| /* |
| * Copyright © 2018 Valve Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include "common/sid.h" |
| |
| #include <map> |
| #include <stack> |
| #include <vector> |
| #include <optional> |
| |
| namespace aco { |
| |
| namespace { |
| |
| /** |
| * The general idea of this pass is: |
| * The CFG is traversed in reverse postorder (forward) and loops are processed |
| * several times until no progress is made. |
| * Per BB two wait_ctx is maintained: an in-context and out-context. |
| * The in-context is the joined out-contexts of the predecessors. |
| * The context contains a map: gpr -> wait_entry |
| * consisting of the information about the cnt values to be waited for. |
| * Note: After merge-nodes, it might occur that for the same register |
| * multiple cnt values are to be waited for. |
| * |
| * The values are updated according to the encountered instructions: |
| * - additional events increment the counter of waits of the same type |
| * - or erase gprs with counters higher than to be waited for. |
| */ |
| |
| // TODO: do a more clever insertion of wait_cnt (lgkm_cnt) |
| // when there is a load followed by a use of a previous load |
| |
| /* Instructions of the same event will finish in-order except for smem |
| * and maybe flat. Instructions of different events may not finish in-order. */ |
| enum wait_event : uint32_t { |
| event_smem = 1 << 0, |
| event_lds = 1 << 1, |
| event_gds = 1 << 2, |
| event_vmem = 1 << 3, |
| event_vmem_store = 1 << 4, /* GFX10+ */ |
| event_flat = 1 << 5, |
| event_exp_pos = 1 << 6, |
| event_exp_param = 1 << 7, |
| event_exp_mrt_null = 1 << 8, |
| event_gds_gpr_lock = 1 << 9, |
| event_vmem_gpr_lock = 1 << 10, |
| event_sendmsg = 1 << 11, |
| event_ldsdir = 1 << 12, |
| event_vmem_sample = 1 << 13, /* GFX12+ */ |
| event_vmem_bvh = 1 << 14, /* GFX12+ */ |
| num_events = 15, |
| }; |
| |
| enum counter_type : uint8_t { |
| counter_exp = 1 << wait_type_exp, |
| counter_lgkm = 1 << wait_type_lgkm, |
| counter_vm = 1 << wait_type_vm, |
| counter_vs = 1 << wait_type_vs, |
| counter_sample = 1 << wait_type_sample, |
| counter_bvh = 1 << wait_type_bvh, |
| counter_km = 1 << wait_type_km, |
| num_counters = wait_type_num, |
| }; |
| |
| struct wait_entry { |
| wait_imm imm; |
| uint32_t events; /* use wait_event notion */ |
| uint8_t counters; /* use counter_type notion */ |
| bool wait_on_read : 1; |
| bool logical : 1; |
| uint8_t vmem_types : 4; /* use vmem_type notion. for counter_vm. */ |
| |
| wait_entry(wait_event event_, wait_imm imm_, uint8_t counters_, bool logical_, |
| bool wait_on_read_) |
| : imm(imm_), events(event_), counters(counters_), wait_on_read(wait_on_read_), |
| logical(logical_), vmem_types(0) |
| {} |
| |
| bool join(const wait_entry& other) |
| { |
| bool changed = (other.events & ~events) || (other.counters & ~counters) || |
| (other.wait_on_read && !wait_on_read) || (other.vmem_types & !vmem_types) || |
| (!other.logical && logical); |
| events |= other.events; |
| counters |= other.counters; |
| changed |= imm.combine(other.imm); |
| wait_on_read |= other.wait_on_read; |
| vmem_types |= other.vmem_types; |
| logical &= other.logical; |
| return changed; |
| } |
| |
| void remove_wait(wait_type type, uint32_t type_events) |
| { |
| counters &= ~(1 << type); |
| imm[type] = wait_imm::unset_counter; |
| |
| events &= ~type_events | event_flat; |
| if (!(counters & counter_lgkm) && !(counters & counter_vm)) |
| events &= ~(type_events & event_flat); |
| |
| if (type == wait_type_vm) |
| vmem_types = 0; |
| } |
| |
| UNUSED void print(FILE* output) const |
| { |
| fprintf(output, "logical: %u\n", logical); |
| imm.print(output); |
| if (events) |
| fprintf(output, "events: %u\n", events); |
| if (counters) |
| fprintf(output, "counters: %u\n", counters); |
| if (!wait_on_read) |
| fprintf(output, "wait_on_read: %u\n", wait_on_read); |
| if (!logical) |
| fprintf(output, "logical: %u\n", logical); |
| if (vmem_types) |
| fprintf(output, "vmem_types: %u\n", vmem_types); |
| } |
| }; |
| |
| struct target_info { |
| wait_imm max_cnt; |
| uint32_t events[wait_type_num] = {}; |
| uint16_t unordered_events; |
| |
| target_info(enum amd_gfx_level gfx_level) |
| { |
| max_cnt = wait_imm::max(gfx_level); |
| for (unsigned i = 0; i < wait_type_num; i++) |
| max_cnt[i] = max_cnt[i] ? max_cnt[i] - 1 : 0; |
| |
| events[wait_type_exp] = event_exp_pos | event_exp_param | event_exp_mrt_null | |
| event_gds_gpr_lock | event_vmem_gpr_lock | event_ldsdir; |
| events[wait_type_lgkm] = event_smem | event_lds | event_gds | event_flat | event_sendmsg; |
| events[wait_type_vm] = event_vmem | event_flat; |
| events[wait_type_vs] = event_vmem_store; |
| if (gfx_level >= GFX12) { |
| events[wait_type_sample] = event_vmem_sample; |
| events[wait_type_bvh] = event_vmem_bvh; |
| events[wait_type_km] = event_smem | event_sendmsg; |
| events[wait_type_lgkm] &= ~events[wait_type_km]; |
| } |
| |
| for (unsigned i = 0; i < wait_type_num; i++) { |
| u_foreach_bit (j, events[i]) |
| counters[j] |= (1 << i); |
| } |
| |
| unordered_events = event_smem | (gfx_level < GFX10 ? event_flat : 0); |
| } |
| |
| uint8_t get_counters_for_event(wait_event event) const { return counters[ffs(event) - 1]; } |
| |
| private: |
| /* Bitfields of counters affected by each event */ |
| uint8_t counters[num_events] = {}; |
| }; |
| |
| struct wait_ctx { |
| Program* program; |
| enum amd_gfx_level gfx_level; |
| const target_info* info; |
| |
| uint32_t nonzero = 0; |
| bool pending_flat_lgkm = false; |
| bool pending_flat_vm = false; |
| bool pending_s_buffer_store = false; /* GFX10 workaround */ |
| |
| wait_imm barrier_imm[storage_count]; |
| uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */ |
| |
| std::map<PhysReg, wait_entry> gpr_map; |
| |
| wait_ctx() {} |
| wait_ctx(Program* program_, const target_info* info_) |
| : program(program_), gfx_level(program_->gfx_level), info(info_) |
| {} |
| |
| bool join(const wait_ctx* other, bool logical) |
| { |
| bool changed = (other->pending_flat_lgkm && !pending_flat_lgkm) || |
| (other->pending_flat_vm && !pending_flat_vm) || (~nonzero & other->nonzero); |
| |
| nonzero |= other->nonzero; |
| pending_flat_lgkm |= other->pending_flat_lgkm; |
| pending_flat_vm |= other->pending_flat_vm; |
| pending_s_buffer_store |= other->pending_s_buffer_store; |
| |
| for (const auto& entry : other->gpr_map) { |
| if (entry.second.logical != logical) |
| continue; |
| |
| using iterator = std::map<PhysReg, wait_entry>::iterator; |
| const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry); |
| if (insert_pair.second) { |
| changed = true; |
| } else { |
| changed |= insert_pair.first->second.join(entry.second); |
| } |
| } |
| |
| for (unsigned i = 0; i < storage_count; i++) { |
| changed |= barrier_imm[i].combine(other->barrier_imm[i]); |
| changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0; |
| barrier_events[i] |= other->barrier_events[i]; |
| } |
| |
| return changed; |
| } |
| |
| UNUSED void print(FILE* output) const |
| { |
| for (unsigned i = 0; i < wait_type_num; i++) |
| fprintf(output, "nonzero[%u]: %u\n", i, nonzero & (1 << i) ? 1 : 0); |
| fprintf(output, "pending_flat_lgkm: %u\n", pending_flat_lgkm); |
| fprintf(output, "pending_flat_vm: %u\n", pending_flat_vm); |
| for (const auto& entry : gpr_map) { |
| fprintf(output, "gpr_map[%c%u] = {\n", entry.first.reg() >= 256 ? 'v' : 's', |
| entry.first.reg() & 0xff); |
| entry.second.print(output); |
| fprintf(output, "}\n"); |
| } |
| |
| for (unsigned i = 0; i < storage_count; i++) { |
| if (!barrier_imm[i].empty() || barrier_events[i]) { |
| fprintf(output, "barriers[%u] = {\n", i); |
| barrier_imm[i].print(output); |
| fprintf(output, "events: %u\n", barrier_events[i]); |
| fprintf(output, "}\n"); |
| } |
| } |
| } |
| }; |
| |
| wait_event |
| get_vmem_event(wait_ctx& ctx, Instruction* instr, uint8_t type) |
| { |
| if (instr->definitions.empty() && ctx.gfx_level >= GFX10) |
| return event_vmem_store; |
| wait_event ev = event_vmem; |
| if (ctx.gfx_level >= GFX12 && type != vmem_nosampler) |
| ev = type == vmem_bvh ? event_vmem_bvh : event_vmem_sample; |
| return ev; |
| } |
| |
| void |
| check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr) |
| { |
| for (const Operand op : instr->operands) { |
| if (op.isConstant() || op.isUndefined()) |
| continue; |
| |
| /* check consecutively read gprs */ |
| for (unsigned j = 0; j < op.size(); j++) { |
| std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(PhysReg{op.physReg() + j}); |
| if (it != ctx.gpr_map.end() && it->second.wait_on_read) |
| wait.combine(it->second.imm); |
| } |
| } |
| |
| for (const Definition& def : instr->definitions) { |
| /* check consecutively written gprs */ |
| for (unsigned j = 0; j < def.getTemp().size(); j++) { |
| PhysReg reg{def.physReg() + j}; |
| |
| std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg); |
| if (it == ctx.gpr_map.end()) |
| continue; |
| |
| wait_imm reg_imm = it->second.imm; |
| |
| /* Vector Memory reads and writes decrease the counter in the order they were issued. |
| * Before GFX12, they also write VGPRs in order if they're of the same type. |
| * TODO: We can do this for GFX12 and different types for GFX11 if we know that the two |
| * VMEM loads do not write the same lanes. Since GFX11, we track VMEM operations on the |
| * linear CFG, so this is difficult */ |
| uint8_t vmem_type = get_vmem_type(ctx.gfx_level, instr); |
| if (vmem_type && ctx.gfx_level < GFX12) { |
| wait_event event = get_vmem_event(ctx, instr, vmem_type); |
| wait_type type = (wait_type)(ffs(ctx.info->get_counters_for_event(event)) - 1); |
| if ((it->second.events & ctx.info->events[type]) == event && |
| (type != wait_type_vm || it->second.vmem_types == vmem_type)) |
| reg_imm[type] = wait_imm::unset_counter; |
| } |
| |
| /* LDS reads and writes return in the order they were issued. same for GDS */ |
| if (instr->isDS() && (it->second.events & ctx.info->events[wait_type_lgkm]) == |
| (instr->ds().gds ? event_gds : event_lds)) |
| reg_imm.lgkm = wait_imm::unset_counter; |
| |
| wait.combine(reg_imm); |
| } |
| } |
| } |
| |
| void |
| perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics) |
| { |
| sync_scope subgroup_scope = |
| ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup; |
| if ((sync.semantics & semantics) && sync.scope > subgroup_scope) { |
| unsigned storage = sync.storage; |
| while (storage) { |
| unsigned idx = u_bit_scan(&storage); |
| |
| /* LDS is private to the workgroup */ |
| sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup); |
| |
| uint16_t events = ctx.barrier_events[idx]; |
| if (bar_scope_lds <= subgroup_scope) |
| events &= ~event_lds; |
| |
| /* Until GFX12, in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations |
| * in-order for the same workgroup */ |
| if (ctx.gfx_level < GFX12 && !ctx.program->wgp_mode && sync.scope <= scope_workgroup) |
| events &= ~(event_vmem | event_vmem_store | event_smem); |
| |
| if (events) |
| imm.combine(ctx.barrier_imm[idx]); |
| } |
| } |
| } |
| |
| void |
| force_waitcnt(wait_ctx& ctx, wait_imm& imm) |
| { |
| u_foreach_bit (i, ctx.nonzero) |
| imm[i] = 0; |
| } |
| |
| void |
| kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info) |
| { |
| if (instr->opcode == aco_opcode::s_setpc_b64 || (debug_flags & DEBUG_FORCE_WAITCNT)) { |
| /* Force emitting waitcnt states right after the instruction if there is |
| * something to wait for. This is also applied for s_setpc_b64 to ensure |
| * waitcnt states are inserted before jumping to the PS epilog. |
| */ |
| force_waitcnt(ctx, imm); |
| } |
| |
| /* sendmsg(dealloc_vgprs) releases scratch, so this isn't safe if there is a in-progress |
| * scratch store. |
| */ |
| if (ctx.gfx_level >= GFX11 && instr->opcode == aco_opcode::s_sendmsg && |
| instr->salu().imm == sendmsg_dealloc_vgprs) { |
| imm.combine(ctx.barrier_imm[ffs(storage_scratch) - 1]); |
| imm.combine(ctx.barrier_imm[ffs(storage_vgpr_spill) - 1]); |
| } |
| |
| /* Make sure POPS coherent memory accesses have reached the L2 cache before letting the |
| * overlapping waves proceed into the ordered section. |
| */ |
| if (ctx.program->has_pops_overlapped_waves_wait && |
| (ctx.gfx_level >= GFX11 ? instr->isEXP() && instr->exp().done |
| : (instr->opcode == aco_opcode::s_sendmsg && |
| instr->salu().imm == sendmsg_ordered_ps_done))) { |
| uint8_t c = counter_vm | counter_vs; |
| /* Await SMEM loads too, as it's possible for an application to create them, like using a |
| * scalarization loop - pointless and unoptimal for an inherently divergent address of |
| * per-pixel data, but still can be done at least synthetically and must be handled correctly. |
| */ |
| if (ctx.program->has_smem_buffer_or_global_loads) |
| c |= counter_lgkm; |
| |
| u_foreach_bit (i, c & ctx.nonzero) |
| imm[i] = 0; |
| } |
| |
| check_instr(ctx, imm, instr); |
| |
| /* It's required to wait for scalar stores before "writing back" data. |
| * It shouldn't cost anything anyways since we're about to do s_endpgm. |
| */ |
| if ((ctx.nonzero & BITFIELD_BIT(wait_type_lgkm)) && instr->opcode == aco_opcode::s_dcache_wb) { |
| assert(ctx.gfx_level >= GFX8); |
| imm.lgkm = 0; |
| } |
| |
| if (ctx.gfx_level >= GFX10 && instr->isSMEM()) { |
| /* GFX10: A store followed by a load at the same address causes a problem because |
| * the load doesn't load the correct values unless we wait for the store first. |
| * This is NOT mitigated by an s_nop. |
| * |
| * TODO: Refine this when we have proper alias analysis. |
| */ |
| if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() && |
| !instr->smem().sync.can_reorder()) { |
| imm.lgkm = 0; |
| } |
| } |
| |
| if (instr->opcode == aco_opcode::ds_ordered_count && |
| ((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1)) { |
| imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]); |
| } |
| |
| if (instr->opcode == aco_opcode::p_barrier) |
| perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel); |
| else |
| perform_barrier(ctx, imm, sync_info, semantic_release); |
| |
| if (!imm.empty()) { |
| if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter) |
| imm.vm = 0; |
| if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter) |
| imm.lgkm = 0; |
| |
| /* reset counters */ |
| for (unsigned i = 0; i < wait_type_num; i++) |
| ctx.nonzero &= imm[i] == 0 ? ~BITFIELD_BIT(i) : UINT32_MAX; |
| |
| /* update barrier wait imms */ |
| for (unsigned i = 0; i < storage_count; i++) { |
| wait_imm& bar = ctx.barrier_imm[i]; |
| uint16_t& bar_ev = ctx.barrier_events[i]; |
| for (unsigned j = 0; j < wait_type_num; j++) { |
| if (bar[j] != wait_imm::unset_counter && imm[j] <= bar[j]) { |
| bar[j] = wait_imm::unset_counter; |
| bar_ev &= ~ctx.info->events[j] | event_flat; |
| } |
| } |
| if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter) |
| bar_ev &= ~event_flat; |
| } |
| |
| /* remove all gprs with higher counter from map */ |
| std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin(); |
| while (it != ctx.gpr_map.end()) { |
| for (unsigned i = 0; i < wait_type_num; i++) { |
| if (imm[i] != wait_imm::unset_counter && imm[i] <= it->second.imm[i]) |
| it->second.remove_wait((wait_type)i, ctx.info->events[i]); |
| } |
| if (!it->second.counters) |
| it = ctx.gpr_map.erase(it); |
| else |
| it++; |
| } |
| } |
| |
| if (imm.vm == 0) |
| ctx.pending_flat_vm = false; |
| if (imm.lgkm == 0) { |
| ctx.pending_flat_lgkm = false; |
| ctx.pending_s_buffer_store = false; |
| } |
| } |
| |
| void |
| update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync) |
| { |
| for (unsigned i = 0; i < storage_count; i++) { |
| wait_imm& bar = ctx.barrier_imm[i]; |
| uint16_t& bar_ev = ctx.barrier_events[i]; |
| |
| /* We re-use barrier_imm/barrier_events to wait for all scratch stores to finish. */ |
| bool ignore_private = i == (ffs(storage_scratch) - 1) || i == (ffs(storage_vgpr_spill) - 1); |
| |
| if (sync.storage & (1 << i) && (!(sync.semantics & semantic_private) || ignore_private)) { |
| bar_ev |= event; |
| u_foreach_bit (j, counters) |
| bar[j] = 0; |
| } else if (!(bar_ev & ctx.info->unordered_events) && !(ctx.info->unordered_events & event)) { |
| u_foreach_bit (j, counters) { |
| if (bar[j] != wait_imm::unset_counter && (bar_ev & ctx.info->events[j]) == event) |
| bar[j] = std::min<uint16_t>(bar[j] + 1, ctx.info->max_cnt[j]); |
| } |
| } |
| } |
| } |
| |
| void |
| update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info()) |
| { |
| uint8_t counters = ctx.info->get_counters_for_event(event); |
| |
| ctx.nonzero |= counters; |
| |
| update_barrier_imm(ctx, counters, event, sync); |
| |
| if (ctx.info->unordered_events & event) |
| return; |
| |
| if (ctx.pending_flat_lgkm) |
| counters &= ~counter_lgkm; |
| if (ctx.pending_flat_vm) |
| counters &= ~counter_vm; |
| |
| for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) { |
| wait_entry& entry = e.second; |
| |
| if (entry.events & ctx.info->unordered_events) |
| continue; |
| |
| assert(entry.events); |
| |
| u_foreach_bit (i, counters) { |
| if ((entry.events & ctx.info->events[i]) == event) |
| entry.imm[i] = std::min<uint16_t>(entry.imm[i] + 1, ctx.info->max_cnt[i]); |
| } |
| } |
| } |
| |
| void |
| update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info()) |
| { |
| assert(ctx.gfx_level < GFX10); |
| |
| ctx.nonzero |= BITFIELD_BIT(wait_type_lgkm) | BITFIELD_BIT(wait_type_vm); |
| |
| update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync); |
| |
| for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) { |
| if (e.second.counters & counter_vm) |
| e.second.imm.vm = 0; |
| if (e.second.counters & counter_lgkm) |
| e.second.imm.lgkm = 0; |
| } |
| ctx.pending_flat_lgkm = true; |
| ctx.pending_flat_vm = true; |
| } |
| |
| void |
| insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read, |
| uint8_t vmem_types = 0, bool force_linear = false) |
| { |
| uint16_t counters = ctx.info->get_counters_for_event(event); |
| wait_imm imm; |
| u_foreach_bit (i, counters) |
| imm[i] = 0; |
| |
| wait_entry new_entry(event, imm, counters, !rc.is_linear() && !force_linear, wait_on_read); |
| if (counters & counter_vm) |
| new_entry.vmem_types |= vmem_types; |
| |
| for (unsigned i = 0; i < rc.size(); i++) { |
| auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry); |
| if (!it.second) |
| it.first->second.join(new_entry); |
| } |
| } |
| |
| void |
| insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, uint8_t vmem_types = 0) |
| { |
| if (!op.isConstant() && !op.isUndefined()) |
| insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, vmem_types); |
| } |
| |
| void |
| insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, uint8_t vmem_types = 0) |
| { |
| /* We can't safely write to unwritten destination VGPR lanes with DS/VMEM on GFX11 without |
| * waiting for the load to finish. |
| */ |
| uint32_t ds_vmem_events = |
| event_lds | event_gds | event_vmem | event_vmem_sample | event_vmem_bvh | event_flat; |
| bool force_linear = ctx.gfx_level >= GFX11 && (event & ds_vmem_events); |
| |
| insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, vmem_types, force_linear); |
| } |
| |
| void |
| gen(Instruction* instr, wait_ctx& ctx) |
| { |
| switch (instr->format) { |
| case Format::EXP: { |
| Export_instruction& exp_instr = instr->exp(); |
| |
| wait_event ev; |
| if (exp_instr.dest <= 9) |
| ev = event_exp_mrt_null; |
| else if (exp_instr.dest <= 15) |
| ev = event_exp_pos; |
| else |
| ev = event_exp_param; |
| update_counters(ctx, ev); |
| |
| /* insert new entries for exported vgprs */ |
| for (unsigned i = 0; i < 4; i++) { |
| if (exp_instr.enabled_mask & (1 << i)) { |
| unsigned idx = exp_instr.compressed ? i >> 1 : i; |
| assert(idx < exp_instr.operands.size()); |
| insert_wait_entry(ctx, exp_instr.operands[idx], ev); |
| } |
| } |
| insert_wait_entry(ctx, exec, s2, ev, false); |
| break; |
| } |
| case Format::FLAT: { |
| FLAT_instruction& flat = instr->flat(); |
| if (ctx.gfx_level < GFX10 && !instr->definitions.empty()) |
| update_counters_for_flat_load(ctx, flat.sync); |
| else |
| update_counters(ctx, event_flat, flat.sync); |
| |
| if (!instr->definitions.empty()) |
| insert_wait_entry(ctx, instr->definitions[0], event_flat); |
| break; |
| } |
| case Format::SMEM: { |
| SMEM_instruction& smem = instr->smem(); |
| update_counters(ctx, event_smem, smem.sync); |
| |
| if (!instr->definitions.empty()) |
| insert_wait_entry(ctx, instr->definitions[0], event_smem); |
| else if (ctx.gfx_level >= GFX10 && !smem.sync.can_reorder()) |
| ctx.pending_s_buffer_store = true; |
| |
| break; |
| } |
| case Format::DS: { |
| DS_instruction& ds = instr->ds(); |
| update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync); |
| if (ds.gds) |
| update_counters(ctx, event_gds_gpr_lock); |
| |
| if (!instr->definitions.empty()) |
| insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds); |
| |
| if (ds.gds) { |
| for (const Operand& op : instr->operands) |
| insert_wait_entry(ctx, op, event_gds_gpr_lock); |
| insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false); |
| } |
| break; |
| } |
| case Format::LDSDIR: { |
| LDSDIR_instruction& ldsdir = instr->ldsdir(); |
| update_counters(ctx, event_ldsdir, ldsdir.sync); |
| insert_wait_entry(ctx, instr->definitions[0], event_ldsdir); |
| break; |
| } |
| case Format::MUBUF: |
| case Format::MTBUF: |
| case Format::MIMG: |
| case Format::GLOBAL: |
| case Format::SCRATCH: { |
| uint8_t type = get_vmem_type(ctx.gfx_level, instr); |
| wait_event ev = get_vmem_event(ctx, instr, type); |
| |
| update_counters(ctx, ev, get_sync_info(instr)); |
| |
| if (!instr->definitions.empty()) |
| insert_wait_entry(ctx, instr->definitions[0], ev, type); |
| |
| if (ctx.gfx_level == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) { |
| update_counters(ctx, event_vmem_gpr_lock); |
| insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock); |
| } else if (ctx.gfx_level == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) { |
| update_counters(ctx, event_vmem_gpr_lock); |
| insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock); |
| } |
| |
| break; |
| } |
| case Format::SOPP: { |
| if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt) |
| update_counters(ctx, event_sendmsg); |
| break; |
| } |
| case Format::SOP1: { |
| if (instr->opcode == aco_opcode::s_sendmsg_rtn_b32 || |
| instr->opcode == aco_opcode::s_sendmsg_rtn_b64) { |
| update_counters(ctx, event_sendmsg); |
| insert_wait_entry(ctx, instr->definitions[0], event_sendmsg); |
| } |
| break; |
| } |
| default: break; |
| } |
| } |
| |
| void |
| emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm) |
| { |
| Builder bld(ctx.program, &instructions); |
| imm.build_waitcnt(bld); |
| } |
| |
| bool |
| check_clause_raw(std::bitset<512>& regs_written, Instruction* instr) |
| { |
| for (Operand op : instr->operands) { |
| if (op.isConstant()) |
| continue; |
| for (unsigned i = 0; i < op.size(); i++) { |
| if (regs_written[op.physReg().reg() + i]) |
| return false; |
| } |
| } |
| |
| for (Definition def : instr->definitions) { |
| for (unsigned i = 0; i < def.size(); i++) |
| regs_written[def.physReg().reg() + i] = 1; |
| } |
| |
| return true; |
| } |
| |
| void |
| handle_block(Program* program, Block& block, wait_ctx& ctx) |
| { |
| std::vector<aco_ptr<Instruction>> new_instructions; |
| |
| wait_imm queued_imm; |
| |
| size_t clause_end = 0; |
| for (size_t i = 0; i < block.instructions.size(); i++) { |
| aco_ptr<Instruction>& instr = block.instructions[i]; |
| |
| bool is_wait = queued_imm.unpack(ctx.gfx_level, instr.get()); |
| |
| memory_sync_info sync_info = get_sync_info(instr.get()); |
| kill(queued_imm, instr.get(), ctx, sync_info); |
| |
| /* At the start of a possible clause, also emit waitcnts for each instruction to avoid |
| * splitting the clause. |
| */ |
| if (i >= clause_end || !queued_imm.empty()) { |
| std::optional<std::bitset<512>> regs_written; |
| for (clause_end = i + 1; clause_end < block.instructions.size(); clause_end++) { |
| Instruction* next = block.instructions[clause_end].get(); |
| if (!should_form_clause(instr.get(), next)) |
| break; |
| |
| if (!regs_written) { |
| regs_written.emplace(); |
| check_clause_raw(*regs_written, instr.get()); |
| } |
| |
| if (!check_clause_raw(*regs_written, next)) |
| break; |
| |
| kill(queued_imm, next, ctx, get_sync_info(next)); |
| } |
| } |
| |
| gen(instr.get(), ctx); |
| |
| if (instr->format != Format::PSEUDO_BARRIER && !is_wait) { |
| if (instr->isVINTERP_INREG() && queued_imm.exp != wait_imm::unset_counter) { |
| instr->vinterp_inreg().wait_exp = MIN2(instr->vinterp_inreg().wait_exp, queued_imm.exp); |
| queued_imm.exp = wait_imm::unset_counter; |
| } |
| |
| if (!queued_imm.empty()) |
| emit_waitcnt(ctx, new_instructions, queued_imm); |
| |
| bool is_ordered_count_acquire = |
| instr->opcode == aco_opcode::ds_ordered_count && |
| !((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1); |
| |
| new_instructions.emplace_back(std::move(instr)); |
| perform_barrier(ctx, queued_imm, sync_info, semantic_acquire); |
| |
| if (is_ordered_count_acquire) |
| queued_imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]); |
| } |
| } |
| |
| /* For last block of a program which has succeed shader part, wait all memory ops done |
| * before go to next shader part. |
| */ |
| if (block.kind & block_kind_end_with_regs) |
| force_waitcnt(ctx, queued_imm); |
| |
| if (!queued_imm.empty()) |
| emit_waitcnt(ctx, new_instructions, queued_imm); |
| |
| block.instructions.swap(new_instructions); |
| } |
| |
| } /* end namespace */ |
| |
| void |
| insert_waitcnt(Program* program) |
| { |
| target_info info(program->gfx_level); |
| |
| /* per BB ctx */ |
| std::vector<bool> done(program->blocks.size()); |
| std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program, &info)); |
| std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program, &info)); |
| |
| std::stack<unsigned, std::vector<unsigned>> loop_header_indices; |
| unsigned loop_progress = 0; |
| |
| if (program->pending_lds_access) { |
| update_barrier_imm(in_ctx[0], info.get_counters_for_event(event_lds), event_lds, |
| memory_sync_info(storage_shared)); |
| } |
| |
| for (Definition def : program->args_pending_vmem) { |
| update_counters(in_ctx[0], event_vmem); |
| insert_wait_entry(in_ctx[0], def, event_vmem); |
| } |
| |
| for (unsigned i = 0; i < program->blocks.size();) { |
| Block& current = program->blocks[i++]; |
| |
| if (current.kind & block_kind_discard_early_exit) { |
| /* Because the jump to the discard early exit block may happen anywhere in a block, it's |
| * not possible to join it with its predecessors this way. |
| * We emit all required waits when emitting the discard block. |
| */ |
| continue; |
| } |
| |
| wait_ctx ctx = in_ctx[current.index]; |
| |
| if (current.kind & block_kind_loop_header) { |
| loop_header_indices.push(current.index); |
| } else if (current.kind & block_kind_loop_exit) { |
| bool repeat = false; |
| if (loop_progress == loop_header_indices.size()) { |
| i = loop_header_indices.top(); |
| repeat = true; |
| } |
| loop_header_indices.pop(); |
| loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size()); |
| if (repeat) |
| continue; |
| } |
| |
| bool changed = false; |
| for (unsigned b : current.linear_preds) |
| changed |= ctx.join(&out_ctx[b], false); |
| for (unsigned b : current.logical_preds) |
| changed |= ctx.join(&out_ctx[b], true); |
| |
| if (done[current.index] && !changed) { |
| in_ctx[current.index] = std::move(ctx); |
| continue; |
| } else { |
| in_ctx[current.index] = ctx; |
| } |
| |
| loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth); |
| done[current.index] = true; |
| |
| handle_block(program, current, ctx); |
| |
| out_ctx[current.index] = std::move(ctx); |
| } |
| } |
| |
| } // namespace aco |