blob: 091fa1b3393246f3e3d77ca2afc7fa2465e33b38 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_instruction_selection.h"
#include "common/nir/ac_nir.h"
#include "common/sid.h"
#include "nir_control_flow.h"
#include "nir_builder.h"
#include <vector>
namespace aco {
namespace {
/* Check whether the given SSA def is only used by cross-lane instructions. */
bool
only_used_by_cross_lane_instrs(nir_def* ssa, bool follow_phis = true)
{
nir_foreach_use (src, ssa) {
switch (nir_src_parent_instr(src)->type) {
case nir_instr_type_alu: {
nir_alu_instr* alu = nir_instr_as_alu(nir_src_parent_instr(src));
if (alu->op != nir_op_unpack_64_2x32_split_x && alu->op != nir_op_unpack_64_2x32_split_y)
return false;
if (!only_used_by_cross_lane_instrs(&alu->def, follow_phis))
return false;
continue;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src));
if (intrin->intrinsic != nir_intrinsic_read_invocation &&
intrin->intrinsic != nir_intrinsic_read_first_invocation &&
intrin->intrinsic != nir_intrinsic_lane_permute_16_amd)
return false;
continue;
}
case nir_instr_type_phi: {
/* Don't follow more than 1 phis, this avoids infinite loops. */
if (!follow_phis)
return false;
nir_phi_instr* phi = nir_instr_as_phi(nir_src_parent_instr(src));
if (!only_used_by_cross_lane_instrs(&phi->def, false))
return false;
continue;
}
default: return false;
}
}
return true;
}
/* If one side of a divergent IF ends in a branch and the other doesn't, we
* might have to emit the contents of the side without the branch at the merge
* block instead. This is so that we can use any SGPR live-out of the side
* without the branch without creating a linear phi in the invert or merge block.
*
* This also removes any unreachable merge blocks.
*/
bool
sanitize_if(nir_function_impl* impl, nir_if* nif)
{
nir_block* then_block = nir_if_last_then_block(nif);
nir_block* else_block = nir_if_last_else_block(nif);
bool then_jump = nir_block_ends_in_jump(then_block);
bool else_jump = nir_block_ends_in_jump(else_block);
if (!then_jump && !else_jump)
return false;
/* If the continue from block is empty then return as there is nothing to
* move.
*/
if (nir_cf_list_is_empty_block(then_jump ? &nif->else_list : &nif->then_list))
return false;
/* Even though this if statement has a jump on one side, we may still have
* phis afterwards. Single-source phis can be produced by loop unrolling
* or dead control-flow passes and are perfectly legal. Run a quick phi
* removal on the block after the if to clean up any such phis.
*/
nir_remove_single_src_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
/* Finally, move the continue from branch after the if-statement. */
nir_block* last_continue_from_blk = then_jump ? else_block : then_block;
nir_block* first_continue_from_blk =
then_jump ? nir_if_first_else_block(nif) : nir_if_first_then_block(nif);
/* We don't need to repair SSA. nir_remove_after_cf_node() replaces any uses with undef. */
if (then_jump && else_jump)
nir_remove_after_cf_node(&nif->cf_node);
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
nir_after_block(last_continue_from_blk));
nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
return true;
}
bool
sanitize_cf_list(nir_function_impl* impl, struct exec_list* cf_list)
{
bool progress = false;
foreach_list_typed (nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block: break;
case nir_cf_node_if: {
nir_if* nif = nir_cf_node_as_if(cf_node);
progress |= sanitize_cf_list(impl, &nif->then_list);
progress |= sanitize_cf_list(impl, &nif->else_list);
progress |= sanitize_if(impl, nif);
break;
}
case nir_cf_node_loop: {
nir_loop* loop = nir_cf_node_as_loop(cf_node);
assert(!nir_loop_has_continue_construct(loop));
progress |= sanitize_cf_list(impl, &loop->body);
/* NIR seems to allow this, and even though the loop exit has no predecessors, SSA defs from the
* loop header are live. Handle this without complicating the ACO IR by creating a dummy break.
*/
if (nir_cf_node_cf_tree_next(&loop->cf_node)->predecessors->entries == 0) {
nir_builder b = nir_builder_create(impl);
b.cursor = nir_after_block_before_jump(nir_loop_last_block(loop));
nir_def *cond = nir_imm_false(&b);
/* We don't use block divergence information, so just this is enough. */
cond->divergent = false;
nir_push_if(&b, cond);
nir_jump(&b, nir_jump_break);
nir_pop_if(&b, NULL);
progress = true;
}
break;
}
case nir_cf_node_function: unreachable("Invalid cf type");
}
}
return progress;
}
void
apply_nuw_to_ssa(isel_context* ctx, nir_def* ssa)
{
nir_scalar scalar;
scalar.def = ssa;
scalar.comp = 0;
if (!nir_scalar_is_alu(scalar) || nir_scalar_alu_op(scalar) != nir_op_iadd)
return;
nir_alu_instr* add = nir_instr_as_alu(ssa->parent_instr);
if (add->no_unsigned_wrap)
return;
nir_scalar src0 = nir_scalar_chase_alu_src(scalar, 0);
nir_scalar src1 = nir_scalar_chase_alu_src(scalar, 1);
if (nir_scalar_is_const(src0)) {
nir_scalar tmp = src0;
src0 = src1;
src1 = tmp;
}
uint32_t src1_ub = nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, src1, &ctx->ub_config);
add->no_unsigned_wrap =
!nir_addition_might_overflow(ctx->shader, ctx->range_ht, src0, src1_ub, &ctx->ub_config);
}
void
apply_nuw_to_offsets(isel_context* ctx, nir_function_impl* impl)
{
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_constant:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_push_constant:
if (!nir_src_is_divergent(&intrin->src[0]))
apply_nuw_to_ssa(ctx, intrin->src[0].ssa);
break;
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
if (!nir_src_is_divergent(&intrin->src[1]))
apply_nuw_to_ssa(ctx, intrin->src[1].ssa);
break;
case nir_intrinsic_store_ssbo:
if (!nir_src_is_divergent(&intrin->src[2]))
apply_nuw_to_ssa(ctx, intrin->src[2].ssa);
break;
case nir_intrinsic_load_scratch: apply_nuw_to_ssa(ctx, intrin->src[0].ssa); break;
case nir_intrinsic_store_scratch:
case nir_intrinsic_load_smem_amd: apply_nuw_to_ssa(ctx, intrin->src[1].ssa); break;
default: break;
}
}
}
}
RegClass
get_reg_class(isel_context* ctx, RegType type, unsigned components, unsigned bitsize)
{
if (bitsize == 1)
return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
else
return RegClass::get(type, components * bitsize / 8u);
}
void
setup_tcs_info(isel_context* ctx)
{
ctx->tcs_in_out_eq = ctx->program->info.vs.tcs_in_out_eq;
ctx->any_tcs_inputs_via_lds = ctx->program->info.vs.any_tcs_inputs_via_lds;
}
void
setup_lds_size(isel_context* ctx, nir_shader* nir)
{
/* TCS and GFX9 GS are special cases, already in units of the allocation granule. */
if (ctx->stage.has(SWStage::TCS))
ctx->program->config->lds_size = ctx->program->info.tcs.num_lds_blocks;
else if (ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER && ctx->options->gfx_level >= GFX9)
ctx->program->config->lds_size = ctx->program->info.gfx9_gs_ring_lds_size;
else
ctx->program->config->lds_size =
DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule);
/* Make sure we fit the available LDS space. */
assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <=
ctx->program->dev.lds_limit);
}
void
setup_nir(isel_context* ctx, nir_shader* nir)
{
nir_convert_to_lcssa(nir, true, false);
if (nir_lower_phis_to_scalar(nir, true)) {
nir_copy_prop(nir);
nir_opt_dce(nir);
}
nir_function_impl* func = nir_shader_get_entrypoint(nir);
nir_index_ssa_defs(func);
}
/* Returns true if we can skip uniformization of a merge phi. This makes the destination divergent,
* and so is only safe if the inconsistency it introduces into the divergence analysis won't break
* code generation. If we unsafely skip uniformization, later instructions (such as SSBO loads,
* some subgroup intrinsics and certain conversions) can use divergence analysis information which
* is no longer correct.
*/
bool
skip_uniformize_merge_phi(nir_def* ssa, unsigned depth)
{
if (depth >= 16)
return false;
nir_foreach_use (src, ssa) {
switch (nir_src_parent_instr(src)->type) {
case nir_instr_type_alu: {
nir_alu_instr* alu = nir_instr_as_alu(nir_src_parent_instr(src));
if (alu->def.divergent)
break;
switch (alu->op) {
case nir_op_f2i16:
case nir_op_f2u16:
case nir_op_f2i32:
case nir_op_f2u32:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2b32:
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_b2f64:
case nir_op_mov:
/* These opcodes p_as_uniform or vote_any() the source, so fail immediately. We don't
* need to do this for non-nir_op_b2 if we know we'll move it back into a VGPR,
* in which case the p_as_uniform would be eliminated. This would be way too fragile,
* though.
*/
return false;
default:
if (!skip_uniformize_merge_phi(&alu->def, depth + 1))
return false;
break;
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src));
unsigned src_idx = src - intrin->src;
/* nir_intrinsic_lane_permute_16_amd is only safe because we don't use divergence analysis
* for it's instruction selection. We use that intrinsic for NGG culling. All others are
* stores with VGPR sources.
*/
if (intrin->intrinsic == nir_intrinsic_lane_permute_16_amd ||
intrin->intrinsic == nir_intrinsic_export_amd ||
intrin->intrinsic == nir_intrinsic_export_dual_src_blend_amd ||
(intrin->intrinsic == nir_intrinsic_export_row_amd && src_idx == 0) ||
(intrin->intrinsic == nir_intrinsic_store_buffer_amd && src_idx == 0) ||
(intrin->intrinsic == nir_intrinsic_store_ssbo && src_idx == 0) ||
(intrin->intrinsic == nir_intrinsic_store_global && src_idx == 0) ||
(intrin->intrinsic == nir_intrinsic_store_scratch && src_idx == 0) ||
(intrin->intrinsic == nir_intrinsic_store_shared && src_idx == 0))
break;
return false;
}
case nir_instr_type_phi: {
nir_phi_instr* phi = nir_instr_as_phi(nir_src_parent_instr(src));
if (phi->def.divergent || skip_uniformize_merge_phi(&phi->def, depth + 1))
break;
return false;
}
case nir_instr_type_tex: {
/* This is either used as a VGPR source or it's a (potentially undef) descriptor. */
break;
}
default: {
return false;
}
}
}
return true;
}
} /* end namespace */
void
init_context(isel_context* ctx, nir_shader* shader)
{
nir_function_impl* impl = nir_shader_get_entrypoint(shader);
ctx->shader = shader;
/* Init NIR range analysis. */
ctx->range_ht = _mesa_pointer_hash_table_create(NULL);
ctx->ub_config.min_subgroup_size = ctx->program->wave_size;
ctx->ub_config.max_subgroup_size = ctx->program->wave_size;
ctx->ub_config.max_workgroup_invocations = 2048;
ctx->ub_config.max_workgroup_count[0] = 4294967295;
ctx->ub_config.max_workgroup_count[1] = 65535;
ctx->ub_config.max_workgroup_count[2] = 65535;
ctx->ub_config.max_workgroup_size[0] = 1024;
ctx->ub_config.max_workgroup_size[1] = 1024;
ctx->ub_config.max_workgroup_size[2] = 1024;
uint32_t options =
shader->options->divergence_analysis_options | nir_divergence_ignore_undef_if_phi_srcs;
nir_divergence_analysis_impl(impl, (nir_divergence_options)options);
shader->info.divergence_analysis_run = true;
apply_nuw_to_offsets(ctx, impl);
ac_nir_flag_smem_for_loads(shader, ctx->program->gfx_level, false, true);
/* sanitize control flow */
sanitize_cf_list(impl, &impl->body);
nir_metadata_preserve(impl, nir_metadata_none);
/* we'll need these for isel */
nir_metadata_require(impl, nir_metadata_block_index);
if (ctx->options->dump_preoptir) {
fprintf(stderr, "NIR shader before instruction selection:\n");
nir_print_shader(shader, stderr);
}
ctx->first_temp_id = ctx->program->peekAllocationId();
ctx->program->allocateRange(impl->ssa_alloc);
RegClass* regclasses = ctx->program->temp_rc.data() + ctx->first_temp_id;
/* TODO: make this recursive to improve compile times */
bool done = false;
while (!done) {
done = true;
nir_foreach_block (block, impl) {
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr* alu_instr = nir_instr_as_alu(instr);
RegType type = alu_instr->def.divergent ? RegType::vgpr : RegType::sgpr;
/* packed 16bit instructions have to be VGPR */
if (alu_instr->def.num_components == 2 &&
nir_op_infos[alu_instr->op].output_size == 0)
type = RegType::vgpr;
switch (alu_instr->op) {
case nir_op_f2i16:
case nir_op_f2u16:
case nir_op_f2i32:
case nir_op_f2u32:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2b32:
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_mov: break;
case nir_op_fmulz:
case nir_op_ffmaz:
case nir_op_f2f64:
case nir_op_u2f64:
case nir_op_i2f64:
case nir_op_pack_unorm_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_uint_2x16:
case nir_op_pack_sint_2x16:
case nir_op_ldexp:
case nir_op_frexp_sig:
case nir_op_frexp_exp:
case nir_op_cube_amd:
case nir_op_msad_4x8:
case nir_op_mqsad_4x8:
case nir_op_udot_4x8_uadd:
case nir_op_sdot_4x8_iadd:
case nir_op_sudot_4x8_iadd:
case nir_op_udot_4x8_uadd_sat:
case nir_op_sdot_4x8_iadd_sat:
case nir_op_sudot_4x8_iadd_sat:
case nir_op_udot_2x16_uadd:
case nir_op_sdot_2x16_iadd:
case nir_op_udot_2x16_uadd_sat:
case nir_op_sdot_2x16_iadd_sat:
case nir_op_alignbyte_amd: type = RegType::vgpr; break;
case nir_op_fmul:
case nir_op_ffma:
case nir_op_fadd:
case nir_op_fsub:
case nir_op_fmax:
case nir_op_fmin:
case nir_op_fsat:
case nir_op_fneg:
case nir_op_fabs:
case nir_op_fsign:
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_f2f16:
case nir_op_f2f16_rtz:
case nir_op_f2f16_rtne:
case nir_op_f2f32:
case nir_op_fquantize2f16:
case nir_op_ffract:
case nir_op_ffloor:
case nir_op_fceil:
case nir_op_ftrunc:
case nir_op_fround_even:
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_fsin_amd:
case nir_op_fcos_amd:
case nir_op_pack_half_2x16_rtz_split:
case nir_op_pack_half_2x16_split:
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y: {
if (ctx->program->gfx_level < GFX11_5 ||
alu_instr->src[0].src.ssa->bit_size > 32) {
type = RegType::vgpr;
break;
}
FALLTHROUGH;
}
default:
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (regclasses[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc =
get_reg_class(ctx, type, alu_instr->def.num_components, alu_instr->def.bit_size);
regclasses[alu_instr->def.index] = rc;
break;
}
case nir_instr_type_load_const: {
unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
regclasses[nir_instr_as_load_const(instr)->def.index] = rc;
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr* intrinsic = nir_instr_as_intrinsic(instr);
if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
break;
if (intrinsic->intrinsic == nir_intrinsic_strict_wqm_coord_amd) {
regclasses[intrinsic->def.index] =
RegClass::get(RegType::vgpr, intrinsic->def.num_components * 4 +
nir_intrinsic_base(intrinsic))
.as_linear();
break;
}
RegType type = RegType::sgpr;
switch (intrinsic->intrinsic) {
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_workgroup_id:
case nir_intrinsic_load_num_workgroups:
case nir_intrinsic_load_sbt_base_amd:
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups:
case nir_intrinsic_vote_all:
case nir_intrinsic_vote_any:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_as_uniform:
case nir_intrinsic_read_invocation:
case nir_intrinsic_first_invocation:
case nir_intrinsic_ballot:
case nir_intrinsic_ballot_relaxed:
case nir_intrinsic_bindless_image_samples:
case nir_intrinsic_load_scalar_arg_amd:
case nir_intrinsic_load_lds_ngg_scratch_base_amd:
case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd:
case nir_intrinsic_load_smem_amd:
case nir_intrinsic_unit_test_uniform_amd: type = RegType::sgpr; break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_per_primitive_input:
case nir_intrinsic_load_output:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_write_invocation_amd:
case nir_intrinsic_mbcnt_amd:
case nir_intrinsic_lane_permute_16_amd:
case nir_intrinsic_dpp16_shift_amd:
case nir_intrinsic_ssbo_atomic:
case nir_intrinsic_ssbo_atomic_swap:
case nir_intrinsic_global_atomic_amd:
case nir_intrinsic_global_atomic_swap_amd:
case nir_intrinsic_bindless_image_atomic:
case nir_intrinsic_bindless_image_atomic_swap:
case nir_intrinsic_bindless_image_size:
case nir_intrinsic_shared_atomic:
case nir_intrinsic_shared_atomic_swap:
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_typed_buffer_amd:
case nir_intrinsic_load_buffer_amd:
case nir_intrinsic_load_initial_edgeflags_amd:
case nir_intrinsic_gds_atomic_add_amd:
case nir_intrinsic_bvh64_intersect_ray_amd:
case nir_intrinsic_load_vector_arg_amd:
case nir_intrinsic_ordered_xfb_counter_add_gfx11_amd:
case nir_intrinsic_cmat_muladd_amd:
case nir_intrinsic_unit_test_divergent_amd: type = RegType::vgpr; break;
case nir_intrinsic_load_shared:
case nir_intrinsic_load_shared2_amd:
/* When the result of these loads is only used by cross-lane instructions,
* it is beneficial to use a VGPR destination. This is because this allows
* to put the s_waitcnt further down, which decreases latency.
*/
if (only_used_by_cross_lane_instrs(&intrinsic->def)) {
type = RegType::vgpr;
break;
}
FALLTHROUGH;
case nir_intrinsic_shuffle:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd:
case nir_intrinsic_masked_swizzle_amd:
case nir_intrinsic_rotate:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
case nir_intrinsic_reduce:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_global_amd:
type = intrinsic->def.divergent ? RegType::vgpr : RegType::sgpr;
break;
case nir_intrinsic_ddx:
case nir_intrinsic_ddy:
case nir_intrinsic_ddx_fine:
case nir_intrinsic_ddy_fine:
case nir_intrinsic_ddx_coarse:
case nir_intrinsic_ddy_coarse: type = RegType::vgpr; break;
default:
for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs;
i++) {
if (regclasses[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc =
get_reg_class(ctx, type, intrinsic->def.num_components, intrinsic->def.bit_size);
regclasses[intrinsic->def.index] = rc;
break;
}
case nir_instr_type_tex: {
nir_tex_instr* tex = nir_instr_as_tex(instr);
RegType type = tex->def.divergent ? RegType::vgpr : RegType::sgpr;
if (tex->op == nir_texop_texture_samples) {
assert(!tex->def.divergent);
}
RegClass rc = get_reg_class(ctx, type, tex->def.num_components, tex->def.bit_size);
regclasses[tex->def.index] = rc;
break;
}
case nir_instr_type_undef: {
unsigned num_components = nir_instr_as_undef(instr)->def.num_components;
unsigned bit_size = nir_instr_as_undef(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
regclasses[nir_instr_as_undef(instr)->def.index] = rc;
break;
}
case nir_instr_type_phi: {
nir_phi_instr* phi = nir_instr_as_phi(instr);
RegType type = RegType::sgpr;
unsigned num_components = phi->def.num_components;
assert((phi->def.bit_size != 1 || num_components == 1) &&
"Multiple components not supported on boolean phis.");
if (phi->def.divergent) {
type = RegType::vgpr;
} else {
bool vgpr_src = false;
nir_foreach_phi_src (src, phi)
vgpr_src |= regclasses[src->src.ssa->index].type() == RegType::vgpr;
if (vgpr_src) {
type = RegType::vgpr;
/* This might be the case because of nir_divergence_ignore_undef_if_phi_srcs. */
bool divergent_merge = false;
if (nir_cf_node_prev(&block->cf_node) &&
nir_cf_node_prev(&block->cf_node)->type == nir_cf_node_if) {
nir_if* nif = nir_cf_node_as_if(nir_cf_node_prev(&block->cf_node));
divergent_merge = nir_src_is_divergent(&nif->condition);
}
/* In case of uniform phis after divergent merges, ensure that the dst is an
* SGPR and does not contain undefined values for some invocations.
*/
if (divergent_merge && !skip_uniformize_merge_phi(&phi->def, 0))
type = RegType::sgpr;
}
}
RegClass rc = get_reg_class(ctx, type, num_components, phi->def.bit_size);
if (rc != regclasses[phi->def.index])
done = false;
regclasses[phi->def.index] = rc;
break;
}
default: break;
}
}
}
}
ctx->program->config->spi_ps_input_ena = ctx->program->info.ps.spi_ps_input_ena;
ctx->program->config->spi_ps_input_addr = ctx->program->info.ps.spi_ps_input_addr;
/* align and copy constant data */
while (ctx->program->constant_data.size() % 4u)
ctx->program->constant_data.push_back(0);
ctx->constant_data_offset = ctx->program->constant_data.size();
ctx->program->constant_data.insert(ctx->program->constant_data.end(),
(uint8_t*)shader->constant_data,
(uint8_t*)shader->constant_data + shader->constant_data_size);
BITSET_CLEAR_RANGE(ctx->output_args, 0, BITSET_SIZE(ctx->output_args));
}
void
cleanup_context(isel_context* ctx)
{
_mesa_hash_table_destroy(ctx->range_ht, NULL);
}
isel_context
setup_isel_context(Program* program, unsigned shader_count, struct nir_shader* const* shaders,
ac_shader_config* config, const struct aco_compiler_options* options,
const struct aco_shader_info* info, const struct ac_shader_args* args,
SWStage sw_stage)
{
for (unsigned i = 0; i < shader_count; i++) {
switch (shaders[i]->info.stage) {
case MESA_SHADER_VERTEX: sw_stage = sw_stage | SWStage::VS; break;
case MESA_SHADER_TESS_CTRL: sw_stage = sw_stage | SWStage::TCS; break;
case MESA_SHADER_TESS_EVAL: sw_stage = sw_stage | SWStage::TES; break;
case MESA_SHADER_GEOMETRY: sw_stage = sw_stage | SWStage::GS; break;
case MESA_SHADER_FRAGMENT: sw_stage = sw_stage | SWStage::FS; break;
case MESA_SHADER_KERNEL:
case MESA_SHADER_COMPUTE: sw_stage = sw_stage | SWStage::CS; break;
case MESA_SHADER_TASK: sw_stage = sw_stage | SWStage::TS; break;
case MESA_SHADER_MESH: sw_stage = sw_stage | SWStage::MS; break;
case MESA_SHADER_RAYGEN:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_MISS:
case MESA_SHADER_CALLABLE:
case MESA_SHADER_INTERSECTION:
case MESA_SHADER_ANY_HIT: sw_stage = SWStage::RT; break;
default: unreachable("Shader stage not implemented");
}
}
init_program(program, Stage{info->hw_stage, sw_stage}, info, options->gfx_level, options->family,
options->wgp_mode, config);
isel_context ctx = {};
ctx.program = program;
ctx.args = args;
ctx.options = options;
ctx.stage = program->stage;
program->workgroup_size = program->info.workgroup_size;
assert(program->workgroup_size);
/* Mesh shading only works on GFX10.3+. */
ASSERTED bool mesh_shading = ctx.stage.has(SWStage::TS) || ctx.stage.has(SWStage::MS);
assert(!mesh_shading || ctx.program->gfx_level >= GFX10_3);
setup_tcs_info(&ctx);
calc_min_waves(program);
unsigned scratch_size = 0;
for (unsigned i = 0; i < shader_count; i++) {
nir_shader* nir = shaders[i];
setup_nir(&ctx, nir);
setup_lds_size(&ctx, nir);
}
for (unsigned i = 0; i < shader_count; i++)
scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
ctx.program->config->scratch_bytes_per_wave = scratch_size * ctx.program->wave_size;
unsigned nir_num_blocks = 0;
for (unsigned i = 0; i < shader_count; i++)
nir_num_blocks += nir_shader_get_entrypoint(shaders[i])->num_blocks;
ctx.program->blocks.reserve(nir_num_blocks * 2);
ctx.block = ctx.program->create_and_insert_block();
ctx.block->kind = block_kind_top_level;
return ctx;
}
} // namespace aco