blob: 67e8b71a09eac0fcf411c74a639a65ca102835c1 [file] [log] [blame]
/*
* Copyright © 2021 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <algorithm>
#include <array>
#include <bitset>
#include <vector>
namespace aco {
namespace {
constexpr const size_t max_reg_cnt = 512;
constexpr const size_t max_sgpr_cnt = 128;
constexpr const size_t min_vgpr = 256;
constexpr const size_t max_vgpr_cnt = 256;
struct Idx {
bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
bool operator!=(const Idx& other) const { return !operator==(other); }
bool found() const { return block != UINT32_MAX; }
uint32_t block;
uint32_t instr;
};
/** Indicates that a register was not yet written in the shader. */
Idx not_written_yet{UINT32_MAX, 0};
/** Indicates that an operand is constant or undefined, not written by any instruction. */
Idx const_or_undef{UINT32_MAX, 2};
/** Indicates that a register was overwritten by different instructions in previous blocks. */
Idx overwritten_untrackable{UINT32_MAX, 3};
/** Indicates that there isn't a clear single writer, for example due to subdword operations. */
Idx overwritten_unknown_instr{UINT32_MAX, 4};
struct pr_opt_ctx {
using Idx_array = std::array<Idx, max_reg_cnt>;
Program* program;
Block* current_block;
uint32_t current_instr_idx;
std::vector<uint16_t> uses;
std::unique_ptr<Idx_array[]> instr_idx_by_regs;
pr_opt_ctx(Program* p)
: program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)),
instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]})
{}
ALWAYS_INLINE void reset_block_regs(const Block::edge_vec& preds, const unsigned block_index,
const unsigned min_reg, const unsigned num_regs)
{
const unsigned num_preds = preds.size();
const unsigned first_pred = preds[0];
/* Copy information from the first predecessor. */
memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg],
num_regs * sizeof(Idx));
/* Mark overwritten if it doesn't match with other predecessors. */
const unsigned until_reg = min_reg + num_regs;
for (unsigned i = 1; i < num_preds; ++i) {
unsigned pred = preds[i];
for (unsigned reg = min_reg; reg < until_reg; ++reg) {
Idx& idx = instr_idx_by_regs[block_index][reg];
if (idx == overwritten_untrackable)
continue;
if (idx != instr_idx_by_regs[pred][reg])
idx = overwritten_untrackable;
}
}
}
void reset_block(Block* block)
{
current_block = block;
current_instr_idx = 0;
if (block->linear_preds.empty()) {
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
not_written_yet);
} else if (block->kind & block_kind_loop_header) {
/* Instructions inside the loop may overwrite registers of temporaries that are
* not live inside the loop, but we can't detect that because we haven't processed
* the blocks in the loop yet. As a workaround, mark all registers as untrackable.
* TODO: Consider improving this in the future.
*/
std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
overwritten_untrackable);
} else {
reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt);
reset_block_regs(block->linear_preds, block->index, 251, 3);
if (!block->logical_preds.empty()) {
/* We assume that VGPRs are only read by blocks which have a logical predecessor,
* ie. any block that reads any VGPR has at least 1 logical predecessor.
*/
reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt);
} else {
/* If a block has no logical predecessors, it is not part of the
* logical CFG and therefore it also won't have any logical successors.
* Such a block does not write any VGPRs ever.
*/
assert(block->logical_succs.empty());
}
}
}
Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
};
void
save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
for (const Definition& def : instr->definitions) {
assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
unsigned r = def.physReg().reg();
Idx idx{ctx.current_block->index, ctx.current_instr_idx};
if (def.regClass().is_subdword())
idx = overwritten_unknown_instr;
assert((r + dw_size) <= max_reg_cnt);
assert(def.size() == dw_size || def.regClass().is_subdword());
std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
}
if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
ctx.instr_idx_by_regs[ctx.current_block->index][instr->pseudo().scratch_sgpr] =
overwritten_unknown_instr;
}
}
Idx
last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
{
/* Verify that all of the operand's registers are written by the same instruction. */
assert(physReg.reg() < max_reg_cnt);
Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
unsigned r = physReg.reg();
bool all_same =
std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
[instr_idx](Idx i) { return i == instr_idx; });
return all_same ? instr_idx : overwritten_untrackable;
}
Idx
last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
{
if (op.isConstant() || op.isUndefined())
return const_or_undef;
return last_writer_idx(ctx, op.physReg(), op.regClass());
}
/**
* Check whether a register has been overwritten since the given location.
* This is an important part of checking whether certain optimizations are
* valid.
* Note that the decision is made based on registers and not on SSA IDs.
*/
bool
is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx,
bool inclusive = false)
{
/* If we didn't find an instruction, assume that the register is overwritten. */
if (!since_idx.found())
return true;
/* TODO: We currently can't keep track of subdword registers. */
if (rc.is_subdword())
return true;
unsigned begin_reg = reg.reg();
unsigned end_reg = begin_reg + rc.size();
unsigned current_block_idx = ctx.current_block->index;
for (unsigned r = begin_reg; r < end_reg; ++r) {
Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
if (i == overwritten_untrackable && current_block_idx > since_idx.block)
return true;
else if (i == overwritten_untrackable || i == not_written_yet)
continue;
else if (i == overwritten_unknown_instr)
return true;
assert(i.found());
bool since_instr = inclusive ? i.instr >= since_idx.instr : i.instr > since_idx.instr;
if (i.block > since_idx.block || (i.block == since_idx.block && since_instr))
return true;
}
return false;
}
bool
is_overwritten_since(pr_opt_ctx& ctx, const Definition& def, const Idx& idx, bool inclusive = false)
{
return is_overwritten_since(ctx, def.physReg(), def.regClass(), idx, inclusive);
}
bool
is_overwritten_since(pr_opt_ctx& ctx, const Operand& op, const Idx& idx, bool inclusive = false)
{
if (op.isConstant())
return false;
return is_overwritten_since(ctx, op.physReg(), op.regClass(), idx, inclusive);
}
void
try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* vcc = ... ; last_vcc_wr
* sX, scc = s_and_bXX vcc, exec ; op0_instr
* (...vcc and exec must not be overwritten inbetween...)
* s_cbranch_XX scc ; instr
*
* If possible, the above is optimized into:
*
* vcc = ... ; last_vcc_wr
* s_cbranch_XX vcc ; instr modified to use vcc
*/
/* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
if (ctx.program->gfx_level < GFX8)
return;
if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
instr->operands[0].physReg() != scc)
return;
Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
/* We need to make sure:
* - the instructions that wrote the operand register and VCC are both found
* - the operand register used by the branch, and VCC were both written in the current block
* - EXEC hasn't been overwritten since the last VCC write
* - VCC hasn't been overwritten since the operand register was written
* (ie. the last VCC writer precedes the op0 writer)
*/
if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
op0_instr_idx.block != ctx.current_block->index ||
last_vcc_wr_idx.block != ctx.current_block->index ||
is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
return;
Instruction* op0_instr = ctx.get(op0_instr_idx);
Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
!last_vcc_wr->isVOPC())
return;
assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
/* Reduce the uses of the SCC def */
ctx.uses[instr->operands[0].tempId()]--;
/* Use VCC instead of SCC in the branch */
instr->operands[0] = op0_instr->operands[0];
}
void
try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
* s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
* s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
*
* If possible, the above is optimized into:
*
* s_bfe_u32 s0, s3, 0x40018 ; original instruction
* s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
*
*/
if (!instr->isSALU() && !instr->isBranch())
return;
if (instr->isSOPC() &&
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
(instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
(instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
/* Make sure the constant is always in operand 1 */
if (instr->operands[0].isConstant())
std::swap(instr->operands[0], instr->operands[1]);
/* Find the writer instruction of Operand 0. */
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
wr_instr->definitions[1].physReg() != scc)
return;
/* Look for instructions which set SCC := (D != 0) */
switch (wr_instr->opcode) {
case aco_opcode::s_bfe_i32:
case aco_opcode::s_bfe_i64:
case aco_opcode::s_bfe_u32:
case aco_opcode::s_bfe_u64:
case aco_opcode::s_and_b32:
case aco_opcode::s_and_b64:
case aco_opcode::s_andn2_b32:
case aco_opcode::s_andn2_b64:
case aco_opcode::s_or_b32:
case aco_opcode::s_or_b64:
case aco_opcode::s_orn2_b32:
case aco_opcode::s_orn2_b64:
case aco_opcode::s_xor_b32:
case aco_opcode::s_xor_b64:
case aco_opcode::s_not_b32:
case aco_opcode::s_not_b64:
case aco_opcode::s_nor_b32:
case aco_opcode::s_nor_b64:
case aco_opcode::s_xnor_b32:
case aco_opcode::s_xnor_b64:
case aco_opcode::s_nand_b32:
case aco_opcode::s_nand_b64:
case aco_opcode::s_lshl_b32:
case aco_opcode::s_lshl_b64:
case aco_opcode::s_lshr_b32:
case aco_opcode::s_lshr_b64:
case aco_opcode::s_ashr_i32:
case aco_opcode::s_ashr_i64:
case aco_opcode::s_abs_i32:
case aco_opcode::s_absdiff_i32: break;
default: return;
}
/* Check whether both SCC and Operand 0 are written by the same instruction. */
Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
if (wr_idx != sccwr_idx) {
/* Check whether the current instruction is the only user of its first operand. */
if (ctx.uses[wr_instr->definitions[1].tempId()] ||
ctx.uses[wr_instr->definitions[0].tempId()] > 1)
return;
/* Check whether the operands of the writer are overwritten. */
for (const Operand& op : wr_instr->operands) {
if (is_overwritten_since(ctx, op, wr_idx))
return;
}
aco_opcode pulled_opcode = wr_instr->opcode;
if (instr->opcode == aco_opcode::s_cmp_eq_u32 ||
instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64) {
/* When s_cmp_eq is used, it effectively inverts the SCC def.
* However, we can't simply invert the opcodes here because that
* would change the meaning of the program.
*/
return;
}
Definition scc_def = instr->definitions[0];
ctx.uses[wr_instr->definitions[0].tempId()]--;
/* Copy the writer instruction, but use SCC from the current instr.
* This means that the original instruction will be eliminated.
*/
if (wr_instr->format == Format::SOP2) {
instr.reset(create_instruction(pulled_opcode, Format::SOP2, 2, 2));
instr->operands[1] = wr_instr->operands[1];
} else if (wr_instr->format == Format::SOP1) {
instr.reset(create_instruction(pulled_opcode, Format::SOP1, 1, 2));
}
instr->definitions[0] = wr_instr->definitions[0];
instr->definitions[1] = scc_def;
instr->operands[0] = wr_instr->operands[0];
return;
}
/* Use the SCC def from wr_instr */
ctx.uses[instr->operands[0].tempId()]--;
instr->operands[0] = Operand(wr_instr->definitions[1].getTemp());
instr->operands[0].setFixed(scc);
ctx.uses[instr->operands[0].tempId()]++;
/* Set the opcode and operand to 32-bit */
instr->operands[1] = Operand::zero();
instr->opcode =
(instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
instr->opcode == aco_opcode::s_cmp_eq_u64)
? aco_opcode::s_cmp_eq_u32
: aco_opcode::s_cmp_lg_u32;
} else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
instr->operands[0].physReg() == scc) ||
instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
/* For cselect, operand 2 is the SCC condition */
unsigned scc_op_idx = 0;
if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64) {
scc_op_idx = 2;
}
Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
if (!wr_idx.found())
return;
Instruction* wr_instr = ctx.get(wr_idx);
/* Check if we found the pattern above. */
if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
return;
if (wr_instr->operands[0].physReg() != scc)
return;
if (!wr_instr->operands[1].constantEquals(0))
return;
/* The optimization can be unsafe when there are other users. */
if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
return;
if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
/* Flip the meaning of the instruction to correctly use the SCC. */
if (instr->format == Format::PSEUDO_BRANCH)
instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
: aco_opcode::p_cbranch_z;
else if (instr->opcode == aco_opcode::s_cselect_b32 ||
instr->opcode == aco_opcode::s_cselect_b64)
std::swap(instr->operands[0], instr->operands[1]);
else
unreachable(
"scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
}
/* Use the SCC def from the original instruction, not the comparison */
ctx.uses[instr->operands[scc_op_idx].tempId()]--;
instr->operands[scc_op_idx] = wr_instr->operands[0];
}
}
static bool
is_scc_copy(const Instruction* instr)
{
return instr->opcode == aco_opcode::p_parallelcopy && instr->operands.size() == 1 &&
instr->operands[0].isTemp() && instr->operands[0].physReg().reg() == scc;
}
void
save_scc_copy_producer(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
if (!is_scc_copy(instr.get()))
return;
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (wr_idx.found() && wr_idx.block == ctx.current_block->index)
instr->pass_flags = wr_idx.instr;
else
instr->pass_flags = UINT32_MAX;
}
void
try_eliminate_scc_copy(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Try to eliminate an SCC copy by duplicating the instruction that produced the SCC. */
if (instr->opcode != aco_opcode::p_parallelcopy || instr->definitions.size() != 1 ||
instr->definitions[0].physReg().reg() != scc)
return;
/* Find the instruction that copied SCC into an SGPR. */
Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
if (!wr_idx.found())
return;
const Instruction* wr_instr = ctx.get(wr_idx);
if (!is_scc_copy(wr_instr) || wr_instr->pass_flags == UINT32_MAX)
return;
Idx producer_idx = {wr_idx.block, wr_instr->pass_flags};
Instruction* producer_instr = ctx.get(producer_idx);
if (!producer_instr || !producer_instr->isSALU())
return;
/* Verify that the operands of the producer instruction haven't been overwritten. */
for (const Operand& op : producer_instr->operands) {
if (is_overwritten_since(ctx, op, producer_idx, true))
return;
}
/* Verify that the definitions (except SCC) of the producer haven't been overwritten. */
for (const Definition& def : producer_instr->definitions) {
if (def.physReg().reg() == scc)
continue;
if (is_overwritten_since(ctx, def, producer_idx))
return;
}
/* Duplicate the original producer of the SCC */
Definition scc_def = instr->definitions[0];
instr.reset(create_instruction(producer_instr->opcode, producer_instr->format,
producer_instr->operands.size(),
producer_instr->definitions.size()));
instr->salu().imm = producer_instr->salu().imm;
/* The copy is no longer needed. */
if (--ctx.uses[wr_instr->definitions[0].tempId()] == 0)
ctx.uses[wr_instr->operands[0].tempId()]--;
/* Copy the operands of the original producer. */
for (unsigned i = 0; i < producer_instr->operands.size(); ++i) {
instr->operands[i] = producer_instr->operands[i];
if (producer_instr->operands[i].isTemp() && !is_dead(ctx.uses, producer_instr))
ctx.uses[producer_instr->operands[i].tempId()]++;
}
/* Copy the definitions of the original producer,
* but mark them as non-temp to keep SSA quasi-intact.
*/
for (unsigned i = 0; i < producer_instr->definitions.size(); ++i)
instr->definitions[i] = Definition(producer_instr->definitions[i].physReg(),
producer_instr->definitions[i].regClass());
instr->definitions.back() = scc_def; /* Keep temporary ID. */
}
void
try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We are looking for the following pattern:
*
* v_mov_dpp vA, vB, ... ; move instruction with DPP
* v_xxx vC, vA, ... ; current instr that uses the result from the move
*
* If possible, the above is optimized into:
*
* v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
*
*/
if (!instr->isVALU() || instr->isDPP())
return;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
if (!op_instr_idx.found())
continue;
/* is_overwritten_since only considers active lanes when the register could possibly
* have been overwritten from inactive lanes. Restrict this optimization to at most
* one block so that there is no possibility for clobbered inactive lanes.
*/
if (ctx.current_block->index - op_instr_idx.block > 1)
continue;
const Instruction* mov = ctx.get(op_instr_idx);
if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
continue;
/* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
* it's own operand before we use it.
*/
if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
(!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
continue;
/* Don't propagate DPP if the source register is overwritten since the move. */
if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx))
continue;
bool dpp8 = mov->isDPP8();
/* Fetch-inactive means exec is ignored, which allows us to combine across exec changes. */
if (!(dpp8 ? mov->dpp8().fetch_inactive : mov->dpp16().fetch_inactive) &&
is_overwritten_since(ctx, Operand(exec, ctx.program->lane_mask), op_instr_idx))
continue;
/* We won't eliminate the DPP mov if the operand is used twice */
bool op_used_twice = false;
for (unsigned j = 0; j < instr->operands.size(); j++)
op_used_twice |= i != j && instr->operands[i] == instr->operands[j];
if (op_used_twice)
continue;
bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i) &&
get_operand_size(instr, i) == 32;
bool mov_uses_mods = mov->valu().neg[0] || mov->valu().abs[0];
if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods)
continue;
if (i != 0) {
if (!can_swap_operands(instr, &instr->opcode, 0, i))
continue;
instr->valu().swapOperands(0, i);
}
if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8))
continue;
if (!dpp8) /* anything else doesn't make sense in SSA */
assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
if (--ctx.uses[mov->definitions[0].tempId()])
ctx.uses[mov->operands[0].tempId()]++;
convert_to_DPP(ctx.program->gfx_level, instr, dpp8);
instr->operands[0] = mov->operands[0];
if (dpp8) {
DPP8_instruction* dpp = &instr->dpp8();
dpp->lane_sel = mov->dpp8().lane_sel;
dpp->fetch_inactive = mov->dpp8().fetch_inactive;
if (mov_uses_mods)
instr->format = asVOP3(instr->format);
} else {
DPP16_instruction* dpp = &instr->dpp16();
dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
dpp->bound_ctrl = true;
dpp->fetch_inactive = mov->dpp16().fetch_inactive;
}
instr->valu().neg[0] ^= mov->valu().neg[0] && !instr->valu().abs[0];
instr->valu().abs[0] |= mov->valu().abs[0];
return;
}
}
unsigned
num_encoded_alu_operands(const aco_ptr<Instruction>& instr)
{
if (instr->isSALU()) {
if (instr->isSOP2() || instr->isSOPC())
return 2;
else if (instr->isSOP1())
return 1;
return 0;
}
if (instr->isVALU()) {
if (instr->isVOP1())
return 1;
else if (instr->isVOPC() || instr->isVOP2())
return 2;
else if (instr->opcode == aco_opcode::v_writelane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32)
return 2; /* potentially VOP3, but reads VDST as SRC2 */
else if (instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG())
return instr->operands.size();
}
return 0;
}
void
try_reassign_split_vector(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Any unused split_vector definition can always use the same register
* as the operand. This avoids creating unnecessary copies.
*/
if (instr->opcode == aco_opcode::p_split_vector) {
Operand& op = instr->operands[0];
if (!op.isTemp() || op.isKill())
return;
PhysReg reg = op.physReg();
for (Definition& def : instr->definitions) {
if (def.getTemp().type() == op.getTemp().type() && def.isKill())
def.setFixed(reg);
reg = reg.advance(def.bytes());
}
return;
}
/* We are looking for the following pattern:
*
* sA, sB = p_split_vector s[X:Y]
* ... X and Y not overwritten here ...
* use sA or sB <--- current instruction
*
* If possible, we propagate the registers from the p_split_vector
* operand into the current instruction and the above is optimized into:
*
* use sX or sY
*
* Thereby, we might violate register assignment rules.
* This optimization exists because it's too difficult to solve it
* in RA, and should be removed after we solved this in RA.
*/
if (!instr->isVALU() && !instr->isSALU())
return;
for (unsigned i = 0; i < num_encoded_alu_operands(instr); i++) {
/* Find the instruction that writes the current operand. */
const Operand& op = instr->operands[i];
Idx op_instr_idx = last_writer_idx(ctx, op);
if (!op_instr_idx.found())
continue;
/* Check if the operand is written by p_split_vector. */
Instruction* split_vec = ctx.get(op_instr_idx);
if (split_vec->opcode != aco_opcode::p_split_vector &&
split_vec->opcode != aco_opcode::p_extract_vector)
continue;
Operand& split_op = split_vec->operands[0];
/* Don't do anything if the p_split_vector operand is not a temporary
* or is killed by the p_split_vector.
* In this case the definitions likely already reuse the same registers as the operand.
*/
if (!split_op.isTemp() || split_op.isKill())
continue;
/* Only propagate operands of the same type */
if (split_op.getTemp().type() != op.getTemp().type())
continue;
/* Check if the p_split_vector operand's registers are overwritten. */
if (is_overwritten_since(ctx, split_op, op_instr_idx))
continue;
PhysReg reg = split_op.physReg();
if (split_vec->opcode == aco_opcode::p_extract_vector) {
reg =
reg.advance(split_vec->definitions[0].bytes() * split_vec->operands[1].constantValue());
}
for (Definition& def : split_vec->definitions) {
if (def.getTemp() != op.getTemp()) {
reg = reg.advance(def.bytes());
continue;
}
/* Don't propagate misaligned SGPRs.
* Note: No ALU instruction can take a variable larger than 64bit.
*/
if (op.regClass() == s2 && reg.reg() % 2 != 0)
break;
/* Sub dword operands might need updates to SDWA/opsel,
* but we only track full register writes at the moment.
*/
assert(op.physReg().byte() == reg.byte());
/* If there is only one use (left), recolor the split_vector definition */
if (ctx.uses[op.tempId()] == 1)
def.setFixed(reg);
else
ctx.uses[op.tempId()]--;
/* Use the p_split_vector operand register directly.
*
* Note: this might violate register assignment rules to some extend
* in case the definition does not get recolored, eventually.
*/
instr->operands[i].setFixed(reg);
break;
}
}
}
void
try_convert_fma_to_vop2(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* We convert v_fma_f32 with inline constant to fmamk/fmaak.
* This is only benefical if it allows more VOPD.
*/
if (ctx.program->gfx_level < GFX11 || ctx.program->wave_size != 32 ||
instr->opcode != aco_opcode::v_fma_f32 || instr->usesModifiers())
return;
int constant_idx = -1;
int vgpr_idx = -1;
for (int i = 0; i < 3; i++) {
const Operand& op = instr->operands[i];
if (op.isConstant() && !op.isLiteral())
constant_idx = i;
else if (op.isOfType(RegType::vgpr))
vgpr_idx = i;
else
return;
}
if (constant_idx < 0 || vgpr_idx < 0)
return;
std::swap(instr->operands[constant_idx], instr->operands[2]);
if (constant_idx == 0 || vgpr_idx == 0)
std::swap(instr->operands[0], instr->operands[1]);
instr->operands[2] = Operand::literal32(instr->operands[2].constantValue());
instr->opcode = constant_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
instr->format = Format::VOP2;
}
bool
instr_overwrites(Instruction* instr, PhysReg reg, unsigned size)
{
for (Definition def : instr->definitions) {
if (def.physReg() + def.size() > reg && reg + size > def.physReg())
return true;
}
if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
PhysReg scratch_reg = instr->pseudo().scratch_sgpr;
if (scratch_reg >= reg && reg + size > scratch_reg)
return true;
}
return false;
}
bool
try_insert_saveexec_out_of_loop(pr_opt_ctx& ctx, Block* block, Definition saved_exec,
unsigned saveexec_pos)
{
/* This pattern can be created by try_optimize_branching_sequence:
* BB1: // loop-header
* ... // nothing that clobbers s[0:1] or writes exec
* s[0:1] = p_parallelcopy exec // we will move this
* exec = v_cmpx_...
* p_branch_z exec BB3, BB2
* BB2:
* ...
* p_branch BB3
* BB3:
* exec = p_parallelcopy s[0:1] // exec and s[0:1] contain the same mask
* ... // nothing that clobbers s[0:1] or writes exec
* p_branch_nz scc BB1, BB4
* BB4:
* ...
*
* If we know that that exec copy in the loop header is only needed in the
* first iteration, it can be inserted into the preheader by adding a phi:
*
* BB1: // loop-header
* s[0:1] = p_linear_phi exec, s[0:1]
*
* will be lowered to a parallelcopy at the loop preheader.
*/
if (block->linear_preds.size() != 2)
return false;
/* Check if exec is written, or the copy's dst overwritten in the loop header. */
for (unsigned i = 0; i < saveexec_pos; i++) {
if (!block->instructions[i])
continue;
if (block->instructions[i]->writes_exec())
return false;
if (instr_overwrites(block->instructions[i].get(), saved_exec.physReg(), saved_exec.size()))
return false;
}
/* The register(s) must already contain the same value as exec in the continue block. */
Block* cont = &ctx.program->blocks[block->linear_preds[1]];
do {
for (int i = cont->instructions.size() - 1; i >= 0; i--) {
Instruction* instr = cont->instructions[i].get();
if (instr->opcode == aco_opcode::p_parallelcopy && instr->definitions.size() == 1 &&
instr->definitions[0].physReg() == exec &&
instr->operands[0].physReg() == saved_exec.physReg()) {
/* Insert after existing phis at the loop header because
* the first phi might contain a valid scratch reg if needed.
*/
auto it = std::find_if(block->instructions.begin(), block->instructions.end(),
[](aco_ptr<Instruction>& phi) { return phi && !is_phi(phi); });
Instruction* phi = create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, 2, 1);
phi->definitions[0] = saved_exec;
phi->operands[0] = Operand(exec, ctx.program->lane_mask);
phi->operands[1] = instr->operands[0];
block->instructions.emplace(it, phi);
return true;
}
if (instr->writes_exec())
return false;
if (instr_overwrites(instr, saved_exec.physReg(), saved_exec.size()))
return false;
}
} while (cont->linear_preds.size() == 1 && (cont = &ctx.program->blocks[cont->linear_preds[0]]));
return false;
}
void
fixup_reg_writes(pr_opt_ctx& ctx, unsigned start)
{
const unsigned current_idx = ctx.current_instr_idx;
for (unsigned i = start; i < current_idx; i++) {
ctx.current_instr_idx = i;
if (ctx.current_block->instructions[i])
save_reg_writes(ctx, ctx.current_block->instructions[i]);
}
ctx.current_instr_idx = current_idx;
}
bool
try_optimize_branching_sequence(pr_opt_ctx& ctx, aco_ptr<Instruction>& exec_copy)
{
/* Try to optimize the branching sequence at the end of a block.
*
* We are looking for blocks that look like this:
*
* BB:
* ... instructions ...
* s[N:M] = <exec_val instruction>
* ... other instructions that don't depend on exec ...
* p_logical_end
* exec = <exec_copy instruction> s[N:M]
* p_cbranch exec
*
* The main motivation is to eliminate exec_copy.
* Depending on the context, we try to do the following:
*
* 1. Reassign exec_val to write exec directly
* 2. If possible, eliminate exec_copy
* 3. When exec_copy also saves the old exec mask, insert a
* new copy instruction before exec_val
* 4. Reassign any instruction that used s[N:M] to use exec
*
* This is beneficial for the following reasons:
*
* - Fewer instructions in the block when exec_copy can be eliminated
* - As a result, when exec_val is VOPC this also improves the stalls
* due to SALU waiting for VALU. This works best when we can also
* remove the branching instruction, in which case the stall
* is entirely eliminated.
* - When exec_copy can't be removed, the reassignment may still be
* very slightly beneficial to latency.
*/
if (!exec_copy->writes_exec())
return false;
const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64
: aco_opcode::s_and_saveexec_b32;
const aco_opcode s_and =
ctx.program->lane_mask == s2 ? aco_opcode::s_and_b64 : aco_opcode::s_and_b32;
const aco_opcode s_andn2 =
ctx.program->lane_mask == s2 ? aco_opcode::s_andn2_b64 : aco_opcode::s_andn2_b32;
if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy &&
(exec_copy->opcode != s_and || exec_copy->operands[1].physReg() != exec) &&
(exec_copy->opcode != s_andn2 || exec_copy->operands[0].physReg() != exec))
return false;
const bool negate = exec_copy->opcode == s_andn2;
const Operand& exec_copy_op = exec_copy->operands[negate];
/* The SCC def of s_and/s_and_saveexec must be unused. */
if (exec_copy->opcode != aco_opcode::p_parallelcopy && !exec_copy->definitions[1].isKill())
return false;
Idx exec_val_idx = last_writer_idx(ctx, exec_copy_op);
if (!exec_val_idx.found() || exec_val_idx.block != ctx.current_block->index)
return false;
if (is_overwritten_since(ctx, exec, ctx.program->lane_mask, exec_val_idx)) {
// TODO: in case nothing needs the previous exec mask, just remove it
return false;
}
Instruction* exec_val = ctx.get(exec_val_idx);
/* Only allow SALU with multiple definitions. */
if (!exec_val->isSALU() && exec_val->definitions.size() > 1)
return false;
const bool vcmpx_exec_only = ctx.program->gfx_level >= GFX10;
if (negate && !exec_val->isVOPC())
return false;
/* Check if a suitable v_cmpx opcode exists. */
const aco_opcode v_cmpx_op =
exec_val->isVOPC()
? (negate ? get_vcmpx(get_vcmp_inverse(exec_val->opcode)) : get_vcmpx(exec_val->opcode))
: aco_opcode::num_opcodes;
const bool vopc = v_cmpx_op != aco_opcode::num_opcodes;
/* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */
if (vopc && exec_val->isDPP())
return false;
/* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */
bool save_original_exec =
exec_copy->opcode == and_saveexec && !exec_copy->definitions[0].isKill();
const Definition exec_wr_def = exec_val->definitions[0];
const Definition exec_copy_def = exec_copy->definitions[0];
/* If we need to negate, the instruction has to be otherwise unused. */
if (negate && ctx.uses[exec_copy_op.tempId()] != 1)
return false;
/* The copy can be removed when it kills its operand.
* v_cmpx also writes the original destination pre GFX10.
*/
const bool can_remove_copy = exec_copy_op.isKill() || (vopc && !vcmpx_exec_only);
/* Always allow reassigning when the value is written by (usable) VOPC.
* Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes.
* Additionally, when value is copied as-is, also allow SALU and parallelcopies.
*/
const bool can_reassign =
vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy &&
(exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy ||
exec_val->opcode == aco_opcode::p_create_vector));
/* The reassignment is not worth it when both the original exec needs to be copied
* and the new exec copy can't be removed. In this case we'd end up with more instructions.
*/
if (!can_reassign || (save_original_exec && !can_remove_copy))
return false;
/* Ensure that nothing needs a previous exec between exec_val_idx and the current exec write. */
for (unsigned i = exec_val_idx.instr + 1; i < ctx.current_instr_idx; i++) {
Instruction* instr = ctx.current_block->instructions[i].get();
if (instr && needs_exec_mask(instr))
return false;
/* If the successor has phis, copies might have to be inserted at p_logical_end. */
if (instr && instr->opcode == aco_opcode::p_logical_end &&
ctx.current_block->logical_succs.size() == 1)
return false;
}
/* When exec_val and exec_copy are non-adjacent, check whether there are any
* instructions inbetween (besides p_logical_end) which may inhibit the optimization.
*/
if (save_original_exec) {
if (is_overwritten_since(ctx, exec_copy_def, exec_val_idx))
return false;
unsigned prev_wr_idx = ctx.current_instr_idx;
if (exec_copy_op.physReg() == exec_copy_def.physReg()) {
/* We'd overwrite the saved original exec */
if (vopc && !vcmpx_exec_only)
return false;
/* Other instructions can use exec directly, so only check exec_val instr */
prev_wr_idx = exec_val_idx.instr + 1;
}
/* Make sure that nothing else needs these registers in-between. */
for (unsigned i = exec_val_idx.instr; i < prev_wr_idx; i++) {
if (ctx.current_block->instructions[i]) {
for (const Operand op : ctx.current_block->instructions[i]->operands) {
if (op.physReg() + op.size() > exec_copy_def.physReg() &&
exec_copy_def.physReg() + exec_copy_def.size() > op.physReg())
return false;
}
}
}
}
/* Reassign the instruction to write exec directly. */
if (vopc) {
/* Add one extra definition for exec and copy the VOP3-specific fields if present. */
if (!vcmpx_exec_only) {
if (exec_val->isSDWA()) {
/* This might work but it needs testing and more code to copy the instruction. */
return false;
} else {
Instruction* tmp =
create_instruction(v_cmpx_op, exec_val->format, exec_val->operands.size(),
exec_val->definitions.size() + 1);
std::copy(exec_val->operands.cbegin(), exec_val->operands.cend(),
tmp->operands.begin());
std::copy(exec_val->definitions.cbegin(), exec_val->definitions.cend(),
tmp->definitions.begin());
VALU_instruction& src = exec_val->valu();
VALU_instruction& dst = tmp->valu();
dst.opsel = src.opsel;
dst.omod = src.omod;
dst.clamp = src.clamp;
dst.neg = src.neg;
dst.abs = src.abs;
ctx.current_block->instructions[exec_val_idx.instr].reset(tmp);
exec_val = ctx.get(exec_val_idx);
}
}
/* Set v_cmpx opcode. */
exec_val->opcode = v_cmpx_op;
exec_val->definitions.back() = Definition(exec, ctx.program->lane_mask);
/* Change instruction from VOP3 to plain VOPC when possible. */
if (vcmpx_exec_only && !exec_val->usesModifiers() &&
(exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr)))
exec_val->format = Format::VOPC;
} else {
exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask);
}
for (unsigned i = 0; i < ctx.program->lane_mask.size(); i++)
ctx.instr_idx_by_regs[ctx.current_block->index][exec + i] =
ctx.instr_idx_by_regs[ctx.current_block->index][exec_copy_op.physReg() + i];
/* If there are other instructions (besides p_logical_end) between
* writing the value and copying it to exec, reassign uses
* of the old definition.
*/
Temp exec_temp = exec_copy_op.getTemp();
for (unsigned i = exec_val_idx.instr + 1; i < ctx.current_instr_idx; i++) {
if (ctx.current_block->instructions[i]) {
for (Operand& op : ctx.current_block->instructions[i]->operands) {
if (op.isTemp() && op.getTemp() == exec_temp) {
op = Operand(exec, op.regClass());
ctx.uses[exec_temp.id()]--;
}
}
}
}
if (can_remove_copy) {
/* Remove the copy. */
exec_copy.reset();
ctx.uses[exec_temp.id()]--;
} else {
/* Reassign the copy to write the register of the original value. */
exec_copy.reset(create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
exec_copy->definitions[0] = exec_wr_def;
exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask);
}
if (save_original_exec) {
/* Insert a new instruction that saves the original exec before it is overwritten.
* Do this last, because inserting in the instructions vector may invalidate the exec_val
* reference.
*/
if (ctx.current_block->kind & block_kind_loop_header) {
if (try_insert_saveexec_out_of_loop(ctx, ctx.current_block, exec_copy_def,
exec_val_idx.instr)) {
/* We inserted something after the last phi, so fixup indices from the start. */
fixup_reg_writes(ctx, 0);
return true;
}
}
Instruction* copy = create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1);
copy->definitions[0] = exec_copy_def;
copy->operands[0] = Operand(exec, ctx.program->lane_mask);
auto it = std::next(ctx.current_block->instructions.begin(), exec_val_idx.instr);
ctx.current_block->instructions.emplace(it, copy);
/* Fixup indices after inserting an instruction. */
fixup_reg_writes(ctx, exec_val_idx.instr);
return true;
}
return true;
}
void
try_skip_const_branch(pr_opt_ctx& ctx, aco_ptr<Instruction>& branch)
{
if (branch->opcode != aco_opcode::p_cbranch_z || branch->operands[0].physReg() != exec)
return;
if (branch->branch().never_taken)
return;
Idx exec_val_idx = last_writer_idx(ctx, branch->operands[0]);
if (!exec_val_idx.found())
return;
Instruction* exec_val = ctx.get(exec_val_idx);
if ((exec_val->opcode == aco_opcode::p_parallelcopy && exec_val->operands.size() == 1) ||
exec_val->opcode == aco_opcode::p_create_vector) {
/* Remove the branch instruction when exec is constant non-zero. */
bool is_const_val = std::any_of(exec_val->operands.begin(), exec_val->operands.end(),
[](const Operand& op) -> bool
{ return op.isConstant() && op.constantValue(); });
branch->branch().never_taken |= is_const_val;
}
}
void
process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
{
/* Don't try to optimize instructions which are already dead. */
if (!instr || is_dead(ctx.uses, instr.get())) {
instr.reset();
ctx.current_instr_idx++;
return;
}
if (try_optimize_branching_sequence(ctx, instr))
return;
try_apply_branch_vcc(ctx, instr);
try_optimize_scc_nocompare(ctx, instr);
try_combine_dpp(ctx, instr);
try_reassign_split_vector(ctx, instr);
try_convert_fma_to_vop2(ctx, instr);
try_eliminate_scc_copy(ctx, instr);
save_scc_copy_producer(ctx, instr);
save_reg_writes(ctx, instr);
ctx.current_instr_idx++;
}
} // namespace
void
optimize_postRA(Program* program)
{
pr_opt_ctx ctx(program);
/* Forward pass
* Goes through each instruction exactly once, and can transform
* instructions or adjust the use counts of temps.
*/
for (auto& block : program->blocks) {
ctx.reset_block(&block);
while (ctx.current_instr_idx < block.instructions.size()) {
aco_ptr<Instruction>& instr = block.instructions[ctx.current_instr_idx];
process_instruction(ctx, instr);
}
try_skip_const_branch(ctx, block.instructions.back());
}
/* Cleanup pass
* Gets rid of instructions which are manually deleted or
* no longer have any uses.
*/
for (auto& block : program->blocks) {
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
if (!instr || is_dead(ctx.uses, instr.get()))
continue;
instructions.emplace_back(std::move(instr));
}
block.instructions = std::move(instructions);
}
}
} // namespace aco