blob: c973417986f0c9699a74da6cc64833f4b1005d67 [file] [log] [blame]
/*
* Copyright © 2024 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_ir.h"
#include <algorithm>
#include <vector>
namespace aco {
namespace {
struct jump_threading_ctx {
std::vector<bool> blocks_incoming_exec_used;
Program* program;
jump_threading_ctx(Program* program_)
: blocks_incoming_exec_used(program_->blocks.size(), true), program(program_)
{}
};
bool
is_empty_block(Block* block, bool ignore_exec_writes)
{
/* check if this block is empty and the exec mask is not needed */
for (aco_ptr<Instruction>& instr : block->instructions) {
switch (instr->opcode) {
case aco_opcode::p_linear_phi:
case aco_opcode::p_phi:
case aco_opcode::p_logical_start:
case aco_opcode::p_logical_end:
case aco_opcode::p_branch: break;
case aco_opcode::p_parallelcopy:
for (unsigned i = 0; i < instr->definitions.size(); i++) {
if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
continue;
if (instr->definitions[i].physReg() != instr->operands[i].physReg())
return false;
}
break;
case aco_opcode::s_andn2_b64:
case aco_opcode::s_andn2_b32:
if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
break;
return false;
default: return false;
}
}
return true;
}
void
try_remove_merge_block(jump_threading_ctx& ctx, Block* block)
{
if (block->linear_succs.size() != 1)
return;
unsigned succ_idx = block->linear_succs[0];
/* Check if this block is empty, if the successor is an early block,
* we didn't gather incoming_exec_used for it yet.
*/
if (!is_empty_block(block, !ctx.blocks_incoming_exec_used[succ_idx] && block->index < succ_idx))
return;
/* keep the branch instruction and remove the rest */
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.clear();
block->instructions.emplace_back(std::move(branch));
}
void
try_remove_invert_block(jump_threading_ctx& ctx, Block* block)
{
assert(block->linear_succs.size() == 2);
/* only remove this block if the successor got removed as well */
if (block->linear_succs[0] != block->linear_succs[1])
return;
unsigned succ_idx = block->linear_succs[0];
assert(block->index < succ_idx);
/* check if block is otherwise empty */
if (!is_empty_block(block, !ctx.blocks_incoming_exec_used[succ_idx]))
return;
assert(block->linear_preds.size() == 2);
for (unsigned i = 0; i < 2; i++) {
Block* pred = &ctx.program->blocks[block->linear_preds[i]];
pred->linear_succs[0] = succ_idx;
ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;
Pseudo_branch_instruction& branch = pred->instructions.back()->branch();
assert(branch.isBranch());
branch.target[0] = succ_idx;
branch.target[1] = succ_idx;
}
block->instructions.clear();
block->linear_preds.clear();
block->linear_succs.clear();
}
void
try_remove_simple_block(jump_threading_ctx& ctx, Block* block)
{
if (!is_empty_block(block, false))
return;
Block& pred = ctx.program->blocks[block->linear_preds[0]];
Block& succ = ctx.program->blocks[block->linear_succs[0]];
Pseudo_branch_instruction& branch = pred.instructions.back()->branch();
if (branch.opcode == aco_opcode::p_branch) {
branch.target[0] = succ.index;
branch.target[1] = succ.index;
} else if (branch.target[0] == block->index) {
branch.target[0] = succ.index;
} else if (branch.target[0] == succ.index) {
assert(branch.target[1] == block->index);
branch.target[1] = succ.index;
branch.opcode = aco_opcode::p_branch;
branch.rarely_taken = branch.never_taken = false;
} else if (branch.target[1] == block->index) {
/* check if there is a fall-through path from block to succ */
bool falls_through = block->index < succ.index;
for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
assert(ctx.program->blocks[j].index == j);
if (!ctx.program->blocks[j].instructions.empty())
falls_through = false;
}
if (falls_through) {
branch.target[1] = succ.index;
} else {
/* check if there is a fall-through path for the alternative target */
if (block->index >= branch.target[0])
return;
for (unsigned j = block->index + 1; j < branch.target[0]; j++) {
if (!ctx.program->blocks[j].instructions.empty())
return;
}
/* This is a (uniform) break or continue block. The branch condition has to be inverted. */
if (branch.opcode == aco_opcode::p_cbranch_z)
branch.opcode = aco_opcode::p_cbranch_nz;
else if (branch.opcode == aco_opcode::p_cbranch_nz)
branch.opcode = aco_opcode::p_cbranch_z;
else
assert(false);
/* also invert the linear successors */
pred.linear_succs[0] = pred.linear_succs[1];
pred.linear_succs[1] = succ.index;
branch.target[1] = branch.target[0];
branch.target[0] = succ.index;
}
} else {
assert(false);
}
if (branch.target[0] == branch.target[1]) {
while (branch.operands.size())
branch.operands.pop_back();
branch.opcode = aco_opcode::p_branch;
branch.rarely_taken = branch.never_taken = false;
}
for (unsigned i = 0; i < pred.linear_succs.size(); i++)
if (pred.linear_succs[i] == block->index)
pred.linear_succs[i] = succ.index;
for (unsigned i = 0; i < succ.linear_preds.size(); i++)
if (succ.linear_preds[i] == block->index)
succ.linear_preds[i] = pred.index;
block->instructions.clear();
block->linear_preds.clear();
block->linear_succs.clear();
}
bool
is_simple_copy(Instruction* instr)
{
return instr->opcode == aco_opcode::p_parallelcopy && instr->definitions.size() == 1;
}
void
try_merge_break_with_continue(jump_threading_ctx& ctx, Block* block)
{
/* Look for this:
* BB1:
* ...
* p_branch_z exec BB3, BB2
* BB2:
* ...
* s[0:1], scc = s_andn2 s[0:1], exec
* p_branch_z scc BB4, BB3
* BB3:
* exec = p_parallelcopy s[0:1]
* p_branch BB1
* BB4:
* ...
*
* And turn it into this:
* BB1:
* ...
* p_branch_z exec BB3, BB2
* BB2:
* ...
* p_branch BB3
* BB3:
* s[0:1], scc, exec = s_andn2_wrexec s[0:1], exec
* p_branch_nz scc BB1, BB4
* BB4:
* ...
*/
if (block->linear_succs.size() != 2 || block->instructions.size() < 2)
return;
Pseudo_branch_instruction* branch = &block->instructions.back()->branch();
if (branch->operands[0].physReg() != scc || branch->opcode != aco_opcode::p_cbranch_z)
return;
Block* merge = &ctx.program->blocks[branch->target[1]];
Block* loopexit = &ctx.program->blocks[branch->target[0]];
/* Just a jump to the loop header. */
if (merge->linear_succs.size() != 1)
return;
/* We want to use the loopexit as the fallthrough block from merge,
* so there shouldn't be a block inbetween.
*/
for (unsigned i = merge->index + 1; i < loopexit->index; i++) {
if (!ctx.program->blocks[i].instructions.empty())
return;
}
for (unsigned merge_pred : merge->linear_preds) {
Block* pred = &ctx.program->blocks[merge_pred];
if (pred == block)
continue;
Instruction* pred_branch = pred->instructions.back().get();
/* The branch needs to be exec zero only, otherwise we corrupt exec. */
if (!pred_branch->isBranch() || pred_branch->opcode != aco_opcode::p_cbranch_z ||
pred_branch->operands[0].physReg() != exec)
return;
}
/* merge block: copy to exec, logical_start, logical_end, branch */
if (merge->instructions.size() != 4 || !is_empty_block(merge, true))
return;
aco_ptr<Instruction>& execwrite = merge->instructions[0];
if (!is_simple_copy(execwrite.get()) || execwrite->definitions[0].physReg() != exec)
return;
const aco_opcode andn2 =
ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_b64 : aco_opcode::s_andn2_b32;
const aco_opcode andn2_wrexec = ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_wrexec_b64
: aco_opcode::s_andn2_wrexec_b32;
auto execsrc_it = block->instructions.end() - 2;
if ((*execsrc_it)->opcode != andn2 ||
(*execsrc_it)->definitions[0].physReg() != execwrite->operands[0].physReg() ||
(*execsrc_it)->operands[0].physReg() != execwrite->operands[0].physReg() ||
(*execsrc_it)->operands[1].physReg() != exec)
return;
/* Move s_andn2 to the merge block. */
merge->instructions.insert(merge->instructions.begin(), std::move(*execsrc_it));
block->instructions.erase(execsrc_it);
branch->target[0] = merge->linear_succs[0];
branch->target[1] = loopexit->index;
branch->opcode = aco_opcode::p_cbranch_nz;
merge->instructions.back()->branch().target[0] = merge->index;
std::swap(merge->instructions.back(), block->instructions.back());
block->linear_succs.clear();
block->linear_succs.push_back(merge->index);
merge->linear_succs.push_back(loopexit->index);
std::swap(merge->linear_succs[0], merge->linear_succs[1]);
ctx.blocks_incoming_exec_used[merge->index] = true;
std::replace(loopexit->linear_preds.begin(), loopexit->linear_preds.end(), block->index,
merge->index);
if (ctx.program->gfx_level < GFX9)
return;
/* Combine s_andn2 and copy to exec to s_andn2_wrexec. */
Instruction* r_exec = merge->instructions[0].get();
Instruction* wr_exec = create_instruction(andn2_wrexec, Format::SOP1, 2, 3);
wr_exec->operands[0] = r_exec->operands[0];
wr_exec->operands[1] = r_exec->operands[1];
wr_exec->definitions[0] = r_exec->definitions[0];
wr_exec->definitions[1] = r_exec->definitions[1];
wr_exec->definitions[2] = Definition(exec, ctx.program->lane_mask);
merge->instructions.erase(merge->instructions.begin());
merge->instructions[0].reset(wr_exec);
}
void
eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
{
/* Check if any successor needs the outgoing exec mask from the current block. */
bool exec_write_used;
if (block.kind & block_kind_end_with_regs) {
/* Last block of a program with succeed shader part should respect final exec write. */
exec_write_used = true;
} else {
/* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */
exec_write_used =
std::any_of(block.linear_succs.begin(), block.linear_succs.end(),
[&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
}
/* Go through all instructions and eliminate useless exec writes. */
for (int i = block.instructions.size() - 1; i >= 0; --i) {
aco_ptr<Instruction>& instr = block.instructions[i];
/* We already take information from phis into account before the loop, so let's just break on
* phis. */
if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
break;
/* See if the current instruction needs or writes exec. */
bool needs_exec = needs_exec_mask(instr.get());
bool writes_exec = instr->writes_exec();
/* See if we found an unused exec write. */
if (writes_exec && !exec_write_used) {
/* Don't eliminate an instruction that writes registers other than exec and scc.
* It is possible that this is eg. an s_and_saveexec and the saved value is
* used by a later branch.
*/
bool writes_other = std::any_of(instr->definitions.begin(), instr->definitions.end(),
[](const Definition& def) -> bool
{ return def.physReg() != exec && def.physReg() != scc; });
if (!writes_other) {
instr.reset();
continue;
}
}
/* For a newly encountered exec write, clear the used flag. */
if (writes_exec)
exec_write_used = false;
/* If the current instruction needs exec, mark it as used. */
exec_write_used |= needs_exec;
}
/* Remember if the current block needs an incoming exec mask from its predecessors. */
ctx.blocks_incoming_exec_used[block.index] = exec_write_used;
/* Cleanup: remove deleted instructions from the vector. */
auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
block.instructions.resize(new_end - block.instructions.begin());
}
} /* end namespace */
void
jump_threading(Program* program)
{
jump_threading_ctx ctx(program);
for (int i = program->blocks.size() - 1; i >= 0; i--) {
Block* block = &program->blocks[i];
eliminate_useless_exec_writes_in_block(ctx, *block);
if (block->kind & block_kind_break)
try_merge_break_with_continue(ctx, block);
if (block->kind & block_kind_invert) {
try_remove_invert_block(ctx, block);
continue;
}
if (block->linear_succs.size() > 1)
continue;
if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit)
try_remove_merge_block(ctx, block);
if (block->linear_preds.size() == 1)
try_remove_simple_block(ctx, block);
}
}
} // namespace aco