| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| /* based on pieces from si_pipe.c and radeon_llvm_emit.c */ |
| #include "ac_llvm_build.h" |
| #include "ac_gpu_info.h" |
| #include "ac_nir.h" |
| #include "ac_llvm_util.h" |
| #include "ac_shader_util.h" |
| #include "c11/threads.h" |
| #include "shader_enums.h" |
| #include "sid.h" |
| #include "util/bitscan.h" |
| #include "util/macros.h" |
| #include "util/u_atomic.h" |
| #include "util/u_math.h" |
| #include <llvm-c/Core.h> |
| #include <llvm/Config/llvm-config.h> |
| |
| #include <assert.h> |
| #include <stdio.h> |
| |
| #define AC_LLVM_INITIAL_CF_DEPTH 4 |
| |
| /* Data for if/else/endif and bgnloop/endloop control flow structures. |
| */ |
| struct ac_llvm_flow { |
| /* Loop exit or next part of if/else/endif. */ |
| LLVMBasicBlockRef next_block; |
| LLVMBasicBlockRef loop_entry_block; |
| }; |
| |
| /* Initialize module-independent parts of the context. |
| * |
| * The caller is responsible for initializing ctx::module and ctx::builder. |
| */ |
| void ac_llvm_context_init(struct ac_llvm_context *ctx, struct ac_llvm_compiler *compiler, |
| const struct radeon_info *info, enum ac_float_mode float_mode, |
| unsigned wave_size, unsigned ballot_mask_bits, bool exports_color_null, |
| bool exports_mrtz) |
| { |
| ctx->context = LLVMContextCreate(); |
| |
| ctx->info = info; |
| ctx->gfx_level = info->gfx_level; |
| ctx->wave_size = wave_size; |
| ctx->ballot_mask_bits = ballot_mask_bits; |
| ctx->float_mode = float_mode; |
| ctx->exports_color_null = exports_color_null; |
| ctx->exports_mrtz = exports_mrtz; |
| ctx->module = ac_create_module(compiler->tm, ctx->context); |
| ctx->builder = ac_create_builder(ctx->context, float_mode); |
| |
| ctx->voidt = LLVMVoidTypeInContext(ctx->context); |
| ctx->i1 = LLVMInt1TypeInContext(ctx->context); |
| ctx->i8 = LLVMInt8TypeInContext(ctx->context); |
| ctx->i16 = LLVMIntTypeInContext(ctx->context, 16); |
| ctx->i32 = LLVMIntTypeInContext(ctx->context, 32); |
| ctx->i64 = LLVMIntTypeInContext(ctx->context, 64); |
| ctx->i128 = LLVMIntTypeInContext(ctx->context, 128); |
| ctx->intptr = ctx->i32; |
| ctx->f16 = LLVMHalfTypeInContext(ctx->context); |
| ctx->f32 = LLVMFloatTypeInContext(ctx->context); |
| ctx->f64 = LLVMDoubleTypeInContext(ctx->context); |
| ctx->v4i8 = LLVMVectorType(ctx->i8, 4); |
| ctx->v2i16 = LLVMVectorType(ctx->i16, 2); |
| ctx->v4i16 = LLVMVectorType(ctx->i16, 4); |
| ctx->v2f16 = LLVMVectorType(ctx->f16, 2); |
| ctx->v4f16 = LLVMVectorType(ctx->f16, 4); |
| ctx->v2i32 = LLVMVectorType(ctx->i32, 2); |
| ctx->v3i32 = LLVMVectorType(ctx->i32, 3); |
| ctx->v4i32 = LLVMVectorType(ctx->i32, 4); |
| ctx->v2f32 = LLVMVectorType(ctx->f32, 2); |
| ctx->v3f32 = LLVMVectorType(ctx->f32, 3); |
| ctx->v4f32 = LLVMVectorType(ctx->f32, 4); |
| ctx->v8i32 = LLVMVectorType(ctx->i32, 8); |
| ctx->iN_wavemask = LLVMIntTypeInContext(ctx->context, ctx->wave_size); |
| ctx->iN_ballotmask = LLVMIntTypeInContext(ctx->context, ballot_mask_bits); |
| |
| ctx->i8_0 = LLVMConstInt(ctx->i8, 0, false); |
| ctx->i8_1 = LLVMConstInt(ctx->i8, 1, false); |
| ctx->i16_0 = LLVMConstInt(ctx->i16, 0, false); |
| ctx->i16_1 = LLVMConstInt(ctx->i16, 1, false); |
| ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false); |
| ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false); |
| ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false); |
| ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false); |
| ctx->i128_0 = LLVMConstInt(ctx->i128, 0, false); |
| ctx->i128_1 = LLVMConstInt(ctx->i128, 1, false); |
| ctx->f16_0 = LLVMConstReal(ctx->f16, 0.0); |
| ctx->f16_1 = LLVMConstReal(ctx->f16, 1.0); |
| ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0); |
| ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0); |
| ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0); |
| ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0); |
| |
| ctx->i1false = LLVMConstInt(ctx->i1, 0, false); |
| ctx->i1true = LLVMConstInt(ctx->i1, 1, false); |
| |
| ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context, "range", 5); |
| ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context, "invariant.load", 14); |
| ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context, "amdgpu.uniform", 14); |
| ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6); |
| |
| ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0); |
| |
| LLVMValueRef three = LLVMConstReal(ctx->f32, 3); |
| ctx->three_md = LLVMMDNodeInContext(ctx->context, &three, 1); |
| |
| ctx->flow = calloc(1, sizeof(*ctx->flow)); |
| |
| ctx->ring_offsets_index = INT32_MAX; |
| } |
| |
| void ac_llvm_context_dispose(struct ac_llvm_context *ctx) |
| { |
| free(ctx->flow->stack); |
| free(ctx->flow); |
| ctx->flow = NULL; |
| |
| LLVMDisposeBuilder(ctx->builder); |
| } |
| |
| int ac_get_llvm_num_components(LLVMValueRef value) |
| { |
| LLVMTypeRef type = LLVMTypeOf(value); |
| unsigned num_components = |
| LLVMGetTypeKind(type) == LLVMVectorTypeKind ? LLVMGetVectorSize(type) : 1; |
| return num_components; |
| } |
| |
| LLVMValueRef ac_llvm_extract_elem(struct ac_llvm_context *ac, LLVMValueRef value, int index) |
| { |
| if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) { |
| assert(index == 0); |
| return value; |
| } |
| |
| return LLVMBuildExtractElement(ac->builder, value, LLVMConstInt(ac->i32, index, false), ""); |
| } |
| |
| int ac_get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type) |
| { |
| if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) |
| type = LLVMGetElementType(type); |
| |
| if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind) |
| return LLVMGetIntTypeWidth(type); |
| |
| if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) { |
| if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_LDS) |
| return 32; |
| } |
| |
| if (type == ctx->f16) |
| return 16; |
| if (type == ctx->f32) |
| return 32; |
| if (type == ctx->f64) |
| return 64; |
| |
| unreachable("Unhandled type kind in get_elem_bits"); |
| } |
| |
| unsigned ac_get_type_size(LLVMTypeRef type) |
| { |
| LLVMTypeKind kind = LLVMGetTypeKind(type); |
| |
| switch (kind) { |
| case LLVMIntegerTypeKind: |
| return LLVMGetIntTypeWidth(type) / 8; |
| case LLVMHalfTypeKind: |
| return 2; |
| case LLVMFloatTypeKind: |
| return 4; |
| case LLVMDoubleTypeKind: |
| return 8; |
| case LLVMPointerTypeKind: |
| if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_CONST_32BIT) |
| return 4; |
| return 8; |
| case LLVMVectorTypeKind: |
| return LLVMGetVectorSize(type) * ac_get_type_size(LLVMGetElementType(type)); |
| case LLVMArrayTypeKind: |
| return LLVMGetArrayLength(type) * ac_get_type_size(LLVMGetElementType(type)); |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t) |
| { |
| if (t == ctx->i1) |
| return ctx->i1; |
| else if (t == ctx->i8) |
| return ctx->i8; |
| else if (t == ctx->f16 || t == ctx->i16) |
| return ctx->i16; |
| else if (t == ctx->f32 || t == ctx->i32) |
| return ctx->i32; |
| else if (t == ctx->f64 || t == ctx->i64) |
| return ctx->i64; |
| else |
| unreachable("Unhandled integer size"); |
| } |
| |
| LLVMTypeRef ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t) |
| { |
| if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) { |
| LLVMTypeRef elem_type = LLVMGetElementType(t); |
| return LLVMVectorType(to_integer_type_scalar(ctx, elem_type), LLVMGetVectorSize(t)); |
| } |
| if (LLVMGetTypeKind(t) == LLVMPointerTypeKind) { |
| switch (LLVMGetPointerAddressSpace(t)) { |
| case AC_ADDR_SPACE_GLOBAL: |
| case AC_ADDR_SPACE_CONST: |
| return ctx->i64; |
| case AC_ADDR_SPACE_CONST_32BIT: |
| case AC_ADDR_SPACE_LDS: |
| return ctx->i32; |
| default: |
| unreachable("unhandled address space"); |
| } |
| } |
| return to_integer_type_scalar(ctx, t); |
| } |
| |
| LLVMValueRef ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v) |
| { |
| LLVMTypeRef type = LLVMTypeOf(v); |
| if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) { |
| return LLVMBuildPtrToInt(ctx->builder, v, ac_to_integer_type(ctx, type), ""); |
| } |
| return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), ""); |
| } |
| |
| LLVMValueRef ac_to_integer_or_pointer(struct ac_llvm_context *ctx, LLVMValueRef v) |
| { |
| LLVMTypeRef type = LLVMTypeOf(v); |
| if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) |
| return v; |
| return ac_to_integer(ctx, v); |
| } |
| |
| static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t) |
| { |
| if (t == ctx->i8) |
| return ctx->i8; |
| else if (t == ctx->i16 || t == ctx->f16) |
| return ctx->f16; |
| else if (t == ctx->i32 || t == ctx->f32) |
| return ctx->f32; |
| else if (t == ctx->i64 || t == ctx->f64) |
| return ctx->f64; |
| else |
| unreachable("Unhandled float size"); |
| } |
| |
| LLVMTypeRef ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t) |
| { |
| if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) { |
| LLVMTypeRef elem_type = LLVMGetElementType(t); |
| return LLVMVectorType(to_float_type_scalar(ctx, elem_type), LLVMGetVectorSize(t)); |
| } |
| return to_float_type_scalar(ctx, t); |
| } |
| |
| LLVMValueRef ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v) |
| { |
| LLVMTypeRef type = LLVMTypeOf(v); |
| return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), ""); |
| } |
| |
| LLVMValueRef ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name, |
| LLVMTypeRef return_type, LLVMValueRef *params, unsigned param_count, |
| unsigned attrib_mask) |
| { |
| LLVMValueRef call; |
| |
| LLVMTypeRef param_types[32]; |
| assert(param_count <= 32); |
| for (unsigned i = 0; i < param_count; ++i) { |
| assert(params[i]); |
| param_types[i] = LLVMTypeOf(params[i]); |
| } |
| |
| LLVMTypeRef function_type = LLVMFunctionType(return_type, param_types, param_count, 0); |
| LLVMValueRef function = LLVMGetNamedFunction(ctx->module, name); |
| |
| if (!function) { |
| function = LLVMAddFunction(ctx->module, name, function_type); |
| |
| LLVMSetFunctionCallConv(function, LLVMCCallConv); |
| LLVMSetLinkage(function, LLVMExternalLinkage); |
| } |
| |
| call = LLVMBuildCall2(ctx->builder, function_type, function, params, param_count, ""); |
| |
| if (attrib_mask & AC_ATTR_INVARIANT_LOAD) |
| LLVMSetMetadata(call, ctx->invariant_load_md_kind, ctx->empty_md); |
| |
| if (attrib_mask & AC_ATTR_CONVERGENT) |
| LLVMAddCallSiteAttribute(call, -1, ac_get_llvm_attribute(ctx->context, "convergent")); |
| |
| LLVMAddCallSiteAttribute(call, -1, ac_get_llvm_attribute(ctx->context, "nounwind")); |
| return call; |
| } |
| |
| /** |
| * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with |
| * intrinsic names). |
| */ |
| void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize) |
| { |
| LLVMTypeRef elem_type = type; |
| |
| if (LLVMGetTypeKind(type) == LLVMStructTypeKind) { |
| unsigned count = LLVMCountStructElementTypes(type); |
| int ret = snprintf(buf, bufsize, "sl_"); |
| buf += ret; |
| bufsize -= ret; |
| |
| LLVMTypeRef *elems = alloca(count * sizeof(LLVMTypeRef)); |
| LLVMGetStructElementTypes(type, elems); |
| |
| for (unsigned i = 0; i < count; i++) { |
| ac_build_type_name_for_intr(elems[i], buf, bufsize); |
| ret = strlen(buf); |
| buf += ret; |
| bufsize -= ret; |
| } |
| |
| snprintf(buf, bufsize, "s"); |
| return; |
| } |
| |
| assert(bufsize >= 8); |
| if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) { |
| int ret = snprintf(buf, bufsize, "v%u", LLVMGetVectorSize(type)); |
| if (ret < 0) { |
| char *type_name = LLVMPrintTypeToString(type); |
| fprintf(stderr, "Error building type name for: %s\n", type_name); |
| LLVMDisposeMessage(type_name); |
| return; |
| } |
| elem_type = LLVMGetElementType(type); |
| buf += ret; |
| bufsize -= ret; |
| } |
| switch (LLVMGetTypeKind(elem_type)) { |
| default: |
| break; |
| case LLVMIntegerTypeKind: |
| snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type)); |
| break; |
| case LLVMHalfTypeKind: |
| snprintf(buf, bufsize, "f16"); |
| break; |
| case LLVMFloatTypeKind: |
| snprintf(buf, bufsize, "f32"); |
| break; |
| case LLVMDoubleTypeKind: |
| snprintf(buf, bufsize, "f64"); |
| break; |
| } |
| } |
| |
| /** |
| * Helper function that builds an LLVM IR PHI node and immediately adds |
| * incoming edges. |
| */ |
| LLVMValueRef ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type, unsigned count_incoming, |
| LLVMValueRef *values, LLVMBasicBlockRef *blocks) |
| { |
| LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, ""); |
| LLVMAddIncoming(phi, values, blocks, count_incoming); |
| return phi; |
| } |
| |
| void ac_build_s_barrier(struct ac_llvm_context *ctx, gl_shader_stage stage) |
| { |
| /* GFX6 only: s_barrier isn’t needed in TCS because an entire patch always fits into |
| * a single wave due to a bug workaround disallowing multi-wave HS workgroups. |
| */ |
| if (ctx->gfx_level == GFX6 && stage == MESA_SHADER_TESS_CTRL) |
| return; |
| |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.barrier", ctx->voidt, NULL, 0, 0); |
| } |
| |
| /* Prevent optimizations (at least of memory accesses) across the current |
| * point in the program by emitting empty inline assembly that is marked as |
| * having side effects. |
| * |
| * Optionally, a value can be passed through the inline assembly to prevent |
| * LLVM from hoisting calls to ReadNone functions. |
| */ |
| void ac_build_optimization_barrier(struct ac_llvm_context *ctx, LLVMValueRef *pgpr, bool sgpr) |
| { |
| static int counter = 0; |
| |
| LLVMBuilderRef builder = ctx->builder; |
| char code[16]; |
| const char *constraint = sgpr ? "=s,0" : "=v,0"; |
| |
| snprintf(code, sizeof(code), "; %d", (int)p_atomic_inc_return(&counter)); |
| |
| if (!pgpr) { |
| LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false); |
| LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false); |
| LLVMBuildCall2(builder, ftype, inlineasm, NULL, 0, ""); |
| } else { |
| LLVMTypeRef old_type = LLVMTypeOf(*pgpr); |
| |
| if (old_type == ctx->i1) |
| *pgpr = LLVMBuildZExt(builder, *pgpr, ctx->i32, ""); |
| |
| if (old_type == LLVMVectorType(ctx->i16, 3)) |
| *pgpr = ac_build_expand_to_vec4(ctx, *pgpr, 4); |
| |
| LLVMTypeRef type = LLVMTypeOf(*pgpr); |
| LLVMTypeRef ftype = LLVMFunctionType(type, &type, 1, false); |
| LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, constraint, true, false); |
| |
| *pgpr = LLVMBuildCall2(builder, ftype, inlineasm, pgpr, 1, ""); |
| |
| if (old_type == ctx->i1) |
| *pgpr = LLVMBuildTrunc(builder, *pgpr, old_type, ""); |
| |
| if (old_type == LLVMVectorType(ctx->i16, 3)) |
| *pgpr = ac_extract_components(ctx, *pgpr, 0, 3); |
| } |
| } |
| |
| LLVMValueRef ac_build_shader_clock(struct ac_llvm_context *ctx, mesa_scope scope) |
| { |
| if (ctx->gfx_level >= GFX11 && scope == SCOPE_DEVICE) { |
| const char *name = "llvm.amdgcn.s.sendmsg.rtn.i64"; |
| LLVMValueRef arg = LLVMConstInt(ctx->i32, 0x83 /* realtime */, 0); |
| LLVMValueRef tmp = ac_build_intrinsic(ctx, name, ctx->i64, &arg, 1, 0); |
| return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, ""); |
| } |
| |
| const char *subgroup = "llvm.readcyclecounter"; |
| const char *name = scope == SCOPE_DEVICE ? "llvm.amdgcn.s.memrealtime" : subgroup; |
| |
| LLVMValueRef tmp = ac_build_intrinsic(ctx, name, ctx->i64, NULL, 0, 0); |
| return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, ""); |
| } |
| |
| LLVMValueRef ac_build_ballot(struct ac_llvm_context *ctx, LLVMValueRef value) |
| { |
| const char *name; |
| |
| if (LLVMTypeOf(value) == ctx->i1) |
| value = LLVMBuildZExt(ctx->builder, value, ctx->i32, ""); |
| |
| if (ctx->wave_size == 64) |
| name = "llvm.amdgcn.icmp.i64.i32"; |
| else |
| name = "llvm.amdgcn.icmp.i32.i32"; |
| |
| LLVMValueRef args[3] = {value, ctx->i32_0, LLVMConstInt(ctx->i32, LLVMIntNE, 0)}; |
| |
| /* We currently have no other way to prevent LLVM from lifting the icmp |
| * calls to a dominating basic block. |
| */ |
| ac_build_optimization_barrier(ctx, &args[0], false); |
| |
| args[0] = ac_to_integer(ctx, args[0]); |
| |
| return ac_build_intrinsic(ctx, name, ctx->iN_wavemask, args, 3, 0); |
| } |
| |
| LLVMValueRef ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value) |
| { |
| LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1); |
| LLVMValueRef vote_set = ac_build_ballot(ctx, value); |
| return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, ""); |
| } |
| |
| LLVMValueRef ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value) |
| { |
| LLVMValueRef vote_set = ac_build_ballot(ctx, value); |
| return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set, LLVMConstInt(ctx->iN_wavemask, 0, 0), |
| ""); |
| } |
| |
| LLVMValueRef ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values, |
| unsigned value_count, unsigned component) |
| { |
| LLVMValueRef vec = NULL; |
| |
| if (value_count == 1) { |
| return values[component]; |
| } else if (!value_count) |
| unreachable("value_count is 0"); |
| |
| for (unsigned i = component; i < value_count + component; i++) { |
| LLVMValueRef value = values[i]; |
| |
| if (i == component) |
| vec = LLVMGetUndef(LLVMVectorType(LLVMTypeOf(value), value_count)); |
| LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false); |
| vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, ""); |
| } |
| return vec; |
| } |
| |
| LLVMValueRef ac_build_gather_values_extended(struct ac_llvm_context *ctx, LLVMValueRef *values, |
| unsigned value_count, unsigned value_stride, |
| bool always_vector) |
| { |
| LLVMBuilderRef builder = ctx->builder; |
| LLVMValueRef vec = NULL; |
| unsigned i; |
| |
| if (value_count == 1 && !always_vector) { |
| return values[0]; |
| } else if (!value_count) |
| unreachable("value_count is 0"); |
| |
| for (i = 0; i < value_count; i++) { |
| LLVMValueRef value = values[i * value_stride]; |
| |
| if (!i) |
| vec = LLVMGetUndef(LLVMVectorType(LLVMTypeOf(value), value_count)); |
| LLVMValueRef index = LLVMConstInt(ctx->i32, i, false); |
| vec = LLVMBuildInsertElement(builder, vec, value, index, ""); |
| } |
| return vec; |
| } |
| |
| LLVMValueRef ac_build_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values, |
| unsigned value_count) |
| { |
| return ac_build_gather_values_extended(ctx, values, value_count, 1, false); |
| } |
| |
| LLVMValueRef ac_build_concat(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| if (!a) |
| return b; |
| |
| unsigned a_size = ac_get_llvm_num_components(a); |
| unsigned b_size = ac_get_llvm_num_components(b); |
| |
| LLVMValueRef *elems = alloca((a_size + b_size) * sizeof(LLVMValueRef)); |
| for (unsigned i = 0; i < a_size; i++) |
| elems[i] = ac_llvm_extract_elem(ctx, a, i); |
| for (unsigned i = 0; i < b_size; i++) |
| elems[a_size + i] = ac_llvm_extract_elem(ctx, b, i); |
| |
| return ac_build_gather_values(ctx, elems, a_size + b_size); |
| } |
| |
| /* Expand a scalar or vector to <dst_channels x type> by filling the remaining |
| * channels with undef. Extract at most src_channels components from the input. |
| */ |
| LLVMValueRef ac_build_expand(struct ac_llvm_context *ctx, LLVMValueRef value, |
| unsigned src_channels, unsigned dst_channels) |
| { |
| LLVMTypeRef elemtype; |
| LLVMValueRef *const chan = alloca(dst_channels * sizeof(LLVMValueRef)); |
| |
| if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) { |
| unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value)); |
| |
| if (src_channels == dst_channels && vec_size == dst_channels) |
| return value; |
| |
| src_channels = MIN2(src_channels, vec_size); |
| |
| for (unsigned i = 0; i < src_channels; i++) |
| chan[i] = ac_llvm_extract_elem(ctx, value, i); |
| |
| elemtype = LLVMGetElementType(LLVMTypeOf(value)); |
| } else { |
| if (src_channels) { |
| assert(src_channels == 1); |
| chan[0] = value; |
| } |
| elemtype = LLVMTypeOf(value); |
| } |
| |
| for (unsigned i = src_channels; i < dst_channels; i++) |
| chan[i] = LLVMGetUndef(elemtype); |
| |
| return ac_build_gather_values(ctx, chan, dst_channels); |
| } |
| |
| /* Extract components [start, start + channels) from a vector. |
| */ |
| LLVMValueRef ac_extract_components(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned start, |
| unsigned channels) |
| { |
| LLVMValueRef *const chan = alloca(channels * sizeof(LLVMValueRef)); |
| |
| for (unsigned i = 0; i < channels; i++) |
| chan[i] = ac_llvm_extract_elem(ctx, value, i + start); |
| |
| return ac_build_gather_values(ctx, chan, channels); |
| } |
| |
| /* Expand a scalar or vector to <4 x type> by filling the remaining channels |
| * with undef. Extract at most num_channels components from the input. |
| */ |
| LLVMValueRef ac_build_expand_to_vec4(struct ac_llvm_context *ctx, LLVMValueRef value, |
| unsigned num_channels) |
| { |
| return ac_build_expand(ctx, value, num_channels, 4); |
| } |
| |
| LLVMValueRef ac_build_fdiv(struct ac_llvm_context *ctx, LLVMValueRef num, LLVMValueRef den) |
| { |
| unsigned type_size = ac_get_type_size(LLVMTypeOf(den)); |
| const char *name; |
| |
| if (type_size == 2) |
| name = "llvm.amdgcn.rcp.f16"; |
| else if (type_size == 4) |
| name = "llvm.amdgcn.rcp.f32"; |
| else |
| name = "llvm.amdgcn.rcp.f64"; |
| |
| LLVMValueRef rcp = |
| ac_build_intrinsic(ctx, name, LLVMTypeOf(den), &den, 1, 0); |
| |
| return LLVMBuildFMul(ctx->builder, num, rcp, ""); |
| } |
| |
| LLVMValueRef ac_build_fs_interp(struct ac_llvm_context *ctx, LLVMValueRef llvm_chan, |
| LLVMValueRef attr_number, LLVMValueRef params, LLVMValueRef i, |
| LLVMValueRef j) |
| { |
| LLVMValueRef args[5]; |
| |
| if (ctx->gfx_level >= GFX11) { |
| LLVMValueRef p; |
| LLVMValueRef p10; |
| |
| args[0] = llvm_chan; |
| args[1] = attr_number; |
| args[2] = params; |
| |
| p = ac_build_intrinsic(ctx, "llvm.amdgcn.lds.param.load", |
| ctx->f32, args, 3, 0); |
| |
| args[0] = p; |
| args[1] = i; |
| args[2] = p; |
| |
| p10 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.inreg.p10", |
| ctx->f32, args, 3, 0); |
| |
| args[0] = p; |
| args[1] = j; |
| args[2] = p10; |
| |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.inreg.p2", |
| ctx->f32, args, 3, 0); |
| |
| } else { |
| LLVMValueRef p1; |
| |
| args[0] = i; |
| args[1] = llvm_chan; |
| args[2] = attr_number; |
| args[3] = params; |
| |
| p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1", |
| ctx->f32, args, 4, 0); |
| |
| args[0] = p1; |
| args[1] = j; |
| args[2] = llvm_chan; |
| args[3] = attr_number; |
| args[4] = params; |
| |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2", |
| ctx->f32, args, 5, 0); |
| } |
| } |
| |
| LLVMValueRef ac_build_fs_interp_f16(struct ac_llvm_context *ctx, LLVMValueRef llvm_chan, |
| LLVMValueRef attr_number, LLVMValueRef params, LLVMValueRef i, |
| LLVMValueRef j, bool high_16bits) |
| { |
| LLVMValueRef args[6]; |
| |
| if (ctx->gfx_level >= GFX11) { |
| LLVMValueRef p; |
| LLVMValueRef p10; |
| |
| args[0] = llvm_chan; |
| args[1] = attr_number; |
| args[2] = params; |
| |
| p = ac_build_intrinsic(ctx, "llvm.amdgcn.lds.param.load", |
| ctx->f32, args, 3, 0); |
| |
| args[0] = p; |
| args[1] = i; |
| args[2] = p; |
| args[3] = high_16bits ? ctx->i1true : ctx->i1false; |
| |
| p10 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.inreg.p10.f16", |
| ctx->f32, args, 4, 0); |
| |
| args[0] = p; |
| args[1] = j; |
| args[2] = p10; |
| args[3] = high_16bits ? ctx->i1true : ctx->i1false; |
| |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.inreg.p2.f16", |
| ctx->f16, args, 4, 0); |
| |
| } else { |
| LLVMValueRef p1; |
| |
| args[0] = i; |
| args[1] = llvm_chan; |
| args[2] = attr_number; |
| args[3] = high_16bits ? ctx->i1true : ctx->i1false; |
| args[4] = params; |
| |
| p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1.f16", ctx->f32, args, 5, |
| 0); |
| |
| args[0] = p1; |
| args[1] = j; |
| args[2] = llvm_chan; |
| args[3] = attr_number; |
| args[4] = high_16bits ? ctx->i1true : ctx->i1false; |
| args[5] = params; |
| |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2.f16", ctx->f16, args, 6, |
| 0); |
| } |
| } |
| |
| LLVMValueRef ac_build_fs_interp_mov(struct ac_llvm_context *ctx, unsigned parameter, |
| LLVMValueRef llvm_chan, LLVMValueRef attr_number, |
| LLVMValueRef params) |
| { |
| LLVMValueRef args[4]; |
| |
| if (ctx->gfx_level >= GFX11) { |
| LLVMValueRef p; |
| |
| args[0] = llvm_chan; |
| args[1] = attr_number; |
| args[2] = params; |
| |
| p = ac_build_intrinsic(ctx, "llvm.amdgcn.lds.param.load", |
| ctx->f32, args, 3, 0); |
| p = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.f32", ctx->f32, &p, 1, 0); |
| p = ac_build_quad_swizzle(ctx, p, parameter, parameter, parameter, parameter, true); |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.f32", ctx->f32, &p, 1, 0); |
| } else { |
| args[0] = LLVMConstInt(ctx->i32, (parameter + 2) % 3, 0); |
| args[1] = llvm_chan; |
| args[2] = attr_number; |
| args[3] = params; |
| |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov", ctx->f32, args, 4, 0); |
| } |
| } |
| |
| LLVMValueRef ac_build_gep0(struct ac_llvm_context *ctx, struct ac_llvm_pointer ptr, LLVMValueRef index) |
| { |
| LLVMValueRef indices[2] = { |
| ctx->i32_0, |
| index, |
| }; |
| |
| return LLVMBuildGEP2(ctx->builder, ptr.t, ptr.v, indices, 2, ""); |
| } |
| |
| void ac_build_indexed_store(struct ac_llvm_context *ctx, struct ac_llvm_pointer ptr, LLVMValueRef index, |
| LLVMValueRef value) |
| { |
| LLVMBuildStore(ctx->builder, value, ac_build_gep0(ctx, ptr, index)); |
| } |
| |
| /** |
| * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad. |
| * It's equivalent to doing a load from &base_ptr[index]. |
| * |
| * \param base_ptr Where the array starts. |
| * \param index The element index into the array. |
| * \param uniform Whether the base_ptr and index can be assumed to be |
| * dynamically uniform (i.e. load to an SGPR) |
| * \param invariant Whether the load is invariant (no other opcodes affect it) |
| * \param no_unsigned_wraparound |
| * For all possible re-associations and re-distributions of an expression |
| * "base_ptr + index * elemsize" into "addr + offset" (excluding GEPs |
| * without inbounds in base_ptr), this parameter is true if "addr + offset" |
| * does not result in an unsigned integer wraparound. This is used for |
| * optimal code generation of 32-bit pointer arithmetic. |
| * |
| * For example, a 32-bit immediate offset that causes a 32-bit unsigned |
| * integer wraparound can't be an imm offset in s_load_dword, because |
| * the instruction performs "addr + offset" in 64 bits. |
| * |
| * Expected usage for bindless textures by chaining GEPs: |
| * // possible unsigned wraparound, don't use InBounds: |
| * ptr1 = LLVMBuildGEP(base_ptr, index); |
| * image = load(ptr1); // becomes "s_load ptr1, 0" |
| * |
| * ptr2 = LLVMBuildInBoundsGEP(ptr1, 32 / elemsize); |
| * sampler = load(ptr2); // becomes "s_load ptr1, 32" thanks to InBounds |
| */ |
| static LLVMValueRef ac_build_load_custom(struct ac_llvm_context *ctx, LLVMTypeRef type, |
| LLVMValueRef base_ptr, LLVMValueRef index, |
| bool uniform, bool invariant, bool no_unsigned_wraparound) |
| { |
| LLVMValueRef pointer, result; |
| |
| if (no_unsigned_wraparound && |
| LLVMGetPointerAddressSpace(LLVMTypeOf(base_ptr)) == AC_ADDR_SPACE_CONST_32BIT) |
| pointer = LLVMBuildInBoundsGEP2(ctx->builder, type, base_ptr, &index, 1, ""); |
| else |
| pointer = LLVMBuildGEP2(ctx->builder, type, base_ptr, &index, 1, ""); |
| |
| if (uniform) |
| LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md); |
| result = LLVMBuildLoad2(ctx->builder, type, pointer, ""); |
| if (invariant) |
| LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md); |
| LLVMSetAlignment(result, 4); |
| return result; |
| } |
| |
| LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx, struct ac_llvm_pointer ptr, |
| LLVMValueRef index) |
| { |
| return ac_build_load_custom(ctx, ptr.t, ptr.v, index, false, true, false); |
| } |
| |
| /* This assumes that there is no unsigned integer wraparound during the address |
| * computation, excluding all GEPs within base_ptr. */ |
| LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx, struct ac_llvm_pointer ptr, |
| LLVMValueRef index) |
| { |
| return ac_build_load_custom(ctx, ptr.t, ptr.v, index, true, true, true); |
| } |
| |
| static unsigned get_cache_flags(struct ac_llvm_context *ctx, enum gl_access_qualifier access) |
| { |
| return ac_get_hw_cache_flags(ctx->gfx_level, access).value; |
| } |
| |
| static void ac_build_buffer_store_common(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef data, LLVMValueRef vindex, |
| LLVMValueRef voffset, LLVMValueRef soffset, |
| enum gl_access_qualifier access, bool use_format) |
| { |
| LLVMValueRef args[6]; |
| int idx = 0; |
| args[idx++] = data; |
| args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""); |
| if (vindex) |
| args[idx++] = vindex ? vindex : ctx->i32_0; |
| args[idx++] = voffset ? voffset : ctx->i32_0; |
| args[idx++] = soffset ? soffset : ctx->i32_0; |
| args[idx++] = LLVMConstInt(ctx->i32, get_cache_flags(ctx, access | ACCESS_TYPE_STORE), 0); |
| const char *indexing_kind = vindex ? "struct" : "raw"; |
| char name[256], type_name[8]; |
| |
| ac_build_type_name_for_intr(LLVMTypeOf(data), type_name, sizeof(type_name)); |
| |
| if (use_format) { |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.format.%s", indexing_kind, |
| type_name); |
| } else { |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.%s", indexing_kind, type_name); |
| } |
| |
| ac_build_intrinsic(ctx, name, ctx->voidt, args, idx, 0); |
| } |
| |
| void ac_build_buffer_store_format(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef data, |
| LLVMValueRef vindex, LLVMValueRef voffset, enum gl_access_qualifier access) |
| { |
| ac_build_buffer_store_common(ctx, rsrc, data, vindex, voffset, NULL, access, true); |
| } |
| |
| /* buffer_store_dword(,x2,x3,x4) <- the suffix is selected by the type of vdata. */ |
| void ac_build_buffer_store_dword(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef vdata, |
| LLVMValueRef vindex, LLVMValueRef voffset, LLVMValueRef soffset, |
| enum gl_access_qualifier access) |
| { |
| unsigned num_channels = ac_get_llvm_num_components(vdata); |
| |
| /* Split 3 channel stores if unsupported. */ |
| if (num_channels == 3 && !ac_has_vec3_support(ctx->gfx_level, false)) { |
| LLVMValueRef v[3], v01, voffset2; |
| |
| for (int i = 0; i < 3; i++) { |
| v[i] = LLVMBuildExtractElement(ctx->builder, vdata, LLVMConstInt(ctx->i32, i, 0), ""); |
| } |
| v01 = ac_build_gather_values(ctx, v, 2); |
| |
| voffset2 = LLVMBuildAdd(ctx->builder, voffset ? voffset : ctx->i32_0, |
| LLVMConstInt(ctx->i32, 8, 0), ""); |
| |
| ac_build_buffer_store_dword(ctx, rsrc, v01, vindex, voffset, soffset, access); |
| ac_build_buffer_store_dword(ctx, rsrc, v[2], vindex, voffset2, soffset, access); |
| return; |
| } |
| |
| ac_build_buffer_store_common(ctx, rsrc, ac_to_float(ctx, vdata), vindex, voffset, soffset, |
| access, false); |
| } |
| |
| static LLVMValueRef ac_build_buffer_load_common(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef vindex, LLVMValueRef voffset, |
| LLVMValueRef soffset, unsigned num_channels, |
| LLVMTypeRef channel_type, enum gl_access_qualifier access, |
| bool can_speculate, bool use_format) |
| { |
| LLVMValueRef args[5]; |
| int idx = 0; |
| args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""); |
| if (vindex) |
| args[idx++] = vindex; |
| args[idx++] = voffset ? voffset : ctx->i32_0; |
| args[idx++] = soffset ? soffset : ctx->i32_0; |
| args[idx++] = LLVMConstInt(ctx->i32, get_cache_flags(ctx, access | ACCESS_TYPE_LOAD), 0); |
| unsigned func = |
| !ac_has_vec3_support(ctx->gfx_level, use_format) && num_channels == 3 ? 4 : num_channels; |
| const char *indexing_kind = vindex ? "struct" : "raw"; |
| char name[256], type_name[8]; |
| |
| /* D16 is only supported on gfx8+ */ |
| assert(!use_format || (channel_type != ctx->f16 && channel_type != ctx->i16) || |
| ctx->gfx_level >= GFX8); |
| |
| LLVMTypeRef type = func > 1 ? LLVMVectorType(channel_type, func) : channel_type; |
| ac_build_type_name_for_intr(type, type_name, sizeof(type_name)); |
| |
| if (use_format) { |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.format.%s", indexing_kind, |
| type_name); |
| } else { |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.%s", indexing_kind, type_name); |
| } |
| |
| LLVMValueRef result = ac_build_intrinsic(ctx, name, type, args, idx, |
| can_speculate ? AC_ATTR_INVARIANT_LOAD : 0); |
| if (func > num_channels) |
| result = ac_trim_vector(ctx, result, num_channels); |
| return result; |
| } |
| |
| LLVMValueRef ac_build_buffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc, int num_channels, |
| LLVMValueRef vindex, LLVMValueRef voffset, LLVMValueRef soffset, |
| LLVMTypeRef channel_type, enum gl_access_qualifier access, |
| bool can_speculate, bool allow_smem) |
| { |
| if (allow_smem && (!(access & ACCESS_COHERENT) || ctx->gfx_level >= GFX8)) { |
| assert(vindex == NULL); |
| |
| LLVMValueRef result[32]; |
| |
| LLVMValueRef offset = voffset ? voffset : ctx->i32_0; |
| if (soffset) |
| offset = LLVMBuildAdd(ctx->builder, offset, soffset, ""); |
| |
| char name[256], type_name[8]; |
| ac_build_type_name_for_intr(channel_type, type_name, sizeof(type_name)); |
| snprintf(name, sizeof(name), "llvm.amdgcn.s.buffer.load.%s", type_name); |
| |
| LLVMValueRef channel_size = LLVMConstInt(ctx->i32, ac_get_type_size(channel_type), 0); |
| |
| for (int i = 0; i < num_channels; i++) { |
| if (i) { |
| offset = LLVMBuildAdd(ctx->builder, offset, channel_size, ""); |
| } |
| LLVMValueRef args[3] = { |
| rsrc, |
| offset, |
| LLVMConstInt(ctx->i32, get_cache_flags(ctx, access | ACCESS_TYPE_LOAD | |
| ACCESS_TYPE_SMEM), 0), |
| }; |
| result[i] = ac_build_intrinsic(ctx, name, channel_type, args, 3, AC_ATTR_INVARIANT_LOAD); |
| } |
| if (num_channels == 1) |
| return result[0]; |
| |
| return ac_build_gather_values(ctx, result, num_channels); |
| } |
| |
| /* LLVM is unable to select instructions for num_channels > 4, so we |
| * workaround that by manually splitting larger buffer loads. |
| */ |
| LLVMValueRef result = NULL; |
| for (unsigned i = 0, fetch_num_channels; i < num_channels; i += fetch_num_channels) { |
| fetch_num_channels = MIN2(4, num_channels - i); |
| LLVMValueRef fetch_voffset = |
| LLVMBuildAdd(ctx->builder, voffset, |
| LLVMConstInt(ctx->i32, i * ac_get_type_size(channel_type), 0), ""); |
| LLVMValueRef item = |
| ac_build_buffer_load_common(ctx, rsrc, vindex, fetch_voffset, soffset, fetch_num_channels, |
| channel_type, access, can_speculate, false); |
| result = ac_build_concat(ctx, result, item); |
| } |
| |
| return result; |
| } |
| |
| LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef vindex, LLVMValueRef voffset, |
| unsigned num_channels, enum gl_access_qualifier access, |
| bool can_speculate, bool d16, bool tfe) |
| { |
| if (tfe) { |
| assert(!d16); |
| |
| union ac_hw_cache_flags cache_flags = |
| ac_get_hw_cache_flags(ctx->gfx_level, access | ACCESS_TYPE_LOAD); |
| char code[1024]; |
| |
| /* The definition in the assembly and the one in the constraint string |
| * differs because of an assembler bug. |
| */ |
| if (ctx->gfx_level >= GFX12) { |
| const char *scope = ""; |
| const char *temporal_hint = ""; |
| |
| if (cache_flags.gfx12.scope == gfx12_scope_se) |
| scope = "scope:SCOPE_SE"; |
| else if (cache_flags.gfx12.scope == gfx12_scope_device) |
| scope = "scope:SCOPE_DEV"; |
| else if (cache_flags.gfx12.scope == gfx12_scope_memory) |
| scope = "scope:SCOPE_SYS"; |
| |
| if (cache_flags.gfx12.temporal_hint == gfx12_load_non_temporal) |
| temporal_hint = "th:TH_LOAD_NT"; |
| else if (cache_flags.gfx12.temporal_hint == gfx12_load_high_temporal) |
| temporal_hint = "th:TH_LOAD_HT"; |
| else if (cache_flags.gfx12.temporal_hint == gfx12_load_last_use_discard) |
| temporal_hint = "th:TH_LOAD_LU"; |
| else if (cache_flags.gfx12.temporal_hint == gfx12_load_near_non_temporal_far_regular_temporal) |
| temporal_hint = "th:TH_LOAD_NT_RT"; |
| else if (cache_flags.gfx12.temporal_hint == gfx12_load_near_regular_temporal_far_non_temporal) |
| temporal_hint = "th:TH_LOAD_RT_NT"; |
| else if (cache_flags.gfx12.temporal_hint == gfx12_load_near_non_temporal_far_high_temporal) |
| temporal_hint = "th:TH_LOAD_NT_HT"; |
| |
| snprintf(code, sizeof(code), |
| "v_mov_b32 v0, 0\n" |
| "v_mov_b32 v1, 0\n" |
| "v_mov_b32 v2, 0\n" |
| "v_mov_b32 v3, 0\n" |
| "v_mov_b32 v4, 0\n" |
| "buffer_load_format_xyzw v[0:3], $1, $2, 0, idxen offen %s %s tfe\n" |
| "s_waitcnt vmcnt(0)", |
| temporal_hint, scope); |
| } else { |
| snprintf(code, sizeof(code), |
| "v_mov_b32 v0, 0\n" |
| "v_mov_b32 v1, 0\n" |
| "v_mov_b32 v2, 0\n" |
| "v_mov_b32 v3, 0\n" |
| "v_mov_b32 v4, 0\n" |
| "buffer_load_format_xyzw v[0:3], $1, $2, 0, idxen offen %s %s tfe %s\n" |
| "s_waitcnt vmcnt(0)", |
| cache_flags.value & ac_glc ? "glc" : "", |
| cache_flags.value & ac_slc ? "slc" : "", |
| cache_flags.value & ac_dlc ? "dlc" : ""); |
| } |
| |
| LLVMTypeRef param_types[] = {ctx->v2i32, ctx->v4i32}; |
| LLVMTypeRef calltype = LLVMFunctionType(LLVMVectorType(ctx->f32, 5), param_types, 2, false); |
| LLVMValueRef inlineasm = LLVMConstInlineAsm(calltype, code, "=&{v[0:4]},v,s", false, false); |
| |
| LLVMValueRef addr_comp[2] = {vindex ? vindex : ctx->i32_0, |
| voffset ? voffset : ctx->i32_0}; |
| |
| LLVMValueRef args[] = {ac_build_gather_values(ctx, addr_comp, 2), |
| LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "")}; |
| LLVMValueRef res = LLVMBuildCall2(ctx->builder, calltype, inlineasm, args, 2, ""); |
| |
| return ac_build_concat(ctx, ac_trim_vector(ctx, res, num_channels), |
| ac_llvm_extract_elem(ctx, res, 4)); |
| } |
| |
| return ac_build_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0, |
| num_channels, d16 ? ctx->f16 : ctx->f32, access, |
| can_speculate, true); |
| } |
| |
| static LLVMValueRef ac_build_tbuffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef vindex, LLVMValueRef voffset, |
| LLVMValueRef soffset, unsigned num_channels, |
| unsigned tbuffer_format, LLVMTypeRef channel_type, |
| enum gl_access_qualifier access, bool can_speculate) |
| { |
| LLVMValueRef args[6]; |
| int idx = 0; |
| args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""); |
| if (vindex) |
| args[idx++] = vindex; |
| args[idx++] = voffset ? voffset : ctx->i32_0; |
| args[idx++] = soffset ? soffset : ctx->i32_0; |
| args[idx++] = LLVMConstInt(ctx->i32, tbuffer_format, 0); |
| args[idx++] = LLVMConstInt(ctx->i32, get_cache_flags(ctx, access | ACCESS_TYPE_LOAD), 0); |
| const char *indexing_kind = vindex ? "struct" : "raw"; |
| char name[256], type_name[8]; |
| |
| LLVMTypeRef type = num_channels > 1 ? LLVMVectorType(channel_type, num_channels) : channel_type; |
| ac_build_type_name_for_intr(type, type_name, sizeof(type_name)); |
| |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.load.%s", indexing_kind, type_name); |
| |
| return ac_build_intrinsic(ctx, name, type, args, idx, |
| can_speculate ? AC_ATTR_INVARIANT_LOAD : 0); |
| } |
| |
| LLVMValueRef ac_build_safe_tbuffer_load(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef vidx, LLVMValueRef base_voffset, |
| LLVMValueRef soffset, |
| const enum pipe_format format, |
| unsigned channel_bit_size, |
| unsigned const_offset, |
| unsigned align_offset, |
| unsigned align_mul, |
| unsigned num_channels, |
| enum gl_access_qualifier access, |
| bool can_speculate) |
| { |
| const struct ac_vtx_format_info *vtx_info = ac_get_vtx_format_info(ctx->gfx_level, ctx->info->family, format); |
| const unsigned max_channels = vtx_info->num_channels; |
| LLVMValueRef voffset_plus_const = |
| LLVMBuildAdd(ctx->builder, base_voffset, LLVMConstInt(ctx->i32, const_offset, 0), ""); |
| |
| /* Split the specified load into several MTBUF instructions, |
| * according to a safe fetch size determined by aligmnent information. |
| */ |
| LLVMValueRef result = NULL; |
| for (unsigned i = 0, fetch_num_channels; i < num_channels; i += fetch_num_channels) { |
| /* Packed formats (determined here by chan_byte_size == 0) should never be split. */ |
| assert(i == 0 || vtx_info->chan_byte_size); |
| |
| const unsigned fetch_const_offset = const_offset + i * vtx_info->chan_byte_size; |
| const unsigned fetch_align_offset = (align_offset + i * vtx_info->chan_byte_size) % align_mul; |
| const unsigned fetch_alignment = fetch_align_offset ? 1 << (ffs(fetch_align_offset) - 1) : align_mul; |
| |
| fetch_num_channels = |
| ac_get_safe_fetch_size(ctx->gfx_level, vtx_info, fetch_const_offset, |
| max_channels - i, fetch_alignment, num_channels - i); |
| const unsigned fetch_format = vtx_info->hw_format[fetch_num_channels - 1]; |
| LLVMValueRef fetch_voffset = |
| LLVMBuildAdd(ctx->builder, voffset_plus_const, |
| LLVMConstInt(ctx->i32, i * vtx_info->chan_byte_size, 0), ""); |
| LLVMValueRef item = |
| ac_build_tbuffer_load(ctx, rsrc, vidx, fetch_voffset, soffset, |
| fetch_num_channels, fetch_format, ctx->i32, |
| access, can_speculate); |
| result = ac_build_concat(ctx, result, item); |
| } |
| |
| /* |
| * LLVM is not able to select 16-bit typed loads. Load 32-bit values instead and |
| * manually truncate them to the required size. |
| * TODO: Do this in NIR instead. |
| */ |
| const struct util_format_description *desc = util_format_description(format); |
| bool is_float = !desc->channel[0].pure_integer; |
| |
| if (channel_bit_size == 16) { |
| LLVMValueRef channels[4]; |
| for (unsigned i = 0; i < num_channels; i++) { |
| LLVMValueRef channel = result; |
| if (num_channels > 1) |
| channel = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, i, false), ""); |
| |
| if (is_float) { |
| channel = LLVMBuildBitCast(ctx->builder, channel, ctx->f32, ""); |
| channel = LLVMBuildFPTrunc(ctx->builder, channel, ctx->f16, ""); |
| channel = LLVMBuildBitCast(ctx->builder, channel, ctx->i16, ""); |
| } else { |
| channel = LLVMBuildTrunc(ctx->builder, channel, ctx->i16, ""); |
| } |
| channels[i] = channel; |
| } |
| result = ac_build_gather_values(ctx, channels, num_channels); |
| } |
| |
| return result; |
| } |
| |
| |
| LLVMValueRef ac_build_buffer_load_short(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef voffset, LLVMValueRef soffset, |
| enum gl_access_qualifier access) |
| { |
| return ac_build_buffer_load_common(ctx, rsrc, NULL, voffset, soffset, 1, ctx->i16, |
| access, false, false); |
| } |
| |
| LLVMValueRef ac_build_buffer_load_byte(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef voffset, LLVMValueRef soffset, |
| enum gl_access_qualifier access) |
| { |
| return ac_build_buffer_load_common(ctx, rsrc, NULL, voffset, soffset, 1, ctx->i8, access, |
| false, false); |
| } |
| |
| void ac_build_buffer_store_short(struct ac_llvm_context *ctx, LLVMValueRef rsrc, |
| LLVMValueRef vdata, LLVMValueRef voffset, LLVMValueRef soffset, |
| enum gl_access_qualifier access) |
| { |
| vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i16, ""); |
| |
| ac_build_buffer_store_common(ctx, rsrc, vdata, NULL, voffset, soffset, access, false); |
| } |
| |
| void ac_build_buffer_store_byte(struct ac_llvm_context *ctx, LLVMValueRef rsrc, LLVMValueRef vdata, |
| LLVMValueRef voffset, LLVMValueRef soffset, enum gl_access_qualifier access) |
| { |
| vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i8, ""); |
| |
| ac_build_buffer_store_common(ctx, rsrc, vdata, NULL, voffset, soffset, access, false); |
| } |
| |
| /** |
| * Set range metadata on an instruction. This can only be used on load and |
| * call instructions. If you know an instruction can only produce the values |
| * 0, 1, 2, you would do set_range_metadata(value, 0, 3); |
| * \p lo is the minimum value inclusive. |
| * \p hi is the maximum value exclusive. |
| */ |
| void ac_set_range_metadata(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned lo, |
| unsigned hi) |
| { |
| LLVMValueRef range_md, md_args[2]; |
| LLVMTypeRef type = LLVMTypeOf(value); |
| LLVMContextRef context = LLVMGetTypeContext(type); |
| |
| md_args[0] = LLVMConstInt(type, lo, false); |
| md_args[1] = LLVMConstInt(type, hi, false); |
| range_md = LLVMMDNodeInContext(context, md_args, 2); |
| LLVMSetMetadata(value, ctx->range_md_kind, range_md); |
| } |
| |
| LLVMValueRef ac_get_thread_id(struct ac_llvm_context *ctx) |
| { |
| return ac_build_mbcnt(ctx, LLVMConstInt(ctx->iN_wavemask, ~0ull, 0)); |
| } |
| |
| /* |
| * AMD GCN implements derivatives using the local data store (LDS) |
| * All writes to the LDS happen in all executing threads at |
| * the same time. TID is the Thread ID for the current |
| * thread and is a value between 0 and 63, representing |
| * the thread's position in the wavefront. |
| * |
| * For the pixel shader threads are grouped into quads of four pixels. |
| * The TIDs of the pixels of a quad are: |
| * |
| * +------+------+ |
| * |4n + 0|4n + 1| |
| * +------+------+ |
| * |4n + 2|4n + 3| |
| * +------+------+ |
| * |
| * So, masking the TID with 0xfffffffc yields the TID of the top left pixel |
| * of the quad, masking with 0xfffffffd yields the TID of the top pixel of |
| * the current pixel's column, and masking with 0xfffffffe yields the TID |
| * of the left pixel of the current pixel's row. |
| * |
| * Adding 1 yields the TID of the pixel to the right of the left pixel, and |
| * adding 2 yields the TID of the pixel below the top pixel. |
| */ |
| LLVMValueRef ac_build_ddxy(struct ac_llvm_context *ctx, uint32_t mask, int idx, LLVMValueRef val) |
| { |
| unsigned tl_lanes[4], trbl_lanes[4]; |
| char name[32], type[8]; |
| LLVMValueRef tl, trbl; |
| LLVMTypeRef result_type; |
| LLVMValueRef result; |
| |
| result_type = ac_to_float_type(ctx, LLVMTypeOf(val)); |
| |
| if (result_type == ctx->f16) |
| val = LLVMBuildZExt(ctx->builder, val, ctx->i32, ""); |
| else if (result_type == ctx->v2f16) |
| val = LLVMBuildBitCast(ctx->builder, val, ctx->i32, ""); |
| |
| for (unsigned i = 0; i < 4; ++i) { |
| tl_lanes[i] = i & mask; |
| trbl_lanes[i] = (i & mask) + idx; |
| } |
| |
| tl = ac_build_quad_swizzle(ctx, val, tl_lanes[0], tl_lanes[1], tl_lanes[2], tl_lanes[3], false); |
| trbl = |
| ac_build_quad_swizzle(ctx, val, trbl_lanes[0], trbl_lanes[1], trbl_lanes[2], trbl_lanes[3], false); |
| |
| if (result_type == ctx->f16) { |
| tl = LLVMBuildTrunc(ctx->builder, tl, ctx->i16, ""); |
| trbl = LLVMBuildTrunc(ctx->builder, trbl, ctx->i16, ""); |
| } |
| |
| tl = LLVMBuildBitCast(ctx->builder, tl, result_type, ""); |
| trbl = LLVMBuildBitCast(ctx->builder, trbl, result_type, ""); |
| result = LLVMBuildFSub(ctx->builder, trbl, tl, ""); |
| |
| ac_build_type_name_for_intr(result_type, type, sizeof(type)); |
| snprintf(name, sizeof(name), "llvm.amdgcn.wqm.%s", type); |
| |
| return ac_build_intrinsic(ctx, name, result_type, &result, 1, 0); |
| } |
| |
| void ac_build_sendmsg(struct ac_llvm_context *ctx, uint32_t imm, LLVMValueRef m0_content) |
| { |
| LLVMValueRef args[2]; |
| args[0] = LLVMConstInt(ctx->i32, imm, false); |
| args[1] = m0_content; |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.sendmsg", ctx->voidt, args, 2, 0); |
| } |
| |
| LLVMValueRef ac_build_imsb(struct ac_llvm_context *ctx, LLVMValueRef arg, LLVMTypeRef dst_type) |
| { |
| LLVMValueRef msb = |
| ac_build_intrinsic(ctx, "llvm.amdgcn.sffbh.i32", dst_type, &arg, 1, 0); |
| |
| /* The HW returns the last bit index from MSB, but NIR/TGSI wants |
| * the index from LSB. Invert it by doing "31 - msb". */ |
| msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false), msb, ""); |
| |
| LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true); |
| LLVMValueRef cond = |
| LLVMBuildOr(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, ctx->i32_0, ""), |
| LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, all_ones, ""), ""); |
| |
| return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, ""); |
| } |
| |
| LLVMValueRef ac_build_umsb(struct ac_llvm_context *ctx, LLVMValueRef arg, LLVMTypeRef dst_type, |
| bool rev) |
| { |
| const char *intrin_name; |
| LLVMTypeRef type; |
| LLVMValueRef highest_bit; |
| LLVMValueRef zero; |
| unsigned bitsize; |
| |
| bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(arg)); |
| switch (bitsize) { |
| case 64: |
| intrin_name = "llvm.ctlz.i64"; |
| type = ctx->i64; |
| highest_bit = LLVMConstInt(ctx->i64, 63, false); |
| zero = ctx->i64_0; |
| break; |
| case 32: |
| intrin_name = "llvm.ctlz.i32"; |
| type = ctx->i32; |
| highest_bit = LLVMConstInt(ctx->i32, 31, false); |
| zero = ctx->i32_0; |
| break; |
| case 16: |
| intrin_name = "llvm.ctlz.i16"; |
| type = ctx->i16; |
| highest_bit = LLVMConstInt(ctx->i16, 15, false); |
| zero = ctx->i16_0; |
| break; |
| case 8: |
| intrin_name = "llvm.ctlz.i8"; |
| type = ctx->i8; |
| highest_bit = LLVMConstInt(ctx->i8, 7, false); |
| zero = ctx->i8_0; |
| break; |
| default: |
| unreachable("invalid bitsize"); |
| break; |
| } |
| |
| LLVMValueRef params[2] = { |
| arg, |
| ctx->i1true, |
| }; |
| |
| LLVMValueRef msb = ac_build_intrinsic(ctx, intrin_name, type, params, 2, 0); |
| |
| if (!rev) { |
| /* The HW returns the last bit index from MSB, but TGSI/NIR wants |
| * the index from LSB. Invert it by doing "31 - msb". */ |
| msb = LLVMBuildSub(ctx->builder, highest_bit, msb, ""); |
| } |
| |
| if (bitsize == 64) { |
| msb = LLVMBuildTrunc(ctx->builder, msb, ctx->i32, ""); |
| } else if (bitsize < 32) { |
| msb = LLVMBuildSExt(ctx->builder, msb, ctx->i32, ""); |
| } |
| |
| /* check for zero */ |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, zero, ""), |
| LLVMConstInt(ctx->i32, -1, true), msb, ""); |
| } |
| |
| LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| char name[64], type[64]; |
| |
| ac_build_type_name_for_intr(LLVMTypeOf(a), type, sizeof(type)); |
| snprintf(name, sizeof(name), "llvm.minnum.%s", type); |
| LLVMValueRef args[2] = {a, b}; |
| return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2, 0); |
| } |
| |
| LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| char name[64], type[64]; |
| |
| ac_build_type_name_for_intr(LLVMTypeOf(a), type, sizeof(type)); |
| snprintf(name, sizeof(name), "llvm.maxnum.%s", type); |
| LLVMValueRef args[2] = {a, b}; |
| return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2, 0); |
| } |
| |
| LLVMValueRef ac_build_imin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSLE, a, b, ""); |
| return LLVMBuildSelect(ctx->builder, cmp, a, b, ""); |
| } |
| |
| LLVMValueRef ac_build_imax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, a, b, ""); |
| return LLVMBuildSelect(ctx->builder, cmp, a, b, ""); |
| } |
| |
| LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, ""); |
| return LLVMBuildSelect(ctx->builder, cmp, a, b, ""); |
| } |
| |
| LLVMValueRef ac_build_umax(struct ac_llvm_context *ctx, LLVMValueRef a, LLVMValueRef b) |
| { |
| LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntUGE, a, b, ""); |
| return LLVMBuildSelect(ctx->builder, cmp, a, b, ""); |
| } |
| |
| LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value) |
| { |
| LLVMTypeRef t = LLVMTypeOf(value); |
| return ac_build_fmin(ctx, ac_build_fmax(ctx, value, LLVMConstReal(t, 0.0)), |
| LLVMConstReal(t, 1.0)); |
| } |
| |
| void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a) |
| { |
| LLVMValueRef args[9]; |
| |
| args[0] = LLVMConstInt(ctx->i32, a->target, 0); |
| args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0); |
| |
| if (a->compr) { |
| assert(ctx->gfx_level < GFX11); |
| |
| args[2] = LLVMBuildBitCast(ctx->builder, a->out[0], ctx->v2i16, ""); |
| args[3] = LLVMBuildBitCast(ctx->builder, a->out[1], ctx->v2i16, ""); |
| args[4] = LLVMConstInt(ctx->i1, a->done, 0); |
| args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0); |
| |
| ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16", ctx->voidt, args, 6, 0); |
| } else { |
| args[2] = LLVMBuildBitCast(ctx->builder, a->out[0], ctx->f32, ""); |
| args[3] = LLVMBuildBitCast(ctx->builder, a->out[1], ctx->f32, ""); |
| args[4] = LLVMBuildBitCast(ctx->builder, a->out[2], ctx->f32, ""); |
| args[5] = LLVMBuildBitCast(ctx->builder, a->out[3], ctx->f32, ""); |
| args[6] = LLVMConstInt(ctx->i1, a->done, 0); |
| args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0); |
| |
| ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32", ctx->voidt, args, 8, 0); |
| } |
| } |
| |
| void ac_build_export_null(struct ac_llvm_context *ctx, bool uses_discard) |
| { |
| struct ac_export_args args; |
| |
| /* Gfx10+ doesn't need to export anything if we don't need to export the EXEC mask |
| * for discard. |
| */ |
| if (ctx->gfx_level >= GFX10 && !uses_discard) |
| return; |
| |
| args.enabled_channels = 0x0; /* enabled channels */ |
| args.valid_mask = 1; /* whether the EXEC mask is valid */ |
| args.done = 1; /* DONE bit */ |
| /* Gfx11 doesn't support null exports, and mrt0 should be exported instead. */ |
| args.target = ctx->gfx_level >= GFX11 ? V_008DFC_SQ_EXP_MRT : V_008DFC_SQ_EXP_NULL; |
| args.compr = 0; /* COMPR flag (0 = 32-bit export) */ |
| args.out[0] = LLVMGetUndef(ctx->f32); /* R */ |
| args.out[1] = LLVMGetUndef(ctx->f32); /* G */ |
| args.out[2] = LLVMGetUndef(ctx->f32); /* B */ |
| args.out[3] = LLVMGetUndef(ctx->f32); /* A */ |
| |
| ac_build_export(ctx, &args); |
| } |
| |
| static unsigned ac_num_coords(enum ac_image_dim dim) |
| { |
| switch (dim) { |
| case ac_image_1d: |
| return 1; |
| case ac_image_2d: |
| case ac_image_1darray: |
| return 2; |
| case ac_image_3d: |
| case ac_image_cube: |
| case ac_image_2darray: |
| case ac_image_2dmsaa: |
| return 3; |
| case ac_image_2darraymsaa: |
| return 4; |
| default: |
| unreachable("ac_num_coords: bad dim"); |
| } |
| } |
| |
| static unsigned ac_num_derivs(enum ac_image_dim dim) |
| { |
| switch (dim) { |
| case ac_image_1d: |
| case ac_image_1darray: |
| return 2; |
| case ac_image_2d: |
| case ac_image_2darray: |
| case ac_image_cube: |
| return 4; |
| case ac_image_3d: |
| return 6; |
| case ac_image_2dmsaa: |
| case ac_image_2darraymsaa: |
| default: |
| unreachable("derivatives not supported"); |
| } |
| } |
| |
| static const char *get_atomic_name(enum ac_atomic_op op) |
| { |
| switch (op) { |
| case ac_atomic_swap: |
| return "swap"; |
| case ac_atomic_add: |
| return "add"; |
| case ac_atomic_sub: |
| return "sub"; |
| case ac_atomic_smin: |
| return "smin"; |
| case ac_atomic_umin: |
| return "umin"; |
| case ac_atomic_smax: |
| return "smax"; |
| case ac_atomic_umax: |
| return "umax"; |
| case ac_atomic_and: |
| return "and"; |
| case ac_atomic_or: |
| return "or"; |
| case ac_atomic_xor: |
| return "xor"; |
| case ac_atomic_inc_wrap: |
| return "inc"; |
| case ac_atomic_dec_wrap: |
| return "dec"; |
| case ac_atomic_fmin: |
| return "fmin"; |
| case ac_atomic_fmax: |
| return "fmax"; |
| } |
| unreachable("bad atomic op"); |
| } |
| |
| LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx, struct ac_image_args *a) |
| { |
| const char *overload[3] = {"", "", ""}; |
| unsigned num_overloads = 0; |
| LLVMValueRef args[18]; |
| unsigned num_args = 0; |
| enum ac_image_dim dim = a->dim; |
| |
| assert(!a->lod || a->lod == ctx->i32_0 || a->lod == ctx->f32_0 || !a->level_zero); |
| assert((a->opcode != ac_image_get_resinfo && a->opcode != ac_image_load_mip && |
| a->opcode != ac_image_store_mip) || |
| a->lod); |
| assert(a->opcode == ac_image_sample || a->opcode == ac_image_gather4 || |
| (!a->compare && !a->offset)); |
| assert((a->opcode == ac_image_sample || a->opcode == ac_image_gather4 || |
| a->opcode == ac_image_get_lod) || |
| !a->bias); |
| assert((a->bias ? 1 : 0) + (a->lod ? 1 : 0) + (a->level_zero ? 1 : 0) + (a->derivs[0] ? 1 : 0) <= |
| 1); |
| assert((a->min_lod ? 1 : 0) + (a->lod ? 1 : 0) + (a->level_zero ? 1 : 0) <= 1); |
| assert(!a->d16 || (ctx->gfx_level >= GFX8 && a->opcode != ac_image_atomic && |
| a->opcode != ac_image_atomic_cmpswap && a->opcode != ac_image_get_lod && |
| a->opcode != ac_image_get_resinfo)); |
| assert(!a->a16 || ctx->gfx_level >= GFX9); |
| assert(!a->derivs[0] || a->g16 == a->a16 || ctx->gfx_level >= GFX10); |
| |
| assert(!a->offset || |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->offset)) == 32); |
| assert(!a->bias || |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->coords[0])) == (a->a16 ? 16 : 32)); |
| assert(!a->compare || |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->compare)) == 32); |
| assert(!a->derivs[0] || |
| ((!a->g16 || ac_get_elem_bits(ctx, LLVMTypeOf(a->derivs[0])) == 16) && |
| (a->g16 || ac_get_elem_bits(ctx, LLVMTypeOf(a->derivs[0])) == 32))); |
| assert(!a->coords[0] || |
| ((!a->a16 || ac_get_elem_bits(ctx, LLVMTypeOf(a->coords[0])) == 16) && |
| (a->a16 || ac_get_elem_bits(ctx, LLVMTypeOf(a->coords[0])) == 32))); |
| assert(!a->lod || |
| ((a->opcode != ac_image_get_resinfo || ac_get_elem_bits(ctx, LLVMTypeOf(a->lod))) && |
| (a->opcode == ac_image_get_resinfo || |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->lod)) == |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->coords[0]))))); |
| assert(!a->min_lod || |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->min_lod)) == |
| ac_get_elem_bits(ctx, LLVMTypeOf(a->coords[0]))); |
| |
| if (a->opcode == ac_image_get_lod) { |
| switch (dim) { |
| case ac_image_1darray: |
| dim = ac_image_1d; |
| break; |
| case ac_image_2darray: |
| case ac_image_cube: |
| dim = ac_image_2d; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| bool sample = a->opcode == ac_image_sample || a->opcode == ac_image_gather4 || |
| a->opcode == ac_image_get_lod; |
| bool atomic = a->opcode == ac_image_atomic || a->opcode == ac_image_atomic_cmpswap; |
| bool load = a->opcode == ac_image_sample || a->opcode == ac_image_gather4 || |
| a->opcode == ac_image_load || a->opcode == ac_image_load_mip; |
| LLVMTypeRef coord_type = sample ? (a->a16 ? ctx->f16 : ctx->f32) : (a->a16 ? ctx->i16 : ctx->i32); |
| uint8_t dmask = a->dmask; |
| LLVMTypeRef data_type; |
| char data_type_str[32]; |
| |
| if (atomic) { |
| data_type = LLVMTypeOf(a->data[0]); |
| } else if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip) { |
| /* Image stores might have been shrunk using the format. */ |
| data_type = LLVMTypeOf(a->data[0]); |
| dmask = (1 << ac_get_llvm_num_components(a->data[0])) - 1; |
| } else { |
| data_type = a->d16 ? ctx->v4f16 : ctx->v4f32; |
| } |
| |
| if (a->tfe) { |
| data_type = LLVMStructTypeInContext( |
| ctx->context, (LLVMTypeRef[]){data_type, ctx->i32}, 2, false); |
| } |
| |
| if (atomic || a->opcode == ac_image_store || a->opcode == ac_image_store_mip) { |
| args[num_args++] = a->data[0]; |
| if (a->opcode == ac_image_atomic_cmpswap) |
| args[num_args++] = a->data[1]; |
| } |
| |
| if (!atomic) |
| args[num_args++] = LLVMConstInt(ctx->i32, dmask, false); |
| |
| if (a->offset) |
| args[num_args++] = ac_to_integer(ctx, a->offset); |
| if (a->bias) { |
| args[num_args++] = ac_to_float(ctx, a->bias); |
| overload[num_overloads++] = ".f32"; |
| } |
| if (a->compare) |
| args[num_args++] = ac_to_float(ctx, a->compare); |
| if (a->derivs[0]) { |
| unsigned count = ac_num_derivs(dim); |
| for (unsigned i = 0; i < count; ++i) |
| args[num_args++] = ac_to_float(ctx, a->derivs[i]); |
| overload[num_overloads++] = a->g16 ? ".f16" : ".f32"; |
| } |
| unsigned num_coords = a->opcode != ac_image_get_resinfo ? ac_num_coords(dim) : 0; |
| for (unsigned i = 0; i < num_coords; ++i) |
| args[num_args++] = LLVMBuildBitCast(ctx->builder, a->coords[i], coord_type, ""); |
| if (a->lod) |
| args[num_args++] = LLVMBuildBitCast(ctx->builder, a->lod, coord_type, ""); |
| if (a->min_lod) |
| args[num_args++] = LLVMBuildBitCast(ctx->builder, a->min_lod, coord_type, ""); |
| |
| overload[num_overloads++] = sample ? (a->a16 ? ".f16" : ".f32") : (a->a16 ? ".i16" : ".i32"); |
| |
| args[num_args++] = a->resource; |
| if (sample) { |
| args[num_args++] = a->sampler; |
| args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, false); |
| } |
| |
| args[num_args++] = a->tfe ? ctx->i32_1 : ctx->i32_0; /* texfailctrl */ |
| args[num_args++] = LLVMConstInt( |
| ctx->i32, get_cache_flags(ctx, |
| a->access | |
| (atomic ? ACCESS_TYPE_ATOMIC : |
| load ? ACCESS_TYPE_LOAD : ACCESS_TYPE_STORE)), |
| false); |
| |
| const char *name; |
| const char *atomic_subop = ""; |
| switch (a->opcode) { |
| case ac_image_sample: |
| name = "sample"; |
| break; |
| case ac_image_gather4: |
| name = "gather4"; |
| break; |
| case ac_image_load: |
| name = "load"; |
| break; |
| case ac_image_load_mip: |
| name = "load.mip"; |
| break; |
| case ac_image_store: |
| name = "store"; |
| break; |
| case ac_image_store_mip: |
| name = "store.mip"; |
| break; |
| case ac_image_atomic: |
| name = "atomic."; |
| atomic_subop = get_atomic_name(a->atomic); |
| break; |
| case ac_image_atomic_cmpswap: |
| name = "atomic."; |
| atomic_subop = "cmpswap"; |
| break; |
| case ac_image_get_lod: |
| name = "getlod"; |
| break; |
| case ac_image_get_resinfo: |
| name = "getresinfo"; |
| break; |
| default: |
| unreachable("invalid image opcode"); |
| } |
| |
| const char *dimname; |
| switch (dim) { |
| case ac_image_1d: |
| dimname = "1d"; |
| break; |
| case ac_image_2d: |
| dimname = "2d"; |
| break; |
| case ac_image_3d: |
| dimname = "3d"; |
| break; |
| case ac_image_cube: |
| dimname = "cube"; |
| break; |
| case ac_image_1darray: |
| dimname = "1darray"; |
| break; |
| case ac_image_2darray: |
| dimname = "2darray"; |
| break; |
| case ac_image_2dmsaa: |
| dimname = "2dmsaa"; |
| break; |
| case ac_image_2darraymsaa: |
| dimname = "2darraymsaa"; |
| break; |
| default: |
| unreachable("invalid dim"); |
| } |
| |
| ac_build_type_name_for_intr(data_type, data_type_str, sizeof(data_type_str)); |
| |
| bool lod_suffix = a->lod && (a->opcode == ac_image_sample || a->opcode == ac_image_gather4); |
| char intr_name[96]; |
| snprintf(intr_name, sizeof(intr_name), |
| "llvm.amdgcn.image.%s%s" /* base name */ |
| "%s%s%s%s" /* sample/gather modifiers */ |
| ".%s.%s%s%s%s", /* dimension and type overloads */ |
| name, atomic_subop, a->compare ? ".c" : "", |
| a->bias ? ".b" : lod_suffix ? ".l" : a->derivs[0] ? ".d" : a->level_zero ? ".lz" : "", |
| a->min_lod ? ".cl" : "", a->offset ? ".o" : "", dimname, |
| data_type_str, overload[0], overload[1], overload[2]); |
| |
| LLVMTypeRef retty; |
| if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip) |
| retty = ctx->voidt; |
| else |
| retty = data_type; |
| |
| LLVMValueRef result = ac_build_intrinsic(ctx, intr_name, retty, args, num_args, a->attributes); |
| if (a->tfe) { |
| LLVMValueRef texel = LLVMBuildExtractValue(ctx->builder, result, 0, ""); |
| LLVMValueRef code = LLVMBuildExtractValue(ctx->builder, result, 1, ""); |
| result = ac_build_concat(ctx, texel, ac_to_float(ctx, code)); |
| } |
| |
| if (!sample && !atomic && retty != ctx->voidt) |
| result = ac_to_integer(ctx, result); |
| |
| return result; |
| } |
| |
| LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx, LLVMValueRef args[2]) |
| { |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz", ctx->v2f16, args, 2, 0); |
| } |
| |
| LLVMValueRef ac_build_cvt_pknorm_i16(struct ac_llvm_context *ctx, LLVMValueRef args[2]) |
| { |
| LLVMValueRef res = ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.i16", ctx->v2i16, args, 2, 0); |
| return LLVMBuildBitCast(ctx->builder, res, ctx->i32, ""); |
| } |
| |
| LLVMValueRef ac_build_cvt_pknorm_u16(struct ac_llvm_context *ctx, LLVMValueRef args[2]) |
| { |
| LLVMValueRef res = ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.u16", ctx->v2i16, args, 2, 0); |
| return LLVMBuildBitCast(ctx->builder, res, ctx->i32, ""); |
| } |
| |
| LLVMValueRef ac_build_cvt_pknorm_i16_f16(struct ac_llvm_context *ctx, |
| LLVMValueRef args[2]) |
| { |
| LLVMTypeRef param_types[] = {ctx->f16, ctx->f16}; |
| LLVMTypeRef calltype = LLVMFunctionType(ctx->i32, param_types, 2, false); |
| LLVMValueRef code = LLVMConstInlineAsm(calltype, |
| ctx->gfx_level >= GFX11 ? |
| "v_cvt_pk_norm_i16_f16 $0, $1, $2" : |
| "v_cvt_pknorm_i16_f16 $0, $1, $2", |
| "=v,v,v", false, false); |
| return LLVMBuildCall2(ctx->builder, calltype, code, args, 2, ""); |
| } |
| |
| LLVMValueRef ac_build_cvt_pknorm_u16_f16(struct ac_llvm_context *ctx, |
| LLVMValueRef args[2]) |
| { |
| LLVMTypeRef param_types[] = {ctx->f16, ctx->f16}; |
| LLVMTypeRef calltype = LLVMFunctionType(ctx->i32, param_types, 2, false); |
| LLVMValueRef code = LLVMConstInlineAsm(calltype, |
| ctx->gfx_level >= GFX11 ? |
| "v_cvt_pk_norm_u16_f16 $0, $1, $2" : |
| "v_cvt_pknorm_u16_f16 $0, $1, $2", |
| "=v,v,v", false, false); |
| return LLVMBuildCall2(ctx->builder, calltype, code, args, 2, ""); |
| } |
| |
| /* The 8-bit and 10-bit clamping is for HW workarounds. */ |
| LLVMValueRef ac_build_cvt_pk_i16(struct ac_llvm_context *ctx, LLVMValueRef args[2], unsigned bits, |
| bool hi) |
| { |
| assert(bits == 8 || bits == 10 || bits == 16); |
| |
| LLVMValueRef max_rgb = LLVMConstInt(ctx->i32, bits == 8 ? 127 : bits == 10 ? 511 : 32767, 0); |
| LLVMValueRef min_rgb = LLVMConstInt(ctx->i32, bits == 8 ? -128 : bits == 10 ? -512 : -32768, 0); |
| LLVMValueRef max_alpha = bits != 10 ? max_rgb : ctx->i32_1; |
| LLVMValueRef min_alpha = bits != 10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0); |
| |
| /* Clamp. */ |
| if (bits != 16) { |
| for (int i = 0; i < 2; i++) { |
| bool alpha = hi && i == 1; |
| args[i] = ac_build_imin(ctx, args[i], alpha ? max_alpha : max_rgb); |
| args[i] = ac_build_imax(ctx, args[i], alpha ? min_alpha : min_rgb); |
| } |
| } |
| |
| LLVMValueRef res = |
| ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.i16", ctx->v2i16, args, 2, 0); |
| return LLVMBuildBitCast(ctx->builder, res, ctx->i32, ""); |
| } |
| |
| /* The 8-bit and 10-bit clamping is for HW workarounds. */ |
| LLVMValueRef ac_build_cvt_pk_u16(struct ac_llvm_context *ctx, LLVMValueRef args[2], unsigned bits, |
| bool hi) |
| { |
| assert(bits == 8 || bits == 10 || bits == 16); |
| |
| LLVMValueRef max_rgb = LLVMConstInt(ctx->i32, bits == 8 ? 255 : bits == 10 ? 1023 : 65535, 0); |
| LLVMValueRef max_alpha = bits != 10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0); |
| |
| /* Clamp. */ |
| if (bits != 16) { |
| for (int i = 0; i < 2; i++) { |
| bool alpha = hi && i == 1; |
| args[i] = ac_build_umin(ctx, args[i], alpha ? max_alpha : max_rgb); |
| } |
| } |
| |
| LLVMValueRef res = |
| ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.u16", ctx->v2i16, args, 2, 0); |
| return LLVMBuildBitCast(ctx->builder, res, ctx->i32, ""); |
| } |
| |
| LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1) |
| { |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1, &i1, 1, 0); |
| } |
| |
| void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1) |
| { |
| ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt, &i1, 1, 0); |
| } |
| |
| LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input, LLVMValueRef offset, |
| LLVMValueRef width, bool is_signed) |
| { |
| LLVMValueRef args[] = { |
| input, |
| offset, |
| width, |
| }; |
| |
| return ac_build_intrinsic(ctx, is_signed ? "llvm.amdgcn.sbfe.i32" : "llvm.amdgcn.ubfe.i32", |
| ctx->i32, args, 3, 0); |
| } |
| |
| LLVMValueRef ac_build_imad(struct ac_llvm_context *ctx, LLVMValueRef s0, LLVMValueRef s1, |
| LLVMValueRef s2) |
| { |
| return LLVMBuildAdd(ctx->builder, LLVMBuildMul(ctx->builder, s0, s1, ""), s2, ""); |
| } |
| |
| LLVMValueRef ac_build_fmad(struct ac_llvm_context *ctx, LLVMValueRef s0, LLVMValueRef s1, |
| LLVMValueRef s2) |
| { |
| /* FMA is better on GFX10, because it has FMA units instead of MUL-ADD units. */ |
| if (ctx->gfx_level >= GFX10) |
| return ac_build_intrinsic(ctx, "llvm.fma.f32", ctx->f32, (LLVMValueRef[]){s0, s1, s2}, 3, 0); |
| |
| return LLVMBuildFAdd(ctx->builder, LLVMBuildFMul(ctx->builder, s0, s1, ""), s2, ""); |
| } |
| |
| void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned wait_flags) |
| { |
| if (!wait_flags) |
| return; |
| |
| if (ctx->gfx_level >= GFX12) { |
| if (wait_flags & AC_WAIT_DS) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.dscnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_KM) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.kmcnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_EXP) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.expcnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_LOAD) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.loadcnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_STORE) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.storecnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_SAMPLE) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.samplecnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| if (wait_flags & AC_WAIT_BVH) |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.wait.bvhcnt", ctx->voidt, &ctx->i16_0, 1, 0); |
| } else { |
| unsigned expcnt = 7; |
| unsigned lgkmcnt = 63; |
| unsigned vmcnt = ctx->gfx_level >= GFX9 ? 63 : 15; |
| unsigned vscnt = 63; |
| |
| if (wait_flags & AC_WAIT_EXP) |
| expcnt = 0; |
| if (wait_flags & (AC_WAIT_DS | AC_WAIT_KM)) |
| lgkmcnt = 0; |
| if (wait_flags & (AC_WAIT_LOAD | AC_WAIT_SAMPLE | AC_WAIT_BVH)) |
| vmcnt = 0; |
| |
| if (wait_flags & AC_WAIT_STORE) { |
| if (ctx->gfx_level >= GFX10) |
| vscnt = 0; |
| else |
| vmcnt = 0; |
| } |
| |
| /* There is no intrinsic for vscnt(0), so use a fence. It waits for everything except expcnt. */ |
| if (vscnt == 0) { |
| assert(!(wait_flags & AC_WAIT_EXP)); |
| LLVMBuildFence(ctx->builder, LLVMAtomicOrderingRelease, false, ""); |
| return; |
| } |
| |
| unsigned simm16; |
| |
| if (ctx->gfx_level >= GFX11) |
| simm16 = expcnt | (lgkmcnt << 4) | (vmcnt << 10); |
| else |
| simm16 = (lgkmcnt << 8) | (expcnt << 4) | (vmcnt & 0xf) | ((vmcnt >> 4) << 14); |
| |
| LLVMValueRef args[1] = { |
| LLVMConstInt(ctx->i32, simm16, false), |
| }; |
| ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt", ctx->voidt, args, 1, 0); |
| } |
| } |
| |
| LLVMValueRef ac_build_fsat(struct ac_llvm_context *ctx, LLVMValueRef src, |
| LLVMTypeRef type) |
| { |
| unsigned bitsize = ac_get_elem_bits(ctx, type); |
| LLVMValueRef zero = LLVMConstReal(type, 0.0); |
| LLVMValueRef one = LLVMConstReal(type, 1.0); |
| LLVMValueRef result; |
| |
| if (bitsize == 64 || (bitsize == 16 && ctx->gfx_level <= GFX8) || type == ctx->v2f16) { |
| /* Use fmin/fmax for 64-bit fsat or 16-bit on GFX6-GFX8 because LLVM |
| * doesn't expose an intrinsic. |
| */ |
| result = ac_build_fmin(ctx, ac_build_fmax(ctx, src, zero), one); |
| } else { |
| LLVMTypeRef type; |
| char *intr; |
| |
| if (bitsize == 16) { |
| intr = "llvm.amdgcn.fmed3.f16"; |
| type = ctx->f16; |
| } else { |
| assert(bitsize == 32); |
| intr = "llvm.amdgcn.fmed3.f32"; |
| type = ctx->f32; |
| } |
| |
| LLVMValueRef params[] = { |
| zero, |
| one, |
| src, |
| }; |
| |
| result = ac_build_intrinsic(ctx, intr, type, params, 3, 0); |
| } |
| |
| if (ctx->gfx_level < GFX9 && bitsize == 32) { |
| /* Only pre-GFX9 chips do not flush denorms. */ |
| result = ac_build_canonicalize(ctx, result, bitsize); |
| } |
| |
| return result; |
| } |
| |
| LLVMValueRef ac_build_fract(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) |
| { |
| LLVMTypeRef type; |
| char *intr; |
| |
| if (bitsize == 16) { |
| intr = "llvm.amdgcn.fract.f16"; |
| type = ctx->f16; |
| } else if (bitsize == 32) { |
| intr = "llvm.amdgcn.fract.f32"; |
| type = ctx->f32; |
| } else { |
| intr = "llvm.amdgcn.fract.f64"; |
| type = ctx->f64; |
| } |
| |
| LLVMValueRef params[] = { |
| src0, |
| }; |
| return ac_build_intrinsic(ctx, intr, type, params, 1, 0); |
| } |
| |
| LLVMValueRef ac_const_uint_vec(struct ac_llvm_context *ctx, LLVMTypeRef type, uint64_t value) |
| { |
| |
| if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) { |
| LLVMValueRef scalar = LLVMConstInt(LLVMGetElementType(type), value, 0); |
| unsigned vec_size = LLVMGetVectorSize(type); |
| LLVMValueRef *scalars = alloca(vec_size * sizeof(LLVMValueRef)); |
| |
| for (unsigned i = 0; i < vec_size; i++) |
| scalars[i] = scalar; |
| return LLVMConstVector(scalars, vec_size); |
| } |
| return LLVMConstInt(type, value, 0); |
| } |
| |
| LLVMValueRef ac_build_isign(struct ac_llvm_context *ctx, LLVMValueRef src0) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src0); |
| LLVMValueRef val; |
| |
| /* v_med3 is selected only when max is first. (LLVM bug?) */ |
| val = ac_build_imax(ctx, src0, ac_const_uint_vec(ctx, type, -1)); |
| return ac_build_imin(ctx, val, ac_const_uint_vec(ctx, type, 1)); |
| } |
| |
| static LLVMValueRef ac_eliminate_negative_zero(struct ac_llvm_context *ctx, LLVMValueRef val) |
| { |
| ac_enable_signed_zeros(ctx); |
| /* (val + 0) converts negative zero to positive zero. */ |
| val = LLVMBuildFAdd(ctx->builder, val, LLVMConstNull(LLVMTypeOf(val)), ""); |
| ac_disable_signed_zeros(ctx); |
| return val; |
| } |
| |
| LLVMValueRef ac_build_fsign(struct ac_llvm_context *ctx, LLVMValueRef src) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src); |
| LLVMValueRef pos, neg, dw[2], val; |
| unsigned bitsize = ac_get_elem_bits(ctx, type); |
| |
| /* The standard version leads to this: |
| * v_cmp_ngt_f32_e64 s[0:1], s4, 0 ; D40B0000 00010004 |
| * v_cndmask_b32_e64 v4, 1.0, s4, s[0:1] ; D5010004 000008F2 |
| * v_cmp_le_f32_e32 vcc, 0, v4 ; 7C060880 |
| * v_cndmask_b32_e32 v4, -1.0, v4, vcc ; 020808F3 |
| * |
| * The isign version: |
| * v_add_f32_e64 v4, s4, 0 ; D5030004 00010004 |
| * v_med3_i32 v4, v4, -1, 1 ; D5580004 02058304 |
| * v_cvt_f32_i32_e32 v4, v4 ; 7E080B04 |
| * |
| * (src0 + 0) converts negative zero to positive zero. |
| * After that, int(fsign(x)) == isign(floatBitsToInt(x)). |
| * |
| * For FP64, use the standard version, which doesn't suffer from the huge DP rate |
| * reduction. (FP64 comparisons are as fast as int64 comparisons) |
| */ |
| if (bitsize == 16 || bitsize == 32) { |
| val = ac_to_integer(ctx, ac_eliminate_negative_zero(ctx, src)); |
| val = ac_build_isign(ctx, val); |
| return LLVMBuildSIToFP(ctx->builder, val, type, ""); |
| } |
| |
| assert(bitsize == 64); |
| pos = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src, ctx->f64_0, ""); |
| neg = LLVMBuildFCmp(ctx->builder, LLVMRealOLT, src, ctx->f64_0, ""); |
| dw[0] = ctx->i32_0; |
| dw[1] = LLVMBuildSelect( |
| ctx->builder, pos, LLVMConstInt(ctx->i32, 0x3FF00000, 0), |
| LLVMBuildSelect(ctx->builder, neg, LLVMConstInt(ctx->i32, 0xBFF00000, 0), ctx->i32_0, ""), |
| ""); |
| return LLVMBuildBitCast(ctx->builder, ac_build_gather_values(ctx, dw, 2), ctx->f64, ""); |
| } |
| |
| LLVMValueRef ac_build_bit_count(struct ac_llvm_context *ctx, LLVMValueRef src0) |
| { |
| LLVMValueRef result; |
| unsigned bitsize; |
| |
| bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0)); |
| |
| switch (bitsize) { |
| case 128: |
| result = ac_build_intrinsic(ctx, "llvm.ctpop.i128", ctx->i128, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, ""); |
| break; |
| case 64: |
| result = ac_build_intrinsic(ctx, "llvm.ctpop.i64", ctx->i64, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, ""); |
| break; |
| case 32: |
| result = ac_build_intrinsic(ctx, "llvm.ctpop.i32", ctx->i32, (LLVMValueRef[]){src0}, 1, 0); |
| break; |
| case 16: |
| result = ac_build_intrinsic(ctx, "llvm.ctpop.i16", ctx->i16, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildZExt(ctx->builder, result, ctx->i32, ""); |
| break; |
| case 8: |
| result = ac_build_intrinsic(ctx, "llvm.ctpop.i8", ctx->i8, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildZExt(ctx->builder, result, ctx->i32, ""); |
| break; |
| default: |
| unreachable("invalid bitsize"); |
| break; |
| } |
| |
| return result; |
| } |
| |
| LLVMValueRef ac_build_bitfield_reverse(struct ac_llvm_context *ctx, LLVMValueRef src0) |
| { |
| LLVMValueRef result; |
| unsigned bitsize; |
| |
| bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0)); |
| |
| switch (bitsize) { |
| case 64: |
| result = ac_build_intrinsic(ctx, "llvm.bitreverse.i64", ctx->i64, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, ""); |
| break; |
| case 32: |
| result = ac_build_intrinsic(ctx, "llvm.bitreverse.i32", ctx->i32, (LLVMValueRef[]){src0}, 1, 0); |
| break; |
| case 16: |
| result = ac_build_intrinsic(ctx, "llvm.bitreverse.i16", ctx->i16, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildZExt(ctx->builder, result, ctx->i32, ""); |
| break; |
| case 8: |
| result = ac_build_intrinsic(ctx, "llvm.bitreverse.i8", ctx->i8, (LLVMValueRef[]){src0}, 1, 0); |
| result = LLVMBuildZExt(ctx->builder, result, ctx->i32, ""); |
| break; |
| default: |
| unreachable("invalid bitsize"); |
| break; |
| } |
| |
| return result; |
| } |
| |
| LLVMValueRef ac_build_sudot_4x8(struct ac_llvm_context *ctx, LLVMValueRef s0, LLVMValueRef s1, |
| LLVMValueRef s2, bool clamp, unsigned neg_lo) |
| { |
| const char *name = "llvm.amdgcn.sudot4"; |
| LLVMValueRef src[6]; |
| |
| src[0] = LLVMConstInt(ctx->i1, !!(neg_lo & 0x1), false); |
| src[1] = s0; |
| src[2] = LLVMConstInt(ctx->i1, !!(neg_lo & 0x2), false); |
| src[3] = s1; |
| src[4] = s2; |
| src[5] = LLVMConstInt(ctx->i1, clamp, false); |
| |
| return ac_build_intrinsic(ctx, name, ctx->i32, src, 6, 0); |
| } |
| |
| void ac_init_exec_full_mask(struct ac_llvm_context *ctx) |
| { |
| LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0); |
| ac_build_intrinsic(ctx, "llvm.amdgcn.init.exec", ctx->voidt, &full_mask, 1, 0); |
| } |
| |
| void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx) |
| { |
| unsigned lds_size = ctx->gfx_level >= GFX7 ? 65536 : 32768; |
| LLVMTypeRef type = LLVMArrayType(ctx->i32, lds_size / 4); |
| ctx->lds = (struct ac_llvm_pointer) { |
| .value = LLVMBuildIntToPtr(ctx->builder, ctx->i32_0, |
| LLVMPointerType(type, AC_ADDR_SPACE_LDS), "lds"), |
| .pointee_type = type |
| }; |
| } |
| |
| LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx, LLVMTypeRef dst_type, LLVMValueRef src0) |
| { |
| unsigned src0_bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0)); |
| const char *intrin_name; |
| LLVMTypeRef type; |
| LLVMValueRef zero; |
| |
| switch (src0_bitsize) { |
| case 64: |
| intrin_name = "llvm.cttz.i64"; |
| type = ctx->i64; |
| zero = ctx->i64_0; |
| break; |
| case 32: |
| intrin_name = "llvm.cttz.i32"; |
| type = ctx->i32; |
| zero = ctx->i32_0; |
| break; |
| case 16: |
| intrin_name = "llvm.cttz.i16"; |
| type = ctx->i16; |
| zero = ctx->i16_0; |
| break; |
| case 8: |
| intrin_name = "llvm.cttz.i8"; |
| type = ctx->i8; |
| zero = ctx->i8_0; |
| break; |
| default: |
| unreachable("invalid bitsize"); |
| } |
| |
| LLVMValueRef params[2] = { |
| src0, |
| |
| /* The value of 1 means that ffs(x=0) = undef, so LLVM won't |
| * add special code to check for x=0. The reason is that |
| * the LLVM behavior for x=0 is different from what we |
| * need here. However, LLVM also assumes that ffs(x) is |
| * in [0, 31], but GLSL expects that ffs(0) = -1, so |
| * a conditional assignment to handle 0 is still required. |
| * |
| * The hardware already implements the correct behavior. |
| */ |
| ctx->i1true, |
| }; |
| |
| LLVMValueRef lsb = ac_build_intrinsic(ctx, intrin_name, type, params, 2, 0); |
| |
| if (src0_bitsize == 64) { |
| lsb = LLVMBuildTrunc(ctx->builder, lsb, ctx->i32, ""); |
| } else if (src0_bitsize < 32) { |
| lsb = LLVMBuildSExt(ctx->builder, lsb, ctx->i32, ""); |
| } |
| |
| /* TODO: We need an intrinsic to skip this conditional. */ |
| /* Check for zero: */ |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntEQ, src0, zero, ""), |
| LLVMConstInt(ctx->i32, -1, 0), lsb, ""); |
| } |
| |
| LLVMTypeRef ac_arg_type_to_pointee_type(struct ac_llvm_context *ctx, enum ac_arg_type type) { |
| switch (type) { |
| case AC_ARG_CONST_PTR: |
| return ctx->i8; |
| break; |
| case AC_ARG_CONST_FLOAT_PTR: |
| return ctx->f32; |
| break; |
| case AC_ARG_CONST_PTR_PTR: |
| return ac_array_in_const32_addr_space(ctx->i8); |
| break; |
| case AC_ARG_CONST_DESC_PTR: |
| return ctx->v4i32; |
| break; |
| case AC_ARG_CONST_IMAGE_PTR: |
| return ctx->v8i32; |
| default: |
| /* Other ac_arg_type values aren't pointers. */ |
| assert(false); |
| return NULL; |
| } |
| } |
| |
| LLVMTypeRef ac_array_in_const_addr_space(LLVMTypeRef elem_type) |
| { |
| return LLVMPointerType(elem_type, AC_ADDR_SPACE_CONST); |
| } |
| |
| LLVMTypeRef ac_array_in_const32_addr_space(LLVMTypeRef elem_type) |
| { |
| return LLVMPointerType(elem_type, AC_ADDR_SPACE_CONST_32BIT); |
| } |
| |
| static struct ac_llvm_flow *get_current_flow(struct ac_llvm_context *ctx) |
| { |
| if (ctx->flow->depth > 0) |
| return &ctx->flow->stack[ctx->flow->depth - 1]; |
| return NULL; |
| } |
| |
| static struct ac_llvm_flow *get_innermost_loop(struct ac_llvm_context *ctx) |
| { |
| for (unsigned i = ctx->flow->depth; i > 0; --i) { |
| if (ctx->flow->stack[i - 1].loop_entry_block) |
| return &ctx->flow->stack[i - 1]; |
| } |
| return NULL; |
| } |
| |
| static struct ac_llvm_flow *push_flow(struct ac_llvm_context *ctx) |
| { |
| struct ac_llvm_flow *flow; |
| |
| if (ctx->flow->depth >= ctx->flow->depth_max) { |
| unsigned new_max = MAX2(ctx->flow->depth << 1, AC_LLVM_INITIAL_CF_DEPTH); |
| |
| ctx->flow->stack = realloc(ctx->flow->stack, new_max * sizeof(*ctx->flow->stack)); |
| ctx->flow->depth_max = new_max; |
| } |
| |
| flow = &ctx->flow->stack[ctx->flow->depth]; |
| ctx->flow->depth++; |
| |
| flow->next_block = NULL; |
| flow->loop_entry_block = NULL; |
| return flow; |
| } |
| |
| static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base, int label_id) |
| { |
| char buf[32]; |
| snprintf(buf, sizeof(buf), "%s%d", base, label_id); |
| LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf); |
| } |
| |
| /* Append a basic block at the level of the parent flow. |
| */ |
| static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx, const char *name) |
| { |
| assert(ctx->flow->depth >= 1); |
| |
| if (ctx->flow->depth >= 2) { |
| struct ac_llvm_flow *flow = &ctx->flow->stack[ctx->flow->depth - 2]; |
| |
| return LLVMInsertBasicBlockInContext(ctx->context, flow->next_block, name); |
| } |
| |
| LLVMValueRef main_fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder)); |
| return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name); |
| } |
| |
| /* Emit a branch to the given default target for the current block if |
| * applicable -- that is, if the current block does not already contain a |
| * branch from a break or continue. |
| */ |
| static void emit_default_branch(LLVMBuilderRef builder, LLVMBasicBlockRef target) |
| { |
| if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder))) |
| LLVMBuildBr(builder, target); |
| } |
| |
| void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id) |
| { |
| struct ac_llvm_flow *flow = push_flow(ctx); |
| flow->loop_entry_block = append_basic_block(ctx, "LOOP"); |
| flow->next_block = append_basic_block(ctx, "ENDLOOP"); |
| set_basicblock_name(flow->loop_entry_block, "loop", label_id); |
| LLVMBuildBr(ctx->builder, flow->loop_entry_block); |
| LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block); |
| } |
| |
| void ac_build_break(struct ac_llvm_context *ctx) |
| { |
| struct ac_llvm_flow *flow = get_innermost_loop(ctx); |
| LLVMBuildBr(ctx->builder, flow->next_block); |
| } |
| |
| void ac_build_continue(struct ac_llvm_context *ctx) |
| { |
| struct ac_llvm_flow *flow = get_innermost_loop(ctx); |
| LLVMBuildBr(ctx->builder, flow->loop_entry_block); |
| } |
| |
| void ac_build_else(struct ac_llvm_context *ctx, int label_id) |
| { |
| struct ac_llvm_flow *current_branch = get_current_flow(ctx); |
| LLVMBasicBlockRef endif_block; |
| |
| assert(!current_branch->loop_entry_block); |
| |
| endif_block = append_basic_block(ctx, "ENDIF"); |
| emit_default_branch(ctx->builder, endif_block); |
| |
| LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block); |
| set_basicblock_name(current_branch->next_block, "else", label_id); |
| |
| current_branch->next_block = endif_block; |
| } |
| |
| void ac_build_endif(struct ac_llvm_context *ctx, int label_id) |
| { |
| struct ac_llvm_flow *current_branch = get_current_flow(ctx); |
| |
| assert(!current_branch->loop_entry_block); |
| |
| emit_default_branch(ctx->builder, current_branch->next_block); |
| LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block); |
| set_basicblock_name(current_branch->next_block, "endif", label_id); |
| |
| ctx->flow->depth--; |
| } |
| |
| void ac_build_endloop(struct ac_llvm_context *ctx, int label_id) |
| { |
| struct ac_llvm_flow *current_loop = get_current_flow(ctx); |
| |
| assert(current_loop->loop_entry_block); |
| |
| emit_default_branch(ctx->builder, current_loop->loop_entry_block); |
| |
| LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block); |
| set_basicblock_name(current_loop->next_block, "endloop", label_id); |
| ctx->flow->depth--; |
| } |
| |
| void ac_build_ifcc(struct ac_llvm_context *ctx, LLVMValueRef cond, int label_id) |
| { |
| struct ac_llvm_flow *flow = push_flow(ctx); |
| LLVMBasicBlockRef if_block; |
| |
| if_block = append_basic_block(ctx, "IF"); |
| flow->next_block = append_basic_block(ctx, "ELSE"); |
| set_basicblock_name(if_block, "if", label_id); |
| LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block); |
| LLVMPositionBuilderAtEnd(ctx->builder, if_block); |
| } |
| |
| LLVMValueRef ac_build_alloca_undef(struct ac_llvm_context *ac, LLVMTypeRef type, const char *name) |
| { |
| LLVMBuilderRef builder = ac->builder; |
| LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder); |
| LLVMValueRef function = LLVMGetBasicBlockParent(current_block); |
| LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function); |
| LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block); |
| LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context); |
| LLVMValueRef res; |
| |
| if (first_instr) { |
| LLVMPositionBuilderBefore(first_builder, first_instr); |
| } else { |
| LLVMPositionBuilderAtEnd(first_builder, first_block); |
| } |
| |
| res = LLVMBuildAlloca(first_builder, type, name); |
| LLVMDisposeBuilder(first_builder); |
| return res; |
| } |
| |
| LLVMValueRef ac_trim_vector(struct ac_llvm_context *ctx, LLVMValueRef value, unsigned count) |
| { |
| unsigned num_components = ac_get_llvm_num_components(value); |
| if (count == num_components) |
| return value; |
| |
| LLVMValueRef *const masks = alloca(MAX2(count, 2) * sizeof(LLVMValueRef)); |
| masks[0] = ctx->i32_0; |
| masks[1] = ctx->i32_1; |
| for (unsigned i = 2; i < count; i++) |
| masks[i] = LLVMConstInt(ctx->i32, i, false); |
| |
| if (count == 1) |
| return LLVMBuildExtractElement(ctx->builder, value, masks[0], ""); |
| |
| LLVMValueRef swizzle = LLVMConstVector(masks, count); |
| return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, ""); |
| } |
| |
| /* If param is i64 and bitwidth <= 32, the return value will be i32. */ |
| LLVMValueRef ac_unpack_param(struct ac_llvm_context *ctx, LLVMValueRef param, unsigned rshift, |
| unsigned bitwidth) |
| { |
| LLVMValueRef value = param; |
| if (rshift) |
| value = LLVMBuildLShr(ctx->builder, value, LLVMConstInt(LLVMTypeOf(param), rshift, false), ""); |
| |
| if (rshift + bitwidth < 32) { |
| uint64_t mask = (1ull << bitwidth) - 1; |
| value = LLVMBuildAnd(ctx->builder, value, LLVMConstInt(LLVMTypeOf(param), mask, false), ""); |
| } |
| |
| if (bitwidth <= 32 && LLVMTypeOf(param) == ctx->i64) |
| value = LLVMBuildTrunc(ctx->builder, value, ctx->i32, ""); |
| return value; |
| } |
| |
| static LLVMValueRef _ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, |
| LLVMValueRef lane, bool with_opt_barrier) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src); |
| LLVMValueRef result; |
| |
| if (with_opt_barrier) |
| ac_build_optimization_barrier(ctx, &src, false); |
| |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| if (lane) |
| lane = LLVMBuildZExt(ctx->builder, lane, ctx->i32, ""); |
| |
| result = |
| ac_build_intrinsic(ctx, lane == NULL ? "llvm.amdgcn.readfirstlane" : "llvm.amdgcn.readlane", |
| ctx->i32, (LLVMValueRef[]){src, lane}, lane == NULL ? 1 : 2, 0); |
| |
| return LLVMBuildTrunc(ctx->builder, result, type, ""); |
| } |
| |
| static LLVMValueRef ac_build_readlane_common(struct ac_llvm_context *ctx, LLVMValueRef src, |
| LLVMValueRef lane, bool with_opt_barrier) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| src = ac_to_integer(ctx, src); |
| unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src)); |
| LLVMValueRef ret; |
| |
| if (bits > 32) { |
| assert(bits % 32 == 0); |
| LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32); |
| LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, ""); |
| ret = LLVMGetUndef(vec_type); |
| for (unsigned i = 0; i < bits / 32; i++) { |
| LLVMValueRef ret_comp; |
| |
| src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), ""); |
| |
| ret_comp = _ac_build_readlane(ctx, src, lane, with_opt_barrier); |
| |
| ret = |
| LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), ""); |
| } |
| } else { |
| ret = _ac_build_readlane(ctx, src, lane, with_opt_barrier); |
| } |
| |
| if (LLVMGetTypeKind(src_type) == LLVMPointerTypeKind) |
| return LLVMBuildIntToPtr(ctx->builder, ret, src_type, ""); |
| return LLVMBuildBitCast(ctx->builder, ret, src_type, ""); |
| } |
| |
| LLVMValueRef ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane) |
| { |
| return ac_build_readlane_common(ctx, src, lane, true); |
| } |
| |
| LLVMValueRef ac_build_writelane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef value, |
| LLVMValueRef lane) |
| { |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.writelane", ctx->i32, |
| (LLVMValueRef[]){value, lane, src}, 3, 0); |
| } |
| |
| LLVMValueRef ac_build_mbcnt_add(struct ac_llvm_context *ctx, LLVMValueRef mask, LLVMValueRef add_src) |
| { |
| LLVMValueRef add = LLVM_VERSION_MAJOR >= 16 ? add_src : ctx->i32_0; |
| LLVMValueRef val; |
| |
| if (ctx->wave_size == 32) { |
| if (LLVMTypeOf(mask) == ctx->i64) |
| mask = LLVMBuildTrunc(ctx->builder, mask, ctx->i32, ""); |
| |
| val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32, |
| (LLVMValueRef[]){mask, add}, 2, 0); |
| } else { |
| LLVMValueRef mask_vec = LLVMBuildBitCast(ctx->builder, mask, ctx->v2i32, ""); |
| LLVMValueRef mask_lo = LLVMBuildExtractElement(ctx->builder, mask_vec, ctx->i32_0, ""); |
| LLVMValueRef mask_hi = LLVMBuildExtractElement(ctx->builder, mask_vec, ctx->i32_1, ""); |
| val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32, |
| (LLVMValueRef[]){mask_lo, add}, 2, 0); |
| val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi", ctx->i32, (LLVMValueRef[]){mask_hi, val}, |
| 2, 0); |
| } |
| |
| if (add == ctx->i32_0) |
| ac_set_range_metadata(ctx, val, 0, ctx->wave_size); |
| |
| if (LLVM_VERSION_MAJOR < 16) { |
| /* Bug workaround. LLVM always believes the upper bound of mbcnt to be the wave size, |
| * regardless of ac_set_range_metadata. Use an extra add instruction to work around it. |
| */ |
| ac_set_range_metadata(ctx, val, 0, ctx->wave_size); |
| val = LLVMBuildAdd(ctx->builder, val, add_src, ""); |
| } |
| |
| return val; |
| } |
| |
| LLVMValueRef ac_build_mbcnt(struct ac_llvm_context *ctx, LLVMValueRef mask) |
| { |
| return ac_build_mbcnt_add(ctx, mask, ctx->i32_0); |
| } |
| |
| enum dpp_ctrl |
| { |
| _dpp_quad_perm = 0x000, |
| _dpp_row_sl = 0x100, |
| _dpp_row_sr = 0x110, |
| _dpp_row_rr = 0x120, |
| dpp_wf_sl1 = 0x130, |
| dpp_wf_rl1 = 0x134, |
| dpp_wf_sr1 = 0x138, |
| dpp_wf_rr1 = 0x13C, |
| dpp_row_mirror = 0x140, |
| dpp_row_half_mirror = 0x141, |
| dpp_row_bcast15 = 0x142, |
| dpp_row_bcast31 = 0x143 |
| }; |
| |
| static inline enum dpp_ctrl dpp_quad_perm(unsigned lane0, unsigned lane1, unsigned lane2, |
| unsigned lane3) |
| { |
| assert(lane0 < 4 && lane1 < 4 && lane2 < 4 && lane3 < 4); |
| return _dpp_quad_perm | lane0 | (lane1 << 2) | (lane2 << 4) | (lane3 << 6); |
| } |
| |
| static inline enum dpp_ctrl dpp_row_sr(unsigned amount) |
| { |
| assert(amount > 0 && amount < 16); |
| return _dpp_row_sr | amount; |
| } |
| |
| static LLVMValueRef _ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src, |
| enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask, |
| bool bound_ctrl, bool use_wqm) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src); |
| LLVMValueRef res; |
| |
| old = LLVMBuildZExt(ctx->builder, old, ctx->i32, ""); |
| if (use_wqm) |
| old = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.i32", ctx->i32, &old, 1, 0); |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| if (use_wqm) |
| src = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.i32", ctx->i32, &src, 1, 0); |
| |
| res = ac_build_intrinsic( |
| ctx, "llvm.amdgcn.update.dpp.i32", ctx->i32, |
| (LLVMValueRef[]){old, src, LLVMConstInt(ctx->i32, dpp_ctrl, 0), |
| LLVMConstInt(ctx->i32, row_mask, 0), LLVMConstInt(ctx->i32, bank_mask, 0), |
| LLVMConstInt(ctx->i1, bound_ctrl, 0)}, |
| 6, 0); |
| |
| if (use_wqm) |
| res = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.i32", ctx->i32, &res, 1, 0); |
| |
| return LLVMBuildTrunc(ctx->builder, res, type, ""); |
| } |
| |
| static LLVMValueRef ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src, |
| enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask, |
| bool bound_ctrl, bool use_wqm) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| src = ac_to_integer(ctx, src); |
| if (use_wqm) |
| src = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.i32", ctx->i32, &src, 1, 0); |
| old = ac_to_integer(ctx, old); |
| if (use_wqm) |
| old = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.i32", ctx->i32, &old, 1, 0); |
| unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src)); |
| LLVMValueRef ret; |
| if (bits > 32) { |
| assert(bits % 32 == 0); |
| LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32); |
| LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, ""); |
| LLVMValueRef old_vector = LLVMBuildBitCast(ctx->builder, old, vec_type, ""); |
| ret = LLVMGetUndef(vec_type); |
| for (unsigned i = 0; i < bits / 32; i++) { |
| src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), ""); |
| old = LLVMBuildExtractElement(ctx->builder, old_vector, LLVMConstInt(ctx->i32, i, 0), ""); |
| LLVMValueRef ret_comp = |
| _ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask, bank_mask, bound_ctrl, use_wqm); |
| ret = |
| LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), ""); |
| } |
| } else { |
| ret = _ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask, bank_mask, bound_ctrl, use_wqm); |
| } |
| return LLVMBuildBitCast(ctx->builder, ret, src_type, ""); |
| } |
| |
| static LLVMValueRef _ac_build_permlane16(struct ac_llvm_context *ctx, LLVMValueRef src, |
| uint64_t sel, bool exchange_rows, bool bound_ctrl) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src); |
| LLVMValueRef result; |
| |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| |
| LLVMValueRef args[6] = { |
| src, |
| src, |
| LLVMConstInt(ctx->i32, sel, false), |
| LLVMConstInt(ctx->i32, sel >> 32, false), |
| ctx->i1true, /* fi */ |
| bound_ctrl ? ctx->i1true : ctx->i1false, |
| }; |
| |
| result = |
| ac_build_intrinsic(ctx, exchange_rows ? "llvm.amdgcn.permlanex16" : "llvm.amdgcn.permlane16", |
| ctx->i32, args, 6, 0); |
| |
| return LLVMBuildTrunc(ctx->builder, result, type, ""); |
| } |
| |
| static LLVMValueRef ac_build_permlane16(struct ac_llvm_context *ctx, LLVMValueRef src, uint64_t sel, |
| bool exchange_rows, bool bound_ctrl) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| src = ac_to_integer(ctx, src); |
| unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src)); |
| LLVMValueRef ret; |
| if (bits > 32) { |
| assert(bits % 32 == 0); |
| LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32); |
| LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, ""); |
| ret = LLVMGetUndef(vec_type); |
| for (unsigned i = 0; i < bits / 32; i++) { |
| src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), ""); |
| LLVMValueRef ret_comp = _ac_build_permlane16(ctx, src, sel, exchange_rows, bound_ctrl); |
| ret = |
| LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), ""); |
| } |
| } else { |
| ret = _ac_build_permlane16(ctx, src, sel, exchange_rows, bound_ctrl); |
| } |
| return LLVMBuildBitCast(ctx->builder, ret, src_type, ""); |
| } |
| |
| static inline unsigned ds_pattern_bitmode(unsigned and_mask, unsigned or_mask, unsigned xor_mask) |
| { |
| assert(and_mask < 32 && or_mask < 32 && xor_mask < 32); |
| return and_mask | (or_mask << 5) | (xor_mask << 10); |
| } |
| |
| static LLVMValueRef _ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, |
| unsigned mask) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| LLVMValueRef ret; |
| |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| |
| ret = ac_build_intrinsic(ctx, "llvm.amdgcn.ds.swizzle", ctx->i32, |
| (LLVMValueRef[]){src, LLVMConstInt(ctx->i32, mask, 0)}, 2, |
| 0); |
| |
| return LLVMBuildTrunc(ctx->builder, ret, src_type, ""); |
| } |
| |
| LLVMValueRef ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| src = ac_to_integer(ctx, src); |
| unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src)); |
| LLVMValueRef ret; |
| if (bits > 32) { |
| assert(bits % 32 == 0); |
| LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32); |
| LLVMValueRef src_vector = LLVMBuildBitCast(ctx->builder, src, vec_type, ""); |
| ret = LLVMGetUndef(vec_type); |
| for (unsigned i = 0; i < bits / 32; i++) { |
| src = LLVMBuildExtractElement(ctx->builder, src_vector, LLVMConstInt(ctx->i32, i, 0), ""); |
| LLVMValueRef ret_comp = _ac_build_ds_swizzle(ctx, src, mask); |
| ret = |
| LLVMBuildInsertElement(ctx->builder, ret, ret_comp, LLVMConstInt(ctx->i32, i, 0), ""); |
| } |
| } else { |
| ret = _ac_build_ds_swizzle(ctx, src, mask); |
| } |
| return LLVMBuildBitCast(ctx->builder, ret, src_type, ""); |
| } |
| |
| static LLVMValueRef ac_build_mode(struct ac_llvm_context *ctx, LLVMValueRef src, const char *mode) |
| { |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| unsigned bitsize = ac_get_elem_bits(ctx, src_type); |
| char name[32], type[8]; |
| LLVMValueRef ret; |
| |
| src = ac_to_integer(ctx, src); |
| |
| if (bitsize < 32) |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| |
| ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type)); |
| snprintf(name, sizeof(name), "llvm.amdgcn.%s.%s", mode, type); |
| ret = ac_build_intrinsic(ctx, name, LLVMTypeOf(src), (LLVMValueRef[]){src}, 1, 0); |
| |
| if (bitsize < 32) |
| ret = LLVMBuildTrunc(ctx->builder, ret, ac_to_integer_type(ctx, src_type), ""); |
| |
| return LLVMBuildBitCast(ctx->builder, ret, src_type, ""); |
| } |
| |
| static LLVMValueRef ac_build_wwm(struct ac_llvm_context *ctx, LLVMValueRef src) |
| { |
| return ac_build_mode(ctx, src, "wwm"); |
| } |
| |
| LLVMValueRef ac_build_wqm(struct ac_llvm_context *ctx, LLVMValueRef src) |
| { |
| return ac_build_mode(ctx, src, "wqm"); |
| } |
| |
| static LLVMValueRef ac_build_set_inactive(struct ac_llvm_context *ctx, LLVMValueRef src, |
| LLVMValueRef inactive) |
| { |
| char name[33], type[8]; |
| LLVMTypeRef src_type = LLVMTypeOf(src); |
| unsigned bitsize = ac_get_elem_bits(ctx, src_type); |
| src = ac_to_integer(ctx, src); |
| inactive = ac_to_integer(ctx, inactive); |
| |
| if (bitsize < 32) { |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| inactive = LLVMBuildZExt(ctx->builder, inactive, ctx->i32, ""); |
| } |
| |
| ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type)); |
| snprintf(name, sizeof(name), "llvm.amdgcn.set.inactive.%s", type); |
| LLVMValueRef ret = |
| ac_build_intrinsic(ctx, name, LLVMTypeOf(src), (LLVMValueRef[]){src, inactive}, 2, 0); |
| if (bitsize < 32) |
| ret = LLVMBuildTrunc(ctx->builder, ret, src_type, ""); |
| |
| return ret; |
| } |
| |
| static LLVMValueRef get_reduction_identity(struct ac_llvm_context *ctx, nir_op op, |
| unsigned type_size) |
| { |
| |
| if (type_size == 0) { |
| switch (op) { |
| case nir_op_ior: |
| case nir_op_ixor: |
| return ctx->i1false; |
| case nir_op_iand: |
| return ctx->i1true; |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } else if (type_size == 1) { |
| switch (op) { |
| case nir_op_iadd: |
| return ctx->i8_0; |
| case nir_op_imul: |
| return ctx->i8_1; |
| case nir_op_imin: |
| return LLVMConstInt(ctx->i8, INT8_MAX, 0); |
| case nir_op_umin: |
| return LLVMConstInt(ctx->i8, UINT8_MAX, 0); |
| case nir_op_imax: |
| return LLVMConstInt(ctx->i8, INT8_MIN, 0); |
| case nir_op_umax: |
| return ctx->i8_0; |
| case nir_op_iand: |
| return LLVMConstInt(ctx->i8, -1, 0); |
| case nir_op_ior: |
| return ctx->i8_0; |
| case nir_op_ixor: |
| return ctx->i8_0; |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } else if (type_size == 2) { |
| switch (op) { |
| case nir_op_iadd: |
| return ctx->i16_0; |
| case nir_op_fadd: |
| return ctx->f16_0; |
| case nir_op_imul: |
| return ctx->i16_1; |
| case nir_op_fmul: |
| return ctx->f16_1; |
| case nir_op_imin: |
| return LLVMConstInt(ctx->i16, INT16_MAX, 0); |
| case nir_op_umin: |
| return LLVMConstInt(ctx->i16, UINT16_MAX, 0); |
| case nir_op_fmin: |
| return LLVMConstReal(ctx->f16, INFINITY); |
| case nir_op_imax: |
| return LLVMConstInt(ctx->i16, INT16_MIN, 0); |
| case nir_op_umax: |
| return ctx->i16_0; |
| case nir_op_fmax: |
| return LLVMConstReal(ctx->f16, -INFINITY); |
| case nir_op_iand: |
| return LLVMConstInt(ctx->i16, -1, 0); |
| case nir_op_ior: |
| return ctx->i16_0; |
| case nir_op_ixor: |
| return ctx->i16_0; |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } else if (type_size == 4) { |
| switch (op) { |
| case nir_op_iadd: |
| return ctx->i32_0; |
| case nir_op_fadd: |
| return ctx->f32_0; |
| case nir_op_imul: |
| return ctx->i32_1; |
| case nir_op_fmul: |
| return ctx->f32_1; |
| case nir_op_imin: |
| return LLVMConstInt(ctx->i32, INT32_MAX, 0); |
| case nir_op_umin: |
| return LLVMConstInt(ctx->i32, UINT32_MAX, 0); |
| case nir_op_fmin: |
| return LLVMConstReal(ctx->f32, INFINITY); |
| case nir_op_imax: |
| return LLVMConstInt(ctx->i32, INT32_MIN, 0); |
| case nir_op_umax: |
| return ctx->i32_0; |
| case nir_op_fmax: |
| return LLVMConstReal(ctx->f32, -INFINITY); |
| case nir_op_iand: |
| return LLVMConstInt(ctx->i32, -1, 0); |
| case nir_op_ior: |
| return ctx->i32_0; |
| case nir_op_ixor: |
| return ctx->i32_0; |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } else { /* type_size == 64bit */ |
| switch (op) { |
| case nir_op_iadd: |
| return ctx->i64_0; |
| case nir_op_fadd: |
| return ctx->f64_0; |
| case nir_op_imul: |
| return ctx->i64_1; |
| case nir_op_fmul: |
| return ctx->f64_1; |
| case nir_op_imin: |
| return LLVMConstInt(ctx->i64, INT64_MAX, 0); |
| case nir_op_umin: |
| return LLVMConstInt(ctx->i64, UINT64_MAX, 0); |
| case nir_op_fmin: |
| return LLVMConstReal(ctx->f64, INFINITY); |
| case nir_op_imax: |
| return LLVMConstInt(ctx->i64, INT64_MIN, 0); |
| case nir_op_umax: |
| return ctx->i64_0; |
| case nir_op_fmax: |
| return LLVMConstReal(ctx->f64, -INFINITY); |
| case nir_op_iand: |
| return LLVMConstInt(ctx->i64, -1, 0); |
| case nir_op_ior: |
| return ctx->i64_0; |
| case nir_op_ixor: |
| return ctx->i64_0; |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } |
| } |
| |
| static LLVMValueRef ac_build_alu_op(struct ac_llvm_context *ctx, LLVMValueRef lhs, LLVMValueRef rhs, |
| nir_op op) |
| { |
| bool _64bit = ac_get_type_size(LLVMTypeOf(lhs)) == 8; |
| bool _32bit = ac_get_type_size(LLVMTypeOf(lhs)) == 4; |
| switch (op) { |
| case nir_op_iadd: |
| return LLVMBuildAdd(ctx->builder, lhs, rhs, ""); |
| case nir_op_fadd: |
| return LLVMBuildFAdd(ctx->builder, lhs, rhs, ""); |
| case nir_op_imul: |
| return LLVMBuildMul(ctx->builder, lhs, rhs, ""); |
| case nir_op_fmul: |
| return LLVMBuildFMul(ctx->builder, lhs, rhs, ""); |
| case nir_op_imin: |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntSLT, lhs, rhs, ""), |
| lhs, rhs, ""); |
| case nir_op_umin: |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntULT, lhs, rhs, ""), |
| lhs, rhs, ""); |
| case nir_op_fmin: |
| return ac_build_intrinsic( |
| ctx, _64bit ? "llvm.minnum.f64" : _32bit ? "llvm.minnum.f32" : "llvm.minnum.f16", |
| _64bit ? ctx->f64 : _32bit ? ctx->f32 : ctx->f16, (LLVMValueRef[]){lhs, rhs}, 2, 0); |
| case nir_op_imax: |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntSGT, lhs, rhs, ""), |
| lhs, rhs, ""); |
| case nir_op_umax: |
| return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntUGT, lhs, rhs, ""), |
| lhs, rhs, ""); |
| case nir_op_fmax: |
| return ac_build_intrinsic( |
| ctx, _64bit ? "llvm.maxnum.f64" : _32bit ? "llvm.maxnum.f32" : "llvm.maxnum.f16", |
| _64bit ? ctx->f64 : _32bit ? ctx->f32 : ctx->f16, (LLVMValueRef[]){lhs, rhs}, 2, 0); |
| case nir_op_iand: |
| return LLVMBuildAnd(ctx->builder, lhs, rhs, ""); |
| case nir_op_ior: |
| return LLVMBuildOr(ctx->builder, lhs, rhs, ""); |
| case nir_op_ixor: |
| return LLVMBuildXor(ctx->builder, lhs, rhs, ""); |
| default: |
| unreachable("bad reduction intrinsic"); |
| } |
| } |
| |
| /** |
| * \param src The value to shift. |
| * \param identity The value to use the first lane. |
| * \param maxprefix specifies that the result only needs to be correct for a |
| * prefix of this many threads |
| * \return src, shifted 1 lane up, and identity shifted into lane 0. |
| */ |
| static LLVMValueRef ac_wavefront_shift_right_1(struct ac_llvm_context *ctx, LLVMValueRef src, |
| LLVMValueRef identity, unsigned maxprefix) |
| { |
| if (ctx->gfx_level >= GFX10) { |
| /* wavefront shift_right by 1 on GFX10 (emulate dpp_wf_sr1) */ |
| LLVMValueRef active, tmp1, tmp2; |
| LLVMValueRef tid = ac_get_thread_id(ctx); |
| |
| tmp1 = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false, false); |
| |
| tmp2 = ac_build_permlane16(ctx, src, (uint64_t)~0, true, false); |
| |
| if (maxprefix > 32) { |
| active = |
| LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 32, false), ""); |
| |
| tmp2 = LLVMBuildSelect(ctx->builder, active, |
| ac_build_readlane(ctx, src, LLVMConstInt(ctx->i32, 31, false)), |
| tmp2, ""); |
| |
| active = LLVMBuildOr( |
| ctx->builder, active, |
| LLVMBuildICmp(ctx->builder, LLVMIntEQ, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x1f, false), ""), |
| LLVMConstInt(ctx->i32, 0x10, false), ""), |
| ""); |
| return LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| } else if (maxprefix > 16) { |
| active = |
| LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 16, false), ""); |
| |
| return LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| } |
| } else if (ctx->gfx_level >= GFX8) { |
| return ac_build_dpp(ctx, identity, src, dpp_wf_sr1, 0xf, 0xf, false, false); |
| } |
| |
| /* wavefront shift_right by 1 on SI/CI */ |
| LLVMValueRef active, tmp1, tmp2; |
| LLVMValueRef tid = ac_get_thread_id(ctx); |
| tmp1 = ac_build_ds_swizzle(ctx, src, (1 << 15) | dpp_quad_perm(0, 0, 1, 2)); |
| tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x18, 0x03, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x7, 0), ""), |
| LLVMConstInt(ctx->i32, 0x4, 0), ""); |
| tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x10, 0x07, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0xf, 0), ""), |
| LLVMConstInt(ctx->i32, 0x8, 0), ""); |
| tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| tmp2 = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x00, 0x0f, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 0x1f, 0), ""), |
| LLVMConstInt(ctx->i32, 0x10, 0), ""); |
| tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| tmp2 = ac_build_readlane(ctx, src, LLVMConstInt(ctx->i32, 31, 0)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, LLVMConstInt(ctx->i32, 32, 0), ""); |
| tmp1 = LLVMBuildSelect(ctx->builder, active, tmp2, tmp1, ""); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tid, ctx->i32_0, ""); |
| return LLVMBuildSelect(ctx->builder, active, identity, tmp1, ""); |
| } |
| |
| /** |
| * \param maxprefix specifies that the result only needs to be correct for a |
| * prefix of this many threads |
| */ |
| static LLVMValueRef ac_build_scan(struct ac_llvm_context *ctx, nir_op op, LLVMValueRef src, |
| LLVMValueRef identity, unsigned maxprefix, bool inclusive) |
| { |
| LLVMValueRef result, tmp; |
| |
| if (!inclusive) |
| src = ac_wavefront_shift_right_1(ctx, src, identity, maxprefix); |
| |
| result = src; |
| |
| if (ctx->gfx_level <= GFX7) { |
| assert(maxprefix == 64); |
| LLVMValueRef tid = ac_get_thread_id(ctx); |
| LLVMValueRef active; |
| tmp = ac_build_ds_swizzle(ctx, src, ds_pattern_bitmode(0x1e, 0x00, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, ctx->i32_1, ""), ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1c, 0x01, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 2, 0), ""), |
| ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x18, 0x03, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 4, 0), ""), |
| ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x10, 0x07, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 8, 0), ""), |
| ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| tmp = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x00, 0x0f, 0x00)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 16, 0), ""), |
| ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| tmp = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, 0)); |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 32, 0), ""), |
| ctx->i32_0, ""); |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| return result; |
| } |
| |
| if (maxprefix <= 1) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 2) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(2), 0xf, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 3) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(3), 0xf, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 4) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(4), 0xf, 0xe, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 8) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(8), 0xf, 0xc, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 16) |
| return result; |
| |
| if (ctx->gfx_level >= GFX10) { |
| LLVMValueRef tid = ac_get_thread_id(ctx); |
| LLVMValueRef active; |
| |
| tmp = ac_build_permlane16(ctx, result, ~(uint64_t)0, true, false); |
| |
| active = LLVMBuildICmp(ctx->builder, LLVMIntNE, |
| LLVMBuildAnd(ctx->builder, tid, LLVMConstInt(ctx->i32, 16, false), ""), |
| ctx->i32_0, ""); |
| |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| |
| if (maxprefix <= 32) |
| return result; |
| |
| tmp = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, false)); |
| |
| active = LLVMBuildICmp(ctx->builder, LLVMIntUGE, tid, LLVMConstInt(ctx->i32, 32, false), ""); |
| |
| tmp = LLVMBuildSelect(ctx->builder, active, tmp, identity, ""); |
| |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| return result; |
| } |
| |
| tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| if (maxprefix <= 32) |
| return result; |
| tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, tmp, op); |
| return result; |
| } |
| |
| LLVMValueRef ac_build_inclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op) |
| { |
| LLVMValueRef result; |
| |
| if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) { |
| LLVMBuilderRef builder = ctx->builder; |
| src = LLVMBuildZExt(builder, src, ctx->i32, ""); |
| result = ac_build_ballot(ctx, src); |
| result = ac_build_mbcnt(ctx, result); |
| result = LLVMBuildAdd(builder, result, src, ""); |
| return result; |
| } |
| |
| ac_build_optimization_barrier(ctx, &src, false); |
| |
| LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src))); |
| result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity), |
| LLVMTypeOf(identity), ""); |
| result = ac_build_scan(ctx, op, result, identity, ctx->wave_size, true); |
| |
| return ac_build_wwm(ctx, result); |
| } |
| |
| LLVMValueRef ac_build_exclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op) |
| { |
| LLVMValueRef result; |
| |
| if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) { |
| LLVMBuilderRef builder = ctx->builder; |
| src = LLVMBuildZExt(builder, src, ctx->i32, ""); |
| result = ac_build_ballot(ctx, src); |
| result = ac_build_mbcnt(ctx, result); |
| return result; |
| } |
| |
| ac_build_optimization_barrier(ctx, &src, false); |
| |
| LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src))); |
| result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity), |
| LLVMTypeOf(identity), ""); |
| result = ac_build_scan(ctx, op, result, identity, ctx->wave_size, false); |
| |
| return ac_build_wwm(ctx, result); |
| } |
| |
| LLVMValueRef ac_build_reduce(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op, |
| unsigned cluster_size) |
| { |
| if (cluster_size == 1) |
| return src; |
| ac_build_optimization_barrier(ctx, &src, false); |
| LLVMValueRef result, swap; |
| LLVMValueRef identity = get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src))); |
| result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity), |
| LLVMTypeOf(identity), ""); |
| swap = ac_build_quad_swizzle(ctx, result, 1, 0, 3, 2, false); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| if (cluster_size == 2) |
| return ac_build_wwm(ctx, result); |
| |
| swap = ac_build_quad_swizzle(ctx, result, 2, 3, 0, 1, false); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| if (cluster_size == 4) |
| return ac_build_wwm(ctx, result); |
| |
| if (ctx->gfx_level >= GFX8) |
| swap = ac_build_dpp(ctx, identity, result, dpp_row_half_mirror, 0xf, 0xf, false, false); |
| else |
| swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x04)); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| if (cluster_size == 8) |
| return ac_build_wwm(ctx, result); |
| |
| if (ctx->gfx_level >= GFX8) |
| swap = ac_build_dpp(ctx, identity, result, dpp_row_mirror, 0xf, 0xf, false, false); |
| else |
| swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x08)); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| if (cluster_size == 16) |
| return ac_build_wwm(ctx, result); |
| |
| if (ctx->gfx_level >= GFX10) |
| swap = ac_build_permlane16(ctx, result, 0, true, false); |
| else if (ctx->gfx_level >= GFX8 && cluster_size != 32) |
| swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false, false); |
| else |
| swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x10)); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| if (cluster_size == 32) |
| return ac_build_wwm(ctx, result); |
| |
| if (ctx->gfx_level >= GFX8) { |
| if (ctx->wave_size == 64) { |
| if (ctx->gfx_level >= GFX10) |
| swap = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 31, false)); |
| else |
| swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false, false); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 63, 0)); |
| } |
| |
| return ac_build_wwm(ctx, result); |
| } else { |
| swap = ac_build_readlane(ctx, result, ctx->i32_0); |
| result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 32, 0)); |
| result = ac_build_alu_op(ctx, result, swap, op); |
| return ac_build_wwm(ctx, result); |
| } |
| } |
| |
| static void _ac_build_dual_src_blend_swizzle(struct ac_llvm_context *ctx, |
| LLVMValueRef *arg0, LLVMValueRef *arg1) |
| { |
| LLVMValueRef tid; |
| LLVMValueRef src0, src1; |
| LLVMValueRef tmp0; |
| LLVMValueRef params[2]; |
| LLVMValueRef is_even; |
| |
| src0 = LLVMBuildBitCast(ctx->builder, *arg0, ctx->i32, ""); |
| src1 = LLVMBuildBitCast(ctx->builder, *arg1, ctx->i32, ""); |
| |
| /* swap odd,even lanes of arg_0*/ |
| params[0] = src0; |
| params[1] = LLVMConstInt(ctx->i32, 0xde54c1, 0); |
| src0 = ac_build_intrinsic(ctx, "llvm.amdgcn.mov.dpp8.i32", |
| ctx->i32, params, 2, 0); |
| |
| /* swap even lanes between arg_0 and arg_1 */ |
| tid = ac_get_thread_id(ctx); |
| is_even = LLVMBuildICmp(ctx->builder, LLVMIntEQ, |
| LLVMBuildAnd(ctx->builder, tid, ctx->i32_1, ""), |
| ctx->i32_0, ""); |
| tmp0 = src0; |
| src0 = LLVMBuildSelect(ctx->builder, is_even, src1, src0, ""); |
| src1 = LLVMBuildSelect(ctx->builder, is_even, tmp0, src1, ""); |
| |
| /* swap odd,even lanes again for arg_0*/ |
| params[0] = src0; |
| params[1] = LLVMConstInt(ctx->i32, 0xde54c1, 0); |
| src0 = ac_build_intrinsic(ctx, "llvm.amdgcn.mov.dpp8.i32", |
| ctx->i32, params, 2, 0); |
| |
| *arg0 = src0; |
| *arg1 = src1; |
| } |
| |
| void ac_build_dual_src_blend_swizzle(struct ac_llvm_context *ctx, |
| struct ac_export_args *mrt0, |
| struct ac_export_args *mrt1) |
| { |
| assert(ctx->gfx_level >= GFX11); |
| assert(mrt0->enabled_channels == mrt1->enabled_channels); |
| |
| for (int i = 0; i < 4; i++) { |
| if (mrt0->enabled_channels & (1 << i) && mrt1->enabled_channels & (1 << i)) |
| _ac_build_dual_src_blend_swizzle(ctx, &mrt0->out[i], &mrt1->out[i]); |
| } |
| } |
| |
| LLVMValueRef ac_build_quad_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned lane0, |
| unsigned lane1, unsigned lane2, unsigned lane3, |
| bool use_wqm) |
| { |
| unsigned mask = dpp_quad_perm(lane0, lane1, lane2, lane3); |
| if (ctx->gfx_level >= GFX8) { |
| return ac_build_dpp(ctx, src, src, mask, 0xf, 0xf, false, use_wqm); |
| } else { |
| return ac_build_ds_swizzle(ctx, src, (1 << 15) | mask); |
| } |
| } |
| |
| LLVMValueRef ac_build_shuffle(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef index) |
| { |
| LLVMTypeRef type = LLVMTypeOf(src); |
| LLVMValueRef result; |
| |
| index = LLVMBuildMul(ctx->builder, index, LLVMConstInt(ctx->i32, 4, 0), ""); |
| src = LLVMBuildZExt(ctx->builder, src, ctx->i32, ""); |
| |
| result = |
| ac_build_intrinsic(ctx, "llvm.amdgcn.ds.bpermute", ctx->i32, (LLVMValueRef[]){index, src}, 2, 0); |
| return LLVMBuildTrunc(ctx->builder, result, type, ""); |
| } |
| |
| LLVMValueRef ac_build_frexp_exp(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) |
| { |
| LLVMTypeRef type; |
| char *intr; |
| |
| if (bitsize == 16) { |
| intr = "llvm.amdgcn.frexp.exp.i16.f16"; |
| type = ctx->i16; |
| } else if (bitsize == 32) { |
| intr = "llvm.amdgcn.frexp.exp.i32.f32"; |
| type = ctx->i32; |
| } else { |
| intr = "llvm.amdgcn.frexp.exp.i32.f64"; |
| type = ctx->i32; |
| } |
| |
| LLVMValueRef params[] = { |
| src0, |
| }; |
| return ac_build_intrinsic(ctx, intr, type, params, 1, 0); |
| } |
| LLVMValueRef ac_build_frexp_mant(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) |
| { |
| LLVMTypeRef type; |
| char *intr; |
| |
| if (bitsize == 16) { |
| intr = "llvm.amdgcn.frexp.mant.f16"; |
| type = ctx->f16; |
| } else if (bitsize == 32) { |
| intr = "llvm.amdgcn.frexp.mant.f32"; |
| type = ctx->f32; |
| } else { |
| intr = "llvm.amdgcn.frexp.mant.f64"; |
| type = ctx->f64; |
| } |
| |
| LLVMValueRef params[] = { |
| src0, |
| }; |
| return ac_build_intrinsic(ctx, intr, type, params, 1, 0); |
| } |
| |
| LLVMValueRef ac_build_canonicalize(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) |
| { |
| LLVMTypeRef type; |
| char *intr; |
| |
| if (bitsize == 16) { |
| intr = "llvm.canonicalize.f16"; |
| type = ctx->f16; |
| } else if (bitsize == 32) { |
| intr = "llvm.canonicalize.f32"; |
| type = ctx->f32; |
| } else { |
| intr = "llvm.canonicalize.f64"; |
| type = ctx->f64; |
| } |
| |
| LLVMValueRef params[] = { |
| src0, |
| }; |
| return ac_build_intrinsic(ctx, intr, type, params, 1, 0); |
| } |
| |
| LLVMValueRef ac_build_load_helper_invocation(struct ac_llvm_context *ctx) |
| { |
| LLVMValueRef result = ac_build_intrinsic(ctx, "llvm.amdgcn.live.mask", ctx->i1, NULL, 0, 0); |
| |
| return LLVMBuildNot(ctx->builder, result, ""); |
| } |
| |
| LLVMValueRef ac_build_call(struct ac_llvm_context *ctx, LLVMTypeRef fn_type, LLVMValueRef func, LLVMValueRef *args, |
| unsigned num_args) |
| { |
| LLVMValueRef ret = LLVMBuildCall2(ctx->builder, fn_type, func, args, num_args, ""); |
| LLVMSetInstructionCallConv(ret, LLVMGetFunctionCallConv(func)); |
| return ret; |
| } |
| |
| void ac_export_mrt_z(struct ac_llvm_context *ctx, LLVMValueRef depth, LLVMValueRef stencil, |
| LLVMValueRef samplemask, LLVMValueRef mrt0_alpha, bool is_last, |
| struct ac_export_args *args) |
| { |
| unsigned mask = 0; |
| unsigned format = ac_get_spi_shader_z_format(depth != NULL, stencil != NULL, samplemask != NULL, |
| mrt0_alpha != NULL); |
| |
| assert(depth || stencil || samplemask || mrt0_alpha); |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (is_last) { |
| args->valid_mask = 1; /* whether the EXEC mask is valid */ |
| args->done = 1; /* DONE bit */ |
| } |
| |
| /* Specify the target we are exporting */ |
| args->target = V_008DFC_SQ_EXP_MRTZ; |
| |
| args->compr = 0; /* COMP flag */ |
| args->out[0] = LLVMGetUndef(ctx->f32); /* R, depth */ |
| args->out[1] = LLVMGetUndef(ctx->f32); /* G, stencil test val[0:7], stencil op val[8:15] */ |
| args->out[2] = LLVMGetUndef(ctx->f32); /* B, sample mask */ |
| args->out[3] = LLVMGetUndef(ctx->f32); /* A, alpha to mask */ |
| |
| if (format == V_028710_SPI_SHADER_UINT16_ABGR) { |
| assert(!depth); |
| args->compr = ctx->gfx_level < GFX11; /* COMPR flag */ |
| |
| if (stencil) { |
| /* Stencil should be in X[23:16]. */ |
| stencil = ac_to_integer(ctx, stencil); |
| stencil = LLVMBuildShl(ctx->builder, stencil, LLVMConstInt(ctx->i32, 16, 0), ""); |
| args->out[0] = ac_to_float(ctx, stencil); |
| mask |= ctx->gfx_level >= GFX11 ? 0x1 : 0x3; |
| } |
| if (samplemask) { |
| /* SampleMask should be in Y[15:0]. */ |
| args->out[1] = samplemask; |
| mask |= ctx->gfx_level >= GFX11 ? 0x2 : 0xc; |
| } |
| } else { |
| if (depth) { |
| args->out[0] = depth; |
| mask |= 0x1; |
| } |
| if (stencil) { |
| assert(format == V_028710_SPI_SHADER_32_GR || |
| format == V_028710_SPI_SHADER_32_ABGR); |
| args->out[1] = stencil; |
| mask |= 0x2; |
| } |
| if (samplemask) { |
| assert(format == V_028710_SPI_SHADER_32_ABGR); |
| args->out[2] = samplemask; |
| mask |= 0x4; |
| } |
| if (mrt0_alpha) { |
| assert(format == V_028710_SPI_SHADER_32_AR || |
| format == V_028710_SPI_SHADER_32_ABGR); |
| if (format == V_028710_SPI_SHADER_32_AR && ctx->gfx_level >= GFX10) { |
| args->out[1] = mrt0_alpha; |
| mask |= 0x2; |
| } else { |
| args->out[3] = mrt0_alpha; |
| mask |= 0x8; |
| } |
| } |
| } |
| |
| /* GFX6 (except OLAND and HAINAN) has a bug that it only looks |
| * at the X writemask component. */ |
| if (ctx->gfx_level == GFX6 && |
| ctx->info->family != CHIP_OLAND && |
| ctx->info->family != CHIP_HAINAN) |
| mask |= 0x1; |
| |
| /* Specify which components to enable */ |
| args->enabled_channels = mask; |
| } |
| |
| static LLVMTypeRef arg_llvm_type(enum ac_arg_type type, unsigned size, struct ac_llvm_context *ctx) |
| { |
| LLVMTypeRef base; |
| switch (type) { |
| case AC_ARG_FLOAT: |
| return size == 1 ? ctx->f32 : LLVMVectorType(ctx->f32, size); |
| case AC_ARG_INT: |
| return size == 1 ? ctx->i32 : LLVMVectorType(ctx->i32, size); |
| case AC_ARG_CONST_PTR: |
| base = ctx->i8; |
| break; |
| case AC_ARG_CONST_FLOAT_PTR: |
| base = ctx->f32; |
| break; |
| case AC_ARG_CONST_PTR_PTR: |
| base = ac_array_in_const32_addr_space(ctx->i8); |
| break; |
| case AC_ARG_CONST_DESC_PTR: |
| base = ctx->v4i32; |
| break; |
| case AC_ARG_CONST_IMAGE_PTR: |
| base = ctx->v8i32; |
| break; |
| default: |
| assert(false); |
| return NULL; |
| } |
| |
| assert(base); |
| if (size == 1) { |
| return ac_array_in_const32_addr_space(base); |
| } else { |
| assert(size == 2); |
| return ac_array_in_const_addr_space(base); |
| } |
| } |
| |
| struct ac_llvm_pointer ac_build_main(const struct ac_shader_args *args, struct ac_llvm_context *ctx, |
| enum ac_llvm_calling_convention convention, const char *name, |
| LLVMTypeRef ret_type, LLVMModuleRef module) |
| { |
| LLVMTypeRef arg_types[AC_MAX_ARGS]; |
| enum ac_arg_regfile arg_regfiles[AC_MAX_ARGS]; |
| |
| /* ring_offsets doesn't have a corresponding function parameter because LLVM can allocate it |
| * itself for scratch memory purposes and gives us access through llvm.amdgcn.implicit.buffer.ptr |
| */ |
| unsigned arg_count = 0; |
| for (unsigned i = 0; i < args->arg_count; i++) { |
| if (args->ring_offsets.used && i == args->ring_offsets.arg_index) { |
| ctx->ring_offsets_index = i; |
| continue; |
| } |
| arg_regfiles[arg_count] = args->args[i].file; |
| arg_types[arg_count++] = arg_llvm_type(args->args[i].type, args->args[i].size, ctx); |
| } |
| |
| LLVMTypeRef main_function_type = LLVMFunctionType(ret_type, arg_types, arg_count, 0); |
| |
| LLVMValueRef main_function = LLVMAddFunction(module, name, main_function_type); |
| LLVMBasicBlockRef main_function_body = |
| LLVMAppendBasicBlockInContext(ctx->context, main_function, "main_body"); |
| LLVMPositionBuilderAtEnd(ctx->builder, main_function_body); |
| |
| LLVMSetFunctionCallConv(main_function, convention); |
| for (unsigned i = 0; i < arg_count; ++i) { |
| LLVMValueRef P = LLVMGetParam(main_function, i); |
| |
| if (arg_regfiles[i] != AC_ARG_SGPR) |
| continue; |
| |
| ac_add_function_attr(ctx->context, main_function, i + 1, "inreg"); |
| |
| if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) { |
| ac_add_function_attr(ctx->context, main_function, i + 1, "noalias"); |
| ac_add_attr_dereferenceable(P, UINT64_MAX); |
| ac_add_attr_alignment(P, 4); |
| } |
| } |
| |
| if (args->ring_offsets.used) { |
| ctx->ring_offsets = |
| ac_build_intrinsic(ctx, "llvm.amdgcn.implicit.buffer.ptr", |
| LLVMPointerType(ctx->i8, AC_ADDR_SPACE_CONST), NULL, 0, 0); |
| ctx->ring_offsets = LLVMBuildBitCast(ctx->builder, ctx->ring_offsets, |
| ac_array_in_const_addr_space(ctx->v4i32), ""); |
| } |
| |
| ctx->main_function = (struct ac_llvm_pointer) { |
| .value = main_function, |
| .pointee_type = main_function_type |
| }; |
| |
| /* Enable denormals for FP16 and FP64: */ |
| LLVMAddTargetDependentFunctionAttr(main_function, "denormal-fp-math", "ieee,ieee"); |
| /* Disable denormals for FP32: */ |
| LLVMAddTargetDependentFunctionAttr(main_function, "denormal-fp-math-f32", |
| "preserve-sign,preserve-sign"); |
| |
| if (convention == AC_LLVM_AMDGPU_PS) { |
| LLVMAddTargetDependentFunctionAttr(main_function, "amdgpu-depth-export", |
| ctx->exports_mrtz ? "1" : "0"); |
| LLVMAddTargetDependentFunctionAttr(main_function, "amdgpu-color-export", |
| ctx->exports_color_null ? "1" : "0"); |
| } |
| |
| return ctx->main_function; |
| } |
| |
| LLVMValueRef ac_build_is_inf_or_nan(struct ac_llvm_context *ctx, LLVMValueRef a) |
| { |
| LLVMValueRef args[2] = { |
| a, |
| LLVMConstInt(ctx->i32, S_NAN | Q_NAN | N_INFINITY | P_INFINITY, 0), |
| }; |
| return ac_build_intrinsic(ctx, "llvm.amdgcn.class.f32", ctx->i1, args, 2, 0); |
| } |