| /* |
| * Copyright © 2018 Valve Corporation |
| * Copyright © 2018 Google |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| #include "aco_util.h" |
| |
| #include "common/ac_descriptors.h" |
| #include "common/sid.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <map> |
| #include <set> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <vector> |
| |
| namespace std { |
| template <> struct hash<aco::Temp> { |
| size_t operator()(aco::Temp temp) const noexcept |
| { |
| uint32_t v; |
| std::memcpy(&v, &temp, sizeof(temp)); |
| return std::hash<uint32_t>{}(v); |
| } |
| }; |
| } // namespace std |
| |
| /* |
| * Implements the spilling algorithm on SSA-form based on |
| * "Register Spilling and Live-Range Splitting for SSA-Form Programs" |
| * by Matthias Braun and Sebastian Hack. |
| * |
| * Key difference between this algorithm and the min-algorithm from the paper |
| * is the use of average use distances rather than next-use distances per |
| * instruction. |
| * As we decrement the number of remaining uses, the average use distances |
| * give an approximation of the next-use distances while being computationally |
| * and memory-wise less expensive. |
| */ |
| |
| namespace aco { |
| |
| namespace { |
| |
| struct remat_info { |
| Instruction* instr; |
| }; |
| |
| struct loop_info { |
| uint32_t index; |
| aco::unordered_map<Temp, uint32_t> spills; |
| IDSet live_in; |
| }; |
| |
| struct use_info { |
| uint32_t num_uses = 0; |
| uint32_t last_use = 0; |
| float score() { return static_cast<float>(last_use) / static_cast<float>(num_uses); } |
| }; |
| |
| struct spill_ctx { |
| RegisterDemand target_pressure; |
| Program* program; |
| aco::monotonic_buffer_resource memory; |
| |
| std::vector<aco::map<Temp, Temp>> renames; |
| std::vector<aco::unordered_map<Temp, uint32_t>> spills_entry; |
| std::vector<aco::unordered_map<Temp, uint32_t>> spills_exit; |
| |
| std::vector<bool> processed; |
| std::vector<loop_info> loop; |
| |
| std::vector<use_info> ssa_infos; |
| std::vector<std::pair<RegClass, std::unordered_set<uint32_t>>> interferences; |
| std::vector<std::vector<uint32_t>> affinities; |
| std::vector<bool> is_reloaded; |
| aco::unordered_map<Temp, remat_info> remat; |
| std::set<Instruction*> unused_remats; |
| unsigned wave_size; |
| |
| unsigned sgpr_spill_slots; |
| unsigned vgpr_spill_slots; |
| Temp scratch_rsrc; |
| |
| spill_ctx(const RegisterDemand target_pressure_, Program* program_) |
| : target_pressure(target_pressure_), program(program_), memory(), |
| renames(program->blocks.size(), aco::map<Temp, Temp>(memory)), |
| spills_entry(program->blocks.size(), aco::unordered_map<Temp, uint32_t>(memory)), |
| spills_exit(program->blocks.size(), aco::unordered_map<Temp, uint32_t>(memory)), |
| processed(program->blocks.size(), false), ssa_infos(program->peekAllocationId()), |
| remat(memory), wave_size(program->wave_size), sgpr_spill_slots(0), vgpr_spill_slots(0) |
| {} |
| |
| void add_affinity(uint32_t first, uint32_t second) |
| { |
| unsigned found_first = affinities.size(); |
| unsigned found_second = affinities.size(); |
| for (unsigned i = 0; i < affinities.size(); i++) { |
| std::vector<uint32_t>& vec = affinities[i]; |
| for (uint32_t entry : vec) { |
| if (entry == first) |
| found_first = i; |
| else if (entry == second) |
| found_second = i; |
| } |
| } |
| if (found_first == affinities.size() && found_second == affinities.size()) { |
| affinities.emplace_back(std::vector<uint32_t>({first, second})); |
| } else if (found_first < affinities.size() && found_second == affinities.size()) { |
| affinities[found_first].push_back(second); |
| } else if (found_second < affinities.size() && found_first == affinities.size()) { |
| affinities[found_second].push_back(first); |
| } else if (found_first != found_second) { |
| /* merge second into first */ |
| affinities[found_first].insert(affinities[found_first].end(), |
| affinities[found_second].begin(), |
| affinities[found_second].end()); |
| affinities.erase(std::next(affinities.begin(), found_second)); |
| } else { |
| assert(found_first == found_second); |
| } |
| } |
| |
| uint32_t add_to_spills(Temp to_spill, aco::unordered_map<Temp, uint32_t>& spills) |
| { |
| const uint32_t spill_id = allocate_spill_id(to_spill.regClass()); |
| for (auto pair : spills) |
| add_interference(spill_id, pair.second); |
| if (!loop.empty()) { |
| for (auto pair : loop.back().spills) |
| add_interference(spill_id, pair.second); |
| } |
| |
| spills[to_spill] = spill_id; |
| return spill_id; |
| } |
| |
| void add_interference(uint32_t first, uint32_t second) |
| { |
| if (interferences[first].first.type() != interferences[second].first.type()) |
| return; |
| |
| bool inserted = interferences[first].second.insert(second).second; |
| if (inserted) |
| interferences[second].second.insert(first); |
| } |
| |
| uint32_t allocate_spill_id(RegClass rc) |
| { |
| interferences.emplace_back(rc, std::unordered_set<uint32_t>()); |
| is_reloaded.push_back(false); |
| return next_spill_id++; |
| } |
| |
| uint32_t next_spill_id = 0; |
| }; |
| |
| /** |
| * Gathers information about the number of uses and point of last use |
| * per SSA value. |
| * |
| * Phi definitions are added to live-ins. |
| */ |
| void |
| gather_ssa_use_info(spill_ctx& ctx) |
| { |
| unsigned instruction_idx = 0; |
| for (Block& block : ctx.program->blocks) { |
| for (int i = block.instructions.size() - 1; i >= 0; i--) { |
| aco_ptr<Instruction>& instr = block.instructions[i]; |
| for (const Operand& op : instr->operands) { |
| if (op.isTemp()) { |
| use_info& info = ctx.ssa_infos[op.tempId()]; |
| info.num_uses++; |
| info.last_use = std::max(info.last_use, instruction_idx + i); |
| } |
| } |
| } |
| |
| /* All live-in variables at loop headers get an additional artificial use. |
| * As we decrement the number of uses while processing the blocks, this |
| * ensures that the number of uses won't becomes zero before the loop |
| * (and the variables' live-ranges) end. |
| */ |
| if (block.kind & block_kind_loop_header) { |
| for (unsigned t : ctx.program->live.live_in[block.index]) |
| ctx.ssa_infos[t].num_uses++; |
| } |
| |
| instruction_idx += block.instructions.size(); |
| } |
| } |
| |
| bool |
| should_rematerialize(aco_ptr<Instruction>& instr) |
| { |
| /* TODO: rematerialization is only supported for VOP1, SOP1 and PSEUDO */ |
| if (instr->format != Format::VOP1 && instr->format != Format::SOP1 && |
| instr->format != Format::PSEUDO && instr->format != Format::SOPK) |
| return false; |
| /* TODO: pseudo-instruction rematerialization is only supported for |
| * p_create_vector/p_parallelcopy */ |
| if (instr->isPseudo() && instr->opcode != aco_opcode::p_create_vector && |
| instr->opcode != aco_opcode::p_parallelcopy) |
| return false; |
| if (instr->isSOPK() && instr->opcode != aco_opcode::s_movk_i32) |
| return false; |
| |
| for (const Operand& op : instr->operands) { |
| /* TODO: rematerialization using temporaries isn't yet supported */ |
| if (!op.isConstant()) |
| return false; |
| } |
| |
| /* TODO: rematerialization with multiple definitions isn't yet supported */ |
| if (instr->definitions.size() > 1) |
| return false; |
| |
| return true; |
| } |
| |
| aco_ptr<Instruction> |
| do_reload(spill_ctx& ctx, Temp tmp, Temp new_name, uint32_t spill_id) |
| { |
| std::unordered_map<Temp, remat_info>::iterator remat = ctx.remat.find(tmp); |
| if (remat != ctx.remat.end()) { |
| Instruction* instr = remat->second.instr; |
| assert((instr->isVOP1() || instr->isSOP1() || instr->isPseudo() || instr->isSOPK()) && |
| "unsupported"); |
| assert((instr->format != Format::PSEUDO || instr->opcode == aco_opcode::p_create_vector || |
| instr->opcode == aco_opcode::p_parallelcopy) && |
| "unsupported"); |
| assert(instr->definitions.size() == 1 && "unsupported"); |
| |
| aco_ptr<Instruction> res; |
| res.reset(create_instruction(instr->opcode, instr->format, instr->operands.size(), |
| instr->definitions.size())); |
| if (instr->isSOPK()) |
| res->salu().imm = instr->salu().imm; |
| |
| for (unsigned i = 0; i < instr->operands.size(); i++) { |
| res->operands[i] = instr->operands[i]; |
| if (instr->operands[i].isTemp()) { |
| assert(false && "unsupported"); |
| if (ctx.remat.count(instr->operands[i].getTemp())) |
| ctx.unused_remats.erase(ctx.remat[instr->operands[i].getTemp()].instr); |
| } |
| } |
| res->definitions[0] = Definition(new_name); |
| return res; |
| } else { |
| aco_ptr<Instruction> reload{create_instruction(aco_opcode::p_reload, Format::PSEUDO, 1, 1)}; |
| reload->operands[0] = Operand::c32(spill_id); |
| reload->definitions[0] = Definition(new_name); |
| ctx.is_reloaded[spill_id] = true; |
| return reload; |
| } |
| } |
| |
| void |
| get_rematerialize_info(spill_ctx& ctx) |
| { |
| for (Block& block : ctx.program->blocks) { |
| bool logical = false; |
| for (aco_ptr<Instruction>& instr : block.instructions) { |
| if (instr->opcode == aco_opcode::p_logical_start) |
| logical = true; |
| else if (instr->opcode == aco_opcode::p_logical_end) |
| logical = false; |
| if (logical && should_rematerialize(instr)) { |
| for (const Definition& def : instr->definitions) { |
| if (def.isTemp()) { |
| ctx.remat[def.getTemp()] = remat_info{instr.get()}; |
| ctx.unused_remats.insert(instr.get()); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| RegisterDemand |
| init_live_in_vars(spill_ctx& ctx, Block* block, unsigned block_idx) |
| { |
| RegisterDemand spilled_registers; |
| |
| /* first block, nothing was spilled before */ |
| if (block->linear_preds.empty()) |
| return {0, 0}; |
| |
| /* live-in variables at the beginning of the current block */ |
| const IDSet& live_in = ctx.program->live.live_in[block_idx]; |
| |
| /* loop header block */ |
| if (block->kind & block_kind_loop_header) { |
| assert(block->linear_preds[0] == block_idx - 1); |
| assert(block->logical_preds[0] == block_idx - 1); |
| |
| /* check how many live-through variables should be spilled */ |
| RegisterDemand reg_pressure = block->live_in_demand; |
| RegisterDemand loop_demand = reg_pressure; |
| unsigned i = block_idx; |
| while (ctx.program->blocks[i].loop_nest_depth >= block->loop_nest_depth) |
| loop_demand.update(ctx.program->blocks[i++].register_demand); |
| |
| for (auto spilled : ctx.spills_exit[block_idx - 1]) { |
| /* variable is not live at loop entry: probably a phi operand */ |
| if (!live_in.count(spilled.first.id())) |
| continue; |
| |
| /* keep live-through variables spilled */ |
| ctx.spills_entry[block_idx][spilled.first] = spilled.second; |
| spilled_registers += spilled.first; |
| loop_demand -= spilled.first; |
| } |
| if (!ctx.loop.empty()) { |
| /* If this is a nested loop, keep variables from the outer loop spilled. */ |
| for (auto spilled : ctx.loop.back().spills) { |
| /* If the inner loop comes after the last continue statement of the outer loop, |
| * the loop-carried variables might not be live-in for the inner loop. |
| */ |
| if (live_in.count(spilled.first.id()) && |
| ctx.spills_entry[block_idx].insert(spilled).second) { |
| spilled_registers += spilled.first; |
| loop_demand -= spilled.first; |
| } |
| } |
| } |
| |
| /* select more live-through variables and constants */ |
| RegType type = RegType::vgpr; |
| while (loop_demand.exceeds(ctx.target_pressure)) { |
| /* if VGPR demand is low enough, select SGPRs */ |
| if (type == RegType::vgpr && loop_demand.vgpr <= ctx.target_pressure.vgpr) |
| type = RegType::sgpr; |
| /* if SGPR demand is low enough, break */ |
| if (type == RegType::sgpr && loop_demand.sgpr <= ctx.target_pressure.sgpr) |
| break; |
| |
| float score = 0.0; |
| unsigned remat = 0; |
| Temp to_spill; |
| for (unsigned t : live_in) { |
| Temp var = Temp(t, ctx.program->temp_rc[t]); |
| if (var.type() != type || ctx.spills_entry[block_idx].count(var) || |
| var.regClass().is_linear_vgpr()) |
| continue; |
| |
| unsigned can_remat = ctx.remat.count(var); |
| if (can_remat > remat || (can_remat == remat && ctx.ssa_infos[t].score() > score)) { |
| to_spill = var; |
| score = ctx.ssa_infos[t].score(); |
| remat = can_remat; |
| } |
| } |
| |
| /* select SGPRs or break */ |
| if (score == 0.0) { |
| if (type == RegType::sgpr) |
| break; |
| type = RegType::sgpr; |
| continue; |
| } |
| |
| ctx.add_to_spills(to_spill, ctx.spills_entry[block_idx]); |
| spilled_registers += to_spill; |
| loop_demand -= to_spill; |
| } |
| |
| /* create new loop_info */ |
| loop_info info = {block_idx, ctx.spills_entry[block_idx], live_in}; |
| ctx.loop.emplace_back(std::move(info)); |
| |
| /* shortcut */ |
| if (!loop_demand.exceeds(ctx.target_pressure)) |
| return spilled_registers; |
| |
| /* if reg pressure is too high at beginning of loop, add variables with furthest use */ |
| reg_pressure -= spilled_registers; |
| |
| while (reg_pressure.exceeds(ctx.target_pressure)) { |
| float score = 0; |
| Temp to_spill = Temp(); |
| type = reg_pressure.vgpr > ctx.target_pressure.vgpr ? RegType::vgpr : RegType::sgpr; |
| for (aco_ptr<Instruction>& phi : block->instructions) { |
| if (!is_phi(phi)) |
| break; |
| if (!phi->definitions[0].isTemp() || phi->definitions[0].isKill()) |
| continue; |
| Temp var = phi->definitions[0].getTemp(); |
| if (var.type() == type && !ctx.spills_entry[block_idx].count(var) && |
| ctx.ssa_infos[var.id()].score() > score) { |
| to_spill = var; |
| score = ctx.ssa_infos[var.id()].score(); |
| } |
| } |
| assert(to_spill != Temp()); |
| ctx.add_to_spills(to_spill, ctx.spills_entry[block_idx]); |
| spilled_registers += to_spill; |
| reg_pressure -= to_spill; |
| } |
| |
| return spilled_registers; |
| } |
| |
| /* branch block */ |
| if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) { |
| /* keep variables spilled */ |
| unsigned pred_idx = block->linear_preds[0]; |
| for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) { |
| if (pair.first.type() != RegType::sgpr) |
| continue; |
| |
| if (live_in.count(pair.first.id())) { |
| spilled_registers += pair.first; |
| ctx.spills_entry[block_idx].emplace(pair); |
| } |
| } |
| |
| if (block->logical_preds.empty()) |
| return spilled_registers; |
| |
| pred_idx = block->logical_preds[0]; |
| for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) { |
| if (pair.first.type() != RegType::vgpr) |
| continue; |
| |
| if (live_in.count(pair.first.id())) { |
| spilled_registers += pair.first; |
| ctx.spills_entry[block_idx].emplace(pair); |
| } |
| } |
| |
| return spilled_registers; |
| } |
| |
| /* else: merge block */ |
| std::map<Temp, bool> partial_spills; |
| |
| /* keep variables spilled on all incoming paths */ |
| for (unsigned t : live_in) { |
| const RegClass rc = ctx.program->temp_rc[t]; |
| Temp var = Temp(t, rc); |
| Block::edge_vec& preds = rc.is_linear() ? block->linear_preds : block->logical_preds; |
| |
| /* If it can be rematerialized, keep the variable spilled if all predecessors do not reload |
| * it. Otherwise, if any predecessor reloads it, ensure it's reloaded on all other |
| * predecessors. The idea is that it's better in practice to rematerialize redundantly than to |
| * create lots of phis. */ |
| const bool remat = ctx.remat.count(var); |
| /* If the variable is spilled at the current loop-header, spilling is essentially for free |
| * while reloading is not. Thus, keep them spilled if they are at least partially spilled. |
| */ |
| const bool avoid_respill = block->loop_nest_depth && ctx.loop.back().spills.count(var); |
| bool spill = true; |
| bool partial_spill = false; |
| uint32_t spill_id = 0; |
| for (unsigned pred_idx : preds) { |
| if (!ctx.spills_exit[pred_idx].count(var)) { |
| spill = false; |
| } else { |
| partial_spill = true; |
| /* it might be that on one incoming path, the variable has a different spill_id, but |
| * add_couple_code() will take care of that. */ |
| spill_id = ctx.spills_exit[pred_idx][var]; |
| } |
| } |
| spill |= (remat && partial_spill); |
| spill |= (avoid_respill && partial_spill); |
| if (spill) { |
| ctx.spills_entry[block_idx][var] = spill_id; |
| partial_spills.erase(var); |
| spilled_registers += var; |
| } else { |
| partial_spills[var] = partial_spill; |
| } |
| } |
| |
| /* same for phis */ |
| for (aco_ptr<Instruction>& phi : block->instructions) { |
| if (!is_phi(phi)) |
| break; |
| if (!phi->definitions[0].isTemp() || phi->definitions[0].isKill()) |
| continue; |
| |
| Block::edge_vec& preds = |
| phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds; |
| bool is_all_undef = true; |
| bool is_all_spilled = true; |
| bool is_partial_spill = false; |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (phi->operands[i].isUndefined()) |
| continue; |
| bool spilled = phi->operands[i].isTemp() && |
| ctx.spills_exit[preds[i]].count(phi->operands[i].getTemp()); |
| is_all_spilled &= spilled; |
| is_partial_spill |= spilled; |
| is_all_undef = false; |
| } |
| |
| if (is_all_spilled && !is_all_undef) { |
| /* The phi is spilled at all predecessors. Keep it spilled. */ |
| ctx.add_to_spills(phi->definitions[0].getTemp(), ctx.spills_entry[block_idx]); |
| spilled_registers += phi->definitions[0].getTemp(); |
| partial_spills.erase(phi->definitions[0].getTemp()); |
| } else { |
| /* Phis might increase the register pressure. */ |
| partial_spills[phi->definitions[0].getTemp()] = is_partial_spill; |
| } |
| } |
| |
| /* if reg pressure at first instruction is still too high, add partially spilled variables */ |
| RegisterDemand reg_pressure = block->live_in_demand; |
| reg_pressure -= spilled_registers; |
| |
| while (reg_pressure.exceeds(ctx.target_pressure)) { |
| assert(!partial_spills.empty()); |
| std::map<Temp, bool>::iterator it = partial_spills.begin(); |
| Temp to_spill = Temp(); |
| bool is_partial_spill = false; |
| float score = 0.0; |
| RegType type = reg_pressure.vgpr > ctx.target_pressure.vgpr ? RegType::vgpr : RegType::sgpr; |
| |
| while (it != partial_spills.end()) { |
| assert(!ctx.spills_entry[block_idx].count(it->first)); |
| |
| if (it->first.type() == type && !it->first.regClass().is_linear_vgpr() && |
| ((it->second && !is_partial_spill) || |
| (it->second == is_partial_spill && ctx.ssa_infos[it->first.id()].score() > score))) { |
| score = ctx.ssa_infos[it->first.id()].score(); |
| to_spill = it->first; |
| is_partial_spill = it->second; |
| } |
| ++it; |
| } |
| assert(to_spill != Temp()); |
| ctx.add_to_spills(to_spill, ctx.spills_entry[block_idx]); |
| partial_spills.erase(to_spill); |
| spilled_registers += to_spill; |
| reg_pressure -= to_spill; |
| } |
| |
| return spilled_registers; |
| } |
| |
| void |
| add_coupling_code(spill_ctx& ctx, Block* block, IDSet& live_in) |
| { |
| const unsigned block_idx = block->index; |
| /* No coupling code necessary */ |
| if (block->linear_preds.size() == 0) |
| return; |
| |
| /* Branch block: update renames */ |
| if (block->linear_preds.size() == 1 && |
| !(block->kind & (block_kind_loop_exit | block_kind_loop_header))) { |
| assert(ctx.processed[block->linear_preds[0]]); |
| |
| ctx.renames[block_idx] = ctx.renames[block->linear_preds[0]]; |
| if (!block->logical_preds.empty() && block->logical_preds[0] != block->linear_preds[0]) { |
| for (auto it : ctx.renames[block->logical_preds[0]]) { |
| if (it.first.type() == RegType::vgpr) |
| ctx.renames[block_idx].insert_or_assign(it.first, it.second); |
| } |
| } |
| return; |
| } |
| |
| std::vector<aco_ptr<Instruction>> instructions; |
| |
| /* loop header and merge blocks: check if all (linear) predecessors have been processed */ |
| for (ASSERTED unsigned pred : block->linear_preds) |
| assert(ctx.processed[pred]); |
| |
| /* iterate the phi nodes for which operands to spill at the predecessor */ |
| for (aco_ptr<Instruction>& phi : block->instructions) { |
| if (!is_phi(phi)) |
| break; |
| |
| for (const Operand& op : phi->operands) { |
| if (op.isTemp()) |
| ctx.ssa_infos[op.tempId()].num_uses--; |
| } |
| |
| /* The phi is not spilled */ |
| if (!phi->definitions[0].isTemp() || |
| !ctx.spills_entry[block_idx].count(phi->definitions[0].getTemp())) |
| continue; |
| |
| Block::edge_vec& preds = |
| phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds; |
| uint32_t def_spill_id = ctx.spills_entry[block_idx][phi->definitions[0].getTemp()]; |
| phi->definitions[0].setKill(true); |
| |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (phi->operands[i].isUndefined()) |
| continue; |
| |
| unsigned pred_idx = preds[i]; |
| Operand spill_op = phi->operands[i]; |
| phi->operands[i] = Operand(phi->definitions[0].regClass()); |
| |
| if (spill_op.isTemp()) { |
| assert(spill_op.isKill()); |
| Temp var = spill_op.getTemp(); |
| |
| std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var); |
| /* prevent the defining instruction from being DCE'd if it could be rematerialized */ |
| if (rename_it == ctx.renames[preds[i]].end() && ctx.remat.count(var)) |
| ctx.unused_remats.erase(ctx.remat[var].instr); |
| |
| /* check if variable is already spilled at predecessor */ |
| auto spilled = ctx.spills_exit[pred_idx].find(var); |
| if (spilled != ctx.spills_exit[pred_idx].end()) { |
| if (spilled->second != def_spill_id) |
| ctx.add_affinity(def_spill_id, spilled->second); |
| continue; |
| } |
| |
| /* If the phi operand has the same name as the definition, |
| * add to predecessor's spilled variables, so that it gets |
| * skipped in the loop below. |
| */ |
| if (var == phi->definitions[0].getTemp()) |
| ctx.spills_exit[pred_idx][var] = def_spill_id; |
| |
| /* rename if necessary */ |
| if (rename_it != ctx.renames[pred_idx].end()) { |
| spill_op.setTemp(rename_it->second); |
| ctx.renames[pred_idx].erase(rename_it); |
| } |
| } |
| |
| /* add interferences */ |
| for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) |
| ctx.add_interference(def_spill_id, pair.second); |
| |
| aco_ptr<Instruction> spill{create_instruction(aco_opcode::p_spill, Format::PSEUDO, 2, 0)}; |
| spill->operands[0] = spill_op; |
| spill->operands[1] = Operand::c32(def_spill_id); |
| Block& pred = ctx.program->blocks[pred_idx]; |
| unsigned idx = pred.instructions.size(); |
| do { |
| assert(idx != 0); |
| idx--; |
| } while (phi->opcode == aco_opcode::p_phi && |
| pred.instructions[idx]->opcode != aco_opcode::p_logical_end); |
| std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx); |
| pred.instructions.insert(it, std::move(spill)); |
| } |
| } |
| |
| /* iterate all (other) spilled variables for which to spill at the predecessor */ |
| // TODO: would be better to have them sorted: first vgprs and first with longest distance |
| for (std::pair<Temp, uint32_t> pair : ctx.spills_entry[block_idx]) { |
| /* if variable is not live-in, it must be from a phi: this works because of CSSA form */ |
| if (!live_in.count(pair.first.id())) |
| continue; |
| |
| Block::edge_vec& preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds; |
| for (unsigned pred_idx : preds) { |
| /* variable is already spilled at predecessor */ |
| auto spilled = ctx.spills_exit[pred_idx].find(pair.first); |
| if (spilled != ctx.spills_exit[pred_idx].end()) { |
| if (spilled->second != pair.second) |
| ctx.add_affinity(pair.second, spilled->second); |
| continue; |
| } |
| |
| /* If this variable is spilled through the entire loop, no need to re-spill. |
| * It can be reloaded from the same spill-slot it got at the loop-preheader. |
| * No need to add interferences since every spilled variable in the loop already |
| * interferes with the spilled loop-variables. Make sure that the spill_ids match. |
| */ |
| const uint32_t loop_nest_depth = std::min(ctx.program->blocks[pred_idx].loop_nest_depth, |
| ctx.program->blocks[block_idx].loop_nest_depth); |
| if (loop_nest_depth) { |
| auto spill = ctx.loop[loop_nest_depth - 1].spills.find(pair.first); |
| if (spill != ctx.loop[loop_nest_depth - 1].spills.end() && spill->second == pair.second) |
| continue; |
| } |
| |
| /* add interferences between spilled variable and predecessors exit spills */ |
| for (std::pair<Temp, uint32_t> exit_spill : ctx.spills_exit[pred_idx]) |
| ctx.add_interference(exit_spill.second, pair.second); |
| |
| /* variable is in register at predecessor and has to be spilled */ |
| /* rename if necessary */ |
| Temp var = pair.first; |
| std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var); |
| if (rename_it != ctx.renames[pred_idx].end()) { |
| var = rename_it->second; |
| ctx.renames[pred_idx].erase(rename_it); |
| } |
| |
| aco_ptr<Instruction> spill{create_instruction(aco_opcode::p_spill, Format::PSEUDO, 2, 0)}; |
| spill->operands[0] = Operand(var); |
| spill->operands[1] = Operand::c32(pair.second); |
| Block& pred = ctx.program->blocks[pred_idx]; |
| unsigned idx = pred.instructions.size(); |
| do { |
| assert(idx != 0); |
| idx--; |
| } while (pair.first.type() == RegType::vgpr && |
| pred.instructions[idx]->opcode != aco_opcode::p_logical_end); |
| std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx); |
| pred.instructions.insert(it, std::move(spill)); |
| } |
| } |
| |
| /* iterate phis for which operands to reload */ |
| for (aco_ptr<Instruction>& phi : block->instructions) { |
| if (!is_phi(phi)) |
| break; |
| if (phi->definitions[0].isKill()) |
| continue; |
| |
| assert(!phi->definitions[0].isTemp() || |
| !ctx.spills_entry[block_idx].count(phi->definitions[0].getTemp())); |
| |
| Block::edge_vec& preds = |
| phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds; |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (!phi->operands[i].isTemp()) |
| continue; |
| unsigned pred_idx = preds[i]; |
| |
| /* if the operand was reloaded, rename */ |
| if (!ctx.spills_exit[pred_idx].count(phi->operands[i].getTemp())) { |
| std::map<Temp, Temp>::iterator it = |
| ctx.renames[pred_idx].find(phi->operands[i].getTemp()); |
| if (it != ctx.renames[pred_idx].end()) { |
| phi->operands[i].setTemp(it->second); |
| /* prevent the defining instruction from being DCE'd if it could be rematerialized */ |
| } else { |
| auto remat_it = ctx.remat.find(phi->operands[i].getTemp()); |
| if (remat_it != ctx.remat.end()) { |
| ctx.unused_remats.erase(remat_it->second.instr); |
| } |
| } |
| continue; |
| } |
| |
| Temp tmp = phi->operands[i].getTemp(); |
| |
| /* reload phi operand at end of predecessor block */ |
| Temp new_name = ctx.program->allocateTmp(tmp.regClass()); |
| Block& pred = ctx.program->blocks[pred_idx]; |
| unsigned idx = pred.instructions.size(); |
| do { |
| assert(idx != 0); |
| idx--; |
| } while (phi->opcode == aco_opcode::p_phi && |
| pred.instructions[idx]->opcode != aco_opcode::p_logical_end); |
| std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx); |
| aco_ptr<Instruction> reload = |
| do_reload(ctx, tmp, new_name, ctx.spills_exit[pred_idx][tmp]); |
| |
| /* reload spilled exec mask directly to exec */ |
| if (!phi->definitions[0].isTemp()) { |
| assert(phi->definitions[0].isFixed() && phi->definitions[0].physReg() == exec); |
| reload->definitions[0] = phi->definitions[0]; |
| phi->operands[i] = Operand(exec, ctx.program->lane_mask); |
| } else { |
| ctx.spills_exit[pred_idx].erase(tmp); |
| ctx.renames[pred_idx][tmp] = new_name; |
| phi->operands[i].setTemp(new_name); |
| } |
| |
| pred.instructions.insert(it, std::move(reload)); |
| } |
| } |
| |
| /* iterate live variables for which to reload */ |
| for (unsigned t : live_in) { |
| const RegClass rc = ctx.program->temp_rc[t]; |
| Temp var = Temp(t, rc); |
| |
| /* skip spilled variables */ |
| if (ctx.spills_entry[block_idx].count(var)) |
| continue; |
| |
| Block::edge_vec& preds = rc.is_linear() ? block->linear_preds : block->logical_preds; |
| for (unsigned pred_idx : preds) { |
| /* skip if the variable is not spilled at the predecessor */ |
| if (!ctx.spills_exit[pred_idx].count(var)) |
| continue; |
| |
| /* variable is spilled at predecessor and has to be reloaded */ |
| Temp new_name = ctx.program->allocateTmp(rc); |
| Block& pred = ctx.program->blocks[pred_idx]; |
| unsigned idx = pred.instructions.size(); |
| do { |
| assert(idx != 0); |
| idx--; |
| } while (rc.type() == RegType::vgpr && |
| pred.instructions[idx]->opcode != aco_opcode::p_logical_end); |
| std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx); |
| |
| aco_ptr<Instruction> reload = |
| do_reload(ctx, var, new_name, ctx.spills_exit[pred.index][var]); |
| pred.instructions.insert(it, std::move(reload)); |
| |
| ctx.spills_exit[pred.index].erase(var); |
| ctx.renames[pred.index][var] = new_name; |
| } |
| |
| /* check if we have to create a new phi for this variable */ |
| Temp rename = Temp(); |
| bool is_same = true; |
| for (unsigned pred_idx : preds) { |
| if (!ctx.renames[pred_idx].count(var)) { |
| if (rename == Temp()) |
| rename = var; |
| else |
| is_same = rename == var; |
| } else { |
| if (rename == Temp()) |
| rename = ctx.renames[pred_idx][var]; |
| else |
| is_same = rename == ctx.renames[pred_idx][var]; |
| } |
| |
| if (!is_same) |
| break; |
| } |
| |
| if (!is_same) { |
| /* the variable was renamed differently in the predecessors: we have to create a phi */ |
| aco_opcode opcode = rc.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi; |
| aco_ptr<Instruction> phi{create_instruction(opcode, Format::PSEUDO, preds.size(), 1)}; |
| rename = ctx.program->allocateTmp(rc); |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| Temp tmp; |
| if (ctx.renames[preds[i]].count(var)) { |
| tmp = ctx.renames[preds[i]][var]; |
| } else if (preds[i] >= block_idx) { |
| tmp = rename; |
| } else { |
| tmp = var; |
| /* prevent the defining instruction from being DCE'd if it could be rematerialized */ |
| if (ctx.remat.count(tmp)) |
| ctx.unused_remats.erase(ctx.remat[tmp].instr); |
| } |
| phi->operands[i] = Operand(tmp); |
| } |
| phi->definitions[0] = Definition(rename); |
| phi->register_demand = block->live_in_demand; |
| block->instructions.insert(block->instructions.begin(), std::move(phi)); |
| } |
| |
| /* the variable was renamed: add new name to renames */ |
| if (!(rename == Temp() || rename == var)) |
| ctx.renames[block_idx][var] = rename; |
| } |
| } |
| |
| void |
| process_block(spill_ctx& ctx, unsigned block_idx, Block* block, RegisterDemand spilled_registers) |
| { |
| assert(!ctx.processed[block_idx]); |
| |
| std::vector<aco_ptr<Instruction>> instructions; |
| unsigned idx = 0; |
| |
| /* phis are handled separately */ |
| while (block->instructions[idx]->opcode == aco_opcode::p_phi || |
| block->instructions[idx]->opcode == aco_opcode::p_linear_phi) { |
| const Definition def = block->instructions[idx]->definitions[0]; |
| if (def.isTemp() && !def.isKill() && def.tempId() < ctx.ssa_infos.size()) |
| ctx.program->live.live_in[block_idx].insert(def.tempId()); |
| instructions.emplace_back(std::move(block->instructions[idx++])); |
| } |
| |
| auto& current_spills = ctx.spills_exit[block_idx]; |
| |
| while (idx < block->instructions.size()) { |
| aco_ptr<Instruction>& instr = block->instructions[idx]; |
| |
| /* Spilling is handled as part of phis (they should always have the same or higher register |
| * demand). If we try to spill here, we might not be able to reduce the register demand enough |
| * because there is no path to spill constant/undef phi operands. */ |
| if (instr->opcode == aco_opcode::p_branch) { |
| instructions.emplace_back(std::move(instr)); |
| idx++; |
| continue; |
| } |
| |
| std::map<Temp, std::pair<Temp, uint32_t>> reloads; |
| |
| /* rename and reload operands */ |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| |
| if (op.isFirstKill()) |
| ctx.program->live.live_in[block_idx].erase(op.tempId()); |
| ctx.ssa_infos[op.tempId()].num_uses--; |
| |
| if (!current_spills.count(op.getTemp())) |
| continue; |
| |
| /* the Operand is spilled: add it to reloads */ |
| Temp new_tmp = ctx.program->allocateTmp(op.regClass()); |
| ctx.renames[block_idx][op.getTemp()] = new_tmp; |
| reloads[new_tmp] = std::make_pair(op.getTemp(), current_spills[op.getTemp()]); |
| current_spills.erase(op.getTemp()); |
| spilled_registers -= new_tmp; |
| } |
| |
| /* check if register demand is low enough during and after the current instruction */ |
| if (block->register_demand.exceeds(ctx.target_pressure)) { |
| RegisterDemand new_demand = instr->register_demand; |
| |
| /* if reg pressure is too high, spill variable with furthest next use */ |
| while ((new_demand - spilled_registers).exceeds(ctx.target_pressure)) { |
| float score = 0.0; |
| Temp to_spill = Temp(); |
| unsigned do_rematerialize = 0; |
| unsigned avoid_respill = 0; |
| RegType type = RegType::sgpr; |
| if (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) |
| type = RegType::vgpr; |
| |
| for (unsigned t : ctx.program->live.live_in[block_idx]) { |
| RegClass rc = ctx.program->temp_rc[t]; |
| Temp var = Temp(t, rc); |
| if (rc.type() != type || current_spills.count(var) || rc.is_linear_vgpr()) |
| continue; |
| |
| unsigned can_rematerialize = ctx.remat.count(var); |
| unsigned loop_variable = block->loop_nest_depth && ctx.loop.back().spills.count(var); |
| if (avoid_respill > loop_variable || do_rematerialize > can_rematerialize) |
| continue; |
| |
| if (can_rematerialize > do_rematerialize || loop_variable > avoid_respill || |
| ctx.ssa_infos[t].score() > score) { |
| /* Don't spill operands */ |
| if (std::any_of(instr->operands.begin(), instr->operands.end(), |
| [&](Operand& op) { return op.isTemp() && op.getTemp() == var; })) |
| continue; |
| |
| to_spill = var; |
| score = ctx.ssa_infos[t].score(); |
| do_rematerialize = can_rematerialize; |
| avoid_respill = loop_variable; |
| } |
| } |
| assert(to_spill != Temp()); |
| |
| if (avoid_respill) { |
| /* This variable is spilled at the loop-header of the current loop. |
| * Re-use the spill-slot in order to avoid an extra store. |
| */ |
| current_spills[to_spill] = ctx.loop.back().spills[to_spill]; |
| spilled_registers += to_spill; |
| continue; |
| } |
| |
| uint32_t spill_id = ctx.add_to_spills(to_spill, current_spills); |
| /* add interferences with reloads */ |
| for (std::pair<const Temp, std::pair<Temp, uint32_t>>& pair : reloads) |
| ctx.add_interference(spill_id, pair.second.second); |
| |
| spilled_registers += to_spill; |
| |
| /* rename if necessary */ |
| if (ctx.renames[block_idx].count(to_spill)) { |
| to_spill = ctx.renames[block_idx][to_spill]; |
| } |
| |
| /* add spill to new instructions */ |
| aco_ptr<Instruction> spill{ |
| create_instruction(aco_opcode::p_spill, Format::PSEUDO, 2, 0)}; |
| spill->operands[0] = Operand(to_spill); |
| spill->operands[1] = Operand::c32(spill_id); |
| instructions.emplace_back(std::move(spill)); |
| } |
| } |
| |
| for (const Definition& def : instr->definitions) { |
| if (def.isTemp() && !def.isKill()) |
| ctx.program->live.live_in[block_idx].insert(def.tempId()); |
| } |
| /* rename operands */ |
| for (Operand& op : instr->operands) { |
| if (op.isTemp()) { |
| auto rename_it = ctx.renames[block_idx].find(op.getTemp()); |
| if (rename_it != ctx.renames[block_idx].end()) { |
| op.setTemp(rename_it->second); |
| } else { |
| /* prevent its defining instruction from being DCE'd if it could be rematerialized */ |
| auto remat_it = ctx.remat.find(op.getTemp()); |
| if (remat_it != ctx.remat.end()) { |
| ctx.unused_remats.erase(remat_it->second.instr); |
| } |
| } |
| } |
| } |
| |
| /* add reloads and instruction to new instructions */ |
| for (std::pair<const Temp, std::pair<Temp, uint32_t>>& pair : reloads) { |
| aco_ptr<Instruction> reload = |
| do_reload(ctx, pair.second.first, pair.first, pair.second.second); |
| instructions.emplace_back(std::move(reload)); |
| } |
| instructions.emplace_back(std::move(instr)); |
| idx++; |
| } |
| |
| block->instructions = std::move(instructions); |
| } |
| |
| void |
| spill_block(spill_ctx& ctx, unsigned block_idx) |
| { |
| Block* block = &ctx.program->blocks[block_idx]; |
| |
| /* determine set of variables which are spilled at the beginning of the block */ |
| RegisterDemand spilled_registers = init_live_in_vars(ctx, block, block_idx); |
| |
| if (!(block->kind & block_kind_loop_header)) { |
| /* add spill/reload code on incoming control flow edges */ |
| add_coupling_code(ctx, block, ctx.program->live.live_in[block_idx]); |
| } |
| |
| assert(ctx.spills_exit[block_idx].empty()); |
| ctx.spills_exit[block_idx] = ctx.spills_entry[block_idx]; |
| process_block(ctx, block_idx, block, spilled_registers); |
| |
| ctx.processed[block_idx] = true; |
| |
| /* check if the next block leaves the current loop */ |
| if (block->loop_nest_depth == 0 || |
| ctx.program->blocks[block_idx + 1].loop_nest_depth >= block->loop_nest_depth) |
| return; |
| |
| uint32_t loop_header_idx = ctx.loop.back().index; |
| |
| /* preserve original renames at end of loop header block */ |
| aco::map<Temp, Temp> renames = std::move(ctx.renames[loop_header_idx]); |
| |
| /* add coupling code to all loop header predecessors */ |
| for (unsigned t : ctx.loop.back().live_in) |
| ctx.ssa_infos[t].num_uses--; |
| add_coupling_code(ctx, &ctx.program->blocks[loop_header_idx], ctx.loop.back().live_in); |
| renames.swap(ctx.renames[loop_header_idx]); |
| |
| /* remove loop header info from stack */ |
| ctx.loop.pop_back(); |
| if (renames.empty()) |
| return; |
| |
| /* Add the new renames to each block */ |
| for (std::pair<Temp, Temp> rename : renames) { |
| /* If there is already a rename, don't overwrite it. */ |
| for (unsigned idx = loop_header_idx; idx <= block_idx; idx++) |
| ctx.renames[idx].insert(rename); |
| } |
| |
| /* propagate new renames through loop: i.e. repair the SSA */ |
| for (unsigned idx = loop_header_idx; idx <= block_idx; idx++) { |
| Block& current = ctx.program->blocks[idx]; |
| /* rename all uses in this block */ |
| for (aco_ptr<Instruction>& instr : current.instructions) { |
| /* no need to rename the loop header phis once again. */ |
| if (idx == loop_header_idx && is_phi(instr)) |
| continue; |
| |
| for (Operand& op : instr->operands) { |
| if (!op.isTemp()) |
| continue; |
| |
| auto rename = renames.find(op.getTemp()); |
| if (rename != renames.end()) |
| op.setTemp(rename->second); |
| } |
| } |
| } |
| } |
| |
| Temp |
| load_scratch_resource(spill_ctx& ctx, Builder& bld, bool apply_scratch_offset) |
| { |
| Temp private_segment_buffer = ctx.program->private_segment_buffer; |
| if (!private_segment_buffer.bytes()) { |
| Temp addr_lo = |
| bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_lo)); |
| Temp addr_hi = |
| bld.sop1(aco_opcode::p_load_symbol, bld.def(s1), Operand::c32(aco_symbol_scratch_addr_hi)); |
| private_segment_buffer = |
| bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), addr_lo, addr_hi); |
| } else if (ctx.program->stage.hw != AC_HW_COMPUTE_SHADER) { |
| private_segment_buffer = |
| bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand::zero()); |
| } |
| |
| if (apply_scratch_offset) { |
| Temp addr_lo = bld.tmp(s1); |
| Temp addr_hi = bld.tmp(s1); |
| bld.pseudo(aco_opcode::p_split_vector, Definition(addr_lo), Definition(addr_hi), |
| private_segment_buffer); |
| |
| Temp carry = bld.tmp(s1); |
| addr_lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), addr_lo, |
| ctx.program->scratch_offset); |
| addr_hi = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), addr_hi, |
| Operand::c32(0), bld.scc(carry)); |
| |
| private_segment_buffer = |
| bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), addr_lo, addr_hi); |
| } |
| |
| struct ac_buffer_state ac_state = {0}; |
| uint32_t desc[4]; |
| |
| ac_state.size = 0xffffffff; |
| ac_state.format = PIPE_FORMAT_R32_FLOAT; |
| for (int i = 0; i < 4; i++) |
| ac_state.swizzle[i] = PIPE_SWIZZLE_0; |
| /* older generations need element size = 4 bytes. element size removed in GFX9 */ |
| ac_state.element_size = ctx.program->gfx_level <= GFX8 ? 1u : 0u; |
| ac_state.index_stride = ctx.program->wave_size == 64 ? 3u : 2u; |
| ac_state.add_tid = true; |
| ac_state.gfx10_oob_select = V_008F0C_OOB_SELECT_RAW; |
| |
| ac_build_buffer_descriptor(ctx.program->gfx_level, &ac_state, desc); |
| |
| return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, |
| Operand::c32(desc[2]), Operand::c32(desc[3])); |
| } |
| |
| void |
| setup_vgpr_spill_reload(spill_ctx& ctx, Block& block, |
| std::vector<aco_ptr<Instruction>>& instructions, uint32_t spill_slot, |
| Temp& scratch_offset, unsigned* offset) |
| { |
| uint32_t scratch_size = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size; |
| |
| uint32_t offset_range; |
| if (ctx.program->gfx_level >= GFX9) { |
| offset_range = |
| ctx.program->dev.scratch_global_offset_max - ctx.program->dev.scratch_global_offset_min; |
| } else { |
| if (scratch_size < 4095) |
| offset_range = 4095 - scratch_size; |
| else |
| offset_range = 0; |
| } |
| |
| bool overflow = (ctx.vgpr_spill_slots - 1) * 4 > offset_range; |
| |
| Builder rsrc_bld(ctx.program); |
| if (block.kind & block_kind_top_level) { |
| rsrc_bld.reset(&instructions); |
| } else if (ctx.scratch_rsrc == Temp() && (!overflow || ctx.program->gfx_level < GFX9)) { |
| Block* tl_block = █ |
| while (!(tl_block->kind & block_kind_top_level)) |
| tl_block = &ctx.program->blocks[tl_block->linear_idom]; |
| |
| /* find p_logical_end */ |
| std::vector<aco_ptr<Instruction>>& prev_instructions = tl_block->instructions; |
| unsigned idx = prev_instructions.size() - 1; |
| while (prev_instructions[idx]->opcode != aco_opcode::p_logical_end) |
| idx--; |
| rsrc_bld.reset(&prev_instructions, std::next(prev_instructions.begin(), idx)); |
| } |
| |
| /* If spilling overflows the constant offset range at any point, we need to emit the soffset |
| * before every spill/reload to avoid increasing register demand. |
| */ |
| Builder offset_bld = rsrc_bld; |
| if (overflow) |
| offset_bld.reset(&instructions); |
| |
| *offset = spill_slot * 4; |
| if (ctx.program->gfx_level >= GFX9) { |
| *offset += ctx.program->dev.scratch_global_offset_min; |
| |
| if (ctx.scratch_rsrc == Temp() || overflow) { |
| int32_t saddr = scratch_size - ctx.program->dev.scratch_global_offset_min; |
| if ((int32_t)*offset > (int32_t)ctx.program->dev.scratch_global_offset_max) { |
| saddr += (int32_t)*offset; |
| *offset = 0; |
| } |
| |
| /* GFX9+ uses scratch_* instructions, which don't use a resource. */ |
| ctx.scratch_rsrc = offset_bld.copy(offset_bld.def(s1), Operand::c32(saddr)); |
| } |
| } else { |
| if (ctx.scratch_rsrc == Temp()) |
| ctx.scratch_rsrc = load_scratch_resource(ctx, rsrc_bld, overflow); |
| |
| if (overflow) { |
| uint32_t soffset = |
| ctx.program->config->scratch_bytes_per_wave + *offset * ctx.program->wave_size; |
| *offset = 0; |
| |
| scratch_offset = offset_bld.copy(offset_bld.def(s1), Operand::c32(soffset)); |
| } else { |
| *offset += scratch_size; |
| } |
| } |
| } |
| |
| void |
| spill_vgpr(spill_ctx& ctx, Block& block, std::vector<aco_ptr<Instruction>>& instructions, |
| aco_ptr<Instruction>& spill, std::vector<uint32_t>& slots) |
| { |
| ctx.program->config->spilled_vgprs += spill->operands[0].size(); |
| |
| uint32_t spill_id = spill->operands[1].constantValue(); |
| uint32_t spill_slot = slots[spill_id]; |
| |
| Temp scratch_offset = ctx.program->scratch_offset; |
| unsigned offset; |
| setup_vgpr_spill_reload(ctx, block, instructions, spill_slot, scratch_offset, &offset); |
| |
| assert(spill->operands[0].isTemp()); |
| Temp temp = spill->operands[0].getTemp(); |
| assert(temp.type() == RegType::vgpr && !temp.is_linear()); |
| |
| Builder bld(ctx.program, &instructions); |
| if (temp.size() > 1) { |
| Instruction* split{ |
| create_instruction(aco_opcode::p_split_vector, Format::PSEUDO, 1, temp.size())}; |
| split->operands[0] = Operand(temp); |
| for (unsigned i = 0; i < temp.size(); i++) |
| split->definitions[i] = bld.def(v1); |
| bld.insert(split); |
| for (unsigned i = 0; i < temp.size(); i++, offset += 4) { |
| Temp elem = split->definitions[i].getTemp(); |
| if (ctx.program->gfx_level >= GFX9) { |
| bld.scratch(aco_opcode::scratch_store_dword, Operand(v1), ctx.scratch_rsrc, elem, |
| offset, memory_sync_info(storage_vgpr_spill, semantic_private)); |
| } else { |
| Instruction* instr = bld.mubuf(aco_opcode::buffer_store_dword, ctx.scratch_rsrc, |
| Operand(v1), scratch_offset, elem, offset, false); |
| instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private); |
| instr->mubuf().cache.value = ac_swizzled; |
| } |
| } |
| } else if (ctx.program->gfx_level >= GFX9) { |
| bld.scratch(aco_opcode::scratch_store_dword, Operand(v1), ctx.scratch_rsrc, temp, offset, |
| memory_sync_info(storage_vgpr_spill, semantic_private)); |
| } else { |
| Instruction* instr = bld.mubuf(aco_opcode::buffer_store_dword, ctx.scratch_rsrc, Operand(v1), |
| scratch_offset, temp, offset, false); |
| instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private); |
| instr->mubuf().cache.value = ac_swizzled; |
| } |
| } |
| |
| void |
| reload_vgpr(spill_ctx& ctx, Block& block, std::vector<aco_ptr<Instruction>>& instructions, |
| aco_ptr<Instruction>& reload, std::vector<uint32_t>& slots) |
| { |
| uint32_t spill_id = reload->operands[0].constantValue(); |
| uint32_t spill_slot = slots[spill_id]; |
| |
| Temp scratch_offset = ctx.program->scratch_offset; |
| unsigned offset; |
| setup_vgpr_spill_reload(ctx, block, instructions, spill_slot, scratch_offset, &offset); |
| |
| Definition def = reload->definitions[0]; |
| |
| Builder bld(ctx.program, &instructions); |
| if (def.size() > 1) { |
| Instruction* vec{ |
| create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, def.size(), 1)}; |
| vec->definitions[0] = def; |
| for (unsigned i = 0; i < def.size(); i++, offset += 4) { |
| Temp tmp = bld.tmp(v1); |
| vec->operands[i] = Operand(tmp); |
| if (ctx.program->gfx_level >= GFX9) { |
| bld.scratch(aco_opcode::scratch_load_dword, Definition(tmp), Operand(v1), |
| ctx.scratch_rsrc, offset, |
| memory_sync_info(storage_vgpr_spill, semantic_private)); |
| } else { |
| Instruction* instr = |
| bld.mubuf(aco_opcode::buffer_load_dword, Definition(tmp), ctx.scratch_rsrc, |
| Operand(v1), scratch_offset, offset, false); |
| instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private); |
| instr->mubuf().cache.value = ac_swizzled; |
| } |
| } |
| bld.insert(vec); |
| } else if (ctx.program->gfx_level >= GFX9) { |
| bld.scratch(aco_opcode::scratch_load_dword, def, Operand(v1), ctx.scratch_rsrc, offset, |
| memory_sync_info(storage_vgpr_spill, semantic_private)); |
| } else { |
| Instruction* instr = bld.mubuf(aco_opcode::buffer_load_dword, def, ctx.scratch_rsrc, |
| Operand(v1), scratch_offset, offset, false); |
| instr->mubuf().sync = memory_sync_info(storage_vgpr_spill, semantic_private); |
| instr->mubuf().cache.value = ac_swizzled; |
| } |
| } |
| |
| void |
| add_interferences(spill_ctx& ctx, std::vector<bool>& is_assigned, std::vector<uint32_t>& slots, |
| std::vector<bool>& slots_used, unsigned id) |
| { |
| for (unsigned other : ctx.interferences[id].second) { |
| if (!is_assigned[other]) |
| continue; |
| |
| RegClass other_rc = ctx.interferences[other].first; |
| unsigned slot = slots[other]; |
| std::fill(slots_used.begin() + slot, slots_used.begin() + slot + other_rc.size(), true); |
| } |
| } |
| |
| unsigned |
| find_available_slot(std::vector<bool>& used, unsigned wave_size, unsigned size, bool is_sgpr) |
| { |
| unsigned wave_size_minus_one = wave_size - 1; |
| unsigned slot = 0; |
| |
| while (true) { |
| bool available = true; |
| for (unsigned i = 0; i < size; i++) { |
| if (slot + i < used.size() && used[slot + i]) { |
| available = false; |
| break; |
| } |
| } |
| if (!available) { |
| slot++; |
| continue; |
| } |
| |
| if (is_sgpr && ((slot & wave_size_minus_one) > wave_size - size)) { |
| slot = align(slot, wave_size); |
| continue; |
| } |
| |
| std::fill(used.begin(), used.end(), false); |
| |
| if (slot + size > used.size()) |
| used.resize(slot + size); |
| |
| return slot; |
| } |
| } |
| |
| void |
| assign_spill_slots_helper(spill_ctx& ctx, RegType type, std::vector<bool>& is_assigned, |
| std::vector<uint32_t>& slots, unsigned* num_slots) |
| { |
| std::vector<bool> slots_used; |
| |
| /* assign slots for ids with affinities first */ |
| for (std::vector<uint32_t>& vec : ctx.affinities) { |
| if (ctx.interferences[vec[0]].first.type() != type) |
| continue; |
| |
| for (unsigned id : vec) { |
| if (!ctx.is_reloaded[id]) |
| continue; |
| |
| add_interferences(ctx, is_assigned, slots, slots_used, id); |
| } |
| |
| unsigned slot = find_available_slot( |
| slots_used, ctx.wave_size, ctx.interferences[vec[0]].first.size(), type == RegType::sgpr); |
| |
| for (unsigned id : vec) { |
| assert(!is_assigned[id]); |
| |
| if (ctx.is_reloaded[id]) { |
| slots[id] = slot; |
| is_assigned[id] = true; |
| } |
| } |
| } |
| |
| /* assign slots for ids without affinities */ |
| for (unsigned id = 0; id < ctx.interferences.size(); id++) { |
| if (is_assigned[id] || !ctx.is_reloaded[id] || ctx.interferences[id].first.type() != type) |
| continue; |
| |
| add_interferences(ctx, is_assigned, slots, slots_used, id); |
| |
| unsigned slot = find_available_slot( |
| slots_used, ctx.wave_size, ctx.interferences[id].first.size(), type == RegType::sgpr); |
| |
| slots[id] = slot; |
| is_assigned[id] = true; |
| } |
| |
| *num_slots = slots_used.size(); |
| } |
| |
| void |
| end_unused_spill_vgprs(spill_ctx& ctx, Block& block, std::vector<Temp>& vgpr_spill_temps, |
| const std::vector<uint32_t>& slots, |
| const aco::unordered_map<Temp, uint32_t>& spills) |
| { |
| std::vector<bool> is_used(vgpr_spill_temps.size()); |
| for (std::pair<Temp, uint32_t> pair : spills) { |
| if (pair.first.type() == RegType::sgpr && ctx.is_reloaded[pair.second]) |
| is_used[slots[pair.second] / ctx.wave_size] = true; |
| } |
| |
| std::vector<Temp> temps; |
| for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) { |
| if (vgpr_spill_temps[i].id() && !is_used[i]) { |
| temps.push_back(vgpr_spill_temps[i]); |
| vgpr_spill_temps[i] = Temp(); |
| } |
| } |
| if (temps.empty() || block.linear_preds.empty()) |
| return; |
| |
| aco_ptr<Instruction> destr{ |
| create_instruction(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, temps.size(), 0)}; |
| for (unsigned i = 0; i < temps.size(); i++) |
| destr->operands[i] = Operand(temps[i]); |
| |
| std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin(); |
| while (is_phi(*it)) |
| ++it; |
| block.instructions.insert(it, std::move(destr)); |
| } |
| |
| void |
| assign_spill_slots(spill_ctx& ctx, unsigned spills_to_vgpr) |
| { |
| std::vector<uint32_t> slots(ctx.interferences.size()); |
| std::vector<bool> is_assigned(ctx.interferences.size()); |
| |
| /* first, handle affinities: just merge all interferences into both spill ids */ |
| for (std::vector<uint32_t>& vec : ctx.affinities) { |
| for (unsigned i = 0; i < vec.size(); i++) { |
| for (unsigned j = i + 1; j < vec.size(); j++) { |
| assert(vec[i] != vec[j]); |
| bool reloaded = ctx.is_reloaded[vec[i]] || ctx.is_reloaded[vec[j]]; |
| ctx.is_reloaded[vec[i]] = reloaded; |
| ctx.is_reloaded[vec[j]] = reloaded; |
| } |
| } |
| } |
| for (ASSERTED uint32_t i = 0; i < ctx.interferences.size(); i++) |
| for (ASSERTED uint32_t id : ctx.interferences[i].second) |
| assert(i != id); |
| |
| /* for each spill slot, assign as many spill ids as possible */ |
| assign_spill_slots_helper(ctx, RegType::sgpr, is_assigned, slots, &ctx.sgpr_spill_slots); |
| assign_spill_slots_helper(ctx, RegType::vgpr, is_assigned, slots, &ctx.vgpr_spill_slots); |
| |
| for (unsigned id = 0; id < is_assigned.size(); id++) |
| assert(is_assigned[id] || !ctx.is_reloaded[id]); |
| |
| for (std::vector<uint32_t>& vec : ctx.affinities) { |
| for (unsigned i = 0; i < vec.size(); i++) { |
| for (unsigned j = i + 1; j < vec.size(); j++) { |
| assert(is_assigned[vec[i]] == is_assigned[vec[j]]); |
| if (!is_assigned[vec[i]]) |
| continue; |
| assert(ctx.is_reloaded[vec[i]] == ctx.is_reloaded[vec[j]]); |
| assert(ctx.interferences[vec[i]].first.type() == |
| ctx.interferences[vec[j]].first.type()); |
| assert(slots[vec[i]] == slots[vec[j]]); |
| } |
| } |
| } |
| |
| /* hope, we didn't mess up */ |
| std::vector<Temp> vgpr_spill_temps((ctx.sgpr_spill_slots + ctx.wave_size - 1) / ctx.wave_size); |
| assert(vgpr_spill_temps.size() <= spills_to_vgpr); |
| |
| /* replace pseudo instructions with actual hardware instructions */ |
| unsigned last_top_level_block_idx = 0; |
| for (Block& block : ctx.program->blocks) { |
| |
| if (block.kind & block_kind_top_level) { |
| last_top_level_block_idx = block.index; |
| |
| end_unused_spill_vgprs(ctx, block, vgpr_spill_temps, slots, ctx.spills_entry[block.index]); |
| |
| /* If the block has no predecessors (for example in RT resume shaders), |
| * we cannot reuse the current scratch_rsrc temp because its definition is unreachable */ |
| if (block.linear_preds.empty()) |
| ctx.scratch_rsrc = Temp(); |
| } |
| |
| std::vector<aco_ptr<Instruction>>::iterator it; |
| std::vector<aco_ptr<Instruction>> instructions; |
| instructions.reserve(block.instructions.size()); |
| Builder bld(ctx.program, &instructions); |
| for (it = block.instructions.begin(); it != block.instructions.end(); ++it) { |
| |
| if ((*it)->opcode == aco_opcode::p_spill) { |
| uint32_t spill_id = (*it)->operands[1].constantValue(); |
| |
| if (!ctx.is_reloaded[spill_id]) { |
| /* never reloaded, so don't spill */ |
| } else if (!is_assigned[spill_id]) { |
| unreachable("No spill slot assigned for spill id"); |
| } else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) { |
| spill_vgpr(ctx, block, instructions, *it, slots); |
| } else { |
| ctx.program->config->spilled_sgprs += (*it)->operands[0].size(); |
| |
| uint32_t spill_slot = slots[spill_id]; |
| |
| /* check if the linear vgpr already exists */ |
| if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) { |
| Temp linear_vgpr = ctx.program->allocateTmp(v1.as_linear()); |
| vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr; |
| aco_ptr<Instruction> create{ |
| create_instruction(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)}; |
| create->definitions[0] = Definition(linear_vgpr); |
| /* find the right place to insert this definition */ |
| if (last_top_level_block_idx == block.index) { |
| /* insert right before the current instruction */ |
| instructions.emplace_back(std::move(create)); |
| } else { |
| assert(last_top_level_block_idx < block.index); |
| /* insert after p_logical_end of the last top-level block */ |
| std::vector<aco_ptr<Instruction>>& block_instrs = |
| ctx.program->blocks[last_top_level_block_idx].instructions; |
| auto insert_point = |
| std::find_if(block_instrs.rbegin(), block_instrs.rend(), |
| [](const auto& iter) { |
| return iter->opcode == aco_opcode::p_logical_end; |
| }) |
| .base(); |
| block_instrs.insert(insert_point, std::move(create)); |
| } |
| } |
| |
| /* spill sgpr: just add the vgpr temp to operands */ |
| Instruction* spill = create_instruction(aco_opcode::p_spill, Format::PSEUDO, 3, 0); |
| spill->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]); |
| spill->operands[1] = Operand::c32(spill_slot % ctx.wave_size); |
| spill->operands[2] = (*it)->operands[0]; |
| instructions.emplace_back(aco_ptr<Instruction>(spill)); |
| } |
| |
| } else if ((*it)->opcode == aco_opcode::p_reload) { |
| uint32_t spill_id = (*it)->operands[0].constantValue(); |
| assert(ctx.is_reloaded[spill_id]); |
| |
| if (!is_assigned[spill_id]) { |
| unreachable("No spill slot assigned for spill id"); |
| } else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) { |
| reload_vgpr(ctx, block, instructions, *it, slots); |
| } else { |
| uint32_t spill_slot = slots[spill_id]; |
| |
| /* check if the linear vgpr already exists */ |
| if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) { |
| Temp linear_vgpr = ctx.program->allocateTmp(v1.as_linear()); |
| vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr; |
| aco_ptr<Instruction> create{ |
| create_instruction(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)}; |
| create->definitions[0] = Definition(linear_vgpr); |
| /* find the right place to insert this definition */ |
| if (last_top_level_block_idx == block.index) { |
| /* insert right before the current instruction */ |
| instructions.emplace_back(std::move(create)); |
| } else { |
| assert(last_top_level_block_idx < block.index); |
| /* insert after p_logical_end of the last top-level block */ |
| std::vector<aco_ptr<Instruction>>& block_instrs = |
| ctx.program->blocks[last_top_level_block_idx].instructions; |
| auto insert_point = |
| std::find_if(block_instrs.rbegin(), block_instrs.rend(), |
| [](const auto& iter) { |
| return iter->opcode == aco_opcode::p_logical_end; |
| }) |
| .base(); |
| block_instrs.insert(insert_point, std::move(create)); |
| } |
| } |
| |
| /* reload sgpr: just add the vgpr temp to operands */ |
| Instruction* reload = create_instruction(aco_opcode::p_reload, Format::PSEUDO, 2, 1); |
| reload->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]); |
| reload->operands[1] = Operand::c32(spill_slot % ctx.wave_size); |
| reload->definitions[0] = (*it)->definitions[0]; |
| instructions.emplace_back(aco_ptr<Instruction>(reload)); |
| } |
| } else if (!ctx.unused_remats.count(it->get())) { |
| instructions.emplace_back(std::move(*it)); |
| } |
| } |
| block.instructions = std::move(instructions); |
| } |
| |
| /* update required scratch memory */ |
| ctx.program->config->scratch_bytes_per_wave += ctx.vgpr_spill_slots * 4 * ctx.program->wave_size; |
| } |
| |
| } /* end namespace */ |
| |
| void |
| spill(Program* program) |
| { |
| program->config->spilled_vgprs = 0; |
| program->config->spilled_sgprs = 0; |
| |
| program->progress = CompilationProgress::after_spilling; |
| |
| /* no spilling when register pressure is low enough */ |
| if (program->num_waves > 0) |
| return; |
| |
| /* lower to CSSA before spilling to ensure correctness w.r.t. phis */ |
| lower_to_cssa(program); |
| |
| /* calculate target register demand */ |
| const RegisterDemand demand = program->max_reg_demand; /* current max */ |
| const uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves); |
| const uint16_t vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves); |
| uint16_t extra_vgprs = 0; |
| uint16_t extra_sgprs = 0; |
| |
| /* calculate extra VGPRs required for spilling SGPRs */ |
| if (demand.sgpr > sgpr_limit) { |
| unsigned sgpr_spills = demand.sgpr - sgpr_limit; |
| extra_vgprs = DIV_ROUND_UP(sgpr_spills * 2, program->wave_size) + 1; |
| } |
| /* add extra SGPRs required for spilling VGPRs */ |
| if (demand.vgpr + extra_vgprs > vgpr_limit) { |
| if (program->gfx_level >= GFX9) |
| extra_sgprs = 1; /* SADDR */ |
| else |
| extra_sgprs = 5; /* scratch_resource (s4) + scratch_offset (s1) */ |
| if (demand.sgpr + extra_sgprs > sgpr_limit) { |
| /* re-calculate in case something has changed */ |
| unsigned sgpr_spills = demand.sgpr + extra_sgprs - sgpr_limit; |
| extra_vgprs = DIV_ROUND_UP(sgpr_spills * 2, program->wave_size) + 1; |
| } |
| } |
| /* the spiller has to target the following register demand */ |
| const RegisterDemand target(vgpr_limit - extra_vgprs, sgpr_limit - extra_sgprs); |
| |
| /* initialize ctx */ |
| spill_ctx ctx(target, program); |
| gather_ssa_use_info(ctx); |
| get_rematerialize_info(ctx); |
| |
| /* create spills and reloads */ |
| for (unsigned i = 0; i < program->blocks.size(); i++) |
| spill_block(ctx, i); |
| |
| /* assign spill slots and DCE rematerialized code */ |
| assign_spill_slots(ctx, extra_vgprs); |
| |
| /* update live variable information */ |
| live_var_analysis(program); |
| |
| assert(program->num_waves > 0); |
| } |
| |
| } // namespace aco |