| /* |
| * Copyright © 2024 Valve Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "aco_ir.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| namespace aco { |
| namespace { |
| |
| struct jump_threading_ctx { |
| std::vector<bool> blocks_incoming_exec_used; |
| Program* program; |
| |
| jump_threading_ctx(Program* program_) |
| : blocks_incoming_exec_used(program_->blocks.size(), true), program(program_) |
| {} |
| }; |
| |
| bool |
| is_empty_block(Block* block, bool ignore_exec_writes) |
| { |
| /* check if this block is empty and the exec mask is not needed */ |
| for (aco_ptr<Instruction>& instr : block->instructions) { |
| switch (instr->opcode) { |
| case aco_opcode::p_linear_phi: |
| case aco_opcode::p_phi: |
| case aco_opcode::p_logical_start: |
| case aco_opcode::p_logical_end: |
| case aco_opcode::p_branch: break; |
| case aco_opcode::p_parallelcopy: |
| for (unsigned i = 0; i < instr->definitions.size(); i++) { |
| if (ignore_exec_writes && instr->definitions[i].physReg() == exec) |
| continue; |
| if (instr->definitions[i].physReg() != instr->operands[i].physReg()) |
| return false; |
| } |
| break; |
| case aco_opcode::s_andn2_b64: |
| case aco_opcode::s_andn2_b32: |
| if (ignore_exec_writes && instr->definitions[0].physReg() == exec) |
| break; |
| return false; |
| default: return false; |
| } |
| } |
| return true; |
| } |
| |
| void |
| try_remove_merge_block(jump_threading_ctx& ctx, Block* block) |
| { |
| if (block->linear_succs.size() != 1) |
| return; |
| |
| unsigned succ_idx = block->linear_succs[0]; |
| |
| /* Check if this block is empty, if the successor is an early block, |
| * we didn't gather incoming_exec_used for it yet. |
| */ |
| if (!is_empty_block(block, !ctx.blocks_incoming_exec_used[succ_idx] && block->index < succ_idx)) |
| return; |
| |
| /* keep the branch instruction and remove the rest */ |
| aco_ptr<Instruction> branch = std::move(block->instructions.back()); |
| block->instructions.clear(); |
| block->instructions.emplace_back(std::move(branch)); |
| } |
| |
| void |
| try_remove_invert_block(jump_threading_ctx& ctx, Block* block) |
| { |
| assert(block->linear_succs.size() == 2); |
| /* only remove this block if the successor got removed as well */ |
| if (block->linear_succs[0] != block->linear_succs[1]) |
| return; |
| |
| unsigned succ_idx = block->linear_succs[0]; |
| assert(block->index < succ_idx); |
| |
| /* check if block is otherwise empty */ |
| if (!is_empty_block(block, !ctx.blocks_incoming_exec_used[succ_idx])) |
| return; |
| |
| assert(block->linear_preds.size() == 2); |
| for (unsigned i = 0; i < 2; i++) { |
| Block* pred = &ctx.program->blocks[block->linear_preds[i]]; |
| pred->linear_succs[0] = succ_idx; |
| ctx.program->blocks[succ_idx].linear_preds[i] = pred->index; |
| |
| Pseudo_branch_instruction& branch = pred->instructions.back()->branch(); |
| assert(branch.isBranch()); |
| branch.target[0] = succ_idx; |
| branch.target[1] = succ_idx; |
| } |
| |
| block->instructions.clear(); |
| block->linear_preds.clear(); |
| block->linear_succs.clear(); |
| } |
| |
| void |
| try_remove_simple_block(jump_threading_ctx& ctx, Block* block) |
| { |
| if (!is_empty_block(block, false)) |
| return; |
| |
| Block& pred = ctx.program->blocks[block->linear_preds[0]]; |
| Block& succ = ctx.program->blocks[block->linear_succs[0]]; |
| Pseudo_branch_instruction& branch = pred.instructions.back()->branch(); |
| if (branch.opcode == aco_opcode::p_branch) { |
| branch.target[0] = succ.index; |
| branch.target[1] = succ.index; |
| } else if (branch.target[0] == block->index) { |
| branch.target[0] = succ.index; |
| } else if (branch.target[0] == succ.index) { |
| assert(branch.target[1] == block->index); |
| branch.target[1] = succ.index; |
| branch.opcode = aco_opcode::p_branch; |
| branch.rarely_taken = branch.never_taken = false; |
| } else if (branch.target[1] == block->index) { |
| /* check if there is a fall-through path from block to succ */ |
| bool falls_through = block->index < succ.index; |
| for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) { |
| assert(ctx.program->blocks[j].index == j); |
| if (!ctx.program->blocks[j].instructions.empty()) |
| falls_through = false; |
| } |
| if (falls_through) { |
| branch.target[1] = succ.index; |
| } else { |
| /* check if there is a fall-through path for the alternative target */ |
| if (block->index >= branch.target[0]) |
| return; |
| for (unsigned j = block->index + 1; j < branch.target[0]; j++) { |
| if (!ctx.program->blocks[j].instructions.empty()) |
| return; |
| } |
| |
| /* This is a (uniform) break or continue block. The branch condition has to be inverted. */ |
| if (branch.opcode == aco_opcode::p_cbranch_z) |
| branch.opcode = aco_opcode::p_cbranch_nz; |
| else if (branch.opcode == aco_opcode::p_cbranch_nz) |
| branch.opcode = aco_opcode::p_cbranch_z; |
| else |
| assert(false); |
| /* also invert the linear successors */ |
| pred.linear_succs[0] = pred.linear_succs[1]; |
| pred.linear_succs[1] = succ.index; |
| branch.target[1] = branch.target[0]; |
| branch.target[0] = succ.index; |
| } |
| } else { |
| assert(false); |
| } |
| |
| if (branch.target[0] == branch.target[1]) { |
| while (branch.operands.size()) |
| branch.operands.pop_back(); |
| |
| branch.opcode = aco_opcode::p_branch; |
| branch.rarely_taken = branch.never_taken = false; |
| } |
| |
| for (unsigned i = 0; i < pred.linear_succs.size(); i++) |
| if (pred.linear_succs[i] == block->index) |
| pred.linear_succs[i] = succ.index; |
| |
| for (unsigned i = 0; i < succ.linear_preds.size(); i++) |
| if (succ.linear_preds[i] == block->index) |
| succ.linear_preds[i] = pred.index; |
| |
| block->instructions.clear(); |
| block->linear_preds.clear(); |
| block->linear_succs.clear(); |
| } |
| |
| bool |
| is_simple_copy(Instruction* instr) |
| { |
| return instr->opcode == aco_opcode::p_parallelcopy && instr->definitions.size() == 1; |
| } |
| |
| void |
| try_merge_break_with_continue(jump_threading_ctx& ctx, Block* block) |
| { |
| /* Look for this: |
| * BB1: |
| * ... |
| * p_branch_z exec BB3, BB2 |
| * BB2: |
| * ... |
| * s[0:1], scc = s_andn2 s[0:1], exec |
| * p_branch_z scc BB4, BB3 |
| * BB3: |
| * exec = p_parallelcopy s[0:1] |
| * p_branch BB1 |
| * BB4: |
| * ... |
| * |
| * And turn it into this: |
| * BB1: |
| * ... |
| * p_branch_z exec BB3, BB2 |
| * BB2: |
| * ... |
| * p_branch BB3 |
| * BB3: |
| * s[0:1], scc, exec = s_andn2_wrexec s[0:1], exec |
| * p_branch_nz scc BB1, BB4 |
| * BB4: |
| * ... |
| */ |
| if (block->linear_succs.size() != 2 || block->instructions.size() < 2) |
| return; |
| |
| Pseudo_branch_instruction* branch = &block->instructions.back()->branch(); |
| if (branch->operands[0].physReg() != scc || branch->opcode != aco_opcode::p_cbranch_z) |
| return; |
| |
| Block* merge = &ctx.program->blocks[branch->target[1]]; |
| Block* loopexit = &ctx.program->blocks[branch->target[0]]; |
| |
| /* Just a jump to the loop header. */ |
| if (merge->linear_succs.size() != 1) |
| return; |
| |
| /* We want to use the loopexit as the fallthrough block from merge, |
| * so there shouldn't be a block inbetween. |
| */ |
| for (unsigned i = merge->index + 1; i < loopexit->index; i++) { |
| if (!ctx.program->blocks[i].instructions.empty()) |
| return; |
| } |
| |
| for (unsigned merge_pred : merge->linear_preds) { |
| Block* pred = &ctx.program->blocks[merge_pred]; |
| if (pred == block) |
| continue; |
| |
| Instruction* pred_branch = pred->instructions.back().get(); |
| /* The branch needs to be exec zero only, otherwise we corrupt exec. */ |
| if (!pred_branch->isBranch() || pred_branch->opcode != aco_opcode::p_cbranch_z || |
| pred_branch->operands[0].physReg() != exec) |
| return; |
| } |
| |
| /* merge block: copy to exec, logical_start, logical_end, branch */ |
| if (merge->instructions.size() != 4 || !is_empty_block(merge, true)) |
| return; |
| |
| aco_ptr<Instruction>& execwrite = merge->instructions[0]; |
| if (!is_simple_copy(execwrite.get()) || execwrite->definitions[0].physReg() != exec) |
| return; |
| |
| const aco_opcode andn2 = |
| ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_b64 : aco_opcode::s_andn2_b32; |
| const aco_opcode andn2_wrexec = ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_wrexec_b64 |
| : aco_opcode::s_andn2_wrexec_b32; |
| |
| auto execsrc_it = block->instructions.end() - 2; |
| if ((*execsrc_it)->opcode != andn2 || |
| (*execsrc_it)->definitions[0].physReg() != execwrite->operands[0].physReg() || |
| (*execsrc_it)->operands[0].physReg() != execwrite->operands[0].physReg() || |
| (*execsrc_it)->operands[1].physReg() != exec) |
| return; |
| |
| /* Move s_andn2 to the merge block. */ |
| merge->instructions.insert(merge->instructions.begin(), std::move(*execsrc_it)); |
| block->instructions.erase(execsrc_it); |
| |
| branch->target[0] = merge->linear_succs[0]; |
| branch->target[1] = loopexit->index; |
| branch->opcode = aco_opcode::p_cbranch_nz; |
| |
| merge->instructions.back()->branch().target[0] = merge->index; |
| std::swap(merge->instructions.back(), block->instructions.back()); |
| |
| block->linear_succs.clear(); |
| block->linear_succs.push_back(merge->index); |
| merge->linear_succs.push_back(loopexit->index); |
| std::swap(merge->linear_succs[0], merge->linear_succs[1]); |
| ctx.blocks_incoming_exec_used[merge->index] = true; |
| |
| std::replace(loopexit->linear_preds.begin(), loopexit->linear_preds.end(), block->index, |
| merge->index); |
| |
| if (ctx.program->gfx_level < GFX9) |
| return; |
| |
| /* Combine s_andn2 and copy to exec to s_andn2_wrexec. */ |
| Instruction* r_exec = merge->instructions[0].get(); |
| Instruction* wr_exec = create_instruction(andn2_wrexec, Format::SOP1, 2, 3); |
| wr_exec->operands[0] = r_exec->operands[0]; |
| wr_exec->operands[1] = r_exec->operands[1]; |
| wr_exec->definitions[0] = r_exec->definitions[0]; |
| wr_exec->definitions[1] = r_exec->definitions[1]; |
| wr_exec->definitions[2] = Definition(exec, ctx.program->lane_mask); |
| |
| merge->instructions.erase(merge->instructions.begin()); |
| merge->instructions[0].reset(wr_exec); |
| } |
| |
| void |
| eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block) |
| { |
| /* Check if any successor needs the outgoing exec mask from the current block. */ |
| |
| bool exec_write_used; |
| if (block.kind & block_kind_end_with_regs) { |
| /* Last block of a program with succeed shader part should respect final exec write. */ |
| exec_write_used = true; |
| } else { |
| /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */ |
| exec_write_used = |
| std::any_of(block.linear_succs.begin(), block.linear_succs.end(), |
| [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; }); |
| } |
| |
| /* Go through all instructions and eliminate useless exec writes. */ |
| |
| for (int i = block.instructions.size() - 1; i >= 0; --i) { |
| aco_ptr<Instruction>& instr = block.instructions[i]; |
| |
| /* We already take information from phis into account before the loop, so let's just break on |
| * phis. */ |
| if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi) |
| break; |
| |
| /* See if the current instruction needs or writes exec. */ |
| bool needs_exec = needs_exec_mask(instr.get()); |
| bool writes_exec = instr->writes_exec(); |
| |
| /* See if we found an unused exec write. */ |
| if (writes_exec && !exec_write_used) { |
| /* Don't eliminate an instruction that writes registers other than exec and scc. |
| * It is possible that this is eg. an s_and_saveexec and the saved value is |
| * used by a later branch. |
| */ |
| bool writes_other = std::any_of(instr->definitions.begin(), instr->definitions.end(), |
| [](const Definition& def) -> bool |
| { return def.physReg() != exec && def.physReg() != scc; }); |
| if (!writes_other) { |
| instr.reset(); |
| continue; |
| } |
| } |
| |
| /* For a newly encountered exec write, clear the used flag. */ |
| if (writes_exec) |
| exec_write_used = false; |
| |
| /* If the current instruction needs exec, mark it as used. */ |
| exec_write_used |= needs_exec; |
| } |
| |
| /* Remember if the current block needs an incoming exec mask from its predecessors. */ |
| ctx.blocks_incoming_exec_used[block.index] = exec_write_used; |
| |
| /* Cleanup: remove deleted instructions from the vector. */ |
| auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr); |
| block.instructions.resize(new_end - block.instructions.begin()); |
| } |
| |
| } /* end namespace */ |
| |
| void |
| jump_threading(Program* program) |
| { |
| jump_threading_ctx ctx(program); |
| |
| for (int i = program->blocks.size() - 1; i >= 0; i--) { |
| Block* block = &program->blocks[i]; |
| eliminate_useless_exec_writes_in_block(ctx, *block); |
| |
| if (block->kind & block_kind_break) |
| try_merge_break_with_continue(ctx, block); |
| |
| if (block->kind & block_kind_invert) { |
| try_remove_invert_block(ctx, block); |
| continue; |
| } |
| |
| if (block->linear_succs.size() > 1) |
| continue; |
| |
| if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit) |
| try_remove_merge_block(ctx, block); |
| |
| if (block->linear_preds.size() == 1) |
| try_remove_simple_block(ctx, block); |
| } |
| } |
| } // namespace aco |