| /* |
| ** $Id: ltablib.c $ |
| ** Library for Table Manipulation |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define ltablib_c |
| #define LUA_LIB |
| |
| #include "lprefix.h" |
| |
| |
| #include <limits.h> |
| #include <stddef.h> |
| #include <string.h> |
| |
| #include "lua.h" |
| |
| #include "lauxlib.h" |
| #include "lualib.h" |
| |
| |
| /* |
| ** Operations that an object must define to mimic a table |
| ** (some functions only need some of them) |
| */ |
| #define TAB_R 1 /* read */ |
| #define TAB_W 2 /* write */ |
| #define TAB_L 4 /* length */ |
| #define TAB_RW (TAB_R | TAB_W) /* read/write */ |
| |
| |
| #define aux_getn(L,n,w) (checktab(L, n, (w) | TAB_L), luaL_len(L, n)) |
| |
| |
| static int checkfield (lua_State *L, const char *key, int n) { |
| lua_pushstring(L, key); |
| return (lua_rawget(L, -n) != LUA_TNIL); |
| } |
| |
| |
| /* |
| ** Check that 'arg' either is a table or can behave like one (that is, |
| ** has a metatable with the required metamethods) |
| */ |
| static void checktab (lua_State *L, int arg, int what) { |
| if (lua_type(L, arg) != LUA_TTABLE) { /* is it not a table? */ |
| int n = 1; /* number of elements to pop */ |
| if (lua_getmetatable(L, arg) && /* must have metatable */ |
| (!(what & TAB_R) || checkfield(L, "__index", ++n)) && |
| (!(what & TAB_W) || checkfield(L, "__newindex", ++n)) && |
| (!(what & TAB_L) || checkfield(L, "__len", ++n))) { |
| lua_pop(L, n); /* pop metatable and tested metamethods */ |
| } |
| else |
| luaL_checktype(L, arg, LUA_TTABLE); /* force an error */ |
| } |
| } |
| |
| |
| static int tinsert (lua_State *L) { |
| lua_Integer e = aux_getn(L, 1, TAB_RW) + 1; /* first empty element */ |
| lua_Integer pos; /* where to insert new element */ |
| switch (lua_gettop(L)) { |
| case 2: { /* called with only 2 arguments */ |
| pos = e; /* insert new element at the end */ |
| break; |
| } |
| case 3: { |
| lua_Integer i; |
| pos = luaL_checkinteger(L, 2); /* 2nd argument is the position */ |
| /* check whether 'pos' is in [1, e] */ |
| luaL_argcheck(L, (lua_Unsigned)pos - 1u < (lua_Unsigned)e, 2, |
| "position out of bounds"); |
| for (i = e; i > pos; i--) { /* move up elements */ |
| lua_geti(L, 1, i - 1); |
| lua_seti(L, 1, i); /* t[i] = t[i - 1] */ |
| } |
| break; |
| } |
| default: { |
| return luaL_error(L, "wrong number of arguments to 'insert'"); |
| } |
| } |
| lua_seti(L, 1, pos); /* t[pos] = v */ |
| return 0; |
| } |
| |
| |
| static int tremove (lua_State *L) { |
| lua_Integer size = aux_getn(L, 1, TAB_RW); |
| lua_Integer pos = luaL_optinteger(L, 2, size); |
| if (pos != size) /* validate 'pos' if given */ |
| /* check whether 'pos' is in [1, size + 1] */ |
| luaL_argcheck(L, (lua_Unsigned)pos - 1u <= (lua_Unsigned)size, 1, |
| "position out of bounds"); |
| lua_geti(L, 1, pos); /* result = t[pos] */ |
| for ( ; pos < size; pos++) { |
| lua_geti(L, 1, pos + 1); |
| lua_seti(L, 1, pos); /* t[pos] = t[pos + 1] */ |
| } |
| lua_pushnil(L); |
| lua_seti(L, 1, pos); /* remove entry t[pos] */ |
| return 1; |
| } |
| |
| |
| /* |
| ** Copy elements (1[f], ..., 1[e]) into (tt[t], tt[t+1], ...). Whenever |
| ** possible, copy in increasing order, which is better for rehashing. |
| ** "possible" means destination after original range, or smaller |
| ** than origin, or copying to another table. |
| */ |
| static int tmove (lua_State *L) { |
| lua_Integer f = luaL_checkinteger(L, 2); |
| lua_Integer e = luaL_checkinteger(L, 3); |
| lua_Integer t = luaL_checkinteger(L, 4); |
| int tt = !lua_isnoneornil(L, 5) ? 5 : 1; /* destination table */ |
| checktab(L, 1, TAB_R); |
| checktab(L, tt, TAB_W); |
| if (e >= f) { /* otherwise, nothing to move */ |
| lua_Integer n, i; |
| luaL_argcheck(L, f > 0 || e < LUA_MAXINTEGER + f, 3, |
| "too many elements to move"); |
| n = e - f + 1; /* number of elements to move */ |
| luaL_argcheck(L, t <= LUA_MAXINTEGER - n + 1, 4, |
| "destination wrap around"); |
| if (t > e || t <= f || (tt != 1 && !lua_compare(L, 1, tt, LUA_OPEQ))) { |
| for (i = 0; i < n; i++) { |
| lua_geti(L, 1, f + i); |
| lua_seti(L, tt, t + i); |
| } |
| } |
| else { |
| for (i = n - 1; i >= 0; i--) { |
| lua_geti(L, 1, f + i); |
| lua_seti(L, tt, t + i); |
| } |
| } |
| } |
| lua_pushvalue(L, tt); /* return destination table */ |
| return 1; |
| } |
| |
| |
| static void addfield (lua_State *L, luaL_Buffer *b, lua_Integer i) { |
| lua_geti(L, 1, i); |
| if (!lua_isstring(L, -1)) |
| luaL_error(L, "invalid value (%s) at index %d in table for 'concat'", |
| luaL_typename(L, -1), i); |
| luaL_addvalue(b); |
| } |
| |
| |
| static int tconcat (lua_State *L) { |
| luaL_Buffer b; |
| lua_Integer last = aux_getn(L, 1, TAB_R); |
| size_t lsep; |
| const char *sep = luaL_optlstring(L, 2, "", &lsep); |
| lua_Integer i = luaL_optinteger(L, 3, 1); |
| last = luaL_optinteger(L, 4, last); |
| luaL_buffinit(L, &b); |
| for (; i < last; i++) { |
| addfield(L, &b, i); |
| luaL_addlstring(&b, sep, lsep); |
| } |
| if (i == last) /* add last value (if interval was not empty) */ |
| addfield(L, &b, i); |
| luaL_pushresult(&b); |
| return 1; |
| } |
| |
| |
| /* |
| ** {====================================================== |
| ** Pack/unpack |
| ** ======================================================= |
| */ |
| |
| static int tpack (lua_State *L) { |
| int i; |
| int n = lua_gettop(L); /* number of elements to pack */ |
| lua_createtable(L, n, 1); /* create result table */ |
| lua_insert(L, 1); /* put it at index 1 */ |
| for (i = n; i >= 1; i--) /* assign elements */ |
| lua_seti(L, 1, i); |
| lua_pushinteger(L, n); |
| lua_setfield(L, 1, "n"); /* t.n = number of elements */ |
| return 1; /* return table */ |
| } |
| |
| |
| static int tunpack (lua_State *L) { |
| lua_Unsigned n; |
| lua_Integer i = luaL_optinteger(L, 2, 1); |
| lua_Integer e = luaL_opt(L, luaL_checkinteger, 3, luaL_len(L, 1)); |
| if (i > e) return 0; /* empty range */ |
| n = (lua_Unsigned)e - i; /* number of elements minus 1 (avoid overflows) */ |
| if (n >= (unsigned int)INT_MAX || !lua_checkstack(L, (int)(++n))) |
| return luaL_error(L, "too many results to unpack"); |
| for (; i < e; i++) { /* push arg[i..e - 1] (to avoid overflows) */ |
| lua_geti(L, 1, i); |
| } |
| lua_geti(L, 1, e); /* push last element */ |
| return (int)n; |
| } |
| |
| /* }====================================================== */ |
| |
| |
| |
| /* |
| ** {====================================================== |
| ** Quicksort |
| ** (based on 'Algorithms in MODULA-3', Robert Sedgewick; |
| ** Addison-Wesley, 1993.) |
| ** ======================================================= |
| */ |
| |
| |
| /* type for array indices */ |
| typedef unsigned int IdxT; |
| |
| |
| /* |
| ** Produce a "random" 'unsigned int' to randomize pivot choice. This |
| ** macro is used only when 'sort' detects a big imbalance in the result |
| ** of a partition. (If you don't want/need this "randomness", ~0 is a |
| ** good choice.) |
| */ |
| #if !defined(l_randomizePivot) /* { */ |
| |
| #include <time.h> |
| |
| /* size of 'e' measured in number of 'unsigned int's */ |
| #define sof(e) (sizeof(e) / sizeof(unsigned int)) |
| |
| /* |
| ** Use 'time' and 'clock' as sources of "randomness". Because we don't |
| ** know the types 'clock_t' and 'time_t', we cannot cast them to |
| ** anything without risking overflows. A safe way to use their values |
| ** is to copy them to an array of a known type and use the array values. |
| */ |
| static unsigned int l_randomizePivot (void) { |
| clock_t c = clock(); |
| time_t t = time(NULL); |
| unsigned int buff[sof(c) + sof(t)]; |
| unsigned int i, rnd = 0; |
| memcpy(buff, &c, sof(c) * sizeof(unsigned int)); |
| memcpy(buff + sof(c), &t, sof(t) * sizeof(unsigned int)); |
| for (i = 0; i < sof(buff); i++) |
| rnd += buff[i]; |
| return rnd; |
| } |
| |
| #endif /* } */ |
| |
| |
| /* arrays larger than 'RANLIMIT' may use randomized pivots */ |
| #define RANLIMIT 100u |
| |
| |
| static void set2 (lua_State *L, IdxT i, IdxT j) { |
| lua_seti(L, 1, i); |
| lua_seti(L, 1, j); |
| } |
| |
| |
| /* |
| ** Return true iff value at stack index 'a' is less than the value at |
| ** index 'b' (according to the order of the sort). |
| */ |
| static int sort_comp (lua_State *L, int a, int b) { |
| if (lua_isnil(L, 2)) /* no function? */ |
| return lua_compare(L, a, b, LUA_OPLT); /* a < b */ |
| else { /* function */ |
| int res; |
| lua_pushvalue(L, 2); /* push function */ |
| lua_pushvalue(L, a-1); /* -1 to compensate function */ |
| lua_pushvalue(L, b-2); /* -2 to compensate function and 'a' */ |
| lua_call(L, 2, 1); /* call function */ |
| res = lua_toboolean(L, -1); /* get result */ |
| lua_pop(L, 1); /* pop result */ |
| return res; |
| } |
| } |
| |
| |
| /* |
| ** Does the partition: Pivot P is at the top of the stack. |
| ** precondition: a[lo] <= P == a[up-1] <= a[up], |
| ** so it only needs to do the partition from lo + 1 to up - 2. |
| ** Pos-condition: a[lo .. i - 1] <= a[i] == P <= a[i + 1 .. up] |
| ** returns 'i'. |
| */ |
| static IdxT partition (lua_State *L, IdxT lo, IdxT up) { |
| IdxT i = lo; /* will be incremented before first use */ |
| IdxT j = up - 1; /* will be decremented before first use */ |
| /* loop invariant: a[lo .. i] <= P <= a[j .. up] */ |
| for (;;) { |
| /* next loop: repeat ++i while a[i] < P */ |
| while ((void)lua_geti(L, 1, ++i), sort_comp(L, -1, -2)) { |
| if (i == up - 1) /* a[i] < P but a[up - 1] == P ?? */ |
| luaL_error(L, "invalid order function for sorting"); |
| lua_pop(L, 1); /* remove a[i] */ |
| } |
| /* after the loop, a[i] >= P and a[lo .. i - 1] < P */ |
| /* next loop: repeat --j while P < a[j] */ |
| while ((void)lua_geti(L, 1, --j), sort_comp(L, -3, -1)) { |
| if (j < i) /* j < i but a[j] > P ?? */ |
| luaL_error(L, "invalid order function for sorting"); |
| lua_pop(L, 1); /* remove a[j] */ |
| } |
| /* after the loop, a[j] <= P and a[j + 1 .. up] >= P */ |
| if (j < i) { /* no elements out of place? */ |
| /* a[lo .. i - 1] <= P <= a[j + 1 .. i .. up] */ |
| lua_pop(L, 1); /* pop a[j] */ |
| /* swap pivot (a[up - 1]) with a[i] to satisfy pos-condition */ |
| set2(L, up - 1, i); |
| return i; |
| } |
| /* otherwise, swap a[i] - a[j] to restore invariant and repeat */ |
| set2(L, i, j); |
| } |
| } |
| |
| |
| /* |
| ** Choose an element in the middle (2nd-3th quarters) of [lo,up] |
| ** "randomized" by 'rnd' |
| */ |
| static IdxT choosePivot (IdxT lo, IdxT up, unsigned int rnd) { |
| IdxT r4 = (up - lo) / 4; /* range/4 */ |
| IdxT p = rnd % (r4 * 2) + (lo + r4); |
| lua_assert(lo + r4 <= p && p <= up - r4); |
| return p; |
| } |
| |
| |
| /* |
| ** Quicksort algorithm (recursive function) |
| */ |
| static void auxsort (lua_State *L, IdxT lo, IdxT up, |
| unsigned int rnd) { |
| while (lo < up) { /* loop for tail recursion */ |
| IdxT p; /* Pivot index */ |
| IdxT n; /* to be used later */ |
| /* sort elements 'lo', 'p', and 'up' */ |
| lua_geti(L, 1, lo); |
| lua_geti(L, 1, up); |
| if (sort_comp(L, -1, -2)) /* a[up] < a[lo]? */ |
| set2(L, lo, up); /* swap a[lo] - a[up] */ |
| else |
| lua_pop(L, 2); /* remove both values */ |
| if (up - lo == 1) /* only 2 elements? */ |
| return; /* already sorted */ |
| if (up - lo < RANLIMIT || rnd == 0) /* small interval or no randomize? */ |
| p = (lo + up)/2; /* middle element is a good pivot */ |
| else /* for larger intervals, it is worth a random pivot */ |
| p = choosePivot(lo, up, rnd); |
| lua_geti(L, 1, p); |
| lua_geti(L, 1, lo); |
| if (sort_comp(L, -2, -1)) /* a[p] < a[lo]? */ |
| set2(L, p, lo); /* swap a[p] - a[lo] */ |
| else { |
| lua_pop(L, 1); /* remove a[lo] */ |
| lua_geti(L, 1, up); |
| if (sort_comp(L, -1, -2)) /* a[up] < a[p]? */ |
| set2(L, p, up); /* swap a[up] - a[p] */ |
| else |
| lua_pop(L, 2); |
| } |
| if (up - lo == 2) /* only 3 elements? */ |
| return; /* already sorted */ |
| lua_geti(L, 1, p); /* get middle element (Pivot) */ |
| lua_pushvalue(L, -1); /* push Pivot */ |
| lua_geti(L, 1, up - 1); /* push a[up - 1] */ |
| set2(L, p, up - 1); /* swap Pivot (a[p]) with a[up - 1] */ |
| p = partition(L, lo, up); |
| /* a[lo .. p - 1] <= a[p] == P <= a[p + 1 .. up] */ |
| if (p - lo < up - p) { /* lower interval is smaller? */ |
| auxsort(L, lo, p - 1, rnd); /* call recursively for lower interval */ |
| n = p - lo; /* size of smaller interval */ |
| lo = p + 1; /* tail call for [p + 1 .. up] (upper interval) */ |
| } |
| else { |
| auxsort(L, p + 1, up, rnd); /* call recursively for upper interval */ |
| n = up - p; /* size of smaller interval */ |
| up = p - 1; /* tail call for [lo .. p - 1] (lower interval) */ |
| } |
| if ((up - lo) / 128 > n) /* partition too imbalanced? */ |
| rnd = l_randomizePivot(); /* try a new randomization */ |
| } /* tail call auxsort(L, lo, up, rnd) */ |
| } |
| |
| |
| static int sort (lua_State *L) { |
| lua_Integer n = aux_getn(L, 1, TAB_RW); |
| if (n > 1) { /* non-trivial interval? */ |
| luaL_argcheck(L, n < INT_MAX, 1, "array too big"); |
| if (!lua_isnoneornil(L, 2)) /* is there a 2nd argument? */ |
| luaL_checktype(L, 2, LUA_TFUNCTION); /* must be a function */ |
| lua_settop(L, 2); /* make sure there are two arguments */ |
| auxsort(L, 1, (IdxT)n, 0); |
| } |
| return 0; |
| } |
| |
| /* }====================================================== */ |
| |
| |
| static const luaL_Reg tab_funcs[] = { |
| {"concat", tconcat}, |
| {"insert", tinsert}, |
| {"pack", tpack}, |
| {"unpack", tunpack}, |
| {"remove", tremove}, |
| {"move", tmove}, |
| {"sort", sort}, |
| {NULL, NULL} |
| }; |
| |
| |
| LUAMOD_API int luaopen_table (lua_State *L) { |
| luaL_newlib(L, tab_funcs); |
| return 1; |
| } |
| |