with integer values have been normalized, so integers cannot |
| ** be equal to floats. It is assumed that 'eqshrstr' is simply |
| ** pointer equality, so that short strings are handled in the |
| ** default case. |
| */ |
| static int equalkey (const TValue *k1, const Node *n2) { |
| if (rawtt(k1) != keytt(n2)) /* not the same variants? */ |
| return 0; /* cannot be same key */ |
| switch (ttypetag(k1)) { |
| case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: |
| return 1; |
| case LUA_VNUMINT: |
| return (ivalue(k1) == keyival(n2)); |
| case LUA_VNUMFLT: |
| return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); |
| case LUA_VLIGHTUSERDATA: |
| return pvalue(k1) == pvalueraw(keyval(n2)); |
| case LUA_VLCF: |
| return fvalue(k1) == fvalueraw(keyval(n2)); |
| case LUA_VLNGSTR: |
| return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); |
| default: |
| return gcvalue(k1) == gcvalueraw(keyval(n2)); |
| } |
| } |
| |
| |
| /* |
| ** True if value of 'alimit' is equal to the real size of the array |
| ** part of table 't'. (Otherwise, the array part must be larger than |
| ** 'alimit'.) |
| */ |
| #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) |
| |
| |
| /* |
| ** Returns the real size of the 'array' array |
| */ |
| LUAI_FUNC unsigned int luaH_realasize (const Table *t) { |
| if (limitequalsasize(t)) |
| return t->alimit; /* this is the size */ |
| else { |
| unsigned int size = t->alimit; |
| /* compute the smallest power of 2 not smaller than 'n' */ |
| size |= (size >> 1); |
| size |= (size >> 2); |
| size |= (size >> 4); |
| size |= (size >> 8); |
| size |= (size >> 16); |
| #if (UINT_MAX >> 30) > 3 |
| size |= (size >> 32); /* unsigned int has more than 32 bits */ |
| #endif |
| size++; |
| lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); |
| return size; |
| } |
| } |
| |
| |
| /* |
| ** Check whether real size of the array is a power of 2. |
| ** (If it is not, 'alimit' cannot be changed to any other value |
| ** without changing the real size.) |
| */ |
| static int ispow2realasize (const Table *t) { |
| return (!isrealasize(t) || ispow2(t->alimit)); |
| } |
| |
| |
| static unsigned int setlimittosize (Table *t) { |
| t->alimit = luaH_realasize(t); |
| setrealasize(t); |
| return t->alimit; |
| } |
| |
| |
| #define limitasasize(t) check_exp(isrealasize(t), t->alimit) |
| |
| |
| |
| /* |
| ** "Generic" get version. (Not that generic: not valid for integers, |
| ** which may be in array part, nor for floats with integral values.) |
| */ |
| static const TValue *getgeneric (Table *t, const TValue *key) { |
| Node *n = mainpositionTV(t, key); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (equalkey(key, n)) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) |
| return &absentkey; /* not found */ |
| n += nx; |
| } |
| } |
| } |
| |
| |
| /* |
| ** returns the index for 'k' if 'k' is an appropriate key to live in |
| ** the array part of a table, 0 otherwise. |
| */ |
| static unsigned int arrayindex (lua_Integer k) { |
| if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ |
| return cast_uint(k); /* 'key' is an appropriate array index */ |
| else |
| return 0; |
| } |
| |
| |
| /* |
| ** returns the index of a 'key' for table traversals. First goes all |
| ** elements in the array part, then elements in the hash part. The |
| ** beginning of a traversal is signaled by 0. |
| */ |
| static unsigned int findindex (lua_State *L, Table *t, TValue *key, |
| unsigned int asize) { |
| unsigned int i; |
| if (ttisnil(key)) return 0; /* first iteration */ |
| i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; |
| if (i - 1u < asize) /* is 'key' inside array part? */ |
| return i; /* yes; that's the index */ |
| else { |
| const TValue *n = getgeneric(t, key); |
| if (unlikely(isabstkey(n))) |
| luaG_runerror(L, "invalid key to 'next'"); /* key not found */ |
| i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ |
| /* hash elements are numbered after array ones */ |
| return (i + 1) + asize; |
| } |
| } |
| |
| |
| int luaH_next (lua_State *L, Table *t, StkId key) { |
| unsigned int asize = luaH_realasize(t); |
| unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
| for (; i < asize; i++) { /* try first array part */ |
| if (!isempty(&t->array[i])) { /* a non-empty entry? */ |
| setivalue(s2v(key), i + 1); |
| setobj2s(L, key + 1, &t->array[i]); |
| return 1; |
| } |
| } |
| for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ |
| if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ |
| Node *n = gnode(t, i); |
| getnodekey(L, s2v(key), n); |
| setobj2s(L, key + 1, gval(n)); |
| return 1; |
| } |
| } |
| return 0; /* no more elements */ |
| } |
| |
| |
| static void freehash (lua_State *L, Table *t) { |
| if (!isdummy(t)) |
| luaM_freearray(L, t->node, cast_sizet(sizenode(t))); |
| } |
| |
| |
| /* |
| ** {============================================================= |
| ** Rehash |
| ** ============================================================== |
| */ |
| |
| /* |
| ** Compute the optimal size for the array part of table 't'. 'nums' is a |
| ** "count array" where 'nums[i]' is the number of integers in the table |
| ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
| ** integer keys in the table and leaves with the number of keys that |
| ** will go to the array part; return the optimal size. (The condition |
| ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) |
| */ |
| static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { |
| int i; |
| unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
| unsigned int a = 0; /* number of elements smaller than 2^i */ |
| unsigned int na = 0; /* number of elements to go to array part */ |
| unsigned int optimal = 0; /* optimal size for array part */ |
| /* loop while keys can fill more than half of total size */ |
| for (i = 0, twotoi = 1; |
| twotoi > 0 && *pna > twotoi / 2; |
| i++, twotoi *= 2) { |
| a += nums[i]; |
| if (a > twotoi/2) { /* more than half elements present? */ |
| optimal = twotoi; /* optimal size (till now) */ |
| na = a; /* all elements up to 'optimal' will go to array part */ |
| } |
| } |
| lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
| *pna = na; |
| return optimal; |
| } |
| |
| |
| static int countint (lua_Integer key, unsigned int *nums) { |
| unsigned int k = arrayindex(key); |
| if (k != 0) { /* is 'key' an appropriate array index? */ |
| nums[luaO_ceillog2(k)]++; /* count as such */ |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| /* |
| ** Count keys in array part of table 't': Fill 'nums[i]' with |
| ** number of keys that will go into corresponding slice and return |
| ** total number of non-nil keys. |
| */ |
| static unsigned int numusearray (const Table *t, unsigned int *nums) { |
| int lg; |
| unsigned int ttlg; /* 2^lg */ |
| unsigned int ause = 0; /* summation of 'nums' */ |
| unsigned int i = 1; /* count to traverse all array keys */ |
| unsigned int asize = limitasasize(t); /* real array size */ |
| /* traverse each slice */ |
| for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
| unsigned int lc = 0; /* counter */ |
| unsigned int lim = ttlg; |
| if (lim > asize) { |
| lim = asize; /* adjust upper limit */ |
| if (i > lim) |
| break; /* no more elements to count */ |
| } |
| /* count elements in range (2^(lg - 1), 2^lg] */ |
| for (; i <= lim; i++) { |
| if (!isempty(&t->array[i-1])) |
| lc++; |
| } |
| nums[lg] += lc; |
| ause += lc; |
| } |
| return ause; |
| } |
| |
| |
| static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { |
| int totaluse = 0; /* total number of elements */ |
| int ause = 0; /* elements added to 'nums' (can go to array part) */ |
| int i = sizenode(t); |
| while (i--) { |
| Node *n = &t->node[i]; |
| if (!isempty(gval(n))) { |
| if (keyisinteger(n)) |
| ause += countint(keyival(n), nums); |
| totaluse++; |
| } |
| } |
| *pna += ause; |
| return totaluse; |
| } |
| |
| |
| /* |
| ** Creates an array for the hash part of a table with the given |
| ** size, or reuses the dummy node if size is zero. |
| ** The computation for size overflow is in two steps: the first |
| ** comparison ensures that the shift in the second one does not |
| ** overflow. |
| */ |
| static void setnodevector (lua_State *L, Table *t, unsigned int size) { |
| if (size == 0) { /* no elements to hash part? */ |
| t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
| t->lsizenode = 0; |
| t->lastfree = NULL; /* signal that it is using dummy node */ |
| } |
| else { |
| int i; |
| int lsize = luaO_ceillog2(size); |
| if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) |
| luaG_runerror(L, "table overflow"); |
| size = twoto(lsize); |
| t->node = luaM_newvector(L, size, Node); |
| for (i = 0; i < (int)size; i++) { |
| Node *n = gnode(t, i); |
| gnext(n) = 0; |
| setnilkey(n); |
| setempty(gval(n)); |
| } |
| t->lsizenode = cast_byte(lsize); |
| t->lastfree = gnode(t, size); /* all positions are free */ |
| } |
| } |
| |
| |
| /* |
| ** (Re)insert all elements from the hash part of 'ot' into table 't'. |
| */ |
| static void reinsert (lua_State *L, Table *ot, Table *t) { |
| int j; |
| int size = sizenode(ot); |
| for (j = 0; j < size; j++) { |
| Node *old = gnode(ot, j); |
| if (!isempty(gval(old))) { |
| /* doesn't need barrier/invalidate cache, as entry was |
| already present in the table */ |
| TValue k; |
| getnodekey(L, &k, old); |
| setobjt2t(L, luaH_set(L, t, &k), gval(old)); |
| } |
| } |
| } |
| |
| |
| /* |
| ** Exchange the hash part of 't1' and 't2'. |
| */ |
| static void exchangehashpart (Table *t1, Table *t2) { |
| lu_byte lsizenode = t1->lsizenode; |
| Node *node = t1->node; |
| Node *lastfree = t1->lastfree; |
| t1->lsizenode = t2->lsizenode; |
| t1->node = t2->node; |
| t1->lastfree = t2->lastfree; |
| t2->lsizenode = lsizenode; |
| t2->node = node; |
| t2->lastfree = lastfree; |
| } |
| |
| |
| /* |
| ** Resize table 't' for the new given sizes. Both allocations (for |
| ** the hash part and for the array part) can fail, which creates some |
| ** subtleties. If the first allocation, for the hash part, fails, an |
| ** error is raised and that is it. Otherwise, it copies the elements from |
| ** the shrinking part of the array (if it is shrinking) into the new |
| ** hash. Then it reallocates the array part. If that fails, the table |
| ** is in its original state; the function frees the new hash part and then |
| ** raises the allocation error. Otherwise, it sets the new hash part |
| ** into the table, initializes the new part of the array (if any) with |
| ** nils and reinserts the elements of the old hash back into the new |
| ** parts of the table. |
| */ |
| void luaH_resize (lua_State *L, Table *t, unsigned int newasize, |
| unsigned int nhsize) { |
| unsigned int i; |
| Table newt; /* to keep the new hash part */ |
| unsigned int oldasize = setlimittosize(t); |
| TValue *newarray; |
| /* create new hash part with appropriate size into 'newt' */ |
| setnodevector(L, &newt, nhsize); |
| if (newasize < oldasize) { /* will array shrink? */ |
| t->alimit = newasize; /* pretend array has new size... */ |
| exchangehashpart(t, &newt); /* and new hash */ |
| /* re-insert into the new hash the elements from vanishing slice */ |
| for (i = newasize; i < oldasize; i++) { |
| if (!isempty(&t->array[i])) |
| luaH_setint(L, t, i + 1, &t->array[i]); |
| } |
| t->alimit = oldasize; /* restore current size... */ |
| exchangehashpart(t, &newt); /* and hash (in case of errors) */ |
| } |
| /* allocate new array */ |
| newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); |
| if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ |
| freehash(L, &newt); /* release new hash part */ |
| luaM_error(L); /* raise error (with array unchanged) */ |
| } |
| /* allocation ok; initialize new part of the array */ |
| exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
| t->array = newarray; /* set new array part */ |
| t->alimit = newasize; |
| for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ |
| setempty(&t->array[i]); |
| /* re-insert elements from old hash part into new parts */ |
| reinsert(L, &newt, t); /* 'newt' now has the old hash */ |
| freehash(L, &newt); /* free old hash part */ |
| } |
| |
| |
| void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
| int nsize = allocsizenode(t); |
| luaH_resize(L, t, nasize, nsize); |
| } |
| |
| /* |
| ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
| */ |
| static void rehash (lua_State *L, Table *t, const TValue *ek) { |
| unsigned int asize; /* optimal size for array part */ |
| unsigned int na; /* number of keys in the array part */ |
| unsigned int nums[MAXABITS + 1]; |
| int i; |
| int totaluse; |
| for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
| setlimittosize(t); |
| na = numusearray(t, nums); /* count keys in array part */ |
| totaluse = na; /* all those keys are integer keys */ |
| totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
| /* count extra key */ |
| if (ttisinteger(ek)) |
| na += countint(ivalue(ek), nums); |
| totaluse++; |
| /* compute new size for array part */ |
| asize = computesizes(nums, &na); |
| /* resize the table to new computed sizes */ |
| luaH_resize(L, t, asize, totaluse - na); |
| } |
| |
| |
| |
| /* |
| ** }============================================================= |
| */ |
| |
| |
| Table *luaH_new (lua_State *L) { |
| GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); |
| Table *t = gco2t(o); |
| t->metatable = NULL; |
| t->flags = cast_byte(maskflags); /* table has no metamethod fields */ |
| t->array = NULL; |
| t->alimit = 0; |
| setnodevector(L, t, 0); |
| return t; |
| } |
| |
| |
| void luaH_free (lua_State *L, Table *t) { |
| freehash(L, t); |
| luaM_freearray(L, t->array, luaH_realasize(t)); |
| luaM_free(L, t); |
| } |
| |
| |
| static Node *getfreepos (Table *t) { |
| if (!isdummy(t)) { |
| while (t->lastfree > t->node) { |
| t->lastfree--; |
| if (keyisnil(t->lastfree)) |
| return t->lastfree; |
| } |
| } |
| return NULL; /* could not find a free place */ |
| } |
| |
| |
| |
| /* |
| ** inserts a new key into a hash table; first, check whether key's main |
| ** position is free. If not, check whether colliding node is in its main |
| ** position or not: if it is not, move colliding node to an empty place and |
| ** put new key in its main position; otherwise (colliding node is in its main |
| ** position), new key goes to an empty position. |
| */ |
| TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
| Node *mp; |
| TValue aux; |
| if (unlikely(ttisnil(key))) |
| luaG_runerror(L, "table index is nil"); |
| else if (ttisfloat(key)) { |
| lua_Number f = fltvalue(key); |
| lua_Integer k; |
| if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ |
| setivalue(&aux, k); |
| key = &aux; /* insert it as an integer */ |
| } |
| else if (unlikely(luai_numisnan(f))) |
| luaG_runerror(L, "table index is NaN"); |
| } |
| mp = mainpositionTV(t, key); |
| if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
| Node *othern; |
| Node *f = getfreepos(t); /* get a free place */ |
| if (f == NULL) { /* cannot find a free place? */ |
| rehash(L, t, key); /* grow table */ |
| /* whatever called 'newkey' takes care of TM cache */ |
| return luaH_set(L, t, key); /* insert key into grown table */ |
| } |
| lua_assert(!isdummy(t)); |
| othern = mainposition(t, keytt(mp), &keyval(mp)); |
| if (othern != mp) { /* is colliding node out of its main position? */ |
| /* yes; move colliding node into free position */ |
| while (othern + gnext(othern) != mp) /* find previous */ |
| othern += gnext(othern); |
| gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
| *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
| if (gnext(mp) != 0) { |
| gnext(f) += cast_int(mp - f); /* correct 'next' */ |
| gnext(mp) = 0; /* now 'mp' is free */ |
| } |
| setempty(gval(mp)); |
| } |
| else { /* colliding node is in its own main position */ |
| /* new node will go into free position */ |
| if (gnext(mp) != 0) |
| gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
| else lua_assert(gnext(f) == 0); |
| gnext(mp) = cast_int(f - mp); |
| mp = f; |
| } |
| } |
| setnodekey(L, mp, key); |
| luaC_barrierback(L, obj2gco(t), key); |
| lua_assert(isempty(gval(mp))); |
| return gval(mp); |
| } |
| |
| |
| /* |
| ** Search function for integers. If integer is inside 'alimit', get it |
| ** directly from the array part. Otherwise, if 'alimit' is not equal to |
| ** the real size of the array, key still can be in the array part. In |
| ** this case, try to avoid a call to 'luaH_realasize' when key is just |
| ** one more than the limit (so that it can be incremented without |
| ** changing the real size of the array). |
| */ |
| const TValue *luaH_getint (Table *t, lua_Integer key) { |
| if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ |
| return &t->array[key - 1]; |
| else if (!limitequalsasize(t) && /* key still may be in the array part? */ |
| (l_castS2U(key) == t->alimit + 1 || |
| l_castS2U(key) - 1u < luaH_realasize(t))) { |
| t->alimit = cast_uint(key); /* probably '#t' is here now */ |
| return &t->array[key - 1]; |
| } |
| else { |
| Node *n = hashint(t, key); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (keyisinteger(n) && keyival(n) == key) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) break; |
| n += nx; |
| } |
| } |
| return &absentkey; |
| } |
| } |
| |
| |
| /* |
| ** search function for short strings |
| */ |
| const TValue *luaH_getshortstr (Table *t, TString *key) { |
| Node *n = hashstr(t, key); |
| lua_assert(key->tt == LUA_VSHRSTR); |
| for (;;) { /* check whether 'key' is somewhere in the chain */ |
| if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) |
| return gval(n); /* that's it */ |
| else { |
| int nx = gnext(n); |
| if (nx == 0) |
| return &absentkey; /* not found */ |
| n += nx; |
| } |
| } |
| } |
| |
| |
| const TValue *luaH_getstr (Table *t, TString *key) { |
| if (key->tt == LUA_VSHRSTR) |
| return luaH_getshortstr(t, key); |
| else { /* for long strings, use generic case */ |
| TValue ko; |
| setsvalue(cast(lua_State *, NULL), &ko, key); |
| return getgeneric(t, &ko); |
| } |
| } |
| |
| |
| /* |
| ** main search function |
| */ |
| const TValue *luaH_get (Table *t, const TValue *key) { |
| switch (ttypetag(key)) { |
| case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); |
| case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); |
| case LUA_VNIL: return &absentkey; |
| case LUA_VNUMFLT: { |
| lua_Integer k; |
| if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
| return luaH_getint(t, k); /* use specialized version */ |
| /* else... */ |
| } /* FALLTHROUGH */ |
| default: |
| return getgeneric(t, key); |
| } |
| } |
| |
| |
| /* |
| ** beware: when using this function you probably need to check a GC |
| ** barrier and invalidate the TM cache. |
| */ |
| TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
| const TValue *p = luaH_get(t, key); |
| if (!isabstkey(p)) |
| return cast(TValue *, p); |
| else return luaH_newkey(L, t, key); |
| } |
| |
| |
| void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
| const TValue *p = luaH_getint(t, key); |
| TValue *cell; |
| if (!isabstkey(p)) |
| cell = cast(TValue *, p); |
| else { |
| TValue k; |
| setivalue(&k, key); |
| cell = luaH_newkey(L, t, &k); |
| } |
| setobj2t(L, cell, value); |
| } |
| |
| |
| /* |
| ** Try to find a boundary in the hash part of table 't'. From the |
| ** caller, we know that 'j' is zero or present and that 'j + 1' is |
| ** present. We want to find a larger key that is absent from the |
| ** table, so that we can do a binary search between the two keys to |
| ** find a boundary. We keep doubling 'j' until we get an absent index. |
| ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is |
| ** absent, we are ready for the binary search. ('j', being max integer, |
| ** is larger or equal to 'i', but it cannot be equal because it is |
| ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a |
| ** boundary. ('j + 1' cannot be a present integer key because it is |
| ** not a valid integer in Lua.) |
| */ |
| static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { |
| lua_Unsigned i; |
| if (j == 0) j++; /* the caller ensures 'j + 1' is present */ |
| do { |
| i = j; /* 'i' is a present index */ |
| if (j <= l_castS2U(LUA_MAXINTEGER) / 2) |
| j *= 2; |
| else { |
| j = LUA_MAXINTEGER; |
| if (isempty(luaH_getint(t, j))) /* t[j] not present? */ |
| break; /* 'j' now is an absent index */ |
| else /* weird case */ |
| return j; /* well, max integer is a boundary... */ |
| } |
| } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ |
| /* i < j && t[i] present && t[j] absent */ |
| while (j - i > 1u) { /* do a binary search between them */ |
| lua_Unsigned m = (i + j) / 2; |
| if (isempty(luaH_getint(t, m))) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| |
| |
| static unsigned int binsearch (const TValue *array, unsigned int i, |
| unsigned int j) { |
| while (j - i > 1u) { /* binary search */ |
| unsigned int m = (i + j) / 2; |
| if (isempty(&array[m - 1])) j = m; |
| else i = m; |
| } |
| return i; |
| } |
| |
| |
| /* |
| ** Try to find a boundary in table 't'. (A 'boundary' is an integer index |
| ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent |
| ** and 'maxinteger' if t[maxinteger] is present.) |
| ** (In the next explanation, we use Lua indices, that is, with base 1. |
| ** The code itself uses base 0 when indexing the array part of the table.) |
| ** The code starts with 'limit = t->alimit', a position in the array |
| ** part that may be a boundary. |
| ** |
| ** (1) If 't[limit]' is empty, there must be a boundary before it. |
| ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' |
| ** is present. If so, it is a boundary. Otherwise, do a binary search |
| ** between 0 and limit to find a boundary. In both cases, try to |
| ** use this boundary as the new 'alimit', as a hint for the next call. |
| ** |
| ** (2) If 't[limit]' is not empty and the array has more elements |
| ** after 'limit', try to find a boundary there. Again, try first |
| ** the special case (which should be quite frequent) where 'limit+1' |
| ** is empty, so that 'limit' is a boundary. Otherwise, check the |
| ** last element of the array part. If it is empty, there must be a |
| ** boundary between the old limit (present) and the last element |
| ** (absent), which is found with a binary search. (This boundary always |
| ** can be a new limit.) |
| ** |
| ** (3) The last case is when there are no elements in the array part |
| ** (limit == 0) or its last element (the new limit) is present. |
| ** In this case, must check the hash part. If there is no hash part |
| ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call |
| ** 'hash_search' to find a boundary in the hash part of the table. |
| ** (In those cases, the boundary is not inside the array part, and |
| ** therefore cannot be used as a new limit.) |
| */ |
| lua_Unsigned luaH_getn (Table *t) { |
| unsigned int limit = t->alimit; |
| if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ |
| /* there must be a boundary before 'limit' */ |
| if (limit >= 2 && !isempty(&t->array[limit - 2])) { |
| /* 'limit - 1' is a boundary; can it be a new limit? */ |
| if (ispow2realasize(t) && !ispow2(limit - 1)) { |
| t->alimit = limit - 1; |
| setnorealasize(t); /* now 'alimit' is not the real size */ |
| } |
| return limit - 1; |
| } |
| else { /* must search for a boundary in [0, limit] */ |
| unsigned int boundary = binsearch(t->array, 0, limit); |
| /* can this boundary represent the real size of the array? */ |
| if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { |
| t->alimit = boundary; /* use it as the new limit */ |
| setnorealasize(t); |
| } |
| return boundary; |
| } |
| } |
| /* 'limit' is zero or present in table */ |
| if (!limitequalsasize(t)) { /* (2)? */ |
| /* 'limit' > 0 and array has more elements after 'limit' */ |
| if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ |
| return limit; /* this is the boundary */ |
| /* else, try last element in the array */ |
| limit = luaH_realasize(t); |
| if (isempty(&t->array[limit - 1])) { /* empty? */ |
| /* there must be a boundary in the array after old limit, |
| and it must be a valid new limit */ |
| unsigned int boundary = binsearch(t->array, t->alimit, limit); |
| t->alimit = boundary; |
| return boundary; |
| } |
| /* else, new limit is present in the table; check the hash part */ |
| } |
| /* (3) 'limit' is the last element and either is zero or present in table */ |
| lua_assert(limit == luaH_realasize(t) && |
| (limit == 0 || !isempty(&t->array[limit - 1]))); |
| if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) |
| return limit; /* 'limit + 1' is absent */ |
| else /* 'limit + 1' is also present */ |
| return hash_search(t, limit); |
| } |
| |
| |
| |
| #if defined(LUA_DEBUG) |
| |
| /* export these functions for the test library */ |
| |
| Node *luaH_mainposition (const Table *t, const TValue *key) { |
| return mainpositionTV(t, key); |
| } |
| |
| int luaH_isdummy (const Table *t) { return isdummy(t); } |
| |
| #endif |