blob: 49b6f99b8b818b57b3600f106cf8c0af9967ba95 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include "common/sid.h"
#include <map>
#include <stack>
#include <vector>
#include <optional>
namespace aco {
namespace {
/**
* The general idea of this pass is:
* The CFG is traversed in reverse postorder (forward) and loops are processed
* several times until no progress is made.
* Per BB two wait_ctx is maintained: an in-context and out-context.
* The in-context is the joined out-contexts of the predecessors.
* The context contains a map: gpr -> wait_entry
* consisting of the information about the cnt values to be waited for.
* Note: After merge-nodes, it might occur that for the same register
* multiple cnt values are to be waited for.
*
* The values are updated according to the encountered instructions:
* - additional events increment the counter of waits of the same type
* - or erase gprs with counters higher than to be waited for.
*/
// TODO: do a more clever insertion of wait_cnt (lgkm_cnt)
// when there is a load followed by a use of a previous load
/* Instructions of the same event will finish in-order except for smem
* and maybe flat. Instructions of different events may not finish in-order. */
enum wait_event : uint32_t {
event_smem = 1 << 0,
event_lds = 1 << 1,
event_gds = 1 << 2,
event_vmem = 1 << 3,
event_vmem_store = 1 << 4, /* GFX10+ */
event_flat = 1 << 5,
event_exp_pos = 1 << 6,
event_exp_param = 1 << 7,
event_exp_mrt_null = 1 << 8,
event_gds_gpr_lock = 1 << 9,
event_vmem_gpr_lock = 1 << 10,
event_sendmsg = 1 << 11,
event_ldsdir = 1 << 12,
event_vmem_sample = 1 << 13, /* GFX12+ */
event_vmem_bvh = 1 << 14, /* GFX12+ */
num_events = 15,
};
enum counter_type : uint8_t {
counter_exp = 1 << wait_type_exp,
counter_lgkm = 1 << wait_type_lgkm,
counter_vm = 1 << wait_type_vm,
counter_vs = 1 << wait_type_vs,
counter_sample = 1 << wait_type_sample,
counter_bvh = 1 << wait_type_bvh,
counter_km = 1 << wait_type_km,
num_counters = wait_type_num,
};
struct wait_entry {
wait_imm imm;
uint32_t events; /* use wait_event notion */
uint8_t counters; /* use counter_type notion */
bool wait_on_read : 1;
bool logical : 1;
uint8_t vmem_types : 4; /* use vmem_type notion. for counter_vm. */
wait_entry(wait_event event_, wait_imm imm_, uint8_t counters_, bool logical_,
bool wait_on_read_)
: imm(imm_), events(event_), counters(counters_), wait_on_read(wait_on_read_),
logical(logical_), vmem_types(0)
{}
bool join(const wait_entry& other)
{
bool changed = (other.events & ~events) || (other.counters & ~counters) ||
(other.wait_on_read && !wait_on_read) || (other.vmem_types & !vmem_types) ||
(!other.logical && logical);
events |= other.events;
counters |= other.counters;
changed |= imm.combine(other.imm);
wait_on_read |= other.wait_on_read;
vmem_types |= other.vmem_types;
logical &= other.logical;
return changed;
}
void remove_wait(wait_type type, uint32_t type_events)
{
counters &= ~(1 << type);
imm[type] = wait_imm::unset_counter;
events &= ~type_events | event_flat;
if (!(counters & counter_lgkm) && !(counters & counter_vm))
events &= ~(type_events & event_flat);
if (type == wait_type_vm)
vmem_types = 0;
}
UNUSED void print(FILE* output) const
{
fprintf(output, "logical: %u\n", logical);
imm.print(output);
if (events)
fprintf(output, "events: %u\n", events);
if (counters)
fprintf(output, "counters: %u\n", counters);
if (!wait_on_read)
fprintf(output, "wait_on_read: %u\n", wait_on_read);
if (!logical)
fprintf(output, "logical: %u\n", logical);
if (vmem_types)
fprintf(output, "vmem_types: %u\n", vmem_types);
}
};
struct target_info {
wait_imm max_cnt;
uint32_t events[wait_type_num] = {};
uint16_t unordered_events;
target_info(enum amd_gfx_level gfx_level)
{
max_cnt = wait_imm::max(gfx_level);
for (unsigned i = 0; i < wait_type_num; i++)
max_cnt[i] = max_cnt[i] ? max_cnt[i] - 1 : 0;
events[wait_type_exp] = event_exp_pos | event_exp_param | event_exp_mrt_null |
event_gds_gpr_lock | event_vmem_gpr_lock | event_ldsdir;
events[wait_type_lgkm] = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
events[wait_type_vm] = event_vmem | event_flat;
events[wait_type_vs] = event_vmem_store;
if (gfx_level >= GFX12) {
events[wait_type_sample] = event_vmem_sample;
events[wait_type_bvh] = event_vmem_bvh;
events[wait_type_km] = event_smem | event_sendmsg;
events[wait_type_lgkm] &= ~events[wait_type_km];
}
for (unsigned i = 0; i < wait_type_num; i++) {
u_foreach_bit (j, events[i])
counters[j] |= (1 << i);
}
unordered_events = event_smem | (gfx_level < GFX10 ? event_flat : 0);
}
uint8_t get_counters_for_event(wait_event event) const { return counters[ffs(event) - 1]; }
private:
/* Bitfields of counters affected by each event */
uint8_t counters[num_events] = {};
};
struct wait_ctx {
Program* program;
enum amd_gfx_level gfx_level;
const target_info* info;
uint32_t nonzero = 0;
bool pending_flat_lgkm = false;
bool pending_flat_vm = false;
bool pending_s_buffer_store = false; /* GFX10 workaround */
wait_imm barrier_imm[storage_count];
uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
std::map<PhysReg, wait_entry> gpr_map;
wait_ctx() {}
wait_ctx(Program* program_, const target_info* info_)
: program(program_), gfx_level(program_->gfx_level), info(info_)
{}
bool join(const wait_ctx* other, bool logical)
{
bool changed = (other->pending_flat_lgkm && !pending_flat_lgkm) ||
(other->pending_flat_vm && !pending_flat_vm) || (~nonzero & other->nonzero);
nonzero |= other->nonzero;
pending_flat_lgkm |= other->pending_flat_lgkm;
pending_flat_vm |= other->pending_flat_vm;
pending_s_buffer_store |= other->pending_s_buffer_store;
for (const auto& entry : other->gpr_map) {
if (entry.second.logical != logical)
continue;
using iterator = std::map<PhysReg, wait_entry>::iterator;
const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry);
if (insert_pair.second) {
changed = true;
} else {
changed |= insert_pair.first->second.join(entry.second);
}
}
for (unsigned i = 0; i < storage_count; i++) {
changed |= barrier_imm[i].combine(other->barrier_imm[i]);
changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0;
barrier_events[i] |= other->barrier_events[i];
}
return changed;
}
UNUSED void print(FILE* output) const
{
for (unsigned i = 0; i < wait_type_num; i++)
fprintf(output, "nonzero[%u]: %u\n", i, nonzero & (1 << i) ? 1 : 0);
fprintf(output, "pending_flat_lgkm: %u\n", pending_flat_lgkm);
fprintf(output, "pending_flat_vm: %u\n", pending_flat_vm);
for (const auto& entry : gpr_map) {
fprintf(output, "gpr_map[%c%u] = {\n", entry.first.reg() >= 256 ? 'v' : 's',
entry.first.reg() & 0xff);
entry.second.print(output);
fprintf(output, "}\n");
}
for (unsigned i = 0; i < storage_count; i++) {
if (!barrier_imm[i].empty() || barrier_events[i]) {
fprintf(output, "barriers[%u] = {\n", i);
barrier_imm[i].print(output);
fprintf(output, "events: %u\n", barrier_events[i]);
fprintf(output, "}\n");
}
}
}
};
wait_event
get_vmem_event(wait_ctx& ctx, Instruction* instr, uint8_t type)
{
if (instr->definitions.empty() && ctx.gfx_level >= GFX10)
return event_vmem_store;
wait_event ev = event_vmem;
if (ctx.gfx_level >= GFX12 && type != vmem_nosampler)
ev = type == vmem_bvh ? event_vmem_bvh : event_vmem_sample;
return ev;
}
void
check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr)
{
for (const Operand op : instr->operands) {
if (op.isConstant() || op.isUndefined())
continue;
/* check consecutively read gprs */
for (unsigned j = 0; j < op.size(); j++) {
std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(PhysReg{op.physReg() + j});
if (it != ctx.gpr_map.end() && it->second.wait_on_read)
wait.combine(it->second.imm);
}
}
for (const Definition& def : instr->definitions) {
/* check consecutively written gprs */
for (unsigned j = 0; j < def.getTemp().size(); j++) {
PhysReg reg{def.physReg() + j};
std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
if (it == ctx.gpr_map.end())
continue;
wait_imm reg_imm = it->second.imm;
/* Vector Memory reads and writes decrease the counter in the order they were issued.
* Before GFX12, they also write VGPRs in order if they're of the same type.
* TODO: We can do this for GFX12 and different types for GFX11 if we know that the two
* VMEM loads do not write the same lanes. Since GFX11, we track VMEM operations on the
* linear CFG, so this is difficult */
uint8_t vmem_type = get_vmem_type(ctx.gfx_level, instr);
if (vmem_type && ctx.gfx_level < GFX12) {
wait_event event = get_vmem_event(ctx, instr, vmem_type);
wait_type type = (wait_type)(ffs(ctx.info->get_counters_for_event(event)) - 1);
if ((it->second.events & ctx.info->events[type]) == event &&
(type != wait_type_vm || it->second.vmem_types == vmem_type))
reg_imm[type] = wait_imm::unset_counter;
}
/* LDS reads and writes return in the order they were issued. same for GDS */
if (instr->isDS() && (it->second.events & ctx.info->events[wait_type_lgkm]) ==
(instr->ds().gds ? event_gds : event_lds))
reg_imm.lgkm = wait_imm::unset_counter;
wait.combine(reg_imm);
}
}
}
void
perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics)
{
sync_scope subgroup_scope =
ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
if ((sync.semantics & semantics) && sync.scope > subgroup_scope) {
unsigned storage = sync.storage;
while (storage) {
unsigned idx = u_bit_scan(&storage);
/* LDS is private to the workgroup */
sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
uint16_t events = ctx.barrier_events[idx];
if (bar_scope_lds <= subgroup_scope)
events &= ~event_lds;
/* Until GFX12, in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations
* in-order for the same workgroup */
if (ctx.gfx_level < GFX12 && !ctx.program->wgp_mode && sync.scope <= scope_workgroup)
events &= ~(event_vmem | event_vmem_store | event_smem);
if (events)
imm.combine(ctx.barrier_imm[idx]);
}
}
}
void
force_waitcnt(wait_ctx& ctx, wait_imm& imm)
{
u_foreach_bit (i, ctx.nonzero)
imm[i] = 0;
}
void
kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
{
if (instr->opcode == aco_opcode::s_setpc_b64 || (debug_flags & DEBUG_FORCE_WAITCNT)) {
/* Force emitting waitcnt states right after the instruction if there is
* something to wait for. This is also applied for s_setpc_b64 to ensure
* waitcnt states are inserted before jumping to the PS epilog.
*/
force_waitcnt(ctx, imm);
}
/* sendmsg(dealloc_vgprs) releases scratch, so this isn't safe if there is a in-progress
* scratch store.
*/
if (ctx.gfx_level >= GFX11 && instr->opcode == aco_opcode::s_sendmsg &&
instr->salu().imm == sendmsg_dealloc_vgprs) {
imm.combine(ctx.barrier_imm[ffs(storage_scratch) - 1]);
imm.combine(ctx.barrier_imm[ffs(storage_vgpr_spill) - 1]);
}
/* Make sure POPS coherent memory accesses have reached the L2 cache before letting the
* overlapping waves proceed into the ordered section.
*/
if (ctx.program->has_pops_overlapped_waves_wait &&
(ctx.gfx_level >= GFX11 ? instr->isEXP() && instr->exp().done
: (instr->opcode == aco_opcode::s_sendmsg &&
instr->salu().imm == sendmsg_ordered_ps_done))) {
uint8_t c = counter_vm | counter_vs;
/* Await SMEM loads too, as it's possible for an application to create them, like using a
* scalarization loop - pointless and unoptimal for an inherently divergent address of
* per-pixel data, but still can be done at least synthetically and must be handled correctly.
*/
if (ctx.program->has_smem_buffer_or_global_loads)
c |= counter_lgkm;
u_foreach_bit (i, c & ctx.nonzero)
imm[i] = 0;
}
check_instr(ctx, imm, instr);
/* It's required to wait for scalar stores before "writing back" data.
* It shouldn't cost anything anyways since we're about to do s_endpgm.
*/
if ((ctx.nonzero & BITFIELD_BIT(wait_type_lgkm)) && instr->opcode == aco_opcode::s_dcache_wb) {
assert(ctx.gfx_level >= GFX8);
imm.lgkm = 0;
}
if (ctx.gfx_level >= GFX10 && instr->isSMEM()) {
/* GFX10: A store followed by a load at the same address causes a problem because
* the load doesn't load the correct values unless we wait for the store first.
* This is NOT mitigated by an s_nop.
*
* TODO: Refine this when we have proper alias analysis.
*/
if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() &&
!instr->smem().sync.can_reorder()) {
imm.lgkm = 0;
}
}
if (instr->opcode == aco_opcode::ds_ordered_count &&
((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1)) {
imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
}
if (instr->opcode == aco_opcode::p_barrier)
perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel);
else
perform_barrier(ctx, imm, sync_info, semantic_release);
if (!imm.empty()) {
if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
imm.vm = 0;
if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
imm.lgkm = 0;
/* reset counters */
for (unsigned i = 0; i < wait_type_num; i++)
ctx.nonzero &= imm[i] == 0 ? ~BITFIELD_BIT(i) : UINT32_MAX;
/* update barrier wait imms */
for (unsigned i = 0; i < storage_count; i++) {
wait_imm& bar = ctx.barrier_imm[i];
uint16_t& bar_ev = ctx.barrier_events[i];
for (unsigned j = 0; j < wait_type_num; j++) {
if (bar[j] != wait_imm::unset_counter && imm[j] <= bar[j]) {
bar[j] = wait_imm::unset_counter;
bar_ev &= ~ctx.info->events[j] | event_flat;
}
}
if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
bar_ev &= ~event_flat;
}
/* remove all gprs with higher counter from map */
std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin();
while (it != ctx.gpr_map.end()) {
for (unsigned i = 0; i < wait_type_num; i++) {
if (imm[i] != wait_imm::unset_counter && imm[i] <= it->second.imm[i])
it->second.remove_wait((wait_type)i, ctx.info->events[i]);
}
if (!it->second.counters)
it = ctx.gpr_map.erase(it);
else
it++;
}
}
if (imm.vm == 0)
ctx.pending_flat_vm = false;
if (imm.lgkm == 0) {
ctx.pending_flat_lgkm = false;
ctx.pending_s_buffer_store = false;
}
}
void
update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
{
for (unsigned i = 0; i < storage_count; i++) {
wait_imm& bar = ctx.barrier_imm[i];
uint16_t& bar_ev = ctx.barrier_events[i];
/* We re-use barrier_imm/barrier_events to wait for all scratch stores to finish. */
bool ignore_private = i == (ffs(storage_scratch) - 1) || i == (ffs(storage_vgpr_spill) - 1);
if (sync.storage & (1 << i) && (!(sync.semantics & semantic_private) || ignore_private)) {
bar_ev |= event;
u_foreach_bit (j, counters)
bar[j] = 0;
} else if (!(bar_ev & ctx.info->unordered_events) && !(ctx.info->unordered_events & event)) {
u_foreach_bit (j, counters) {
if (bar[j] != wait_imm::unset_counter && (bar_ev & ctx.info->events[j]) == event)
bar[j] = std::min<uint16_t>(bar[j] + 1, ctx.info->max_cnt[j]);
}
}
}
}
void
update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info())
{
uint8_t counters = ctx.info->get_counters_for_event(event);
ctx.nonzero |= counters;
update_barrier_imm(ctx, counters, event, sync);
if (ctx.info->unordered_events & event)
return;
if (ctx.pending_flat_lgkm)
counters &= ~counter_lgkm;
if (ctx.pending_flat_vm)
counters &= ~counter_vm;
for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) {
wait_entry& entry = e.second;
if (entry.events & ctx.info->unordered_events)
continue;
assert(entry.events);
u_foreach_bit (i, counters) {
if ((entry.events & ctx.info->events[i]) == event)
entry.imm[i] = std::min<uint16_t>(entry.imm[i] + 1, ctx.info->max_cnt[i]);
}
}
}
void
update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info())
{
assert(ctx.gfx_level < GFX10);
ctx.nonzero |= BITFIELD_BIT(wait_type_lgkm) | BITFIELD_BIT(wait_type_vm);
update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) {
if (e.second.counters & counter_vm)
e.second.imm.vm = 0;
if (e.second.counters & counter_lgkm)
e.second.imm.lgkm = 0;
}
ctx.pending_flat_lgkm = true;
ctx.pending_flat_vm = true;
}
void
insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
uint8_t vmem_types = 0, bool force_linear = false)
{
uint16_t counters = ctx.info->get_counters_for_event(event);
wait_imm imm;
u_foreach_bit (i, counters)
imm[i] = 0;
wait_entry new_entry(event, imm, counters, !rc.is_linear() && !force_linear, wait_on_read);
if (counters & counter_vm)
new_entry.vmem_types |= vmem_types;
for (unsigned i = 0; i < rc.size(); i++) {
auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry);
if (!it.second)
it.first->second.join(new_entry);
}
}
void
insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, uint8_t vmem_types = 0)
{
if (!op.isConstant() && !op.isUndefined())
insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, vmem_types);
}
void
insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, uint8_t vmem_types = 0)
{
/* We can't safely write to unwritten destination VGPR lanes with DS/VMEM on GFX11 without
* waiting for the load to finish.
*/
uint32_t ds_vmem_events =
event_lds | event_gds | event_vmem | event_vmem_sample | event_vmem_bvh | event_flat;
bool force_linear = ctx.gfx_level >= GFX11 && (event & ds_vmem_events);
insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, vmem_types, force_linear);
}
void
gen(Instruction* instr, wait_ctx& ctx)
{
switch (instr->format) {
case Format::EXP: {
Export_instruction& exp_instr = instr->exp();
wait_event ev;
if (exp_instr.dest <= 9)
ev = event_exp_mrt_null;
else if (exp_instr.dest <= 15)
ev = event_exp_pos;
else
ev = event_exp_param;
update_counters(ctx, ev);
/* insert new entries for exported vgprs */
for (unsigned i = 0; i < 4; i++) {
if (exp_instr.enabled_mask & (1 << i)) {
unsigned idx = exp_instr.compressed ? i >> 1 : i;
assert(idx < exp_instr.operands.size());
insert_wait_entry(ctx, exp_instr.operands[idx], ev);
}
}
insert_wait_entry(ctx, exec, s2, ev, false);
break;
}
case Format::FLAT: {
FLAT_instruction& flat = instr->flat();
if (ctx.gfx_level < GFX10 && !instr->definitions.empty())
update_counters_for_flat_load(ctx, flat.sync);
else
update_counters(ctx, event_flat, flat.sync);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], event_flat);
break;
}
case Format::SMEM: {
SMEM_instruction& smem = instr->smem();
update_counters(ctx, event_smem, smem.sync);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], event_smem);
else if (ctx.gfx_level >= GFX10 && !smem.sync.can_reorder())
ctx.pending_s_buffer_store = true;
break;
}
case Format::DS: {
DS_instruction& ds = instr->ds();
update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync);
if (ds.gds)
update_counters(ctx, event_gds_gpr_lock);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds);
if (ds.gds) {
for (const Operand& op : instr->operands)
insert_wait_entry(ctx, op, event_gds_gpr_lock);
insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
}
break;
}
case Format::LDSDIR: {
LDSDIR_instruction& ldsdir = instr->ldsdir();
update_counters(ctx, event_ldsdir, ldsdir.sync);
insert_wait_entry(ctx, instr->definitions[0], event_ldsdir);
break;
}
case Format::MUBUF:
case Format::MTBUF:
case Format::MIMG:
case Format::GLOBAL:
case Format::SCRATCH: {
uint8_t type = get_vmem_type(ctx.gfx_level, instr);
wait_event ev = get_vmem_event(ctx, instr, type);
update_counters(ctx, ev, get_sync_info(instr));
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], ev, type);
if (ctx.gfx_level == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) {
update_counters(ctx, event_vmem_gpr_lock);
insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
} else if (ctx.gfx_level == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) {
update_counters(ctx, event_vmem_gpr_lock);
insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock);
}
break;
}
case Format::SOPP: {
if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt)
update_counters(ctx, event_sendmsg);
break;
}
case Format::SOP1: {
if (instr->opcode == aco_opcode::s_sendmsg_rtn_b32 ||
instr->opcode == aco_opcode::s_sendmsg_rtn_b64) {
update_counters(ctx, event_sendmsg);
insert_wait_entry(ctx, instr->definitions[0], event_sendmsg);
}
break;
}
default: break;
}
}
void
emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm)
{
Builder bld(ctx.program, &instructions);
imm.build_waitcnt(bld);
}
bool
check_clause_raw(std::bitset<512>& regs_written, Instruction* instr)
{
for (Operand op : instr->operands) {
if (op.isConstant())
continue;
for (unsigned i = 0; i < op.size(); i++) {
if (regs_written[op.physReg().reg() + i])
return false;
}
}
for (Definition def : instr->definitions) {
for (unsigned i = 0; i < def.size(); i++)
regs_written[def.physReg().reg() + i] = 1;
}
return true;
}
void
handle_block(Program* program, Block& block, wait_ctx& ctx)
{
std::vector<aco_ptr<Instruction>> new_instructions;
wait_imm queued_imm;
size_t clause_end = 0;
for (size_t i = 0; i < block.instructions.size(); i++) {
aco_ptr<Instruction>& instr = block.instructions[i];
bool is_wait = queued_imm.unpack(ctx.gfx_level, instr.get());
memory_sync_info sync_info = get_sync_info(instr.get());
kill(queued_imm, instr.get(), ctx, sync_info);
/* At the start of a possible clause, also emit waitcnts for each instruction to avoid
* splitting the clause.
*/
if (i >= clause_end || !queued_imm.empty()) {
std::optional<std::bitset<512>> regs_written;
for (clause_end = i + 1; clause_end < block.instructions.size(); clause_end++) {
Instruction* next = block.instructions[clause_end].get();
if (!should_form_clause(instr.get(), next))
break;
if (!regs_written) {
regs_written.emplace();
check_clause_raw(*regs_written, instr.get());
}
if (!check_clause_raw(*regs_written, next))
break;
kill(queued_imm, next, ctx, get_sync_info(next));
}
}
gen(instr.get(), ctx);
if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
if (instr->isVINTERP_INREG() && queued_imm.exp != wait_imm::unset_counter) {
instr->vinterp_inreg().wait_exp = MIN2(instr->vinterp_inreg().wait_exp, queued_imm.exp);
queued_imm.exp = wait_imm::unset_counter;
}
if (!queued_imm.empty())
emit_waitcnt(ctx, new_instructions, queued_imm);
bool is_ordered_count_acquire =
instr->opcode == aco_opcode::ds_ordered_count &&
!((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1);
new_instructions.emplace_back(std::move(instr));
perform_barrier(ctx, queued_imm, sync_info, semantic_acquire);
if (is_ordered_count_acquire)
queued_imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
}
}
/* For last block of a program which has succeed shader part, wait all memory ops done
* before go to next shader part.
*/
if (block.kind & block_kind_end_with_regs)
force_waitcnt(ctx, queued_imm);
if (!queued_imm.empty())
emit_waitcnt(ctx, new_instructions, queued_imm);
block.instructions.swap(new_instructions);
}
} /* end namespace */
void
insert_waitcnt(Program* program)
{
target_info info(program->gfx_level);
/* per BB ctx */
std::vector<bool> done(program->blocks.size());
std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program, &info));
std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program, &info));
std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
unsigned loop_progress = 0;
if (program->pending_lds_access) {
update_barrier_imm(in_ctx[0], info.get_counters_for_event(event_lds), event_lds,
memory_sync_info(storage_shared));
}
for (Definition def : program->args_pending_vmem) {
update_counters(in_ctx[0], event_vmem);
insert_wait_entry(in_ctx[0], def, event_vmem);
}
for (unsigned i = 0; i < program->blocks.size();) {
Block& current = program->blocks[i++];
if (current.kind & block_kind_discard_early_exit) {
/* Because the jump to the discard early exit block may happen anywhere in a block, it's
* not possible to join it with its predecessors this way.
* We emit all required waits when emitting the discard block.
*/
continue;
}
wait_ctx ctx = in_ctx[current.index];
if (current.kind & block_kind_loop_header) {
loop_header_indices.push(current.index);
} else if (current.kind & block_kind_loop_exit) {
bool repeat = false;
if (loop_progress == loop_header_indices.size()) {
i = loop_header_indices.top();
repeat = true;
}
loop_header_indices.pop();
loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
if (repeat)
continue;
}
bool changed = false;
for (unsigned b : current.linear_preds)
changed |= ctx.join(&out_ctx[b], false);
for (unsigned b : current.logical_preds)
changed |= ctx.join(&out_ctx[b], true);
if (done[current.index] && !changed) {
in_ctx[current.index] = std::move(ctx);
continue;
} else {
in_ctx[current.index] = ctx;
}
loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
done[current.index] = true;
handle_block(program, current, ctx);
out_ctx[current.index] = std::move(ctx);
}
}
} // namespace aco