| /* |
| ** $Id: lvm.c $ |
| ** Lua virtual machine |
| ** See Copyright Notice in lua.h |
| */ |
| |
| #define lvm_c |
| #define LUA_CORE |
| |
| #include "lprefix.h" |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "lua.h" |
| |
| #include "ldebug.h" |
| #include "ldo.h" |
| #include "lfunc.h" |
| #include "lgc.h" |
| #include "lobject.h" |
| #include "lopcodes.h" |
| #include "lstate.h" |
| #include "lstring.h" |
| #include "ltable.h" |
| #include "ltm.h" |
| #include "lvm.h" |
| |
| |
| /* |
| ** By default, use jump tables in the main interpreter loop on gcc |
| ** and compatible compilers. |
| */ |
| #if !defined(LUA_USE_JUMPTABLE) |
| #if defined(__GNUC__) |
| #define LUA_USE_JUMPTABLE 1 |
| #else |
| #define LUA_USE_JUMPTABLE 0 |
| #endif |
| #endif |
| |
| |
| |
| /* limit for table tag-method chains (to avoid infinite loops) */ |
| #define MAXTAGLOOP 2000 |
| |
| |
| /* |
| ** 'l_intfitsf' checks whether a given integer is in the range that |
| ** can be converted to a float without rounding. Used in comparisons. |
| */ |
| |
| /* number of bits in the mantissa of a float */ |
| #define NBM (l_floatatt(MANT_DIG)) |
| |
| /* |
| ** Check whether some integers may not fit in a float, testing whether |
| ** (maxinteger >> NBM) > 0. (That implies (1 << NBM) <= maxinteger.) |
| ** (The shifts are done in parts, to avoid shifting by more than the size |
| ** of an integer. In a worst case, NBM == 113 for long double and |
| ** sizeof(long) == 32.) |
| */ |
| #if ((((LUA_MAXINTEGER >> (NBM / 4)) >> (NBM / 4)) >> (NBM / 4)) \ |
| >> (NBM - (3 * (NBM / 4)))) > 0 |
| |
| /* limit for integers that fit in a float */ |
| #define MAXINTFITSF ((lua_Unsigned)1 << NBM) |
| |
| /* check whether 'i' is in the interval [-MAXINTFITSF, MAXINTFITSF] */ |
| #define l_intfitsf(i) ((MAXINTFITSF + l_castS2U(i)) <= (2 * MAXINTFITSF)) |
| |
| #else /* all integers fit in a float precisely */ |
| |
| #define l_intfitsf(i) 1 |
| |
| #endif |
| |
| |
| /* |
| ** Try to convert a value from string to a number value. |
| ** If the value is not a string or is a string not representing |
| ** a valid numeral (or if coercions from strings to numbers |
| ** are disabled via macro 'cvt2num'), do not modify 'result' |
| ** and return 0. |
| */ |
| static int l_strton (const TValue *obj, TValue *result) { |
| lua_assert(obj != result); |
| if (!cvt2num(obj)) /* is object not a string? */ |
| return 0; |
| else |
| return (luaO_str2num(svalue(obj), result) == vslen(obj) + 1); |
| } |
| |
| |
| /* |
| ** Try to convert a value to a float. The float case is already handled |
| ** by the macro 'tonumber'. |
| */ |
| int luaV_tonumber_ (const TValue *obj, lua_Number *n) { |
| TValue v; |
| if (ttisinteger(obj)) { |
| *n = cast_num(ivalue(obj)); |
| return 1; |
| } |
| else if (l_strton(obj, &v)) { /* string coercible to number? */ |
| *n = nvalue(&v); /* convert result of 'luaO_str2num' to a float */ |
| return 1; |
| } |
| else |
| return 0; /* conversion failed */ |
| } |
| |
| |
| /* |
| ** try to convert a float to an integer, rounding according to 'mode'. |
| */ |
| int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode) { |
| lua_Number f = l_floor(n); |
| if (n != f) { /* not an integral value? */ |
| if (mode == F2Ieq) return 0; /* fails if mode demands integral value */ |
| else if (mode == F2Iceil) /* needs ceil? */ |
| f += 1; /* convert floor to ceil (remember: n != f) */ |
| } |
| return lua_numbertointeger(f, p); |
| } |
| |
| |
| /* |
| ** try to convert a value to an integer, rounding according to 'mode', |
| ** without string coercion. |
| ** ("Fast track" handled by macro 'tointegerns'.) |
| */ |
| int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode) { |
| if (ttisfloat(obj)) |
| return luaV_flttointeger(fltvalue(obj), p, mode); |
| else if (ttisinteger(obj)) { |
| *p = ivalue(obj); |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| /* |
| ** try to convert a value to an integer. |
| */ |
| int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode) { |
| TValue v; |
| if (l_strton(obj, &v)) /* does 'obj' point to a numerical string? */ |
| obj = &v; /* change it to point to its corresponding number */ |
| return luaV_tointegerns(obj, p, mode); |
| } |
| |
| |
| /* |
| ** Try to convert a 'for' limit to an integer, preserving the semantics |
| ** of the loop. Return true if the loop must not run; otherwise, '*p' |
| ** gets the integer limit. |
| ** (The following explanation assumes a positive step; it is valid for |
| ** negative steps mutatis mutandis.) |
| ** If the limit is an integer or can be converted to an integer, |
| ** rounding down, that is the limit. |
| ** Otherwise, check whether the limit can be converted to a float. If |
| ** the float is too large, clip it to LUA_MAXINTEGER. If the float |
| ** is too negative, the loop should not run, because any initial |
| ** integer value is greater than such limit; so, the function returns |
| ** true to signal that. (For this latter case, no integer limit would be |
| ** correct; even a limit of LUA_MININTEGER would run the loop once for |
| ** an initial value equal to LUA_MININTEGER.) |
| */ |
| static int forlimit (lua_State *L, lua_Integer init, const TValue *lim, |
| lua_Integer *p, lua_Integer step) { |
| if (!luaV_tointeger(lim, p, (step < 0 ? F2Iceil : F2Ifloor))) { |
| /* not coercible to in integer */ |
| lua_Number flim; /* try to convert to float */ |
| if (!tonumber(lim, &flim)) /* cannot convert to float? */ |
| luaG_forerror(L, lim, "limit"); |
| /* else 'flim' is a float out of integer bounds */ |
| if (luai_numlt(0, flim)) { /* if it is positive, it is too large */ |
| if (step < 0) return 1; /* initial value must be less than it */ |
| *p = LUA_MAXINTEGER; /* truncate */ |
| } |
| else { /* it is less than min integer */ |
| if (step > 0) return 1; /* initial value must be greater than it */ |
| *p = LUA_MININTEGER; /* truncate */ |
| } |
| } |
| return (step > 0 ? init > *p : init < *p); /* not to run? */ |
| } |
| |
| |
| /* |
| ** Prepare a numerical for loop (opcode OP_FORPREP). |
| ** Return true to skip the loop. Otherwise, |
| ** after preparation, stack will be as follows: |
| ** ra : internal index (safe copy of the control variable) |
| ** ra + 1 : loop counter (integer loops) or limit (float loops) |
| ** ra + 2 : step |
| ** ra + 3 : control variable |
| */ |
| static int forprep (lua_State *L, StkId ra) { |
| TValue *pinit = s2v(ra); |
| TValue *plimit = s2v(ra + 1); |
| TValue *pstep = s2v(ra + 2); |
| if (ttisinteger(pinit) && ttisinteger(pstep)) { /* integer loop? */ |
| lua_Integer init = ivalue(pinit); |
| lua_Integer step = ivalue(pstep); |
| lua_Integer limit; |
| if (step == 0) |
| luaG_runerror(L, "'for' step is zero"); |
| setivalue(s2v(ra + 3), init); /* control variable */ |
| if (forlimit(L, init, plimit, &limit, step)) |
| return 1; /* skip the loop */ |
| else { /* prepare loop counter */ |
| lua_Unsigned count; |
| if (step > 0) { /* ascending loop? */ |
| count = l_castS2U(limit) - l_castS2U(init); |
| if (step != 1) /* avoid division in the too common case */ |
| count /= l_castS2U(step); |
| } |
| else { /* step < 0; descending loop */ |
| count = l_castS2U(init) - l_castS2U(limit); |
| /* 'step+1' avoids negating 'mininteger' */ |
| count /= l_castS2U(-(step + 1)) + 1u; |
| } |
| /* store the counter in place of the limit (which won't be |
| needed anymore */ |
| setivalue(plimit, l_castU2S(count)); |
| } |
| } |
| else { /* try making all values floats */ |
| lua_Number init; lua_Number limit; lua_Number step; |
| if (unlikely(!tonumber(plimit, &limit))) |
| luaG_forerror(L, plimit, "limit"); |
| if (unlikely(!tonumber(pstep, &step))) |
| luaG_forerror(L, pstep, "step"); |
| if (unlikely(!tonumber(pinit, &init))) |
| luaG_forerror(L, pinit, "initial value"); |
| if (step == 0) |
| luaG_runerror(L, "'for' step is zero"); |
| if (luai_numlt(0, step) ? luai_numlt(limit, init) |
| : luai_numlt(init, limit)) |
| return 1; /* skip the loop */ |
| else { |
| /* make sure internal values are all floats */ |
| setfltvalue(plimit, limit); |
| setfltvalue(pstep, step); |
| setfltvalue(s2v(ra), init); /* internal index */ |
| setfltvalue(s2v(ra + 3), init); /* control variable */ |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** Execute a step of a float numerical for loop, returning |
| ** true iff the loop must continue. (The integer case is |
| ** written online with opcode OP_FORLOOP, for performance.) |
| */ |
| static int floatforloop (StkId ra) { |
| lua_Number step = fltvalue(s2v(ra + 2)); |
| lua_Number limit = fltvalue(s2v(ra + 1)); |
| lua_Number idx = fltvalue(s2v(ra)); /* internal index */ |
| idx = luai_numadd(L, idx, step); /* increment index */ |
| if (luai_numlt(0, step) ? luai_numle(idx, limit) |
| : luai_numle(limit, idx)) { |
| chgfltvalue(s2v(ra), idx); /* update internal index */ |
| setfltvalue(s2v(ra + 3), idx); /* and control variable */ |
| return 1; /* jump back */ |
| } |
| else |
| return 0; /* finish the loop */ |
| } |
| |
| |
| /* |
| ** Finish the table access 'val = t[key]'. |
| ** if 'slot' is NULL, 't' is not a table; otherwise, 'slot' points to |
| ** t[k] entry (which must be empty). |
| */ |
| void luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val, |
| const TValue *slot) { |
| int loop; /* counter to avoid infinite loops */ |
| const TValue *tm; /* metamethod */ |
| for (loop = 0; loop < MAXTAGLOOP; loop++) { |
| if (slot == NULL) { /* 't' is not a table? */ |
| lua_assert(!ttistable(t)); |
| tm = luaT_gettmbyobj(L, t, TM_INDEX); |
| if (unlikely(notm(tm))) |
| luaG_typeerror(L, t, "index"); /* no metamethod */ |
| /* else will try the metamethod */ |
| } |
| else { /* 't' is a table */ |
| lua_assert(isempty(slot)); |
| tm = fasttm(L, hvalue(t)->metatable, TM_INDEX); /* table's metamethod */ |
| if (tm == NULL) { /* no metamethod? */ |
| setnilvalue(s2v(val)); /* result is nil */ |
| return; |
| } |
| /* else will try the metamethod */ |
| } |
| if (ttisfunction(tm)) { /* is metamethod a function? */ |
| luaT_callTMres(L, tm, t, key, val); /* call it */ |
| return; |
| } |
| t = tm; /* else try to access 'tm[key]' */ |
| if (luaV_fastget(L, t, key, slot, luaH_get)) { /* fast track? */ |
| setobj2s(L, val, slot); /* done */ |
| return; |
| } |
| /* else repeat (tail call 'luaV_finishget') */ |
| } |
| luaG_runerror(L, "'__index' chain too long; possible loop"); |
| } |
| |
| |
| /* |
| ** Finish a table assignment 't[key] = val'. |
| ** If 'slot' is NULL, 't' is not a table. Otherwise, 'slot' points |
| ** to the entry 't[key]', or to a value with an absent key if there |
| ** is no such entry. (The value at 'slot' must be empty, otherwise |
| ** 'luaV_fastget' would have done the job.) |
| */ |
| void luaV_finishset (lua_State *L, const TValue *t, TValue *key, |
| TValue *val, const TValue *slot) { |
| int loop; /* counter to avoid infinite loops */ |
| for (loop = 0; loop < MAXTAGLOOP; loop++) { |
| const TValue *tm; /* '__newindex' metamethod */ |
| if (slot != NULL) { /* is 't' a table? */ |
| Table *h = hvalue(t); /* save 't' table */ |
| lua_assert(isempty(slot)); /* slot must be empty */ |
| tm = fasttm(L, h->metatable, TM_NEWINDEX); /* get metamethod */ |
| if (tm == NULL) { /* no metamethod? */ |
| if (isabstkey(slot)) /* no previous entry? */ |
| slot = luaH_newkey(L, h, key); /* create one */ |
| /* no metamethod and (now) there is an entry with given key */ |
| setobj2t(L, cast(TValue *, slot), val); /* set its new value */ |
| invalidateTMcache(h); |
| luaC_barrierback(L, obj2gco(h), val); |
| return; |
| } |
| /* else will try the metamethod */ |
| } |
| else { /* not a table; check metamethod */ |
| tm = luaT_gettmbyobj(L, t, TM_NEWINDEX); |
| if (unlikely(notm(tm))) |
| luaG_typeerror(L, t, "index"); |
| } |
| /* try the metamethod */ |
| if (ttisfunction(tm)) { |
| luaT_callTM(L, tm, t, key, val); |
| return; |
| } |
| t = tm; /* else repeat assignment over 'tm' */ |
| if (luaV_fastget(L, t, key, slot, luaH_get)) { |
| luaV_finishfastset(L, t, slot, val); |
| return; /* done */ |
| } |
| /* else 'return luaV_finishset(L, t, key, val, slot)' (loop) */ |
| } |
| luaG_runerror(L, "'__newindex' chain too long; possible loop"); |
| } |
| |
| |
| /* |
| ** Compare two strings 'ls' x 'rs', returning an integer less-equal- |
| ** -greater than zero if 'ls' is less-equal-greater than 'rs'. |
| ** The code is a little tricky because it allows '\0' in the strings |
| ** and it uses 'strcoll' (to respect locales) for each segments |
| ** of the strings. |
| */ |
| static int l_strcmp (const TString *ls, const TString *rs) { |
| const char *l = getstr(ls); |
| size_t ll = tsslen(ls); |
| const char *r = getstr(rs); |
| size_t lr = tsslen(rs); |
| for (;;) { /* for each segment */ |
| int temp = strcoll(l, r); |
| if (temp != 0) /* not equal? */ |
| return temp; /* done */ |
| else { /* strings are equal up to a '\0' */ |
| size_t len = strlen(l); /* index of first '\0' in both strings */ |
| if (len == lr) /* 'rs' is finished? */ |
| return (len == ll) ? 0 : 1; /* check 'ls' */ |
| else if (len == ll) /* 'ls' is finished? */ |
| return -1; /* 'ls' is less than 'rs' ('rs' is not finished) */ |
| /* both strings longer than 'len'; go on comparing after the '\0' */ |
| len++; |
| l += len; ll -= len; r += len; lr -= len; |
| } |
| } |
| } |
| |
| |
| /* |
| ** Check whether integer 'i' is less than float 'f'. If 'i' has an |
| ** exact representation as a float ('l_intfitsf'), compare numbers as |
| ** floats. Otherwise, use the equivalence 'i < f <=> i < ceil(f)'. |
| ** If 'ceil(f)' is out of integer range, either 'f' is greater than |
| ** all integers or less than all integers. |
| ** (The test with 'l_intfitsf' is only for performance; the else |
| ** case is correct for all values, but it is slow due to the conversion |
| ** from float to int.) |
| ** When 'f' is NaN, comparisons must result in false. |
| */ |
| static int LTintfloat (lua_Integer i, lua_Number f) { |
| if (l_intfitsf(i)) |
| return luai_numlt(cast_num(i), f); /* compare them as floats */ |
| else { /* i < f <=> i < ceil(f) */ |
| lua_Integer fi; |
| if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */ |
| return i < fi; /* compare them as integers */ |
| else /* 'f' is either greater or less than all integers */ |
| return f > 0; /* greater? */ |
| } |
| } |
| |
| |
| /* |
| ** Check whether integer 'i' is less than or equal to float 'f'. |
| ** See comments on previous function. |
| */ |
| static int LEintfloat (lua_Integer i, lua_Number f) { |
| if (l_intfitsf(i)) |
| return luai_numle(cast_num(i), f); /* compare them as floats */ |
| else { /* i <= f <=> i <= floor(f) */ |
| lua_Integer fi; |
| if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */ |
| return i <= fi; /* compare them as integers */ |
| else /* 'f' is either greater or less than all integers */ |
| return f > 0; /* greater? */ |
| } |
| } |
| |
| |
| /* |
| ** Check whether float 'f' is less than integer 'i'. |
| ** See comments on previous function. |
| */ |
| static int LTfloatint (lua_Number f, lua_Integer i) { |
| if (l_intfitsf(i)) |
| return luai_numlt(f, cast_num(i)); /* compare them as floats */ |
| else { /* f < i <=> floor(f) < i */ |
| lua_Integer fi; |
| if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */ |
| return fi < i; /* compare them as integers */ |
| else /* 'f' is either greater or less than all integers */ |
| return f < 0; /* less? */ |
| } |
| } |
| |
| |
| /* |
| ** Check whether float 'f' is less than or equal to integer 'i'. |
| ** See comments on previous function. |
| */ |
| static int LEfloatint (lua_Number f, lua_Integer i) { |
| if (l_intfitsf(i)) |
| return luai_numle(f, cast_num(i)); /* compare them as floats */ |
| else { /* f <= i <=> ceil(f) <= i */ |
| lua_Integer fi; |
| if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */ |
| return fi <= i; /* compare them as integers */ |
| else /* 'f' is either greater or less than all integers */ |
| return f < 0; /* less? */ |
| } |
| } |
| |
| |
| /* |
| ** Return 'l < r', for numbers. |
| */ |
| static int LTnum (const TValue *l, const TValue *r) { |
| lua_assert(ttisnumber(l) && ttisnumber(r)); |
| if (ttisinteger(l)) { |
| lua_Integer li = ivalue(l); |
| if (ttisinteger(r)) |
| return li < ivalue(r); /* both are integers */ |
| else /* 'l' is int and 'r' is float */ |
| return LTintfloat(li, fltvalue(r)); /* l < r ? */ |
| } |
| else { |
| lua_Number lf = fltvalue(l); /* 'l' must be float */ |
| if (ttisfloat(r)) |
| return luai_numlt(lf, fltvalue(r)); /* both are float */ |
| else /* 'l' is float and 'r' is int */ |
| return LTfloatint(lf, ivalue(r)); |
| } |
| } |
| |
| |
| /* |
| ** Return 'l <= r', for numbers. |
| */ |
| static int LEnum (const TValue *l, const TValue *r) { |
| lua_assert(ttisnumber(l) && ttisnumber(r)); |
| if (ttisinteger(l)) { |
| lua_Integer li = ivalue(l); |
| if (ttisinteger(r)) |
| return li <= ivalue(r); /* both are integers */ |
| else /* 'l' is int and 'r' is float */ |
| return LEintfloat(li, fltvalue(r)); /* l <= r ? */ |
| } |
| else { |
| lua_Number lf = fltvalue(l); /* 'l' must be float */ |
| if (ttisfloat(r)) |
| return luai_numle(lf, fltvalue(r)); /* both are float */ |
| else /* 'l' is float and 'r' is int */ |
| return LEfloatint(lf, ivalue(r)); |
| } |
| } |
| |
| |
| /* |
| ** return 'l < r' for non-numbers. |
| */ |
| static int lessthanothers (lua_State *L, const TValue *l, const TValue *r) { |
| lua_assert(!ttisnumber(l) || !ttisnumber(r)); |
| if (ttisstring(l) && ttisstring(r)) /* both are strings? */ |
| return l_strcmp(tsvalue(l), tsvalue(r)) < 0; |
| else |
| return luaT_callorderTM(L, l, r, TM_LT); |
| } |
| |
| |
| /* |
| ** Main operation less than; return 'l < r'. |
| */ |
| int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r) { |
| if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */ |
| return LTnum(l, r); |
| else return lessthanothers(L, l, r); |
| } |
| |
| |
| /* |
| ** return 'l <= r' for non-numbers. |
| */ |
| static int lessequalothers (lua_State *L, const TValue *l, const TValue *r) { |
| lua_assert(!ttisnumber(l) || !ttisnumber(r)); |
| if (ttisstring(l) && ttisstring(r)) /* both are strings? */ |
| return l_strcmp(tsvalue(l), tsvalue(r)) <= 0; |
| else |
| return luaT_callorderTM(L, l, r, TM_LE); |
| } |
| |
| |
| /* |
| ** Main operation less than or equal to; return 'l <= r'. |
| */ |
| int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r) { |
| if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */ |
| return LEnum(l, r); |
| else return lessequalothers(L, l, r); |
| } |
| |
| |
| /* |
| ** Main operation for equality of Lua values; return 't1 == t2'. |
| ** L == NULL means raw equality (no metamethods) |
| */ |
| int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2) { |
| const TValue *tm; |
| if (ttypetag(t1) != ttypetag(t2)) { /* not the same variant? */ |
| if (ttype(t1) != ttype(t2) || ttype(t1) != LUA_TNUMBER) |
| return 0; /* only numbers can be equal with different variants */ |
| else { /* two numbers with different variants */ |
| lua_Integer i1, i2; /* compare them as integers */ |
| return (tointegerns(t1, &i1) && tointegerns(t2, &i2) && i1 == i2); |
| } |
| } |
| /* values have same type and same variant */ |
| switch (ttypetag(t1)) { |
| case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1; |
| case LUA_VNUMINT: return (ivalue(t1) == ivalue(t2)); |
| case LUA_VNUMFLT: return luai_numeq(fltvalue(t1), fltvalue(t2)); |
| case LUA_VLIGHTUSERDATA: return pvalue(t1) == pvalue(t2); |
| case LUA_VLCF: return fvalue(t1) == fvalue(t2); |
| case LUA_VSHRSTR: return eqshrstr(tsvalue(t1), tsvalue(t2)); |
| case LUA_VLNGSTR: return luaS_eqlngstr(tsvalue(t1), tsvalue(t2)); |
| case LUA_VUSERDATA: { |
| if (uvalue(t1) == uvalue(t2)) return 1; |
| else if (L == NULL) return 0; |
| tm = fasttm(L, uvalue(t1)->metatable, TM_EQ); |
| if (tm == NULL) |
| tm = fasttm(L, uvalue(t2)->metatable, TM_EQ); |
| break; /* will try TM */ |
| } |
| case LUA_VTABLE: { |
| if (hvalue(t1) == hvalue(t2)) return 1; |
| else if (L == NULL) return 0; |
| tm = fasttm(L, hvalue(t1)->metatable, TM_EQ); |
| if (tm == NULL) |
| tm = fasttm(L, hvalue(t2)->metatable, TM_EQ); |
| break; /* will try TM */ |
| } |
| default: |
| return gcvalue(t1) == gcvalue(t2); |
| } |
| if (tm == NULL) /* no TM? */ |
| return 0; /* objects are different */ |
| else { |
| luaT_callTMres(L, tm, t1, t2, L->top); /* call TM */ |
| return !l_isfalse(s2v(L->top)); |
| } |
| } |
| |
| |
| /* macro used by 'luaV_concat' to ensure that element at 'o' is a string */ |
| #define tostring(L,o) \ |
| (ttisstring(o) || (cvt2str(o) && (luaO_tostring(L, o), 1))) |
| |
| #define isemptystr(o) (ttisshrstring(o) && tsvalue(o)->shrlen == 0) |
| |
| /* copy strings in stack from top - n up to top - 1 to buffer */ |
| static void copy2buff (StkId top, int n, char *buff) { |
| size_t tl = 0; /* size already copied */ |
| do { |
| size_t l = vslen(s2v(top - n)); /* length of string being copied */ |
| memcpy(buff + tl, svalue(s2v(top - n)), l * sizeof(char)); |
| tl += l; |
| } while (--n > 0); |
| } |
| |
| |
| /* |
| ** Main operation for concatenation: concat 'total' values in the stack, |
| ** from 'L->top - total' up to 'L->top - 1'. |
| */ |
| void luaV_concat (lua_State *L, int total) { |
| if (total == 1) |
| return; /* "all" values already concatenated */ |
| do { |
| StkId top = L->top; |
| int n = 2; /* number of elements handled in this pass (at least 2) */ |
| if (!(ttisstring(s2v(top - 2)) || cvt2str(s2v(top - 2))) || |
| !tostring(L, s2v(top - 1))) |
| luaT_tryconcatTM(L); |
| else if (isemptystr(s2v(top - 1))) /* second operand is empty? */ |
| cast_void(tostring(L, s2v(top - 2))); /* result is first operand */ |
| else if (isemptystr(s2v(top - 2))) { /* first operand is empty string? */ |
| setobjs2s(L, top - 2, top - 1); /* result is second op. */ |
| } |
| else { |
| /* at least two non-empty string values; get as many as possible */ |
| size_t tl = vslen(s2v(top - 1)); |
| TString *ts; |
| /* collect total length and number of strings */ |
| for (n = 1; n < total && tostring(L, s2v(top - n - 1)); n++) { |
| size_t l = vslen(s2v(top - n - 1)); |
| if (unlikely(l >= (MAX_SIZE/sizeof(char)) - tl)) |
| luaG_runerror(L, "string length overflow"); |
| tl += l; |
| } |
| if (tl <= LUAI_MAXSHORTLEN) { /* is result a short string? */ |
| char buff[LUAI_MAXSHORTLEN]; |
| copy2buff(top, n, buff); /* copy strings to buffer */ |
| ts = luaS_newlstr(L, buff, tl); |
| } |
| else { /* long string; copy strings directly to final result */ |
| ts = luaS_createlngstrobj(L, tl); |
| copy2buff(top, n, getstr(ts)); |
| } |
| setsvalue2s(L, top - n, ts); /* create result */ |
| } |
| total -= n-1; /* got 'n' strings to create 1 new */ |
| L->top -= n-1; /* popped 'n' strings and pushed one */ |
| } while (total > 1); /* repeat until only 1 result left */ |
| } |
| |
| |
| /* |
| ** Main operation 'ra = #rb'. |
| */ |
| void luaV_objlen (lua_State *L, StkId ra, const TValue *rb) { |
| const TValue *tm; |
| switch (ttypetag(rb)) { |
| case LUA_VTABLE: { |
| Table *h = hvalue(rb); |
| tm = fasttm(L, h->metatable, TM_LEN); |
| if (tm) break; /* metamethod? break switch to call it */ |
| setivalue(s2v(ra), luaH_getn(h)); /* else primitive len */ |
| return; |
| } |
| case LUA_VSHRSTR: { |
| setivalue(s2v(ra), tsvalue(rb)->shrlen); |
| return; |
| } |
| case LUA_VLNGSTR: { |
| setivalue(s2v(ra), tsvalue(rb)->u.lnglen); |
| return; |
| } |
| default: { /* try metamethod */ |
| tm = luaT_gettmbyobj(L, rb, TM_LEN); |
| if (unlikely(notm(tm))) /* no metamethod? */ |
| luaG_typeerror(L, rb, "get length of"); |
| break; |
| } |
| } |
| luaT_callTMres(L, tm, rb, rb, ra); |
| } |
| |
| |
| /* |
| ** Integer division; return 'm // n', that is, floor(m/n). |
| ** C division truncates its result (rounds towards zero). |
| ** 'floor(q) == trunc(q)' when 'q >= 0' or when 'q' is integer, |
| ** otherwise 'floor(q) == trunc(q) - 1'. |
| */ |
| lua_Integer luaV_idiv (lua_State *L, lua_Integer m, lua_Integer n) { |
| if (unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */ |
| if (n == 0) |
| luaG_runerror(L, "attempt to divide by zero"); |
| return intop(-, 0, m); /* n==-1; avoid overflow with 0x80000...//-1 */ |
| } |
| else { |
| lua_Integer q = m / n; /* perform C division */ |
| if ((m ^ n) < 0 && m % n != 0) /* 'm/n' would be negative non-integer? */ |
| q -= 1; /* correct result for different rounding */ |
| return q; |
| } |
| } |
| |
| |
| /* |
| ** Integer modulus; return 'm % n'. (Assume that C '%' with |
| ** negative operands follows C99 behavior. See previous comment |
| ** about luaV_idiv.) |
| */ |
| lua_Integer luaV_mod (lua_State *L, lua_Integer m, lua_Integer n) { |
| if (unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */ |
| if (n == 0) |
| luaG_runerror(L, "attempt to perform 'n%%0'"); |
| return 0; /* m % -1 == 0; avoid overflow with 0x80000...%-1 */ |
| } |
| else { |
| lua_Integer r = m % n; |
| if (r != 0 && (r ^ n) < 0) /* 'm/n' would be non-integer negative? */ |
| r += n; /* correct result for different rounding */ |
| return r; |
| } |
| } |
| |
| |
| /* |
| ** Float modulus |
| */ |
| lua_Number luaV_modf (lua_State *L, lua_Number m, lua_Number n) { |
| lua_Number r; |
| luai_nummod(L, m, n, r); |
| return r; |
| } |
| |
| |
| /* number of bits in an integer */ |
| #define NBITS cast_int(sizeof(lua_Integer) * CHAR_BIT) |
| |
| /* |
| ** Shift left operation. (Shift right just negates 'y'.) |
| */ |
| #define luaV_shiftr(x,y) luaV_shiftl(x,-(y)) |
| |
| lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y) { |
| if (y < 0) { /* shift right? */ |
| if (y <= -NBITS) return 0; |
| else return intop(>>, x, -y); |
| } |
| else { /* shift left */ |
| if (y >= NBITS) return 0; |
| else return intop(<<, x, y); |
| } |
| } |
| |
| |
| /* |
| ** create a new Lua closure, push it in the stack, and initialize |
| ** its upvalues. |
| */ |
| static void pushclosure (lua_State *L, Proto *p, UpVal **encup, StkId base, |
| StkId ra) { |
| int nup = p->sizeupvalues; |
| Upvaldesc *uv = p->upvalues; |
| int i; |
| LClosure *ncl = luaF_newLclosure(L, nup); |
| ncl->p = p; |
| setclLvalue2s(L, ra, ncl); /* anchor new closure in stack */ |
| for (i = 0; i < nup; i++) { /* fill in its upvalues */ |
| if (uv[i].instack) /* upvalue refers to local variable? */ |
| ncl->upvals[i] = luaF_findupval(L, base + uv[i].idx); |
| else /* get upvalue from enclosing function */ |
| ncl->upvals[i] = encup[uv[i].idx]; |
| luaC_objbarrier(L, ncl, ncl->upvals[i]); |
| } |
| } |
| |
| |
| /* |
| ** finish execution of an opcode interrupted by a yield |
| */ |
| void luaV_finishOp (lua_State *L) { |
| CallInfo *ci = L->ci; |
| StkId base = ci->func + 1; |
| Instruction inst = *(ci->u.l.savedpc - 1); /* interrupted instruction */ |
| OpCode op = GET_OPCODE(inst); |
| switch (op) { /* finish its execution */ |
| case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: { |
| setobjs2s(L, base + GETARG_A(*(ci->u.l.savedpc - 2)), --L->top); |
| break; |
| } |
| case OP_UNM: case OP_BNOT: case OP_LEN: |
| case OP_GETTABUP: case OP_GETTABLE: case OP_GETI: |
| case OP_GETFIELD: case OP_SELF: { |
| setobjs2s(L, base + GETARG_A(inst), --L->top); |
| break; |
| } |
| case OP_LT: case OP_LE: |
| case OP_LTI: case OP_LEI: |
| case OP_GTI: case OP_GEI: |
| case OP_EQ: { /* note that 'OP_EQI'/'OP_EQK' cannot yield */ |
| int res = !l_isfalse(s2v(L->top - 1)); |
| L->top--; |
| #if defined(LUA_COMPAT_LT_LE) |
| if (ci->callstatus & CIST_LEQ) { /* "<=" using "<" instead? */ |
| ci->callstatus ^= CIST_LEQ; /* clear mark */ |
| res = !res; /* negate result */ |
| } |
| #endif |
| lua_assert(GET_OPCODE(*ci->u.l.savedpc) == OP_JMP); |
| if (res != GETARG_k(inst)) /* condition failed? */ |
| ci->u.l.savedpc++; /* skip jump instruction */ |
| break; |
| } |
| case OP_CONCAT: { |
| StkId top = L->top - 1; /* top when 'luaT_tryconcatTM' was called */ |
| int a = GETARG_A(inst); /* first element to concatenate */ |
| int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */ |
| setobjs2s(L, top - 2, top); /* put TM result in proper position */ |
| L->top = top - 1; /* top is one after last element (at top-2) */ |
| luaV_concat(L, total); /* concat them (may yield again) */ |
| break; |
| } |
| default: { |
| /* only these other opcodes can yield */ |
| lua_assert(op == OP_TFORCALL || op == OP_CALL || |
| op == OP_TAILCALL || op == OP_SETTABUP || op == OP_SETTABLE || |
| op == OP_SETI || op == OP_SETFIELD); |
| break; |
| } |
| } |
| } |
| |
| |
| |
| |
| /* |
| ** {================================================================== |
| ** Macros for arithmetic/bitwise/comparison opcodes in 'luaV_execute' |
| ** =================================================================== |
| */ |
| |
| #define l_addi(L,a,b) intop(+, a, b) |
| #define l_subi(L,a,b) intop(-, a, b) |
| #define l_muli(L,a,b) intop(*, a, b) |
| #define l_band(a,b) intop(&, a, b) |
| #define l_bor(a,b) intop(|, a, b) |
| #define l_bxor(a,b) intop(^, a, b) |
| |
| #define l_lti(a,b) (a < b) |
| #define l_lei(a,b) (a <= b) |
| #define l_gti(a,b) (a > b) |
| #define l_gei(a,b) (a >= b) |
| |
| |
| /* |
| ** Arithmetic operations with immediate operands. 'iop' is the integer |
| ** operation, 'fop' is the float operation. |
| */ |
| #define op_arithI(L,iop,fop) { \ |
| TValue *v1 = vRB(i); \ |
| int imm = GETARG_sC(i); \ |
| if (ttisinteger(v1)) { \ |
| lua_Integer iv1 = ivalue(v1); \ |
| pc++; setivalue(s2v(ra), iop(L, iv1, imm)); \ |
| } \ |
| else if (ttisfloat(v1)) { \ |
| lua_Number nb = fltvalue(v1); \ |
| lua_Number fimm = cast_num(imm); \ |
| pc++; setfltvalue(s2v(ra), fop(L, nb, fimm)); \ |
| }} |
| |
| |
| /* |
| ** Auxiliary function for arithmetic operations over floats and others |
| ** with two register operands. |
| */ |
| #define op_arithf_aux(L,v1,v2,fop) { \ |
| lua_Number n1; lua_Number n2; \ |
| if (tonumberns(v1, n1) && tonumberns(v2, n2)) { \ |
| pc++; setfltvalue(s2v(ra), fop(L, n1, n2)); \ |
| }} |
| |
| |
| /* |
| ** Arithmetic operations over floats and others with register operands. |
| */ |
| #define op_arithf(L,fop) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = vRC(i); \ |
| op_arithf_aux(L, v1, v2, fop); } |
| |
| |
| /* |
| ** Arithmetic operations with K operands for floats. |
| */ |
| #define op_arithfK(L,fop) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = KC(i); \ |
| op_arithf_aux(L, v1, v2, fop); } |
| |
| |
| /* |
| ** Arithmetic operations over integers and floats. |
| */ |
| #define op_arith_aux(L,v1,v2,iop,fop) { \ |
| if (ttisinteger(v1) && ttisinteger(v2)) { \ |
| lua_Integer i1 = ivalue(v1); lua_Integer i2 = ivalue(v2); \ |
| pc++; setivalue(s2v(ra), iop(L, i1, i2)); \ |
| } \ |
| else op_arithf_aux(L, v1, v2, fop); } |
| |
| |
| /* |
| ** Arithmetic operations with register operands. |
| */ |
| #define op_arith(L,iop,fop) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = vRC(i); \ |
| op_arith_aux(L, v1, v2, iop, fop); } |
| |
| |
| /* |
| ** Arithmetic operations with K operands. |
| */ |
| #define op_arithK(L,iop,fop) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = KC(i); \ |
| op_arith_aux(L, v1, v2, iop, fop); } |
| |
| |
| /* |
| ** Bitwise operations with constant operand. |
| */ |
| #define op_bitwiseK(L,op) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = KC(i); \ |
| lua_Integer i1; \ |
| lua_Integer i2 = ivalue(v2); \ |
| if (tointegerns(v1, &i1)) { \ |
| pc++; setivalue(s2v(ra), op(i1, i2)); \ |
| }} |
| |
| |
| /* |
| ** Bitwise operations with register operands. |
| */ |
| #define op_bitwise(L,op) { \ |
| TValue *v1 = vRB(i); \ |
| TValue *v2 = vRC(i); \ |
| lua_Integer i1; lua_Integer i2; \ |
| if (tointegerns(v1, &i1) && tointegerns(v2, &i2)) { \ |
| pc++; setivalue(s2v(ra), op(i1, i2)); \ |
| }} |
| |
| |
| /* |
| ** Order operations with register operands. 'opn' actually works |
| ** for all numbers, but the fast track improves performance for |
| ** integers. |
| */ |
| #define op_order(L,opi,opn,other) { \ |
| int cond; \ |
| TValue *rb = vRB(i); \ |
| if (ttisinteger(s2v(ra)) && ttisinteger(rb)) { \ |
| lua_Integer ia = ivalue(s2v(ra)); \ |
| lua_Integer ib = ivalue(rb); \ |
| cond = opi(ia, ib); \ |
| } \ |
| else if (ttisnumber(s2v(ra)) && ttisnumber(rb)) \ |
| cond = opn(s2v(ra), rb); \ |
| else \ |
| Protect(cond = other(L, s2v(ra), rb)); \ |
| docondjump(); } |
| |
| |
| /* |
| ** Order operations with immediate operand. (Immediate operand is |
| ** always small enough to have an exact representation as a float.) |
| */ |
| #define op_orderI(L,opi,opf,inv,tm) { \ |
| int cond; \ |
| int im = GETARG_sB(i); \ |
| if (ttisinteger(s2v(ra))) \ |
| cond = opi(ivalue(s2v(ra)), im); \ |
| else if (ttisfloat(s2v(ra))) { \ |
| lua_Number fa = fltvalue(s2v(ra)); \ |
| lua_Number fim = cast_num(im); \ |
| cond = opf(fa, fim); \ |
| } \ |
| else { \ |
| int isf = GETARG_C(i); \ |
| Protect(cond = luaT_callorderiTM(L, s2v(ra), im, inv, isf, tm)); \ |
| } \ |
| docondjump(); } |
| |
| /* }================================================================== */ |
| |
| |
| /* |
| ** {================================================================== |
| ** Function 'luaV_execute': main interpreter loop |
| ** =================================================================== |
| */ |
| |
| /* |
| ** some macros for common tasks in 'luaV_execute' |
| */ |
| |
| |
| #define RA(i) (base+GETARG_A(i)) |
| #define RB(i) (base+GETARG_B(i)) |
| #define vRB(i) s2v(RB(i)) |
| #define KB(i) (k+GETARG_B(i)) |
| #define RC(i) (base+GETARG_C(i)) |
| #define vRC(i) s2v(RC(i)) |
| #define KC(i) (k+GETARG_C(i)) |
| #define RKC(i) ((TESTARG_k(i)) ? k + GETARG_C(i) : s2v(base + GETARG_C(i))) |
| |
| |
| |
| #define updatetrap(ci) (trap = ci->u.l.trap) |
| |
| #define updatebase(ci) (base = ci->func + 1) |
| |
| |
| #define updatestack(ci) { if (trap) { updatebase(ci); ra = RA(i); } } |
| |
| |
| /* |
| ** Execute a jump instruction. The 'updatetrap' allows signals to stop |
| ** tight loops. (Without it, the local copy of 'trap' could never change.) |
| */ |
| #define dojump(ci,i,e) { pc += GETARG_sJ(i) + e; updatetrap(ci); } |
| |
| |
| /* for test instructions, execute the jump instruction that follows it */ |
| #define donextjump(ci) { Instruction ni = *pc; dojump(ci, ni, 1); } |
| |
| /* |
| ** do a conditional jump: skip next instruction if 'cond' is not what |
| ** was expected (parameter 'k'), else do next instruction, which must |
| ** be a jump. |
| */ |
| #define docondjump() if (cond != GETARG_k(i)) pc++; else donextjump(ci); |
| |
| |
| /* |
| ** Correct global 'pc'. |
| */ |
| #define savepc(L) (ci->u.l.savedpc = pc) |
| |
| |
| /* |
| ** Whenever code can raise errors, the global 'pc' and the global |
| ** 'top' must be correct to report occasional errors. |
| */ |
| #define savestate(L,ci) (savepc(L), L->top = ci->top) |
| |
| |
| /* |
| ** Protect code that, in general, can raise errors, reallocate the |
| ** stack, and change the hooks. |
| */ |
| #define Protect(exp) (savestate(L,ci), (exp), updatetrap(ci)) |
| |
| /* special version that does not change the top */ |
| #define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci)) |
| |
| /* |
| ** Protect code that will finish the loop (returns) or can only raise |
| ** errors. (That is, it will not return to the interpreter main loop |
| ** after changing the stack or hooks.) |
| */ |
| #define halfProtect(exp) (savestate(L,ci), (exp)) |
| |
| /* idem, but without changing the stack */ |
| #define halfProtectNT(exp) (savepc(L), (exp)) |
| |
| /* 'c' is the limit of live values in the stack */ |
| #define checkGC(L,c) \ |
| { luaC_condGC(L, (savepc(L), L->top = (c)), \ |
| updatetrap(ci)); \ |
| luai_threadyield(L); } |
| |
| |
| /* fetch an instruction and prepare its execution */ |
| #define vmfetch() { \ |
| if (trap) { /* stack reallocation or hooks? */ \ |
| trap = luaG_traceexec(L, pc); /* handle hooks */ \ |
| updatebase(ci); /* correct stack */ \ |
| } \ |
| i = *(pc++); \ |
| ra = RA(i); /* WARNING: any stack reallocation invalidates 'ra' */ \ |
| } |
| |
| #define vmdispatch(o) switch(o) |
| #define vmcase(l) case l: |
| #define vmbreak break |
| |
| |
| void luaV_execute (lua_State *L, CallInfo *ci) { |
| LClosure *cl; |
| TValue *k; |
| StkId base; |
| const Instruction *pc; |
| int trap; |
| #if LUA_USE_JUMPTABLE |
| #include "ljumptab.h" |
| #endif |
| tailcall: |
| trap = L->hookmask; |
| cl = clLvalue(s2v(ci->func)); |
| k = cl->p->k; |
| pc = ci->u.l.savedpc; |
| if (trap) { |
| if (cl->p->is_vararg) |
| trap = 0; /* hooks will start after VARARGPREP instruction */ |
| else if (pc == cl->p->code) /* first instruction (not resuming)? */ |
| luaD_hookcall(L, ci); |
| ci->u.l.trap = 1; /* there may be other hooks */ |
| } |
| base = ci->func + 1; |
| /* main loop of interpreter */ |
| for (;;) { |
| Instruction i; /* instruction being executed */ |
| StkId ra; /* instruction's A register */ |
| vmfetch(); |
| lua_assert(base == ci->func + 1); |
| lua_assert(base <= L->top && L->top < L->stack + L->stacksize); |
| /* invalidate top for instructions not expecting it */ |
| lua_assert(isIT(i) || (cast_void(L->top = base), 1)); |
| vmdispatch (GET_OPCODE(i)) { |
| vmcase(OP_MOVE) { |
| setobjs2s(L, ra, RB(i)); |
| vmbreak; |
| } |
| vmcase(OP_LOADI) { |
| lua_Integer b = GETARG_sBx(i); |
| setivalue(s2v(ra), b); |
| vmbreak; |
| } |
| vmcase(OP_LOADF) { |
| int b = GETARG_sBx(i); |
| setfltvalue(s2v(ra), cast_num(b)); |
| vmbreak; |
| } |
| vmcase(OP_LOADK) { |
| TValue *rb = k + GETARG_Bx(i); |
| setobj2s(L, ra, rb); |
| vmbreak; |
| } |
| vmcase(OP_LOADKX) { |
| TValue *rb; |
| rb = k + GETARG_Ax(*pc); pc++; |
| setobj2s(L, ra, rb); |
| vmbreak; |
| } |
| vmcase(OP_LOADFALSE) { |
| setbfvalue(s2v(ra)); |
| vmbreak; |
| } |
| vmcase(OP_LFALSESKIP) { |
| setbfvalue(s2v(ra)); |
| pc++; /* skip next instruction */ |
| vmbreak; |
| } |
| vmcase(OP_LOADTRUE) { |
| setbtvalue(s2v(ra)); |
| vmbreak; |
| } |
| vmcase(OP_LOADNIL) { |
| int b = GETARG_B(i); |
| do { |
| setnilvalue(s2v(ra++)); |
| } while (b--); |
| vmbreak; |
| } |
| vmcase(OP_GETUPVAL) { |
| int b = GETARG_B(i); |
| setobj2s(L, ra, cl->upvals[b]->v); |
| vmbreak; |
| } |
| vmcase(OP_SETUPVAL) { |
| UpVal *uv = cl->upvals[GETARG_B(i)]; |
| setobj(L, uv->v, s2v(ra)); |
| luaC_barrier(L, uv, s2v(ra)); |
| vmbreak; |
| } |
| vmcase(OP_GETTABUP) { |
| const TValue *slot; |
| TValue *upval = cl->upvals[GETARG_B(i)]->v; |
| TValue *rc = KC(i); |
| TString *key = tsvalue(rc); /* key must be a string */ |
| if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) { |
| setobj2s(L, ra, slot); |
| } |
| else |
| Protect(luaV_finishget(L, upval, rc, ra, slot)); |
| vmbreak; |
| } |
| vmcase(OP_GETTABLE) { |
| const TValue *slot; |
| TValue *rb = vRB(i); |
| TValue *rc = vRC(i); |
| lua_Unsigned n; |
| if (ttisinteger(rc) /* fast track for integers? */ |
| ? (cast_void(n = ivalue(rc)), luaV_fastgeti(L, rb, n, slot)) |
| : luaV_fastget(L, rb, rc, slot, luaH_get)) { |
| setobj2s(L, ra, slot); |
| } |
| else |
| Protect(luaV_finishget(L, rb, rc, ra, slot)); |
| vmbreak; |
| } |
| vmcase(OP_GETI) { |
| const TValue *slot; |
| TValue *rb = vRB(i); |
| int c = GETARG_C(i); |
| if (luaV_fastgeti(L, rb, c, slot)) { |
| setobj2s(L, ra, slot); |
| } |
| else { |
| TValue key; |
| setivalue(&key, c); |
| Protect(luaV_finishget(L, rb, &key, ra, slot)); |
| } |
| vmbreak; |
| } |
| vmcase(OP_GETFIELD) { |
| const TValue *slot; |
| TValue *rb = vRB(i); |
| TValue *rc = KC(i); |
| TString *key = tsvalue(rc); /* key must be a string */ |
| if (luaV_fastget(L, rb, key, slot, luaH_getshortstr)) { |
| setobj2s(L, ra, slot); |
| } |
| else |
| Protect(luaV_finishget(L, rb, rc, ra, slot)); |
| vmbreak; |
| } |
| vmcase(OP_SETTABUP) { |
| const TValue *slot; |
| TValue *upval = cl->upvals[GETARG_A(i)]->v; |
| TValue *rb = KB(i); |
| TValue *rc = RKC(i); |
| TString *key = tsvalue(rb); /* key must be a string */ |
| if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) { |
| luaV_finishfastset(L, upval, slot, rc); |
| } |
| else |
| Protect(luaV_finishset(L, upval, rb, rc, slot)); |
| vmbreak; |
| } |
| vmcase(OP_SETTABLE) { |
| const TValue *slot; |
| TValue *rb = vRB(i); /* key (table is in 'ra') */ |
| TValue *rc = RKC(i); /* value */ |
| lua_Unsigned n; |
| if (ttisinteger(rb) /* fast track for integers? */ |
| ? (cast_void(n = ivalue(rb)), luaV_fastgeti(L, s2v(ra), n, slot)) |
| : luaV_fastget(L, s2v(ra), rb, slot, luaH_get)) { |
| luaV_finishfastset(L, s2v(ra), slot, rc); |
| } |
| else |
| Protect(luaV_finishset(L, s2v(ra), rb, rc, slot)); |
| vmbreak; |
| } |
| vmcase(OP_SETI) { |
| const TValue *slot; |
| int c = GETARG_B(i); |
| TValue *rc = RKC(i); |
| if (luaV_fastgeti(L, s2v(ra), c, slot)) { |
| luaV_finishfastset(L, s2v(ra), slot, rc); |
| } |
| else { |
| TValue key; |
| setivalue(&key, c); |
| Protect(luaV_finishset(L, s2v(ra), &key, rc, slot)); |
| } |
| vmbreak; |
| } |
| vmcase(OP_SETFIELD) { |
| const TValue *slot; |
| TValue *rb = KB(i); |
| TValue *rc = RKC(i); |
| TString *key = tsvalue(rb); /* key must be a string */ |
| if (luaV_fastget(L, s2v(ra), key, slot, luaH_getshortstr)) { |
| luaV_finishfastset(L, s2v(ra), slot, rc); |
| } |
| else |
| Protect(luaV_finishset(L, s2v(ra), rb, rc, slot)); |
| vmbreak; |
| } |
| vmcase(OP_NEWTABLE) { |
| int b = GETARG_B(i); /* log2(hash size) + 1 */ |
| int c = GETARG_C(i); /* array size */ |
| Table *t; |
| if (b > 0) |
| b = 1 << (b - 1); /* size is 2^(b - 1) */ |
| lua_assert((!TESTARG_k(i)) == (GETARG_Ax(*pc) == 0)); |
| if (TESTARG_k(i)) /* non-zero extra argument? */ |
| c += GETARG_Ax(*pc) * (MAXARG_C + 1); /* add it to size */ |
| pc++; /* skip extra argument */ |
| L->top = ra + 1; /* correct top in case of emergency GC */ |
| t = luaH_new(L); /* memory allocation */ |
| sethvalue2s(L, ra, t); |
| if (b != 0 || c != 0) |
| luaH_resize(L, t, c, b); /* idem */ |
| checkGC(L, ra + 1); |
| vmbreak; |
| } |
| vmcase(OP_SELF) { |
| const TValue *slot; |
| TValue *rb = vRB(i); |
| TValue *rc = RKC(i); |
| TString *key = tsvalue(rc); /* key must be a string */ |
| setobj2s(L, ra + 1, rb); |
| if (luaV_fastget(L, rb, key, slot, luaH_getstr)) { |
| setobj2s(L, ra, slot); |
| } |
| else |
| Protect(luaV_finishget(L, rb, rc, ra, slot)); |
| vmbreak; |
| } |
| vmcase(OP_ADDI) { |
| op_arithI(L, l_addi, luai_numadd); |
| vmbreak; |
| } |
| vmcase(OP_ADDK) { |
| op_arithK(L, l_addi, luai_numadd); |
| vmbreak; |
| } |
| vmcase(OP_SUBK) { |
| op_arithK(L, l_subi, luai_numsub); |
| vmbreak; |
| } |
| vmcase(OP_MULK) { |
| op_arithK(L, l_muli, luai_nummul); |
| vmbreak; |
| } |
| vmcase(OP_MODK) { |
| op_arithK(L, luaV_mod, luaV_modf); |
| vmbreak; |
| } |
| vmcase(OP_POWK) { |
| op_arithfK(L, luai_numpow); |
| vmbreak; |
| } |
| vmcase(OP_DIVK) { |
| op_arithfK(L, luai_numdiv); |
| vmbreak; |
| } |
| vmcase(OP_IDIVK) { |
| op_arithK(L, luaV_idiv, luai_numidiv); |
| vmbreak; |
| } |
| vmcase(OP_BANDK) { |
| op_bitwiseK(L, l_band); |
| vmbreak; |
| } |
| vmcase(OP_BORK) { |
| op_bitwiseK(L, l_bor); |
| vmbreak; |
| } |
| vmcase(OP_BXORK) { |
| op_bitwiseK(L, l_bxor); |
| vmbreak; |
| } |
| vmcase(OP_SHRI) { |
| TValue *rb = vRB(i); |
| int ic = GETARG_sC(i); |
| lua_Integer ib; |
| if (tointegerns(rb, &ib)) { |
| pc++; setivalue(s2v(ra), luaV_shiftl(ib, -ic)); |
| } |
| vmbreak; |
| } |
| vmcase(OP_SHLI) { |
| TValue *rb = vRB(i); |
| int ic = GETARG_sC(i); |
| lua_Integer ib; |
| if (tointegerns(rb, &ib)) { |
| pc++; setivalue(s2v(ra), luaV_shiftl(ic, ib)); |
| } |
| vmbreak; |
| } |
| vmcase(OP_ADD) { |
| op_arith(L, l_addi, luai_numadd); |
| vmbreak; |
| } |
| vmcase(OP_SUB) { |
| op_arith(L, l_subi, luai_numsub); |
| vmbreak; |
| } |
| vmcase(OP_MUL) { |
| op_arith(L, l_muli, luai_nummul); |
| vmbreak; |
| } |
| vmcase(OP_MOD) { |
| op_arith(L, luaV_mod, luaV_modf); |
| vmbreak; |
| } |
| vmcase(OP_POW) { |
| op_arithf(L, luai_numpow); |
| vmbreak; |
| } |
| vmcase(OP_DIV) { /* float division (always with floats) */ |
| op_arithf(L, luai_numdiv); |
| vmbreak; |
| } |
| vmcase(OP_IDIV) { /* floor division */ |
| op_arith(L, luaV_idiv, luai_numidiv); |
| vmbreak; |
| } |
| vmcase(OP_BAND) { |
| op_bitwise(L, l_band); |
| vmbreak; |
| } |
| vmcase(OP_BOR) { |
| op_bitwise(L, l_bor); |
| vmbreak; |
| } |
| vmcase(OP_BXOR) { |
| op_bitwise(L, l_bxor); |
| vmbreak; |
| } |
| vmcase(OP_SHR) { |
| op_bitwise(L, luaV_shiftr); |
| vmbreak; |
| } |
| vmcase(OP_SHL) { |
| op_bitwise(L, luaV_shiftl); |
| vmbreak; |
| } |
| vmcase(OP_MMBIN) { |
| Instruction pi = *(pc - 2); /* original arith. expression */ |
| TValue *rb = vRB(i); |
| TMS tm = (TMS)GETARG_C(i); |
| StkId result = RA(pi); |
| lua_assert(OP_ADD <= GET_OPCODE(pi) && GET_OPCODE(pi) <= OP_SHR); |
| Protect(luaT_trybinTM(L, s2v(ra), rb, result, tm)); |
| vmbreak; |
| } |
| vmcase(OP_MMBINI) { |
| Instruction pi = *(pc - 2); /* original arith. expression */ |
| int imm = GETARG_sB(i); |
| TMS tm = (TMS)GETARG_C(i); |
| int flip = GETARG_k(i); |
| StkId result = RA(pi); |
| Protect(luaT_trybiniTM(L, s2v(ra), imm, flip, result, tm)); |
| vmbreak; |
| } |
| vmcase(OP_MMBINK) { |
| Instruction pi = *(pc - 2); /* original arith. expression */ |
| TValue *imm = KB(i); |
| TMS tm = (TMS)GETARG_C(i); |
| int flip = GETARG_k(i); |
| StkId result = RA(pi); |
| Protect(luaT_trybinassocTM(L, s2v(ra), imm, flip, result, tm)); |
| vmbreak; |
| } |
| vmcase(OP_UNM) { |
| TValue *rb = vRB(i); |
| lua_Number nb; |
| if (ttisinteger(rb)) { |
| lua_Integer ib = ivalue(rb); |
| setivalue(s2v(ra), intop(-, 0, ib)); |
| } |
| else if (tonumberns(rb, nb)) { |
| setfltvalue(s2v(ra), luai_numunm(L, nb)); |
| } |
| else |
| Protect(luaT_trybinTM(L, rb, rb, ra, TM_UNM)); |
| vmbreak; |
| } |
| vmcase(OP_BNOT) { |
| TValue *rb = vRB(i); |
| lua_Integer ib; |
| if (tointegerns(rb, &ib)) { |
| setivalue(s2v(ra), intop(^, ~l_castS2U(0), ib)); |
| } |
| else |
| Protect(luaT_trybinTM(L, rb, rb, ra, TM_BNOT)); |
| vmbreak; |
| } |
| vmcase(OP_NOT) { |
| TValue *rb = vRB(i); |
| if (l_isfalse(rb)) |
| setbtvalue(s2v(ra)); |
| else |
| setbfvalue(s2v(ra)); |
| vmbreak; |
| } |
| vmcase(OP_LEN) { |
| Protect(luaV_objlen(L, ra, vRB(i))); |
| vmbreak; |
| } |
| vmcase(OP_CONCAT) { |
| int n = GETARG_B(i); /* number of elements to concatenate */ |
| L->top = ra + n; /* mark the end of concat operands */ |
| ProtectNT(luaV_concat(L, n)); |
| checkGC(L, L->top); /* 'luaV_concat' ensures correct top */ |
| vmbreak; |
| } |
| vmcase(OP_CLOSE) { |
| Protect(luaF_close(L, ra, LUA_OK)); |
| vmbreak; |
| } |
| vmcase(OP_TBC) { |
| /* create new to-be-closed upvalue */ |
| halfProtect(luaF_newtbcupval(L, ra)); |
| vmbreak; |
| } |
| vmcase(OP_JMP) { |
| dojump(ci, i, 0); |
| vmbreak; |
| } |
| vmcase(OP_EQ) { |
| int cond; |
| TValue *rb = vRB(i); |
| Protect(cond = luaV_equalobj(L, s2v(ra), rb)); |
| docondjump(); |
| vmbreak; |
| } |
| vmcase(OP_LT) { |
| op_order(L, l_lti, LTnum, lessthanothers); |
| vmbreak; |
| } |
| vmcase(OP_LE) { |
| op_order(L, l_lei, LEnum, lessequalothers); |
| vmbreak; |
| } |
| vmcase(OP_EQK) { |
| TValue *rb = KB(i); |
| /* basic types do not use '__eq'; we can use raw equality */ |
| int cond = luaV_rawequalobj(s2v(ra), rb); |
| docondjump(); |
| vmbreak; |
| } |
| vmcase(OP_EQI) { |
| int cond; |
| int im = GETARG_sB(i); |
| if (ttisinteger(s2v(ra))) |
| cond = (ivalue(s2v(ra)) == im); |
| else if (ttisfloat(s2v(ra))) |
| cond = luai_numeq(fltvalue(s2v(ra)), cast_num(im)); |
| else |
| cond = 0; /* other types cannot be equal to a number */ |
| docondjump(); |
| vmbreak; |
| } |
| vmcase(OP_LTI) { |
| op_orderI(L, l_lti, luai_numlt, 0, TM_LT); |
| vmbreak; |
| } |
| vmcase(OP_LEI) { |
| op_orderI(L, l_lei, luai_numle, 0, TM_LE); |
| vmbreak; |
| } |
| vmcase(OP_GTI) { |
| op_orderI(L, l_gti, luai_numgt, 1, TM_LT); |
| vmbreak; |
| } |
| vmcase(OP_GEI) { |
| op_orderI(L, l_gei, luai_numge, 1, TM_LE); |
| vmbreak; |
| } |
| vmcase(OP_TEST) { |
| int cond = !l_isfalse(s2v(ra)); |
| docondjump(); |
| vmbreak; |
| } |
| vmcase(OP_TESTSET) { |
| TValue *rb = vRB(i); |
| if (l_isfalse(rb) == GETARG_k(i)) |
| pc++; |
| else { |
| setobj2s(L, ra, rb); |
| donextjump(ci); |
| } |
| vmbreak; |
| } |
| vmcase(OP_CALL) { |
| int b = GETARG_B(i); |
| int nresults = GETARG_C(i) - 1; |
| if (b != 0) /* fixed number of arguments? */ |
| L->top = ra + b; /* top signals number of arguments */ |
| /* else previous instruction set top */ |
| ProtectNT(luaD_call(L, ra, nresults)); |
| vmbreak; |
| } |
| vmcase(OP_TAILCALL) { |
| int b = GETARG_B(i); /* number of arguments + 1 (function) */ |
| int nparams1 = GETARG_C(i); |
| /* delat is virtual 'func' - real 'func' (vararg functions) */ |
| int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0; |
| if (b != 0) |
| L->top = ra + b; |
| else /* previous instruction set top */ |
| b = cast_int(L->top - ra); |
| savepc(ci); /* some calls here can raise errors */ |
| if (TESTARG_k(i)) { |
| /* close upvalues from current call; the compiler ensures |
| that there are no to-be-closed variables here, so this |
| call cannot change the stack */ |
| luaF_close(L, base, NOCLOSINGMETH); |
| lua_assert(base == ci->func + 1); |
| } |
| while (!ttisfunction(s2v(ra))) { /* not a function? */ |
| luaD_tryfuncTM(L, ra); /* try '__call' metamethod */ |
| b++; /* there is now one extra argument */ |
| checkstackGCp(L, 1, ra); |
| } |
| if (!ttisLclosure(s2v(ra))) { /* C function? */ |
| luaD_call(L, ra, LUA_MULTRET); /* call it */ |
| updatetrap(ci); |
| updatestack(ci); /* stack may have been relocated */ |
| ci->func -= delta; |
| luaD_poscall(L, ci, cast_int(L->top - ra)); |
| return; |
| } |
| ci->func -= delta; |
| luaD_pretailcall(L, ci, ra, b); /* prepare call frame */ |
| goto tailcall; |
| } |
| vmcase(OP_RETURN) { |
| int n = GETARG_B(i) - 1; /* number of results */ |
| int nparams1 = GETARG_C(i); |
| if (n < 0) /* not fixed? */ |
| n = cast_int(L->top - ra); /* get what is available */ |
| savepc(ci); |
| if (TESTARG_k(i)) { /* may there be open upvalues? */ |
| if (L->top < ci->top) |
| L->top = ci->top; |
| luaF_close(L, base, LUA_OK); |
| updatetrap(ci); |
| updatestack(ci); |
| } |
| if (nparams1) /* vararg function? */ |
| ci->func -= ci->u.l.nextraargs + nparams1; |
| L->top = ra + n; /* set call for 'luaD_poscall' */ |
| luaD_poscall(L, ci, n); |
| return; |
| } |
| vmcase(OP_RETURN0) { |
| if (L->hookmask) { |
| L->top = ra; |
| halfProtectNT(luaD_poscall(L, ci, 0)); /* no hurry... */ |
| } |
| else { /* do the 'poscall' here */ |
| int nres = ci->nresults; |
| L->ci = ci->previous; /* back to caller */ |
| L->top = base - 1; |
| while (nres-- > 0) |
| setnilvalue(s2v(L->top++)); /* all results are nil */ |
| } |
| return; |
| } |
| vmcase(OP_RETURN1) { |
| if (L->hookmask) { |
| L->top = ra + 1; |
| halfProtectNT(luaD_poscall(L, ci, 1)); /* no hurry... */ |
| } |
| else { /* do the 'poscall' here */ |
| int nres = ci->nresults; |
| L->ci = ci->previous; /* back to caller */ |
| if (nres == 0) |
| L->top = base - 1; /* asked for no results */ |
| else { |
| setobjs2s(L, base - 1, ra); /* at least this result */ |
| L->top = base; |
| while (--nres > 0) /* complete missing results */ |
| setnilvalue(s2v(L->top++)); |
| } |
| } |
| return; |
| } |
| vmcase(OP_FORLOOP) { |
| if (ttisinteger(s2v(ra + 2))) { /* integer loop? */ |
| lua_Unsigned count = l_castS2U(ivalue(s2v(ra + 1))); |
| if (count > 0) { /* still more iterations? */ |
| lua_Integer step = ivalue(s2v(ra + 2)); |
| lua_Integer idx = ivalue(s2v(ra)); /* internal index */ |
| chgivalue(s2v(ra + 1), count - 1); /* update counter */ |
| idx = intop(+, idx, step); /* add step to index */ |
| chgivalue(s2v(ra), idx); /* update internal index */ |
| setivalue(s2v(ra + 3), idx); /* and control variable */ |
| pc -= GETARG_Bx(i); /* jump back */ |
| } |
| } |
| else if (floatforloop(ra)) /* float loop */ |
| pc -= GETARG_Bx(i); /* jump back */ |
| updatetrap(ci); /* allows a signal to break the loop */ |
| vmbreak; |
| } |
| vmcase(OP_FORPREP) { |
| savestate(L, ci); /* in case of errors */ |
| if (forprep(L, ra)) |
| pc += GETARG_Bx(i) + 1; /* skip the loop */ |
| vmbreak; |
| } |
| vmcase(OP_TFORPREP) { |
| /* create to-be-closed upvalue (if needed) */ |
| halfProtect(luaF_newtbcupval(L, ra + 3)); |
| pc += GETARG_Bx(i); |
| i = *(pc++); /* go to next instruction */ |
| lua_assert(GET_OPCODE(i) == OP_TFORCALL && ra == RA(i)); |
| goto l_tforcall; |
| } |
| vmcase(OP_TFORCALL) { |
| l_tforcall: |
| /* 'ra' has the iterator function, 'ra + 1' has the state, |
| 'ra + 2' has the control variable, and 'ra + 3' has the |
| to-be-closed variable. The call will use the stack after |
| these values (starting at 'ra + 4') |
| */ |
| /* push function, state, and control variable */ |
| memcpy(ra + 4, ra, 3 * sizeof(*ra)); |
| L->top = ra + 4 + 3; |
| ProtectNT(luaD_call(L, ra + 4, GETARG_C(i))); /* do the call */ |
| updatestack(ci); /* stack may have changed */ |
| i = *(pc++); /* go to next instruction */ |
| lua_assert(GET_OPCODE(i) == OP_TFORLOOP && ra == RA(i)); |
| goto l_tforloop; |
| } |
| vmcase(OP_TFORLOOP) { |
| l_tforloop: |
| if (!ttisnil(s2v(ra + 4))) { /* continue loop? */ |
| setobjs2s(L, ra + 2, ra + 4); /* save control variable */ |
| pc -= GETARG_Bx(i); /* jump back */ |
| } |
| vmbreak; |
| } |
| vmcase(OP_SETLIST) { |
| int n = GETARG_B(i); |
| unsigned int last = GETARG_C(i); |
| Table *h = hvalue(s2v(ra)); |
| if (n == 0) |
| n = cast_int(L->top - ra) - 1; /* get up to the top */ |
| else |
| L->top = ci->top; /* correct top in case of emergency GC */ |
| last += n; |
| if (TESTARG_k(i)) { |
| last += GETARG_Ax(*pc) * (MAXARG_C + 1); |
| pc++; |
| } |
| if (last > luaH_realasize(h)) /* needs more space? */ |
| luaH_resizearray(L, h, last); /* preallocate it at once */ |
| for (; n > 0; n--) { |
| TValue *val = s2v(ra + n); |
| setobj2t(L, &h->array[last - 1], val); |
| last--; |
| luaC_barrierback(L, obj2gco(h), val); |
| } |
| vmbreak; |
| } |
| vmcase(OP_CLOSURE) { |
| Proto *p = cl->p->p[GETARG_Bx(i)]; |
| halfProtect(pushclosure(L, p, cl->upvals, base, ra)); |
| checkGC(L, ra + 1); |
| vmbreak; |
| } |
| vmcase(OP_VARARG) { |
| int n = GETARG_C(i) - 1; /* required results */ |
| Protect(luaT_getvarargs(L, ci, ra, n)); |
| vmbreak; |
| } |
| vmcase(OP_VARARGPREP) { |
| ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p)); |
| if (trap) { |
| luaD_hookcall(L, ci); |
| L->oldpc = 1; /* next opcode will be seen as a "new" line */ |
| } |
| updatebase(ci); /* function has new base after adjustment */ |
| vmbreak; |
| } |
| vmcase(OP_EXTRAARG) { |
| lua_assert(0); |
| vmbreak; |
| } |
| } |
| } |
| } |
| |
| /* }================================================================== */ |