blob: 7855cb66c0eb8f5c47f9a5d049245c418faa0622 [file] [log] [blame]
/*
* Copyright 2023 Valve Corporation
* SPDX-License-Identifier: MIT
*/
#include "aco_ir.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include <limits>
/*
* This pass implements a simple forward list-scheduler which works on a small
* partial DAG of 16 nodes at any time. Only ALU instructions are scheduled
* entirely freely. Memory load instructions must be kept in-order and any other
* instruction must not be re-scheduled at all.
*
* The main goal of this scheduler is to create more memory clauses, schedule
* memory loads early, and to improve ALU instruction level parallelism.
*/
namespace aco {
namespace {
constexpr unsigned num_nodes = 16;
using mask_t = uint16_t;
static_assert(std::numeric_limits<mask_t>::digits >= num_nodes);
struct VOPDInfo {
VOPDInfo() : is_opy_only(0), is_dst_odd(0), src_banks(0), has_literal(0), is_commutative(0) {}
uint16_t is_opy_only : 1;
uint16_t is_dst_odd : 1;
uint16_t src_banks : 10; /* 0-3: src0, 4-7: src1, 8-9: src2 */
uint16_t has_literal : 1;
uint16_t is_commutative : 1;
aco_opcode op = aco_opcode::num_opcodes;
uint32_t literal = 0;
};
struct InstrInfo {
Instruction* instr;
int32_t priority;
mask_t dependency_mask; /* bitmask of nodes which have to be scheduled before this node. */
uint8_t next_non_reorderable; /* index of next non-reorderable instruction node after this one. */
bool potential_clause; /* indicates that this instruction is not (yet) immediately followed by a
reorderable instruction. */
};
struct RegisterInfo {
mask_t read_mask; /* bitmask of nodes which have to be scheduled before the next write. */
int8_t latency; /* estimated latency of last register write. */
uint8_t direct_dependency : 4; /* node that has to be scheduled before any other access. */
uint8_t has_direct_dependency : 1; /* whether there is an unscheduled direct dependency. */
uint8_t padding : 3;
};
struct SchedILPContext {
Program* program;
bool is_vopd = false;
InstrInfo nodes[num_nodes];
RegisterInfo regs[512];
mask_t non_reorder_mask = 0; /* bitmask of instruction nodes which should not be reordered. */
mask_t active_mask = 0; /* bitmask of valid instruction nodes. */
uint8_t next_non_reorderable = UINT8_MAX; /* index of next node which should not be reordered. */
uint8_t last_non_reorderable = UINT8_MAX; /* index of last node which should not be reordered. */
/* VOPD scheduler: */
VOPDInfo vopd[num_nodes];
VOPDInfo prev_vopd_info;
InstrInfo prev_info;
mask_t vopd_odd_mask = 0;
mask_t vopd_even_mask = 0;
};
/**
* Returns true for side-effect free SALU and VALU instructions.
*/
bool
can_reorder(const Instruction* const instr)
{
if (instr->isVALU())
return true;
if (!instr->isSALU() || instr->isSOPP())
return false;
switch (instr->opcode) {
/* SOP2 */
case aco_opcode::s_cbranch_g_fork:
case aco_opcode::s_rfe_restore_b64:
/* SOP1 */
case aco_opcode::s_setpc_b64:
case aco_opcode::s_swappc_b64:
case aco_opcode::s_rfe_b64:
case aco_opcode::s_cbranch_join:
case aco_opcode::s_set_gpr_idx_idx:
case aco_opcode::s_sendmsg_rtn_b32:
case aco_opcode::s_sendmsg_rtn_b64:
case aco_opcode::s_barrier_signal:
case aco_opcode::s_barrier_signal_isfirst:
case aco_opcode::s_get_barrier_state:
case aco_opcode::s_barrier_init:
case aco_opcode::s_barrier_join:
case aco_opcode::s_wakeup_barrier:
/* SOPK */
case aco_opcode::s_cbranch_i_fork:
case aco_opcode::s_getreg_b32:
case aco_opcode::s_setreg_b32:
case aco_opcode::s_setreg_imm32_b32:
case aco_opcode::s_call_b64:
case aco_opcode::s_waitcnt_vscnt:
case aco_opcode::s_waitcnt_vmcnt:
case aco_opcode::s_waitcnt_expcnt:
case aco_opcode::s_waitcnt_lgkmcnt:
case aco_opcode::s_subvector_loop_begin:
case aco_opcode::s_subvector_loop_end:
/* SOPC */
case aco_opcode::s_setvskip:
case aco_opcode::s_set_gpr_idx_on: return false;
default: break;
}
return true;
}
VOPDInfo
get_vopd_info(const SchedILPContext& ctx, const Instruction* instr)
{
if (instr->format != Format::VOP1 && instr->format != Format::VOP2)
return VOPDInfo();
VOPDInfo info;
info.is_commutative = true;
switch (instr->opcode) {
case aco_opcode::v_fmac_f32: info.op = aco_opcode::v_dual_fmac_f32; break;
case aco_opcode::v_fmaak_f32: info.op = aco_opcode::v_dual_fmaak_f32; break;
case aco_opcode::v_fmamk_f32:
info.op = aco_opcode::v_dual_fmamk_f32;
info.is_commutative = false;
break;
case aco_opcode::v_mul_f32: info.op = aco_opcode::v_dual_mul_f32; break;
case aco_opcode::v_add_f32: info.op = aco_opcode::v_dual_add_f32; break;
case aco_opcode::v_sub_f32: info.op = aco_opcode::v_dual_sub_f32; break;
case aco_opcode::v_subrev_f32: info.op = aco_opcode::v_dual_subrev_f32; break;
case aco_opcode::v_mul_legacy_f32: info.op = aco_opcode::v_dual_mul_dx9_zero_f32; break;
case aco_opcode::v_mov_b32: info.op = aco_opcode::v_dual_mov_b32; break;
case aco_opcode::v_bfrev_b32:
if (!instr->operands[0].isConstant())
return VOPDInfo();
info.op = aco_opcode::v_dual_mov_b32;
break;
case aco_opcode::v_cndmask_b32:
info.op = aco_opcode::v_dual_cndmask_b32;
info.is_commutative = false;
break;
case aco_opcode::v_max_f32: info.op = aco_opcode::v_dual_max_f32; break;
case aco_opcode::v_min_f32: info.op = aco_opcode::v_dual_min_f32; break;
case aco_opcode::v_dot2c_f32_f16: info.op = aco_opcode::v_dual_dot2acc_f32_f16; break;
case aco_opcode::v_add_u32:
info.op = aco_opcode::v_dual_add_nc_u32;
info.is_opy_only = true;
break;
case aco_opcode::v_lshlrev_b32:
info.op = aco_opcode::v_dual_lshlrev_b32;
info.is_opy_only = true;
info.is_commutative = false;
break;
case aco_opcode::v_and_b32:
info.op = aco_opcode::v_dual_and_b32;
info.is_opy_only = true;
break;
default: return VOPDInfo();
}
/* Each instruction may use at most one SGPR. */
if (instr->opcode == aco_opcode::v_cndmask_b32 && instr->operands[0].isOfType(RegType::sgpr))
return VOPDInfo();
info.is_dst_odd = instr->definitions[0].physReg().reg() & 0x1;
static const unsigned bank_mask[3] = {0x3, 0x3, 0x1};
bool has_sgpr = false;
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
if (instr->opcode == aco_opcode::v_bfrev_b32)
op = Operand::get_const(ctx.program->gfx_level, util_bitreverse(op.constantValue()), 4);
unsigned port = (instr->opcode == aco_opcode::v_fmamk_f32 && i == 1) ? 2 : i;
if (op.isOfType(RegType::vgpr))
info.src_banks |= 1 << (port * 4 + (op.physReg().reg() & bank_mask[port]));
/* Check all operands because of fmaak/fmamk. */
if (op.isLiteral()) {
assert(!info.has_literal || info.literal == op.constantValue());
info.has_literal = true;
info.literal = op.constantValue();
}
/* Check all operands because of cndmask. */
has_sgpr |= !op.isConstant() && op.isOfType(RegType::sgpr);
}
/* An instruction can't use both a literal and an SGPR. */
if (has_sgpr && info.has_literal)
return VOPDInfo();
info.is_commutative &= instr->operands[0].isOfType(RegType::vgpr);
return info;
}
bool
is_vopd_compatible(const VOPDInfo& a, const VOPDInfo& b)
{
if ((a.is_opy_only && b.is_opy_only) || (a.is_dst_odd == b.is_dst_odd))
return false;
/* Both can use a literal, but it must be the same literal. */
if (a.has_literal && b.has_literal && a.literal != b.literal)
return false;
/* The rest is checking src VGPR bank compatibility. */
if ((a.src_banks & b.src_banks) == 0)
return true;
if (!a.is_commutative && !b.is_commutative)
return false;
uint16_t src0 = a.src_banks & 0xf;
uint16_t src1 = a.src_banks & 0xf0;
uint16_t src2 = a.src_banks & 0x300;
uint16_t a_src_banks = (src0 << 4) | (src1 >> 4) | src2;
if ((a_src_banks & b.src_banks) != 0)
return false;
/* If we have to turn v_mov_b32 into v_add_u32 but there is already an OPY-only instruction,
* we can't do it.
*/
if (a.op == aco_opcode::v_dual_mov_b32 && !b.is_commutative && b.is_opy_only)
return false;
if (b.op == aco_opcode::v_dual_mov_b32 && !a.is_commutative && a.is_opy_only)
return false;
return true;
}
bool
can_use_vopd(const SchedILPContext& ctx, unsigned idx)
{
VOPDInfo cur_vopd = ctx.vopd[idx];
Instruction* first = ctx.nodes[idx].instr;
Instruction* second = ctx.prev_info.instr;
if (!second)
return false;
if (ctx.prev_vopd_info.op == aco_opcode::num_opcodes || cur_vopd.op == aco_opcode::num_opcodes)
return false;
if (!is_vopd_compatible(ctx.prev_vopd_info, cur_vopd))
return false;
assert(first->definitions.size() == 1);
assert(first->definitions[0].size() == 1);
assert(second->definitions.size() == 1);
assert(second->definitions[0].size() == 1);
/* Check for WaW dependency. */
if (first->definitions[0].physReg() == second->definitions[0].physReg())
return false;
/* Check for RaW dependency. */
for (Operand op : second->operands) {
assert(op.size() == 1);
if (first->definitions[0].physReg() == op.physReg())
return false;
}
/* WaR dependencies are not a concern. */
return true;
}
unsigned
get_latency(const Instruction* const instr)
{
/* Note, that these are not accurate latency estimations. */
if (instr->isVALU())
return 5;
if (instr->isSALU())
return 2;
if (instr->isVMEM() || instr->isFlatLike())
return 32;
if (instr->isSMEM())
return 5;
if (instr->accessesLDS())
return 2;
return 0;
}
bool
is_memory_instr(const Instruction* const instr)
{
/* For memory instructions, we allow to reorder them with ALU if it helps
* to form larger clauses or to increase def-use distances.
*/
return instr->isVMEM() || instr->isFlatLike() || instr->isSMEM() || instr->accessesLDS() ||
instr->isEXP();
}
constexpr unsigned max_sgpr = 128;
constexpr unsigned min_vgpr = 256;
void
add_entry(SchedILPContext& ctx, Instruction* const instr, const uint32_t idx)
{
InstrInfo& entry = ctx.nodes[idx];
entry.instr = instr;
entry.priority = 0;
const mask_t mask = BITFIELD_BIT(idx);
bool reorder = can_reorder(instr);
ctx.active_mask |= mask;
if (ctx.is_vopd) {
VOPDInfo vopd = get_vopd_info(ctx, entry.instr);
ctx.vopd[idx] = vopd;
ctx.vopd_odd_mask &= ~mask;
ctx.vopd_odd_mask |= vopd.is_dst_odd ? mask : 0;
ctx.vopd_even_mask &= ~mask;
ctx.vopd_even_mask |= vopd.is_dst_odd || vopd.op == aco_opcode::num_opcodes ? 0 : mask;
}
for (const Operand& op : instr->operands) {
assert(op.isFixed());
unsigned reg = op.physReg();
if (reg >= max_sgpr && reg != scc && reg < min_vgpr) {
reorder &= reg != pops_exiting_wave_id;
continue;
}
for (unsigned i = 0; i < op.size(); i++) {
RegisterInfo& reg_info = ctx.regs[reg + i];
/* Add register reads. */
reg_info.read_mask |= mask;
int cycles_since_reg_write = num_nodes;
if (reg_info.has_direct_dependency) {
/* A previous dependency is still part of the DAG. */
entry.dependency_mask |= BITFIELD_BIT(reg_info.direct_dependency);
cycles_since_reg_write = ctx.nodes[reg_info.direct_dependency].priority;
}
if (reg_info.latency) {
/* Ignore and reset register latencies for memory loads and other non-reorderable
* instructions. We schedule these as early as possible anyways.
*/
if (reorder && reg_info.latency > cycles_since_reg_write) {
entry.priority = MIN2(entry.priority, cycles_since_reg_write - reg_info.latency);
/* If a previous register write created some latency, ensure that this
* is the first read of the register by making this instruction a direct
* dependency of all following register reads.
*/
reg_info.has_direct_dependency = 1;
reg_info.direct_dependency = idx;
}
reg_info.latency = 0;
}
}
}
/* Check if this instructions reads implicit registers. */
if (needs_exec_mask(instr)) {
for (unsigned reg = exec_lo; reg <= exec_hi; reg++) {
if (ctx.regs[reg].has_direct_dependency)
entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency);
ctx.regs[reg].read_mask |= mask;
}
}
if (ctx.program->gfx_level < GFX10 && instr->isScratch()) {
for (unsigned reg = flat_scr_lo; reg <= flat_scr_hi; reg++) {
if (ctx.regs[reg].has_direct_dependency)
entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency);
ctx.regs[reg].read_mask |= mask;
}
}
for (const Definition& def : instr->definitions) {
for (unsigned i = 0; i < def.size(); i++) {
RegisterInfo& reg_info = ctx.regs[def.physReg().reg() + i];
/* Add all previous register reads and writes to the dependencies. */
entry.dependency_mask |= reg_info.read_mask;
reg_info.read_mask = mask;
/* This register write is a direct dependency for all following reads. */
reg_info.has_direct_dependency = 1;
reg_info.direct_dependency = idx;
if (!ctx.is_vopd) {
/* Add latency information for the next register read. */
reg_info.latency = get_latency(instr);
}
}
}
if (!reorder) {
ctx.non_reorder_mask |= mask;
/* Set this node as last non-reorderable instruction */
if (ctx.next_non_reorderable == UINT8_MAX) {
ctx.next_non_reorderable = idx;
} else {
ctx.nodes[ctx.last_non_reorderable].next_non_reorderable = idx;
}
ctx.last_non_reorderable = idx;
entry.next_non_reorderable = UINT8_MAX;
/* Just don't reorder these at all. */
if (!is_memory_instr(instr) || instr->definitions.empty() ||
get_sync_info(instr).semantics & semantic_volatile || ctx.is_vopd) {
/* Add all previous instructions as dependencies. */
entry.dependency_mask = ctx.active_mask;
}
/* Remove non-reorderable instructions from dependencies, since WaR dependencies can interfere
* with clause formation. This should be fine, since these are always scheduled in-order and
* any cases that are actually a concern for clause formation are added as transitive
* dependencies. */
entry.dependency_mask &= ~ctx.non_reorder_mask;
entry.potential_clause = true;
} else if (ctx.last_non_reorderable != UINT8_MAX) {
ctx.nodes[ctx.last_non_reorderable].potential_clause = false;
}
entry.dependency_mask &= ~mask;
for (unsigned i = 0; i < num_nodes; i++) {
if (!ctx.nodes[i].instr || i == idx)
continue;
/* Add transitive dependencies. */
if (entry.dependency_mask & BITFIELD_BIT(i))
entry.dependency_mask |= ctx.nodes[i].dependency_mask;
/* increment base priority */
ctx.nodes[i].priority++;
}
}
void
remove_entry(SchedILPContext& ctx, const Instruction* const instr, const uint32_t idx)
{
const mask_t mask = ~BITFIELD_BIT(idx);
ctx.active_mask &= mask;
for (const Operand& op : instr->operands) {
const unsigned reg = op.physReg();
if (reg >= max_sgpr && reg != scc && reg < min_vgpr)
continue;
for (unsigned i = 0; i < op.size(); i++) {
RegisterInfo& reg_info = ctx.regs[reg + i];
reg_info.read_mask &= mask;
reg_info.has_direct_dependency &= reg_info.direct_dependency != idx;
}
}
if (needs_exec_mask(instr)) {
ctx.regs[exec_lo].read_mask &= mask;
ctx.regs[exec_hi].read_mask &= mask;
}
if (ctx.program->gfx_level < GFX10 && instr->isScratch()) {
ctx.regs[flat_scr_lo].read_mask &= mask;
ctx.regs[flat_scr_hi].read_mask &= mask;
}
for (const Definition& def : instr->definitions) {
for (unsigned i = 0; i < def.size(); i++) {
unsigned reg = def.physReg().reg() + i;
ctx.regs[reg].read_mask &= mask;
ctx.regs[reg].has_direct_dependency &= ctx.regs[reg].direct_dependency != idx;
}
}
for (unsigned i = 0; i < num_nodes; i++)
ctx.nodes[i].dependency_mask &= mask;
if (ctx.next_non_reorderable == idx) {
ctx.non_reorder_mask &= mask;
ctx.next_non_reorderable = ctx.nodes[idx].next_non_reorderable;
if (ctx.last_non_reorderable == idx)
ctx.last_non_reorderable = UINT8_MAX;
}
}
/**
* Returns a bitfield of nodes which have to be scheduled before the
* next non-reorderable instruction.
* If the next non-reorderable instruction can form a clause, returns the
* dependencies of the entire clause.
*/
mask_t
collect_clause_dependencies(const SchedILPContext& ctx, const uint8_t next, mask_t clause_mask)
{
const InstrInfo& entry = ctx.nodes[next];
mask_t dependencies = entry.dependency_mask;
clause_mask |= (entry.potential_clause << next);
if (!is_memory_instr(entry.instr))
return dependencies;
/* If this is potentially an "open" clause, meaning that the clause might
* consist of instruction not yet added to the DAG, consider all previous
* instructions as dependencies. This prevents splitting of larger, already
* formed clauses.
*/
if (next == ctx.last_non_reorderable && entry.potential_clause)
return (~clause_mask & ctx.active_mask) | dependencies;
if (entry.next_non_reorderable == UINT8_MAX)
return dependencies;
/* Check if this can form a clause with the following non-reorderable instruction */
if (should_form_clause(entry.instr, ctx.nodes[entry.next_non_reorderable].instr)) {
mask_t clause_deps =
collect_clause_dependencies(ctx, entry.next_non_reorderable, clause_mask);
/* if the following clause is independent from us, add their dependencies */
if (!(clause_deps & BITFIELD_BIT(next)))
dependencies |= clause_deps;
}
return dependencies;
}
/**
* Returns the index of the next instruction to be selected.
*/
unsigned
select_instruction_ilp(const SchedILPContext& ctx)
{
mask_t mask = ctx.active_mask;
/* First, collect all dependencies of the next non-reorderable instruction(s).
* These make up the list of possible candidates.
*/
if (ctx.next_non_reorderable != UINT8_MAX)
mask = collect_clause_dependencies(ctx, ctx.next_non_reorderable, 0);
/* If the next non-reorderable instruction has no dependencies, select it */
if (mask == 0)
return ctx.next_non_reorderable;
/* Otherwise, select the instruction with highest priority of all candidates. */
unsigned idx = -1u;
int32_t priority = INT32_MIN;
u_foreach_bit (i, mask) {
const InstrInfo& candidate = ctx.nodes[i];
/* Check if the candidate has pending dependencies. */
if (candidate.dependency_mask)
continue;
if (idx == -1u || candidate.priority > priority) {
idx = i;
priority = candidate.priority;
}
}
assert(idx != -1u);
return idx;
}
bool
compare_nodes_vopd(const SchedILPContext& ctx, int num_vopd_odd_minus_even, bool* use_vopd,
unsigned current, unsigned candidate)
{
if (can_use_vopd(ctx, candidate)) {
/* If we can form a VOPD instruction, always prefer to do so. */
if (!*use_vopd) {
*use_vopd = true;
return true;
}
} else {
if (*use_vopd)
return false;
/* Neither current nor candidate can form a VOPD instruction with the previously scheduled
* instruction. */
VOPDInfo current_vopd = ctx.vopd[current];
VOPDInfo candidate_vopd = ctx.vopd[candidate];
/* Delay scheduling VOPD-capable instructions in case an opportunity appears later. */
bool current_vopd_capable = current_vopd.op != aco_opcode::num_opcodes;
bool candidate_vopd_capable = candidate_vopd.op != aco_opcode::num_opcodes;
if (current_vopd_capable != candidate_vopd_capable)
return !candidate_vopd_capable;
/* If we have to select from VOPD-capable instructions, prefer maintaining a balance of
* odd/even instructions, in case selecting this instruction fails to make a pair.
*/
if (current_vopd_capable && num_vopd_odd_minus_even != 0) {
assert(candidate_vopd_capable);
bool prefer_vopd_dst_odd = num_vopd_odd_minus_even > 0;
if (current_vopd.is_dst_odd != candidate_vopd.is_dst_odd)
return prefer_vopd_dst_odd ? candidate_vopd.is_dst_odd : !candidate_vopd.is_dst_odd;
}
}
return ctx.nodes[candidate].priority > ctx.nodes[current].priority;
}
unsigned
select_instruction_vopd(const SchedILPContext& ctx, bool* use_vopd)
{
*use_vopd = false;
mask_t mask = ctx.active_mask;
if (ctx.next_non_reorderable != UINT8_MAX)
mask = ctx.nodes[ctx.next_non_reorderable].dependency_mask;
if (mask == 0)
return ctx.next_non_reorderable;
int num_vopd_odd_minus_even =
(int)util_bitcount(ctx.vopd_odd_mask & mask) - (int)util_bitcount(ctx.vopd_even_mask & mask);
unsigned cur = -1u;
u_foreach_bit (i, mask) {
const InstrInfo& candidate = ctx.nodes[i];
/* Check if the candidate has pending dependencies. */
if (candidate.dependency_mask)
continue;
if (cur == -1u) {
cur = i;
*use_vopd = can_use_vopd(ctx, i);
} else if (compare_nodes_vopd(ctx, num_vopd_odd_minus_even, use_vopd, cur, i)) {
cur = i;
}
}
assert(cur != -1u);
return cur;
}
void
get_vopd_opcode_operands(const SchedILPContext& ctx, Instruction* instr, const VOPDInfo& info,
bool swap, aco_opcode* op, unsigned* num_operands, Operand* operands)
{
*op = info.op;
*num_operands += instr->operands.size();
std::copy(instr->operands.begin(), instr->operands.end(), operands);
if (instr->opcode == aco_opcode::v_bfrev_b32) {
operands[0] = Operand::get_const(ctx.program->gfx_level,
util_bitreverse(operands[0].constantValue()), 4);
}
if (swap && info.op == aco_opcode::v_dual_mov_b32) {
*op = aco_opcode::v_dual_add_nc_u32;
(*num_operands)++;
operands[1] = operands[0];
operands[0] = Operand::zero();
} else if (swap) {
if (info.op == aco_opcode::v_dual_sub_f32)
*op = aco_opcode::v_dual_subrev_f32;
else if (info.op == aco_opcode::v_dual_subrev_f32)
*op = aco_opcode::v_dual_sub_f32;
std::swap(operands[0], operands[1]);
}
}
Instruction*
create_vopd_instruction(const SchedILPContext& ctx, unsigned idx)
{
Instruction* x = ctx.prev_info.instr;
Instruction* y = ctx.nodes[idx].instr;
VOPDInfo x_info = ctx.prev_vopd_info;
VOPDInfo y_info = ctx.vopd[idx];
bool swap_x = false, swap_y = false;
if (x_info.src_banks & y_info.src_banks) {
assert(x_info.is_commutative || y_info.is_commutative);
/* Avoid swapping v_mov_b32 because it will become an OPY-only opcode. */
if (x_info.op == aco_opcode::v_dual_mov_b32 && !y_info.is_commutative) {
swap_x = true;
x_info.is_opy_only = true;
} else {
swap_x = x_info.is_commutative && x_info.op != aco_opcode::v_dual_mov_b32;
swap_y = y_info.is_commutative && !swap_x;
}
}
if (x_info.is_opy_only) {
std::swap(x, y);
std::swap(x_info, y_info);
std::swap(swap_x, swap_y);
}
aco_opcode x_op, y_op;
unsigned num_operands = 0;
Operand operands[6];
get_vopd_opcode_operands(ctx, x, x_info, swap_x, &x_op, &num_operands, operands);
get_vopd_opcode_operands(ctx, y, y_info, swap_y, &y_op, &num_operands, operands + num_operands);
Instruction* instr = create_instruction(x_op, Format::VOPD, num_operands, 2);
instr->vopd().opy = y_op;
instr->definitions[0] = x->definitions[0];
instr->definitions[1] = y->definitions[0];
std::copy(operands, operands + num_operands, instr->operands.begin());
return instr;
}
template <typename It>
void
do_schedule(SchedILPContext& ctx, It& insert_it, It& remove_it, It instructions_begin,
It instructions_end)
{
for (unsigned i = 0; i < num_nodes; i++) {
if (remove_it == instructions_end)
break;
add_entry(ctx, (remove_it++)->get(), i);
}
ctx.prev_info.instr = NULL;
bool use_vopd = false;
while (ctx.active_mask) {
unsigned next_idx =
ctx.is_vopd ? select_instruction_vopd(ctx, &use_vopd) : select_instruction_ilp(ctx);
Instruction* next_instr = ctx.nodes[next_idx].instr;
if (use_vopd) {
std::prev(insert_it)->reset(create_vopd_instruction(ctx, next_idx));
ctx.prev_info.instr = NULL;
} else {
(insert_it++)->reset(next_instr);
ctx.prev_info = ctx.nodes[next_idx];
ctx.prev_vopd_info = ctx.vopd[next_idx];
}
remove_entry(ctx, next_instr, next_idx);
ctx.nodes[next_idx].instr = NULL;
if (remove_it != instructions_end) {
add_entry(ctx, (remove_it++)->get(), next_idx);
} else if (ctx.last_non_reorderable != UINT8_MAX) {
ctx.nodes[ctx.last_non_reorderable].potential_clause = false;
ctx.last_non_reorderable = UINT8_MAX;
}
}
}
} // namespace
void
schedule_ilp(Program* program)
{
SchedILPContext ctx = {program};
for (Block& block : program->blocks) {
auto it = block.instructions.begin();
auto insert_it = block.instructions.begin();
do_schedule(ctx, insert_it, it, block.instructions.begin(), block.instructions.end());
block.instructions.resize(insert_it - block.instructions.begin());
}
}
void
schedule_vopd(Program* program)
{
if (program->gfx_level < GFX11 || program->wave_size != 32)
return;
SchedILPContext ctx = {program};
ctx.is_vopd = true;
for (Block& block : program->blocks) {
auto it = block.instructions.rbegin();
auto insert_it = block.instructions.rbegin();
do_schedule(ctx, insert_it, it, block.instructions.rbegin(), block.instructions.rend());
block.instructions.erase(block.instructions.begin(), insert_it.base());
}
}
} // namespace aco