blob: 20bfaf51b6f1c88dd6165aefa10ceb47b44ea106 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* SPDX-License-Identifier: MIT
*/
#include "aco_ir.h"
namespace aco {
RegisterDemand
get_live_changes(Instruction* instr)
{
RegisterDemand changes;
for (const Definition& def : instr->definitions) {
if (!def.isTemp() || def.isKill())
continue;
changes += def.getTemp();
}
for (const Operand& op : instr->operands) {
if (!op.isTemp() || !op.isFirstKill())
continue;
changes -= op.getTemp();
}
return changes;
}
RegisterDemand
get_temp_registers(Instruction* instr)
{
RegisterDemand demand_before;
RegisterDemand demand_after;
for (Definition def : instr->definitions) {
if (def.isKill())
demand_after += def.getTemp();
else if (def.isTemp())
demand_before -= def.getTemp();
}
for (Operand op : instr->operands) {
if (op.isFirstKill() || op.isCopyKill()) {
demand_before += op.getTemp();
if (op.isLateKill())
demand_after += op.getTemp();
} else if (op.isClobbered() && !op.isKill()) {
demand_before += op.getTemp();
}
}
demand_after.update(demand_before);
return demand_after;
}
namespace {
struct live_ctx {
monotonic_buffer_resource m;
Program* program;
int32_t worklist;
uint32_t handled_once;
};
bool
instr_needs_vcc(Instruction* instr)
{
if (instr->isVOPC())
return true;
if (instr->isVOP2() && !instr->isVOP3()) {
if (instr->operands.size() == 3 && instr->operands[2].isTemp() &&
instr->operands[2].regClass().type() == RegType::sgpr)
return true;
if (instr->definitions.size() == 2)
return true;
}
return false;
}
IDSet
compute_live_out(live_ctx& ctx, Block* block)
{
IDSet live(ctx.m);
if (block->logical_succs.empty()) {
/* Linear blocks:
* Directly insert the successor if it is a linear block as well.
*/
for (unsigned succ : block->linear_succs) {
if (ctx.program->blocks[succ].logical_preds.empty()) {
live.insert(ctx.program->live.live_in[succ]);
} else {
for (unsigned t : ctx.program->live.live_in[succ]) {
if (ctx.program->temp_rc[t].is_linear())
live.insert(t);
}
}
}
} else {
/* Logical blocks:
* Linear successors are either linear blocks or logical targets.
*/
live = IDSet(ctx.program->live.live_in[block->linear_succs[0]], ctx.m);
if (block->linear_succs.size() == 2)
live.insert(ctx.program->live.live_in[block->linear_succs[1]]);
/* At most one logical target needs a separate insertion. */
if (block->logical_succs.back() != block->linear_succs.back()) {
for (unsigned t : ctx.program->live.live_in[block->logical_succs.back()]) {
if (!ctx.program->temp_rc[t].is_linear())
live.insert(t);
}
} else {
assert(block->logical_succs[0] == block->linear_succs[0]);
}
}
/* Handle phi operands */
if (block->linear_succs.size() == 1 && block->linear_succs[0] >= ctx.handled_once) {
Block& succ = ctx.program->blocks[block->linear_succs[0]];
auto it = std::find(succ.linear_preds.begin(), succ.linear_preds.end(), block->index);
unsigned op_idx = std::distance(succ.linear_preds.begin(), it);
for (aco_ptr<Instruction>& phi : succ.instructions) {
if (!is_phi(phi))
break;
if (phi->opcode == aco_opcode::p_phi || phi->definitions[0].isKill())
continue;
if (phi->operands[op_idx].isTemp())
live.insert(phi->operands[op_idx].tempId());
}
}
if (block->logical_succs.size() == 1 && block->logical_succs[0] >= ctx.handled_once) {
Block& succ = ctx.program->blocks[block->logical_succs[0]];
auto it = std::find(succ.logical_preds.begin(), succ.logical_preds.end(), block->index);
unsigned op_idx = std::distance(succ.logical_preds.begin(), it);
for (aco_ptr<Instruction>& phi : succ.instructions) {
if (!is_phi(phi))
break;
if (phi->opcode == aco_opcode::p_linear_phi || phi->definitions[0].isKill())
continue;
if (phi->operands[op_idx].isTemp())
live.insert(phi->operands[op_idx].tempId());
}
}
return live;
}
void
process_live_temps_per_block(live_ctx& ctx, Block* block)
{
RegisterDemand new_demand;
block->register_demand = RegisterDemand();
IDSet live = compute_live_out(ctx, block);
/* initialize register demand */
for (unsigned t : live)
new_demand += Temp(t, ctx.program->temp_rc[t]);
/* traverse the instructions backwards */
int idx;
for (idx = block->instructions.size() - 1; idx >= 0; idx--) {
Instruction* insn = block->instructions[idx].get();
if (is_phi(insn))
break;
ctx.program->needs_vcc |= instr_needs_vcc(insn);
insn->register_demand = RegisterDemand(new_demand.vgpr, new_demand.sgpr);
bool has_vgpr_def = false;
/* KILL */
for (Definition& definition : insn->definitions) {
has_vgpr_def |= definition.regClass().type() == RegType::vgpr &&
!definition.regClass().is_linear_vgpr();
if (!definition.isTemp()) {
continue;
}
if (definition.isFixed() && definition.physReg() == vcc)
ctx.program->needs_vcc = true;
const Temp temp = definition.getTemp();
const size_t n = live.erase(temp.id());
if (n) {
new_demand -= temp;
definition.setKill(false);
} else {
insn->register_demand += temp;
definition.setKill(true);
}
}
if (ctx.program->gfx_level >= GFX10 && insn->isVALU() &&
insn->definitions.back().regClass() == s2) {
/* RDNA2 ISA doc, 6.2.4. Wave64 Destination Restrictions:
* The first pass of a wave64 VALU instruction may not overwrite a scalar value used by
* the second half.
*/
bool carry_in = insn->opcode == aco_opcode::v_addc_co_u32 ||
insn->opcode == aco_opcode::v_subb_co_u32 ||
insn->opcode == aco_opcode::v_subbrev_co_u32;
for (unsigned op_idx = 0; op_idx < (carry_in ? 2 : insn->operands.size()); op_idx++) {
if (insn->operands[op_idx].isOfType(RegType::sgpr))
insn->operands[op_idx].setLateKill(true);
}
} else if (insn->opcode == aco_opcode::p_bpermute_readlane ||
insn->opcode == aco_opcode::p_bpermute_permlane ||
insn->opcode == aco_opcode::p_bpermute_shared_vgpr ||
insn->opcode == aco_opcode::p_dual_src_export_gfx11 ||
insn->opcode == aco_opcode::v_mqsad_u32_u8) {
for (Operand& op : insn->operands)
op.setLateKill(true);
} else if (insn->opcode == aco_opcode::p_interp_gfx11 && insn->operands.size() == 7) {
insn->operands[5].setLateKill(true); /* we re-use the destination reg in the middle */
} else if (insn->opcode == aco_opcode::v_interp_p1_f32 && ctx.program->dev.has_16bank_lds) {
insn->operands[0].setLateKill(true);
} else if (insn->opcode == aco_opcode::p_init_scratch) {
insn->operands.back().setLateKill(true);
} else if (instr_info.classes[(int)insn->opcode] == instr_class::wmma) {
insn->operands[0].setLateKill(true);
insn->operands[1].setLateKill(true);
}
/* Check if a definition clobbers some operand */
int op_idx = get_op_fixed_to_def(insn);
if (op_idx != -1)
insn->operands[op_idx].setClobbered(true);
/* we need to do this in a separate loop because the next one can
* setKill() for several operands at once and we don't want to
* overwrite that in a later iteration */
for (Operand& op : insn->operands) {
op.setKill(false);
/* Linear vgprs must be late kill: this is to ensure linear VGPR operands and
* normal VGPR definitions don't try to use the same register, which is problematic
* because of assignment restrictions.
*/
if (op.hasRegClass() && op.regClass().is_linear_vgpr() && !op.isUndefined() &&
has_vgpr_def)
op.setLateKill(true);
}
/* GEN */
RegisterDemand operand_demand;
for (unsigned i = 0; i < insn->operands.size(); ++i) {
Operand& operand = insn->operands[i];
if (!operand.isTemp())
continue;
const Temp temp = operand.getTemp();
if (operand.isPrecolored()) {
assert(!operand.isLateKill());
ctx.program->needs_vcc |= operand.physReg() == vcc;
/* Check if this operand gets overwritten by a precolored definition. */
if (std::any_of(insn->definitions.begin(), insn->definitions.end(),
[=](Definition def)
{
return def.isFixed() &&
def.physReg() + def.size() > operand.physReg() &&
operand.physReg() + operand.size() > def.physReg();
}))
operand.setClobbered(true);
/* Check if another precolored operand uses the same temporary.
* This assumes that operands of one instruction are not precolored twice to
* the same register. In this case, register pressure might be overestimated.
*/
for (unsigned j = i + 1; !operand.isCopyKill() && j < insn->operands.size(); ++j) {
if (insn->operands[j].isPrecolored() && insn->operands[j].getTemp() == temp) {
operand_demand += temp;
insn->operands[j].setCopyKill(true);
}
}
}
if (operand.isKill())
continue;
if (live.insert(temp.id()).second) {
operand.setFirstKill(true);
for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
if (insn->operands[j].isTemp() && insn->operands[j].getTemp() == temp)
insn->operands[j].setKill(true);
}
if (operand.isLateKill())
insn->register_demand += temp;
new_demand += temp;
} else if (operand.isClobbered()) {
operand_demand += temp;
}
}
operand_demand += new_demand;
insn->register_demand.update(operand_demand);
block->register_demand.update(insn->register_demand);
}
/* handle phi definitions */
for (int phi_idx = 0; phi_idx <= idx; phi_idx++) {
Instruction* insn = block->instructions[phi_idx].get();
insn->register_demand = new_demand;
assert(is_phi(insn) && insn->definitions.size() == 1);
if (!insn->definitions[0].isTemp()) {
assert(insn->definitions[0].isFixed() && insn->definitions[0].physReg() == exec);
continue;
}
Definition& definition = insn->definitions[0];
ctx.program->needs_vcc |= definition.isFixed() && definition.physReg() == vcc;
const size_t n = live.erase(definition.tempId());
if (n && (definition.isKill() || ctx.handled_once > block->index)) {
Block::edge_vec& preds =
insn->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
for (unsigned i = 0; i < preds.size(); i++) {
if (insn->operands[i].isTemp())
ctx.worklist = std::max<int>(ctx.worklist, preds[i]);
}
}
definition.setKill(!n);
}
/* handle phi operands */
for (int phi_idx = 0; phi_idx <= idx; phi_idx++) {
Instruction* insn = block->instructions[phi_idx].get();
assert(is_phi(insn));
/* Ignore dead phis. */
if (insn->definitions[0].isKill())
continue;
for (Operand& operand : insn->operands) {
if (!operand.isTemp())
continue;
/* set if the operand is killed by this (or another) phi instruction */
operand.setKill(!live.count(operand.tempId()));
}
}
if (ctx.program->live.live_in[block->index].insert(live)) {
if (block->linear_preds.size()) {
assert(block->logical_preds.empty() ||
block->logical_preds.back() <= block->linear_preds.back());
ctx.worklist = std::max<int>(ctx.worklist, block->linear_preds.back());
} else {
ASSERTED bool is_valid = validate_ir(ctx.program);
assert(!is_valid);
}
}
block->live_in_demand = new_demand;
block->register_demand.update(block->live_in_demand);
ctx.program->max_reg_demand.update(block->register_demand);
ctx.handled_once = std::min(ctx.handled_once, block->index);
assert(!block->linear_preds.empty() || (new_demand == RegisterDemand() && live.empty()));
}
unsigned
calc_waves_per_workgroup(Program* program)
{
/* When workgroup size is not known, just go with wave_size */
unsigned workgroup_size =
program->workgroup_size == UINT_MAX ? program->wave_size : program->workgroup_size;
return align(workgroup_size, program->wave_size) / program->wave_size;
}
} /* end namespace */
bool
uses_scratch(Program* program)
{
/* RT uses scratch but we don't yet know how much. */
return program->config->scratch_bytes_per_wave || program->stage == raytracing_cs;
}
uint16_t
get_extra_sgprs(Program* program)
{
/* We don't use this register on GFX6-8 and it's removed on GFX10+. */
bool needs_flat_scr = uses_scratch(program) && program->gfx_level == GFX9;
if (program->gfx_level >= GFX10) {
assert(!program->dev.xnack_enabled);
return 0;
} else if (program->gfx_level >= GFX8) {
if (needs_flat_scr)
return 6;
else if (program->dev.xnack_enabled)
return 4;
else if (program->needs_vcc)
return 2;
else
return 0;
} else {
assert(!program->dev.xnack_enabled);
if (needs_flat_scr)
return 4;
else if (program->needs_vcc)
return 2;
else
return 0;
}
}
uint16_t
get_sgpr_alloc(Program* program, uint16_t addressable_sgprs)
{
uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
uint16_t granule = program->dev.sgpr_alloc_granule;
return ALIGN_NPOT(std::max(sgprs, granule), granule);
}
uint16_t
get_vgpr_alloc(Program* program, uint16_t addressable_vgprs)
{
assert(addressable_vgprs <= program->dev.vgpr_limit);
uint16_t granule = program->dev.vgpr_alloc_granule;
return ALIGN_NPOT(std::max(addressable_vgprs, granule), granule);
}
unsigned
round_down(unsigned a, unsigned b)
{
return a - (a % b);
}
uint16_t
get_addr_sgpr_from_waves(Program* program, uint16_t waves)
{
/* it's not possible to allocate more than 128 SGPRs */
uint16_t sgprs = std::min(program->dev.physical_sgprs / waves, 128);
sgprs = round_down(sgprs, program->dev.sgpr_alloc_granule);
sgprs -= get_extra_sgprs(program);
return std::min(sgprs, program->dev.sgpr_limit);
}
uint16_t
get_addr_vgpr_from_waves(Program* program, uint16_t waves)
{
uint16_t vgprs = program->dev.physical_vgprs / waves;
vgprs = vgprs / program->dev.vgpr_alloc_granule * program->dev.vgpr_alloc_granule;
vgprs -= program->config->num_shared_vgprs / 2;
return std::min(vgprs, program->dev.vgpr_limit);
}
void
calc_min_waves(Program* program)
{
unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
unsigned simd_per_cu_wgp = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
}
uint16_t
max_suitable_waves(Program* program, uint16_t waves)
{
unsigned num_simd = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
unsigned num_workgroups = waves * num_simd / waves_per_workgroup;
/* Adjust #workgroups for LDS */
unsigned lds_per_workgroup = align(program->config->lds_size * program->dev.lds_encoding_granule,
program->dev.lds_alloc_granule);
if (program->stage == fragment_fs) {
/* PS inputs are moved from PC (parameter cache) to LDS before PS waves are launched.
* Each PS input occupies 3x vec4 of LDS space. See Figure 10.3 in GCN3 ISA manual.
* These limit occupancy the same way as other stages' LDS usage does.
*/
unsigned lds_bytes_per_interp = 3 * 16;
unsigned lds_param_bytes = lds_bytes_per_interp * program->info.ps.num_inputs;
lds_per_workgroup += align(lds_param_bytes, program->dev.lds_alloc_granule);
}
unsigned lds_limit = program->wgp_mode ? program->dev.lds_limit * 2 : program->dev.lds_limit;
if (lds_per_workgroup)
num_workgroups = std::min(num_workgroups, lds_limit / lds_per_workgroup);
/* Hardware limitation */
if (waves_per_workgroup > 1)
num_workgroups = std::min(num_workgroups, program->wgp_mode ? 32u : 16u);
/* Adjust #waves for workgroup multiples:
* In cases like waves_per_workgroup=3 or lds=65536 and
* waves_per_workgroup=1, we want the maximum possible number of waves per
* SIMD and not the minimum. so DIV_ROUND_UP is used
*/
unsigned workgroup_waves = num_workgroups * waves_per_workgroup;
return DIV_ROUND_UP(workgroup_waves, num_simd);
}
void
update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
{
assert(program->min_waves >= 1);
uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
uint16_t vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
/* this won't compile, register pressure reduction necessary */
if (new_demand.vgpr > vgpr_limit || new_demand.sgpr > sgpr_limit) {
program->num_waves = 0;
program->max_reg_demand = new_demand;
} else {
program->num_waves = program->dev.physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
uint16_t vgpr_demand =
get_vgpr_alloc(program, new_demand.vgpr) + program->config->num_shared_vgprs / 2;
program->num_waves =
std::min<uint16_t>(program->num_waves, program->dev.physical_vgprs / vgpr_demand);
program->num_waves = std::min(program->num_waves, program->dev.max_waves_per_simd);
/* Adjust for LDS and workgroup multiples and calculate max_reg_demand */
program->num_waves = max_suitable_waves(program, program->num_waves);
program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
}
}
void
live_var_analysis(Program* program)
{
program->live.live_in.clear();
program->live.memory.release();
program->live.live_in.resize(program->blocks.size(), IDSet(program->live.memory));
program->max_reg_demand = RegisterDemand();
program->needs_vcc = program->gfx_level >= GFX10;
live_ctx ctx;
ctx.program = program;
ctx.worklist = program->blocks.size() - 1;
ctx.handled_once = program->blocks.size();
/* this implementation assumes that the block idx corresponds to the block's position in
* program->blocks vector */
while (ctx.worklist >= 0) {
process_live_temps_per_block(ctx, &program->blocks[ctx.worklist--]);
}
/* calculate the program's register demand and number of waves */
if (program->progress < CompilationProgress::after_ra)
update_vgpr_sgpr_demand(program, program->max_reg_demand);
}
} // namespace aco