| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "radv_cmd_buffer.h" |
| #include "meta/radv_meta.h" |
| #include "radv_cp_dma.h" |
| #include "radv_cs.h" |
| #include "radv_debug.h" |
| #include "radv_dgc.h" |
| #include "radv_event.h" |
| #include "radv_pipeline_rt.h" |
| #include "radv_radeon_winsys.h" |
| #include "radv_rmv.h" |
| #include "radv_rra.h" |
| #include "radv_shader.h" |
| #include "radv_shader_object.h" |
| #include "radv_sqtt.h" |
| #include "sid.h" |
| #include "vk_command_pool.h" |
| #include "vk_common_entrypoints.h" |
| #include "vk_enum_defines.h" |
| #include "vk_format.h" |
| #include "vk_framebuffer.h" |
| #include "vk_render_pass.h" |
| #include "vk_synchronization.h" |
| #include "vk_util.h" |
| |
| #include "ac_debug.h" |
| #include "ac_descriptors.h" |
| #include "ac_nir.h" |
| #include "ac_shader_args.h" |
| |
| #include "aco_interface.h" |
| |
| #include "util/fast_idiv_by_const.h" |
| |
| enum { |
| RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0), |
| RADV_PREFETCH_VS = (1 << 1), |
| RADV_PREFETCH_TCS = (1 << 2), |
| RADV_PREFETCH_TES = (1 << 3), |
| RADV_PREFETCH_GS = (1 << 4), |
| RADV_PREFETCH_PS = (1 << 5), |
| RADV_PREFETCH_MS = (1 << 6), |
| RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES | RADV_PREFETCH_GS | |
| RADV_PREFETCH_PS | RADV_PREFETCH_MS) |
| }; |
| |
| static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| VkImageLayout src_layout, VkImageLayout dst_layout, uint32_t src_family_index, |
| uint32_t dst_family_index, const VkImageSubresourceRange *range, |
| struct radv_sample_locations_state *sample_locs); |
| |
| static void |
| radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic; |
| uint64_t copy_mask = src->mask; |
| uint64_t dest_mask = 0; |
| |
| dest->vk.dr.rectangle_count = src->vk.dr.rectangle_count; |
| dest->sample_location.count = src->sample_location.count; |
| |
| if (copy_mask & RADV_DYNAMIC_VIEWPORT) { |
| if (dest->vk.vp.viewport_count != src->vk.vp.viewport_count) { |
| dest->vk.vp.viewport_count = src->vk.vp.viewport_count; |
| dest_mask |= RADV_DYNAMIC_VIEWPORT; |
| } |
| |
| if (memcmp(&dest->vk.vp.viewports, &src->vk.vp.viewports, src->vk.vp.viewport_count * sizeof(VkViewport))) { |
| typed_memcpy(dest->vk.vp.viewports, src->vk.vp.viewports, src->vk.vp.viewport_count); |
| typed_memcpy(dest->hw_vp.xform, src->hw_vp.xform, src->vk.vp.viewport_count); |
| dest_mask |= RADV_DYNAMIC_VIEWPORT; |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_SCISSOR) { |
| if (dest->vk.vp.scissor_count != src->vk.vp.scissor_count) { |
| dest->vk.vp.scissor_count = src->vk.vp.scissor_count; |
| dest_mask |= RADV_DYNAMIC_SCISSOR; |
| } |
| |
| if (memcmp(&dest->vk.vp.scissors, &src->vk.vp.scissors, src->vk.vp.scissor_count * sizeof(VkRect2D))) { |
| typed_memcpy(dest->vk.vp.scissors, src->vk.vp.scissors, src->vk.vp.scissor_count); |
| dest_mask |= RADV_DYNAMIC_SCISSOR; |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) { |
| if (memcmp(&dest->vk.cb.blend_constants, &src->vk.cb.blend_constants, sizeof(src->vk.cb.blend_constants))) { |
| typed_memcpy(dest->vk.cb.blend_constants, src->vk.cb.blend_constants, 4); |
| dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS; |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| if (memcmp(&dest->vk.dr.rectangles, &src->vk.dr.rectangles, src->vk.dr.rectangle_count * sizeof(VkRect2D))) { |
| typed_memcpy(dest->vk.dr.rectangles, src->vk.dr.rectangles, src->vk.dr.rectangle_count); |
| dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE; |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) { |
| if (dest->sample_location.per_pixel != src->sample_location.per_pixel || |
| dest->sample_location.grid_size.width != src->sample_location.grid_size.width || |
| dest->sample_location.grid_size.height != src->sample_location.grid_size.height || |
| memcmp(&dest->sample_location.locations, &src->sample_location.locations, |
| src->sample_location.count * sizeof(VkSampleLocationEXT))) { |
| dest->sample_location.per_pixel = src->sample_location.per_pixel; |
| dest->sample_location.grid_size = src->sample_location.grid_size; |
| typed_memcpy(dest->sample_location.locations, src->sample_location.locations, src->sample_location.count); |
| dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_COLOR_WRITE_MASK) { |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (dest->vk.cb.attachments[i].write_mask != src->vk.cb.attachments[i].write_mask) { |
| dest->vk.cb.attachments[i].write_mask = src->vk.cb.attachments[i].write_mask; |
| dest_mask |= RADV_DYNAMIC_COLOR_WRITE_MASK; |
| } |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_ENABLE) { |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (dest->vk.cb.attachments[i].blend_enable != src->vk.cb.attachments[i].blend_enable) { |
| dest->vk.cb.attachments[i].blend_enable = src->vk.cb.attachments[i].blend_enable; |
| dest_mask |= RADV_DYNAMIC_COLOR_BLEND_ENABLE; |
| } |
| } |
| } |
| |
| if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_EQUATION) { |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (dest->vk.cb.attachments[i].src_color_blend_factor != src->vk.cb.attachments[i].src_color_blend_factor || |
| dest->vk.cb.attachments[i].dst_color_blend_factor != src->vk.cb.attachments[i].dst_color_blend_factor || |
| dest->vk.cb.attachments[i].color_blend_op != src->vk.cb.attachments[i].color_blend_op || |
| dest->vk.cb.attachments[i].src_alpha_blend_factor != src->vk.cb.attachments[i].src_alpha_blend_factor || |
| dest->vk.cb.attachments[i].dst_alpha_blend_factor != src->vk.cb.attachments[i].dst_alpha_blend_factor || |
| dest->vk.cb.attachments[i].alpha_blend_op != src->vk.cb.attachments[i].alpha_blend_op) { |
| dest->vk.cb.attachments[i].src_color_blend_factor = src->vk.cb.attachments[i].src_color_blend_factor; |
| dest->vk.cb.attachments[i].dst_color_blend_factor = src->vk.cb.attachments[i].dst_color_blend_factor; |
| dest->vk.cb.attachments[i].color_blend_op = src->vk.cb.attachments[i].color_blend_op; |
| dest->vk.cb.attachments[i].src_alpha_blend_factor = src->vk.cb.attachments[i].src_alpha_blend_factor; |
| dest->vk.cb.attachments[i].dst_alpha_blend_factor = src->vk.cb.attachments[i].dst_alpha_blend_factor; |
| dest->vk.cb.attachments[i].alpha_blend_op = src->vk.cb.attachments[i].alpha_blend_op; |
| dest_mask |= RADV_DYNAMIC_COLOR_BLEND_EQUATION; |
| } |
| } |
| } |
| |
| if (memcmp(&dest->vk.cal.color_map, &src->vk.cal.color_map, sizeof(src->vk.cal.color_map))) { |
| typed_memcpy(dest->vk.cal.color_map, src->vk.cal.color_map, MAX_RTS); |
| dest_mask |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP; |
| } |
| |
| if (memcmp(&dest->vk.ial, &src->vk.ial, sizeof(src->vk.ial))) { |
| typed_memcpy(dest->vk.ial.color_map, src->vk.ial.color_map, MAX_RTS); |
| dest->vk.ial.depth_att = src->vk.ial.depth_att; |
| dest->vk.ial.stencil_att = src->vk.ial.stencil_att; |
| dest_mask |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP; |
| } |
| |
| #define RADV_CMP_COPY(field, flag) \ |
| if (copy_mask & flag) { \ |
| if (dest->field != src->field) { \ |
| dest->field = src->field; \ |
| dest_mask |= flag; \ |
| } \ |
| } |
| |
| RADV_CMP_COPY(vk.ia.primitive_topology, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY); |
| RADV_CMP_COPY(vk.ia.primitive_restart_enable, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE); |
| |
| RADV_CMP_COPY(vk.vp.depth_clip_negative_one_to_one, RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE); |
| RADV_CMP_COPY(vk.vp.depth_clamp_mode, RADV_DYNAMIC_DEPTH_CLAMP_RANGE); |
| RADV_CMP_COPY(vk.vp.depth_clamp_range.minDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE); |
| RADV_CMP_COPY(vk.vp.depth_clamp_range.maxDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE); |
| |
| RADV_CMP_COPY(vk.ts.patch_control_points, RADV_DYNAMIC_PATCH_CONTROL_POINTS); |
| RADV_CMP_COPY(vk.ts.domain_origin, RADV_DYNAMIC_TESS_DOMAIN_ORIGIN); |
| |
| RADV_CMP_COPY(vk.rs.line.width, RADV_DYNAMIC_LINE_WIDTH); |
| RADV_CMP_COPY(vk.rs.depth_bias.constant_factor, RADV_DYNAMIC_DEPTH_BIAS); |
| RADV_CMP_COPY(vk.rs.depth_bias.clamp, RADV_DYNAMIC_DEPTH_BIAS); |
| RADV_CMP_COPY(vk.rs.depth_bias.slope_factor, RADV_DYNAMIC_DEPTH_BIAS); |
| RADV_CMP_COPY(vk.rs.depth_bias.representation, RADV_DYNAMIC_DEPTH_BIAS); |
| RADV_CMP_COPY(vk.rs.line.stipple.factor, RADV_DYNAMIC_LINE_STIPPLE); |
| RADV_CMP_COPY(vk.rs.line.stipple.pattern, RADV_DYNAMIC_LINE_STIPPLE); |
| RADV_CMP_COPY(vk.rs.cull_mode, RADV_DYNAMIC_CULL_MODE); |
| RADV_CMP_COPY(vk.rs.front_face, RADV_DYNAMIC_FRONT_FACE); |
| RADV_CMP_COPY(vk.rs.depth_bias.enable, RADV_DYNAMIC_DEPTH_BIAS_ENABLE); |
| RADV_CMP_COPY(vk.rs.rasterizer_discard_enable, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE); |
| RADV_CMP_COPY(vk.rs.polygon_mode, RADV_DYNAMIC_POLYGON_MODE); |
| RADV_CMP_COPY(vk.rs.line.stipple.enable, RADV_DYNAMIC_LINE_STIPPLE_ENABLE); |
| RADV_CMP_COPY(vk.rs.depth_clip_enable, RADV_DYNAMIC_DEPTH_CLIP_ENABLE); |
| RADV_CMP_COPY(vk.rs.conservative_mode, RADV_DYNAMIC_CONSERVATIVE_RAST_MODE); |
| RADV_CMP_COPY(vk.rs.provoking_vertex, RADV_DYNAMIC_PROVOKING_VERTEX_MODE); |
| RADV_CMP_COPY(vk.rs.depth_clamp_enable, RADV_DYNAMIC_DEPTH_CLAMP_ENABLE); |
| RADV_CMP_COPY(vk.rs.line.mode, RADV_DYNAMIC_LINE_RASTERIZATION_MODE); |
| |
| RADV_CMP_COPY(vk.ms.alpha_to_coverage_enable, RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE); |
| RADV_CMP_COPY(vk.ms.alpha_to_one_enable, RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE); |
| RADV_CMP_COPY(vk.ms.sample_mask, RADV_DYNAMIC_SAMPLE_MASK); |
| RADV_CMP_COPY(vk.ms.rasterization_samples, RADV_DYNAMIC_RASTERIZATION_SAMPLES); |
| RADV_CMP_COPY(vk.ms.sample_locations_enable, RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE); |
| |
| RADV_CMP_COPY(vk.ds.depth.bounds_test.min, RADV_DYNAMIC_DEPTH_BOUNDS); |
| RADV_CMP_COPY(vk.ds.depth.bounds_test.max, RADV_DYNAMIC_DEPTH_BOUNDS); |
| RADV_CMP_COPY(vk.ds.stencil.front.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK); |
| RADV_CMP_COPY(vk.ds.stencil.back.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK); |
| RADV_CMP_COPY(vk.ds.stencil.front.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK); |
| RADV_CMP_COPY(vk.ds.stencil.back.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK); |
| RADV_CMP_COPY(vk.ds.stencil.front.reference, RADV_DYNAMIC_STENCIL_REFERENCE); |
| RADV_CMP_COPY(vk.ds.stencil.back.reference, RADV_DYNAMIC_STENCIL_REFERENCE); |
| RADV_CMP_COPY(vk.ds.depth.test_enable, RADV_DYNAMIC_DEPTH_TEST_ENABLE); |
| RADV_CMP_COPY(vk.ds.depth.write_enable, RADV_DYNAMIC_DEPTH_WRITE_ENABLE); |
| RADV_CMP_COPY(vk.ds.depth.compare_op, RADV_DYNAMIC_DEPTH_COMPARE_OP); |
| RADV_CMP_COPY(vk.ds.depth.bounds_test.enable, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE); |
| RADV_CMP_COPY(vk.ds.stencil.test_enable, RADV_DYNAMIC_STENCIL_TEST_ENABLE); |
| RADV_CMP_COPY(vk.ds.stencil.front.op.fail, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.front.op.pass, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.front.op.depth_fail, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.front.op.compare, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.back.op.fail, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.back.op.pass, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.back.op.depth_fail, RADV_DYNAMIC_STENCIL_OP); |
| RADV_CMP_COPY(vk.ds.stencil.back.op.compare, RADV_DYNAMIC_STENCIL_OP); |
| |
| RADV_CMP_COPY(vk.cb.logic_op, RADV_DYNAMIC_LOGIC_OP); |
| RADV_CMP_COPY(vk.cb.color_write_enables, RADV_DYNAMIC_COLOR_WRITE_ENABLE); |
| RADV_CMP_COPY(vk.cb.logic_op_enable, RADV_DYNAMIC_LOGIC_OP_ENABLE); |
| |
| RADV_CMP_COPY(vk.fsr.fragment_size.width, RADV_DYNAMIC_FRAGMENT_SHADING_RATE); |
| RADV_CMP_COPY(vk.fsr.fragment_size.height, RADV_DYNAMIC_FRAGMENT_SHADING_RATE); |
| RADV_CMP_COPY(vk.fsr.combiner_ops[0], RADV_DYNAMIC_FRAGMENT_SHADING_RATE); |
| RADV_CMP_COPY(vk.fsr.combiner_ops[1], RADV_DYNAMIC_FRAGMENT_SHADING_RATE); |
| |
| RADV_CMP_COPY(vk.dr.enable, RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE); |
| RADV_CMP_COPY(vk.dr.mode, RADV_DYNAMIC_DISCARD_RECTANGLE_MODE); |
| |
| RADV_CMP_COPY(feedback_loop_aspects, RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE); |
| |
| #undef RADV_CMP_COPY |
| |
| cmd_buffer->state.dirty_dynamic |= dest_mask; |
| |
| /* Handle driver specific states that need to be re-emitted when PSO are bound. */ |
| if (dest_mask & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_LINE_WIDTH | |
| RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)) { |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| } |
| |
| if (pdev->info.rbplus_allowed && (dest_mask & RADV_DYNAMIC_COLOR_WRITE_MASK)) { |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS; |
| } |
| |
| if (dest_mask & (RADV_DYNAMIC_COLOR_ATTACHMENT_MAP | RADV_DYNAMIC_INPUT_ATTACHMENT_MAP)) { |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| } |
| } |
| |
| bool |
| radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| return cmd_buffer->qf == RADV_QUEUE_COMPUTE && pdev->info.gfx_level >= GFX7; |
| } |
| |
| static void |
| radv_write_data(struct radv_cmd_buffer *cmd_buffer, const unsigned engine_sel, const uint64_t va, const unsigned count, |
| const uint32_t *data, const bool predicating) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| radv_cs_write_data(device, cmd_buffer->cs, cmd_buffer->qf, engine_sel, va, count, data, predicating); |
| } |
| |
| static void |
| radv_emit_clear_data(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va, unsigned size) |
| { |
| uint32_t *zeroes = alloca(size); |
| memset(zeroes, 0, size); |
| radv_write_data(cmd_buffer, engine_sel, va, size / 4, zeroes, false); |
| } |
| |
| static void |
| radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer *cmd_buffer) |
| { |
| ralloc_free(cmd_buffer->vs_prologs.table); |
| ralloc_free(cmd_buffer->ps_epilogs.table); |
| } |
| |
| static bool |
| radv_cmd_buffer_init_shader_part_cache(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (device->vs_prologs.ops) { |
| if (!_mesa_set_init(&cmd_buffer->vs_prologs, NULL, device->vs_prologs.ops->hash, device->vs_prologs.ops->equals)) |
| return false; |
| } |
| if (device->ps_epilogs.ops) { |
| if (!_mesa_set_init(&cmd_buffer->ps_epilogs, NULL, device->ps_epilogs.ops->hash, device->ps_epilogs.ops->equals)) |
| return false; |
| } |
| return true; |
| } |
| |
| static void |
| radv_destroy_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer) |
| { |
| struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (cmd_buffer->qf != RADV_QUEUE_SPARSE) { |
| util_dynarray_fini(&cmd_buffer->ray_history); |
| |
| radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers); |
| _mesa_set_destroy(cmd_buffer->accel_struct_buffers, NULL); |
| |
| list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) { |
| radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo); |
| radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo); |
| list_del(&up->list); |
| free(up); |
| } |
| |
| if (cmd_buffer->upload.upload_bo) { |
| radv_rmv_log_command_buffer_bo_destroy(device, cmd_buffer->upload.upload_bo); |
| radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->upload.upload_bo); |
| } |
| |
| if (cmd_buffer->cs) |
| device->ws->cs_destroy(cmd_buffer->cs); |
| if (cmd_buffer->gang.cs) |
| device->ws->cs_destroy(cmd_buffer->gang.cs); |
| if (cmd_buffer->transfer.copy_temp) |
| radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->transfer.copy_temp); |
| |
| radv_cmd_buffer_finish_shader_part_cache(cmd_buffer); |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) { |
| struct radv_descriptor_set_header *set = &cmd_buffer->descriptors[i].push_set.set; |
| free(set->mapped_ptr); |
| if (set->layout) |
| vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk); |
| vk_object_base_finish(&set->base); |
| } |
| |
| vk_object_base_finish(&cmd_buffer->meta_push_descriptors.base); |
| } |
| |
| vk_command_buffer_finish(&cmd_buffer->vk); |
| vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer); |
| } |
| |
| static VkResult |
| radv_create_cmd_buffer(struct vk_command_pool *pool, VkCommandBufferLevel level, |
| struct vk_command_buffer **cmd_buffer_out) |
| { |
| struct radv_device *device = container_of(pool->base.device, struct radv_device, vk); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_cmd_buffer *cmd_buffer; |
| unsigned ring; |
| cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (cmd_buffer == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk, &radv_cmd_buffer_ops, level); |
| if (result != VK_SUCCESS) { |
| vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer); |
| return result; |
| } |
| |
| cmd_buffer->qf = vk_queue_to_radv(pdev, pool->queue_family_index); |
| |
| if (cmd_buffer->qf != RADV_QUEUE_SPARSE) { |
| list_inithead(&cmd_buffer->upload.list); |
| |
| if (!radv_cmd_buffer_init_shader_part_cache(device, cmd_buffer)) { |
| radv_destroy_cmd_buffer(&cmd_buffer->vk); |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| } |
| |
| ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf); |
| |
| cmd_buffer->cs = |
| device->ws->cs_create(device->ws, ring, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); |
| if (!cmd_buffer->cs) { |
| radv_destroy_cmd_buffer(&cmd_buffer->vk); |
| return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); |
| } |
| |
| vk_object_base_init(&device->vk, &cmd_buffer->meta_push_descriptors.base, VK_OBJECT_TYPE_DESCRIPTOR_SET); |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) |
| vk_object_base_init(&device->vk, &cmd_buffer->descriptors[i].push_set.set.base, VK_OBJECT_TYPE_DESCRIPTOR_SET); |
| |
| cmd_buffer->accel_struct_buffers = _mesa_pointer_set_create(NULL); |
| util_dynarray_init(&cmd_buffer->ray_history, NULL); |
| } |
| |
| *cmd_buffer_out = &cmd_buffer->vk; |
| |
| return VK_SUCCESS; |
| } |
| |
| void |
| radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer *cmd_buffer) |
| { |
| memset(&cmd_buffer->state.render, 0, sizeof(cmd_buffer->state.render)); |
| } |
| |
| static void |
| radv_reset_tracked_regs(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_tracked_regs *tracked_regs = &cmd_buffer->tracked_regs; |
| |
| /* Mark all registers as unknown. */ |
| memset(tracked_regs->reg_value, 0, RADV_NUM_ALL_TRACKED_REGS * sizeof(uint32_t)); |
| BITSET_ZERO(tracked_regs->reg_saved_mask); |
| |
| /* 0xffffffff is an impossible value for SPI_PS_INPUT_CNTL_n registers */ |
| memset(tracked_regs->spi_ps_input_cntl, 0xff, sizeof(uint32_t) * 32); |
| } |
| |
| static void |
| radv_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer, UNUSED VkCommandBufferResetFlags flags) |
| { |
| struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| vk_command_buffer_reset(&cmd_buffer->vk); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_SPARSE) |
| return; |
| |
| device->ws->cs_reset(cmd_buffer->cs); |
| if (cmd_buffer->gang.cs) |
| device->ws->cs_reset(cmd_buffer->gang.cs); |
| |
| list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) { |
| radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo); |
| radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo); |
| list_del(&up->list); |
| free(up); |
| } |
| |
| util_dynarray_clear(&cmd_buffer->ray_history); |
| |
| radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers); |
| |
| cmd_buffer->push_constant_stages = 0; |
| cmd_buffer->scratch_size_per_wave_needed = 0; |
| cmd_buffer->scratch_waves_wanted = 0; |
| cmd_buffer->compute_scratch_size_per_wave_needed = 0; |
| cmd_buffer->compute_scratch_waves_wanted = 0; |
| cmd_buffer->esgs_ring_size_needed = 0; |
| cmd_buffer->gsvs_ring_size_needed = 0; |
| cmd_buffer->tess_rings_needed = false; |
| cmd_buffer->task_rings_needed = false; |
| cmd_buffer->mesh_scratch_ring_needed = false; |
| cmd_buffer->gds_needed = false; |
| cmd_buffer->gds_oa_needed = false; |
| cmd_buffer->sample_positions_needed = false; |
| cmd_buffer->gang.sem.leader_value = 0; |
| cmd_buffer->gang.sem.emitted_leader_value = 0; |
| cmd_buffer->gang.sem.va = 0; |
| cmd_buffer->shader_upload_seq = 0; |
| |
| if (cmd_buffer->upload.upload_bo) |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo); |
| cmd_buffer->upload.offset = 0; |
| |
| memset(cmd_buffer->vertex_binding_buffers, 0, sizeof(struct radv_buffer *) * cmd_buffer->used_vertex_bindings); |
| cmd_buffer->used_vertex_bindings = 0; |
| |
| for (unsigned i = 0; i < MAX_BIND_POINTS; i++) { |
| cmd_buffer->descriptors[i].dirty = 0; |
| cmd_buffer->descriptors[i].valid = 0; |
| } |
| |
| radv_cmd_buffer_reset_rendering(cmd_buffer); |
| } |
| |
| const struct vk_command_buffer_ops radv_cmd_buffer_ops = { |
| .create = radv_create_cmd_buffer, |
| .reset = radv_reset_cmd_buffer, |
| .destroy = radv_destroy_cmd_buffer, |
| }; |
| |
| static bool |
| radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint64_t new_size; |
| struct radeon_winsys_bo *bo = NULL; |
| struct radv_cmd_buffer_upload *upload; |
| |
| new_size = MAX2(min_needed, 16 * 1024); |
| new_size = MAX2(new_size, 2 * cmd_buffer->upload.size); |
| |
| VkResult result = radv_bo_create( |
| device, &cmd_buffer->vk.base, new_size, 4096, device->ws->cs_domain(device->ws), |
| RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC, |
| RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &bo); |
| |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, result); |
| return false; |
| } |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo); |
| if (cmd_buffer->upload.upload_bo) { |
| upload = malloc(sizeof(*upload)); |
| |
| if (!upload) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| radv_bo_destroy(device, &cmd_buffer->vk.base, bo); |
| return false; |
| } |
| |
| memcpy(upload, &cmd_buffer->upload, sizeof(*upload)); |
| list_add(&upload->list, &cmd_buffer->upload.list); |
| } |
| |
| cmd_buffer->upload.upload_bo = bo; |
| cmd_buffer->upload.size = new_size; |
| cmd_buffer->upload.offset = 0; |
| cmd_buffer->upload.map = radv_buffer_map(device->ws, cmd_buffer->upload.upload_bo); |
| |
| if (!cmd_buffer->upload.map) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY); |
| return false; |
| } |
| |
| radv_rmv_log_command_buffer_bo_create(device, cmd_buffer->upload.upload_bo, 0, cmd_buffer->upload.size, 0); |
| |
| return true; |
| } |
| |
| bool |
| radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignment, |
| unsigned *out_offset, void **ptr) |
| { |
| assert(size % 4 == 0); |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| |
| /* Align to the scalar cache line size if it results in this allocation |
| * being placed in less of them. |
| */ |
| unsigned offset = cmd_buffer->upload.offset; |
| unsigned line_size = gpu_info->gfx_level >= GFX10 ? 64 : 32; |
| unsigned gap = align(offset, line_size) - offset; |
| if ((size & (line_size - 1)) > gap) |
| offset = align(offset, line_size); |
| |
| if (alignment) |
| offset = align(offset, alignment); |
| if (offset + size > cmd_buffer->upload.size) { |
| if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size)) |
| return false; |
| offset = 0; |
| } |
| |
| *out_offset = offset; |
| *ptr = cmd_buffer->upload.map + offset; |
| |
| cmd_buffer->upload.offset = offset + size; |
| return true; |
| } |
| |
| bool |
| radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *out_offset, void **ptr) |
| { |
| return radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, size, 0, out_offset, ptr); |
| } |
| |
| bool |
| radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data, unsigned *out_offset) |
| { |
| uint8_t *ptr; |
| |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr)) |
| return false; |
| assert(ptr); |
| |
| memcpy(ptr, data, size); |
| return true; |
| } |
| |
| void |
| radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint64_t va; |
| |
| if (cmd_buffer->qf != RADV_QUEUE_GENERAL && cmd_buffer->qf != RADV_QUEUE_COMPUTE) |
| return; |
| |
| va = radv_buffer_get_va(device->trace_bo); |
| if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) |
| va += offsetof(struct radv_trace_data, primary_id); |
| else |
| va += offsetof(struct radv_trace_data, secondary_id); |
| |
| ++cmd_buffer->state.trace_id; |
| radv_write_data(cmd_buffer, V_370_ME, va, 1, &cmd_buffer->state.trace_id, false); |
| |
| radeon_check_space(device->ws, cs, 2); |
| |
| radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); |
| radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id)); |
| } |
| |
| void |
| radv_cmd_buffer_annotate(struct radv_cmd_buffer *cmd_buffer, const char *annotation) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| device->ws->cs_annotate(cmd_buffer->cs, annotation); |
| } |
| |
| #define RADV_TASK_SHADER_SENSITIVE_STAGES (\ |
| VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT |\ |
| VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |\ |
| VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |\ |
| VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT) |
| |
| static void |
| radv_gang_barrier(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask, |
| VkPipelineStageFlags2 dst_stage_mask) |
| { |
| /* Update flush bits from the main cmdbuf, except the stage flush. */ |
| cmd_buffer->gang.flush_bits |= |
| cmd_buffer->state.flush_bits & RADV_CMD_FLUSH_ALL_COMPUTE & ~RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| /* Add stage flush only when necessary. */ |
| if (src_stage_mask & (VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT | |
| VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | RADV_TASK_SHADER_SENSITIVE_STAGES | |
| VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) |
| cmd_buffer->gang.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| /* Block task shaders when we have to wait for CP DMA on the GFX cmdbuf. */ |
| if (src_stage_mask & |
| (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | |
| VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) |
| dst_stage_mask |= cmd_buffer->state.dma_is_busy ? VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT : 0; |
| |
| /* Increment the GFX/ACE semaphore when task shaders are blocked. */ |
| if (dst_stage_mask & (VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | |
| RADV_TASK_SHADER_SENSITIVE_STAGES)) |
| cmd_buffer->gang.sem.leader_value++; |
| } |
| |
| void |
| radv_gang_cache_flush(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs; |
| const uint32_t flush_bits = cmd_buffer->gang.flush_bits; |
| enum rgp_flush_bits sqtt_flush_bits = 0; |
| |
| radv_cs_emit_cache_flush(device->ws, ace_cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE, flush_bits, |
| &sqtt_flush_bits, 0); |
| |
| cmd_buffer->gang.flush_bits = 0; |
| } |
| |
| static bool |
| radv_gang_sem_init(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->gang.sem.va) |
| return true; |
| |
| /* DWORD 0: GFX->ACE semaphore (GFX blocks ACE, ie. ACE waits for GFX) |
| * DWORD 1: ACE->GFX semaphore |
| */ |
| uint64_t sem_init = 0; |
| uint32_t va_off = 0; |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint64_t), &sem_init, &va_off)) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return false; |
| } |
| |
| cmd_buffer->gang.sem.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + va_off; |
| return true; |
| } |
| |
| static bool |
| radv_gang_leader_sem_dirty(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| return cmd_buffer->gang.sem.leader_value != cmd_buffer->gang.sem.emitted_leader_value; |
| } |
| |
| static bool |
| radv_gang_follower_sem_dirty(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| return cmd_buffer->gang.sem.follower_value != cmd_buffer->gang.sem.emitted_follower_value; |
| } |
| |
| ALWAYS_INLINE static bool |
| radv_flush_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf, |
| const uint32_t va_off, const uint32_t value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (!radv_gang_sem_init(cmd_buffer)) |
| return false; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 12); |
| |
| radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, qf, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, |
| EOP_DATA_SEL_VALUE_32BIT, cmd_buffer->gang.sem.va + va_off, value, |
| cmd_buffer->gfx9_eop_bug_va); |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| return true; |
| } |
| |
| ALWAYS_INLINE static bool |
| radv_flush_gang_leader_semaphore(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (!radv_gang_leader_sem_dirty(cmd_buffer)) |
| return false; |
| |
| /* Gang leader writes a value to the semaphore which the follower can wait for. */ |
| cmd_buffer->gang.sem.emitted_leader_value = cmd_buffer->gang.sem.leader_value; |
| return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 0, cmd_buffer->gang.sem.leader_value); |
| } |
| |
| ALWAYS_INLINE static bool |
| radv_flush_gang_follower_semaphore(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (!radv_gang_follower_sem_dirty(cmd_buffer)) |
| return false; |
| |
| /* Follower writes a value to the semaphore which the gang leader can wait for. */ |
| cmd_buffer->gang.sem.emitted_follower_value = cmd_buffer->gang.sem.follower_value; |
| return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 4, |
| cmd_buffer->gang.sem.follower_value); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_wait_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf, |
| const uint32_t va_off, const uint32_t value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(cmd_buffer->gang.sem.va); |
| radeon_check_space(device->ws, cs, 7); |
| radv_cp_wait_mem(cs, qf, WAIT_REG_MEM_GREATER_OR_EQUAL, cmd_buffer->gang.sem.va + va_off, value, 0xffffffff); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_wait_gang_leader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| /* Follower waits for the semaphore which the gang leader wrote. */ |
| radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 0, cmd_buffer->gang.sem.leader_value); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_wait_gang_follower(struct radv_cmd_buffer *cmd_buffer) |
| { |
| /* Gang leader waits for the semaphore which the follower wrote. */ |
| radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 4, cmd_buffer->gang.sem.follower_value); |
| } |
| |
| bool |
| radv_gang_init(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (cmd_buffer->gang.cs) |
| return true; |
| |
| struct radeon_cmdbuf *ace_cs = |
| device->ws->cs_create(device->ws, AMD_IP_COMPUTE, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); |
| |
| if (!ace_cs) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY); |
| return false; |
| } |
| |
| cmd_buffer->gang.cs = ace_cs; |
| return true; |
| } |
| |
| static VkResult |
| radv_gang_finalize(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(cmd_buffer->gang.cs); |
| struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs; |
| |
| /* Emit pending cache flush. */ |
| radv_gang_cache_flush(cmd_buffer); |
| |
| /* Clear the leader<->follower semaphores if they exist. |
| * This is necessary in case the same cmd buffer is submitted again in the future. |
| */ |
| if (cmd_buffer->gang.sem.va) { |
| uint64_t leader2follower_va = cmd_buffer->gang.sem.va; |
| uint64_t follower2leader_va = cmd_buffer->gang.sem.va + 4; |
| const uint32_t zero = 0; |
| |
| /* Follower: write 0 to the leader->follower semaphore. */ |
| radv_cs_write_data(device, ace_cs, RADV_QUEUE_COMPUTE, V_370_ME, leader2follower_va, 1, &zero, false); |
| |
| /* Leader: write 0 to the follower->leader semaphore. */ |
| radv_write_data(cmd_buffer, V_370_ME, follower2leader_va, 1, &zero, false); |
| } |
| |
| return device->ws->cs_finalize(ace_cs); |
| } |
| |
| static void |
| radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags, bool dgc) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| if (unlikely(device->sqtt.bo) && !dgc) { |
| radeon_check_space(device->ws, cmd_buffer->cs, 2); |
| |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, cmd_buffer->state.predicating)); |
| radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0)); |
| } |
| |
| if (instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) { |
| enum rgp_flush_bits sqtt_flush_bits = 0; |
| assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)); |
| |
| /* Force wait for graphics or compute engines to be idle. */ |
| radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx, |
| cmd_buffer->gfx9_fence_va, cmd_buffer->qf, flags, &sqtt_flush_bits, |
| cmd_buffer->gfx9_eop_bug_va); |
| |
| if ((flags & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) && radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) { |
| /* Force wait for compute engines to be idle on the internal cmdbuf. */ |
| radv_cs_emit_cache_flush(device->ws, cmd_buffer->gang.cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE, |
| RADV_CMD_FLAG_CS_PARTIAL_FLUSH, &sqtt_flush_bits, 0); |
| } |
| } |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| } |
| |
| static void |
| radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| enum amd_ip_type ring; |
| uint32_t data[2]; |
| uint64_t va; |
| |
| va = radv_buffer_get_va(device->trace_bo); |
| |
| ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf); |
| |
| switch (ring) { |
| case AMD_IP_GFX: |
| va += offsetof(struct radv_trace_data, gfx_ring_pipeline); |
| break; |
| case AMD_IP_COMPUTE: |
| va += offsetof(struct radv_trace_data, comp_ring_pipeline); |
| break; |
| default: |
| assert(!"invalid IP type"); |
| } |
| |
| uint64_t pipeline_address = (uintptr_t)pipeline; |
| data[0] = pipeline_address; |
| data[1] = pipeline_address >> 32; |
| |
| radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false); |
| } |
| |
| static void |
| radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint32_t data[2]; |
| uint64_t va; |
| |
| va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_descriptors); |
| |
| data[0] = vb_ptr; |
| data[1] = vb_ptr >> 32; |
| |
| radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false); |
| } |
| |
| static void |
| radv_save_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader_part *prolog) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint32_t data[2]; |
| uint64_t va; |
| |
| va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_prolog); |
| |
| uint64_t prolog_address = (uintptr_t)prolog; |
| data[0] = prolog_address; |
| data[1] = prolog_address >> 32; |
| |
| radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false); |
| } |
| |
| void |
| radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point, |
| struct radv_descriptor_set *set, unsigned idx) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| |
| descriptors_state->sets[idx] = set; |
| |
| descriptors_state->valid |= (1u << idx); /* active descriptors */ |
| descriptors_state->dirty |= (1u << idx); |
| } |
| |
| static void |
| radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint32_t data[MAX_SETS * 2] = {0}; |
| uint64_t va; |
| va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, descriptor_sets); |
| |
| u_foreach_bit (i, descriptors_state->valid) { |
| struct radv_descriptor_set *set = descriptors_state->sets[i]; |
| data[i * 2] = (uint64_t)(uintptr_t)set; |
| data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32; |
| } |
| |
| radv_write_data(cmd_buffer, V_370_ME, va, MAX_SETS * 2, data, false); |
| } |
| |
| static void |
| radv_emit_userdata_address(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader, |
| int idx, uint64_t va) |
| { |
| const uint32_t offset = radv_get_user_sgpr_loc(shader, idx); |
| |
| if (!offset) |
| return; |
| |
| radv_emit_shader_pointer(device, cs, offset, va, false); |
| } |
| |
| uint64_t |
| radv_descriptor_get_va(const struct radv_descriptor_state *descriptors_state, unsigned set_idx) |
| { |
| struct radv_descriptor_set *set = descriptors_state->sets[set_idx]; |
| uint64_t va; |
| |
| if (set) { |
| va = set->header.va; |
| } else { |
| va = descriptors_state->descriptor_buffers[set_idx]; |
| } |
| |
| return va; |
| } |
| |
| static void |
| radv_emit_descriptors_per_stage(const struct radv_device *device, struct radeon_cmdbuf *cs, |
| const struct radv_shader *shader, const struct radv_descriptor_state *descriptors_state) |
| { |
| const uint32_t indirect_descriptor_sets_offset = radv_get_user_sgpr_loc(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS); |
| |
| if (indirect_descriptor_sets_offset) { |
| radv_emit_shader_pointer(device, cs, indirect_descriptor_sets_offset, |
| descriptors_state->indirect_descriptor_sets_va, false); |
| } else { |
| const struct radv_userdata_locations *locs = &shader->info.user_sgprs_locs; |
| const uint32_t sh_base = shader->info.user_data_0; |
| unsigned mask = locs->descriptor_sets_enabled; |
| |
| mask &= descriptors_state->dirty & descriptors_state->valid; |
| |
| while (mask) { |
| int start, count; |
| |
| u_bit_scan_consecutive_range(&mask, &start, &count); |
| |
| const struct radv_userdata_info *loc = &locs->descriptor_sets[start]; |
| const unsigned sh_offset = sh_base + loc->sgpr_idx * 4; |
| |
| radv_emit_shader_pointer_head(cs, sh_offset, count, true); |
| for (int i = 0; i < count; i++) { |
| uint64_t va = radv_descriptor_get_va(descriptors_state, start + i); |
| |
| radv_emit_shader_pointer_body(device, cs, va, true); |
| } |
| } |
| } |
| } |
| |
| static unsigned |
| radv_get_rasterization_prim(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| if (cmd_buffer->state.active_stages & |
| (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | |
| VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) { |
| /* Ignore dynamic primitive topology for TES/GS/MS stages. */ |
| return cmd_buffer->state.rast_prim; |
| } |
| |
| return radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg); |
| } |
| |
| static ALWAYS_INLINE VkLineRasterizationModeEXT |
| radv_get_line_mode(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer); |
| |
| bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode); |
| draw_lines &= !radv_rast_prim_is_point(rast_prim); |
| draw_lines &= !radv_polygon_mode_is_point(d->vk.rs.polygon_mode); |
| if (draw_lines) |
| return d->vk.rs.line.mode; |
| |
| return VK_LINE_RASTERIZATION_MODE_DEFAULT; |
| } |
| |
| static ALWAYS_INLINE unsigned |
| radv_get_rasterization_samples(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| VkLineRasterizationModeEXT line_mode = radv_get_line_mode(cmd_buffer); |
| |
| if (line_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM) { |
| /* From the Vulkan spec 1.3.221: |
| * |
| * "When Bresenham lines are being rasterized, sample locations may all be treated as being at |
| * the pixel center (this may affect attribute and depth interpolation)." |
| * |
| * "One consequence of this is that Bresenham lines cover the same pixels regardless of the |
| * number of rasterization samples, and cover all samples in those pixels (unless masked out |
| * or killed)." |
| */ |
| return 1; |
| } |
| |
| if (line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH) { |
| return RADV_NUM_SMOOTH_AA_SAMPLES; |
| } |
| |
| return MAX2(1, d->vk.ms.rasterization_samples); |
| } |
| |
| static ALWAYS_INLINE unsigned |
| radv_get_ps_iter_samples(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| unsigned ps_iter_samples = 1; |
| |
| if (cmd_buffer->state.ms.sample_shading_enable) { |
| unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| unsigned color_samples = MAX2(render->color_samples, rasterization_samples); |
| |
| ps_iter_samples = ceilf(cmd_buffer->state.ms.min_sample_shading * color_samples); |
| ps_iter_samples = util_next_power_of_two(ps_iter_samples); |
| } |
| |
| return ps_iter_samples; |
| } |
| |
| /** |
| * Convert the user sample locations to hardware sample locations (the values |
| * that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*). |
| */ |
| static void |
| radv_convert_user_sample_locs(const struct radv_sample_locations_state *state, uint32_t x, uint32_t y, |
| VkOffset2D *sample_locs) |
| { |
| uint32_t x_offset = x % state->grid_size.width; |
| uint32_t y_offset = y % state->grid_size.height; |
| uint32_t num_samples = (uint32_t)state->per_pixel; |
| uint32_t pixel_offset; |
| |
| pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples; |
| |
| assert(pixel_offset <= MAX_SAMPLE_LOCATIONS); |
| const VkSampleLocationEXT *user_locs = &state->locations[pixel_offset]; |
| |
| for (uint32_t i = 0; i < num_samples; i++) { |
| float shifted_pos_x = user_locs[i].x - 0.5; |
| float shifted_pos_y = user_locs[i].y - 0.5; |
| |
| int32_t scaled_pos_x = floorf(shifted_pos_x * 16); |
| int32_t scaled_pos_y = floorf(shifted_pos_y * 16); |
| |
| sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7); |
| sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7); |
| } |
| } |
| |
| /** |
| * Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample |
| * locations. |
| */ |
| static void |
| radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs, uint32_t *sample_locs_pixel) |
| { |
| for (uint32_t i = 0; i < num_samples; i++) { |
| uint32_t sample_reg_idx = i / 4; |
| uint32_t sample_loc_idx = i % 4; |
| int32_t pos_x = sample_locs[i].x; |
| int32_t pos_y = sample_locs[i].y; |
| |
| uint32_t shift_x = 8 * sample_loc_idx; |
| uint32_t shift_y = shift_x + 4; |
| |
| sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x; |
| sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y; |
| } |
| } |
| |
| /** |
| * Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware |
| * sample locations. |
| */ |
| static uint64_t |
| radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs, uint32_t num_samples) |
| { |
| uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities)); |
| uint32_t sample_mask = num_samples - 1; |
| uint32_t *distances = alloca(num_samples * sizeof(*distances)); |
| uint64_t centroid_priority = 0; |
| |
| /* Compute the distances from center for each sample. */ |
| for (int i = 0; i < num_samples; i++) { |
| distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y); |
| } |
| |
| /* Compute the centroid priorities by looking at the distances array. */ |
| for (int i = 0; i < num_samples; i++) { |
| uint32_t min_idx = 0; |
| |
| for (int j = 1; j < num_samples; j++) { |
| if (distances[j] < distances[min_idx]) |
| min_idx = j; |
| } |
| |
| centroid_priorities[i] = min_idx; |
| distances[min_idx] = 0xffffffff; |
| } |
| |
| /* Compute the final centroid priority. */ |
| for (int i = 0; i < 8; i++) { |
| centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4); |
| } |
| |
| return centroid_priority << 32 | centroid_priority; |
| } |
| |
| /** |
| * Emit the sample locations that are specified with VK_EXT_sample_locations. |
| */ |
| static void |
| radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| uint32_t num_samples = (uint32_t)d->sample_location.per_pixel; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint32_t sample_locs_pixel[4][2] = {0}; |
| VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */ |
| uint64_t centroid_priority; |
| |
| if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) |
| return; |
| |
| /* Convert the user sample locations to hardware sample locations. */ |
| radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]); |
| radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]); |
| radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]); |
| radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]); |
| |
| /* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */ |
| for (uint32_t i = 0; i < 4; i++) { |
| radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]); |
| } |
| |
| /* Compute the PA_SC_CENTROID_PRIORITY_* mask. */ |
| centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples); |
| |
| /* Emit the specified user sample locations. */ |
| switch (num_samples) { |
| case 2: |
| case 4: |
| radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]); |
| radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]); |
| radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]); |
| radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]); |
| break; |
| case 8: |
| radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]); |
| radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]); |
| radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]); |
| radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]); |
| radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1, sample_locs_pixel[0][1]); |
| radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1, sample_locs_pixel[1][1]); |
| radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1, sample_locs_pixel[2][1]); |
| radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1, sample_locs_pixel[3][1]); |
| break; |
| default: |
| unreachable("invalid number of samples"); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg_seq(cs, R_028BF0_PA_SC_CENTROID_PRIORITY_0, 2); |
| } else { |
| radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); |
| } |
| radeon_emit(cs, centroid_priority); |
| radeon_emit(cs, centroid_priority >> 32); |
| |
| if (pdev->info.gfx_level >= GFX7) { |
| /* The exclusion bits can be set to improve rasterization efficiency if no sample lies on the pixel boundary |
| * (-8 sample offset). |
| */ |
| uint32_t pa_su_prim_filter_cntl = S_02882C_XMAX_RIGHT_EXCLUSION(1) | S_02882C_YMAX_BOTTOM_EXCLUSION(1); |
| for (uint32_t i = 0; i < 4; ++i) { |
| for (uint32_t j = 0; j < num_samples; ++j) { |
| if (sample_locs[i][j].x <= -8) |
| pa_su_prim_filter_cntl &= C_02882C_XMAX_RIGHT_EXCLUSION; |
| if (sample_locs[i][j].y <= -8) |
| pa_su_prim_filter_cntl &= C_02882C_YMAX_BOTTOM_EXCLUSION; |
| } |
| } |
| |
| radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, pa_su_prim_filter_cntl); |
| } |
| } |
| |
| static void |
| radv_emit_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs, |
| const struct radv_shader *shader, int idx, const uint32_t *values) |
| { |
| const struct radv_userdata_info *loc = &shader->info.user_sgprs_locs.shader_data[idx]; |
| const uint32_t base_reg = shader->info.user_data_0; |
| |
| if (loc->sgpr_idx == -1) |
| return; |
| |
| radeon_check_space(device->ws, cs, 2 + loc->num_sgprs); |
| |
| radeon_set_sh_reg_seq(cs, base_reg + loc->sgpr_idx * 4, loc->num_sgprs); |
| radeon_emit_array(cs, values, loc->num_sgprs); |
| } |
| |
| struct radv_bin_size_entry { |
| unsigned bpp; |
| VkExtent2D extent; |
| }; |
| |
| static VkExtent2D |
| radv_gfx10_compute_bin_size(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| VkExtent2D extent = {512, 512}; |
| |
| const unsigned db_tag_size = 64; |
| const unsigned db_tag_count = 312; |
| const unsigned color_tag_size = 1024; |
| const unsigned color_tag_count = 31; |
| const unsigned fmask_tag_size = 256; |
| const unsigned fmask_tag_count = 44; |
| |
| const unsigned rb_count = pdev->info.max_render_backends; |
| const unsigned pipe_count = MAX2(rb_count, pdev->info.num_tcc_blocks); |
| |
| const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count; |
| const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count; |
| const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count; |
| |
| const unsigned total_samples = radv_get_rasterization_samples(cmd_buffer); |
| const unsigned samples_log = util_logbase2_ceil(total_samples); |
| |
| unsigned color_bytes_per_pixel = 0; |
| unsigned fmask_bytes_per_pixel = 0; |
| |
| for (unsigned i = 0; i < render->color_att_count; ++i) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| |
| if (!iview) |
| continue; |
| |
| if (!d->vk.cb.attachments[i].write_mask) |
| continue; |
| |
| color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format); |
| |
| if (total_samples > 1) { |
| assert(samples_log <= 3); |
| const unsigned fmask_array[] = {0, 1, 1, 4}; |
| fmask_bytes_per_pixel += fmask_array[samples_log]; |
| } |
| } |
| |
| color_bytes_per_pixel *= total_samples; |
| color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1); |
| |
| const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel); |
| extent.width = 1ull << ((color_pixel_count_log + 1) / 2); |
| extent.height = 1ull << (color_pixel_count_log / 2); |
| |
| if (fmask_bytes_per_pixel) { |
| const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel); |
| |
| const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2), |
| .height = 1ull << (color_pixel_count_log / 2)}; |
| |
| if (fmask_extent.width * fmask_extent.height < extent.width * extent.height) |
| extent = fmask_extent; |
| } |
| |
| if (render->ds_att.iview) { |
| /* Coefficients taken from AMDVLK */ |
| unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0; |
| unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0; |
| unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples; |
| |
| const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel); |
| |
| const VkExtent2D db_extent = |
| (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)}; |
| |
| if (db_extent.width * db_extent.height < extent.width * extent.height) |
| extent = db_extent; |
| } |
| |
| extent.width = MAX2(extent.width, 128); |
| extent.height = MAX2(extent.width, pdev->info.gfx_level >= GFX12 ? 128 : 64); |
| |
| return extent; |
| } |
| |
| static VkExtent2D |
| radv_gfx9_compute_bin_size(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| static const struct radv_bin_size_entry color_size_table[][3][9] = { |
| { |
| /* One RB / SE */ |
| { |
| /* One shader engine */ |
| {0, {128, 128}}, |
| {1, {64, 128}}, |
| {2, {32, 128}}, |
| {3, {16, 128}}, |
| {17, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| {0, {128, 128}}, |
| {2, {64, 128}}, |
| {3, {32, 128}}, |
| {5, {16, 128}}, |
| {17, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| {0, {128, 128}}, |
| {3, {64, 128}}, |
| {5, {16, 128}}, |
| {17, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| { |
| /* Two RB / SE */ |
| { |
| /* One shader engine */ |
| {0, {128, 128}}, |
| {2, {64, 128}}, |
| {3, {32, 128}}, |
| {5, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| {0, {128, 128}}, |
| {3, {64, 128}}, |
| {5, {32, 128}}, |
| {9, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| {0, {256, 256}}, |
| {2, {128, 256}}, |
| {3, {128, 128}}, |
| {5, {64, 128}}, |
| {9, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| { |
| /* Four RB / SE */ |
| { |
| /* One shader engine */ |
| {0, {128, 256}}, |
| {2, {128, 128}}, |
| {3, {64, 128}}, |
| {5, {32, 128}}, |
| {9, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Two shader engines */ |
| {0, {256, 256}}, |
| {2, {128, 256}}, |
| {3, {128, 128}}, |
| {5, {64, 128}}, |
| {9, {32, 128}}, |
| {17, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| /* Four shader engines */ |
| {0, {256, 512}}, |
| {2, {256, 256}}, |
| {3, {128, 256}}, |
| {5, {128, 128}}, |
| {9, {64, 128}}, |
| {17, {16, 128}}, |
| {33, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| }; |
| static const struct radv_bin_size_entry ds_size_table[][3][9] = { |
| { |
| // One RB / SE |
| { |
| // One shader engine |
| {0, {128, 256}}, |
| {2, {128, 128}}, |
| {4, {64, 128}}, |
| {7, {32, 128}}, |
| {13, {16, 128}}, |
| {49, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Two shader engines |
| {0, {256, 256}}, |
| {2, {128, 256}}, |
| {4, {128, 128}}, |
| {7, {64, 128}}, |
| {13, {32, 128}}, |
| {25, {16, 128}}, |
| {49, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Four shader engines |
| {0, {256, 512}}, |
| {2, {256, 256}}, |
| {4, {128, 256}}, |
| {7, {128, 128}}, |
| {13, {64, 128}}, |
| {25, {16, 128}}, |
| {49, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| { |
| // Two RB / SE |
| { |
| // One shader engine |
| {0, {256, 256}}, |
| {2, {128, 256}}, |
| {4, {128, 128}}, |
| {7, {64, 128}}, |
| {13, {32, 128}}, |
| {25, {16, 128}}, |
| {97, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Two shader engines |
| {0, {256, 512}}, |
| {2, {256, 256}}, |
| {4, {128, 256}}, |
| {7, {128, 128}}, |
| {13, {64, 128}}, |
| {25, {32, 128}}, |
| {49, {16, 128}}, |
| {97, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Four shader engines |
| {0, {512, 512}}, |
| {2, {256, 512}}, |
| {4, {256, 256}}, |
| {7, {128, 256}}, |
| {13, {128, 128}}, |
| {25, {64, 128}}, |
| {49, {16, 128}}, |
| {97, {0, 0}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| { |
| // Four RB / SE |
| { |
| // One shader engine |
| {0, {256, 512}}, |
| {2, {256, 256}}, |
| {4, {128, 256}}, |
| {7, {128, 128}}, |
| {13, {64, 128}}, |
| {25, {32, 128}}, |
| {49, {16, 128}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Two shader engines |
| {0, {512, 512}}, |
| {2, {256, 512}}, |
| {4, {256, 256}}, |
| {7, {128, 256}}, |
| {13, {128, 128}}, |
| {25, {64, 128}}, |
| {49, {32, 128}}, |
| {97, {16, 128}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| { |
| // Four shader engines |
| {0, {512, 512}}, |
| {4, {256, 512}}, |
| {7, {256, 256}}, |
| {13, {128, 256}}, |
| {25, {128, 128}}, |
| {49, {64, 128}}, |
| {97, {16, 128}}, |
| {UINT_MAX, {0, 0}}, |
| }, |
| }, |
| }; |
| |
| VkExtent2D extent = {512, 512}; |
| |
| unsigned log_num_rb_per_se = util_logbase2_ceil(pdev->info.max_render_backends / pdev->info.max_se); |
| unsigned log_num_se = util_logbase2_ceil(pdev->info.max_se); |
| |
| unsigned total_samples = radv_get_rasterization_samples(cmd_buffer); |
| unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer); |
| unsigned effective_samples = total_samples; |
| unsigned color_bytes_per_pixel = 0; |
| |
| for (unsigned i = 0; i < render->color_att_count; ++i) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| |
| if (!iview) |
| continue; |
| |
| if (!d->vk.cb.attachments[i].write_mask) |
| continue; |
| |
| color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format); |
| } |
| |
| /* MSAA images typically don't use all samples all the time. */ |
| if (effective_samples >= 2 && ps_iter_samples <= 1) |
| effective_samples = 2; |
| color_bytes_per_pixel *= effective_samples; |
| |
| const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se]; |
| while (color_entry[1].bpp <= color_bytes_per_pixel) |
| ++color_entry; |
| |
| extent = color_entry->extent; |
| |
| if (render->ds_att.iview) { |
| /* Coefficients taken from AMDVLK */ |
| unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0; |
| unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0; |
| unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples; |
| |
| const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se]; |
| while (ds_entry[1].bpp <= ds_bytes_per_pixel) |
| ++ds_entry; |
| |
| if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height) |
| extent = ds_entry->extent; |
| } |
| |
| return extent; |
| } |
| |
| static unsigned |
| radv_get_disabled_binning_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| uint32_t pa_sc_binner_cntl_0; |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| const uint32_t bin_size_x = 128, bin_size_y = 128; |
| |
| pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_BINNING_DISABLED) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(bin_size_x) - 5) | |
| S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(bin_size_y) - 5) | S_028C44_DISABLE_START_OF_PRIM(1) | |
| S_028C44_FPOVS_PER_BATCH(63) | S_028C44_OPTIMAL_BIN_SELECTION(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1); |
| } else if (pdev->info.gfx_level >= GFX10) { |
| const unsigned binning_disabled = |
| pdev->info.gfx_level >= GFX11_5 ? V_028C44_BINNING_DISABLED : V_028C44_DISABLE_BINNING_USE_NEW_SC; |
| unsigned min_bytes_per_pixel = 0; |
| |
| for (unsigned i = 0; i < render->color_att_count; ++i) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| |
| if (!iview) |
| continue; |
| |
| if (!d->vk.cb.attachments[i].write_mask) |
| continue; |
| |
| unsigned bytes = vk_format_get_blocksize(render->color_att[i].format); |
| if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel) |
| min_bytes_per_pixel = bytes; |
| } |
| |
| pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(binning_disabled) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) | |
| S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */ |
| S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */ |
| S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1); |
| } else { |
| pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1) | |
| S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 || |
| pdev->info.family >= CHIP_RAVEN2); |
| } |
| |
| return pa_sc_binner_cntl_0; |
| } |
| |
| static unsigned |
| radv_get_binning_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned pa_sc_binner_cntl_0; |
| VkExtent2D bin_size; |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| bin_size = radv_gfx10_compute_bin_size(cmd_buffer); |
| } else { |
| assert(pdev->info.gfx_level == GFX9); |
| bin_size = radv_gfx9_compute_bin_size(cmd_buffer); |
| } |
| |
| if (device->pbb_allowed && bin_size.width && bin_size.height) { |
| const struct radv_binning_settings *settings = &pdev->binning_settings; |
| |
| pa_sc_binner_cntl_0 = |
| S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) | |
| S_028C44_BIN_SIZE_Y(bin_size.height == 16) | |
| S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) | |
| S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) | |
| S_028C44_CONTEXT_STATES_PER_BIN(settings->context_states_per_bin - 1) | |
| S_028C44_PERSISTENT_STATES_PER_BIN(settings->persistent_states_per_bin - 1) | |
| S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(settings->fpovs_per_batch) | |
| S_028C44_OPTIMAL_BIN_SELECTION(1) | |
| S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 || |
| pdev->info.family >= CHIP_RAVEN2); |
| } else { |
| pa_sc_binner_cntl_0 = radv_get_disabled_binning_state(cmd_buffer); |
| } |
| |
| return pa_sc_binner_cntl_0; |
| } |
| |
| static void |
| radv_emit_binning_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned pa_sc_binner_cntl_0; |
| |
| if (pdev->info.gfx_level < GFX9) |
| return; |
| |
| pa_sc_binner_cntl_0 = radv_get_binning_state(cmd_buffer); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028C44_PA_SC_BINNER_CNTL_0, RADV_TRACKED_PA_SC_BINNER_CNTL_0, |
| pa_sc_binner_cntl_0); |
| } |
| |
| static void |
| radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader) |
| { |
| uint64_t va; |
| |
| if (!shader) |
| return; |
| |
| va = radv_shader_get_va(shader); |
| |
| radv_cp_dma_prefetch(cmd_buffer, va, shader->code_size); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer, bool first_stage_only) |
| { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| uint32_t mask = state->prefetch_L2_mask; |
| |
| /* Fast prefetch path for starting draws as soon as possible. */ |
| if (first_stage_only) |
| mask &= RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS | RADV_PREFETCH_MS; |
| |
| if (mask & RADV_PREFETCH_VS) |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_VERTEX]); |
| |
| if (mask & RADV_PREFETCH_MS) |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_MESH]); |
| |
| if (mask & RADV_PREFETCH_VBO_DESCRIPTORS) |
| radv_cp_dma_prefetch(cmd_buffer, state->vb_va, state->vb_size); |
| |
| if (mask & RADV_PREFETCH_TCS) |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]); |
| |
| if (mask & RADV_PREFETCH_TES) |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]); |
| |
| if (mask & RADV_PREFETCH_GS) { |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]); |
| if (cmd_buffer->state.gs_copy_shader) |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.gs_copy_shader); |
| } |
| |
| if (mask & RADV_PREFETCH_PS) { |
| radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]); |
| } |
| |
| state->prefetch_L2_mask &= ~mask; |
| } |
| |
| static void |
| radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| assert(pdev->info.rbplus_allowed); |
| |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| |
| unsigned sx_ps_downconvert = 0; |
| unsigned sx_blend_opt_epsilon = 0; |
| unsigned sx_blend_opt_control = 0; |
| |
| for (unsigned i = 0; i < render->color_att_count; i++) { |
| unsigned format, swap; |
| bool has_alpha, has_rgb; |
| if (render->color_att[i].iview == NULL) { |
| /* We don't set the DISABLE bits, because the HW can't have holes, |
| * so the SPI color format is set to 32-bit 1-component. */ |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4); |
| continue; |
| } |
| |
| struct radv_color_buffer_info *cb = &render->color_att[i].cb; |
| |
| format = pdev->info.gfx_level >= GFX11 ? G_028C70_FORMAT_GFX11(cb->ac.cb_color_info) |
| : G_028C70_FORMAT_GFX6(cb->ac.cb_color_info); |
| swap = G_028C70_COMP_SWAP(cb->ac.cb_color_info); |
| has_alpha = pdev->info.gfx_level >= GFX11 ? !G_028C74_FORCE_DST_ALPHA_1_GFX11(cb->ac.cb_color_attrib) |
| : !G_028C74_FORCE_DST_ALPHA_1_GFX6(cb->ac.cb_color_attrib); |
| |
| uint32_t spi_format = (cmd_buffer->state.spi_shader_col_format >> (i * 4)) & 0xf; |
| uint32_t colormask = d->vk.cb.attachments[i].write_mask; |
| |
| if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32) |
| has_rgb = !has_alpha; |
| else |
| has_rgb = true; |
| |
| /* Check the colormask and export format. */ |
| if (!(colormask & 0x7)) |
| has_rgb = false; |
| if (!(colormask & 0x8)) |
| has_alpha = false; |
| |
| if (spi_format == V_028714_SPI_SHADER_ZERO) { |
| has_rgb = false; |
| has_alpha = false; |
| } |
| |
| /* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha |
| * optimization, even though it has no alpha. */ |
| if (has_rgb && format == V_028C70_COLOR_5_9_9_9) |
| has_alpha = true; |
| |
| /* Disable value checking for disabled channels. */ |
| if (!has_rgb) |
| sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4); |
| if (!has_alpha) |
| sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4); |
| |
| /* Enable down-conversion for 32bpp and smaller formats. */ |
| switch (format) { |
| case V_028C70_COLOR_8: |
| case V_028C70_COLOR_8_8: |
| case V_028C70_COLOR_8_8_8_8: |
| /* For 1 and 2-channel formats, use the superset thereof. */ |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR || spi_format == V_028714_SPI_SHADER_UINT16_ABGR || |
| spi_format == V_028714_SPI_SHADER_SINT16_ABGR) { |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4); |
| |
| if (G_028C70_NUMBER_TYPE(cb->ac.cb_color_info) != V_028C70_NUMBER_SRGB) |
| sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT_0_5 << (i * 4); |
| } |
| break; |
| |
| case V_028C70_COLOR_5_6_5: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) { |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4); |
| sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT_0_5 << (i * 4); |
| } |
| break; |
| |
| case V_028C70_COLOR_1_5_5_5: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) { |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4); |
| sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT_0_5 << (i * 4); |
| } |
| break; |
| |
| case V_028C70_COLOR_4_4_4_4: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) { |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4); |
| sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT_0_5 << (i * 4); |
| } |
| break; |
| |
| case V_028C70_COLOR_32: |
| if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R) |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4); |
| else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR) |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4); |
| break; |
| |
| case V_028C70_COLOR_16: |
| case V_028C70_COLOR_16_16: |
| /* For 1-channel formats, use the superset thereof. */ |
| if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR || spi_format == V_028714_SPI_SHADER_SNORM16_ABGR || |
| spi_format == V_028714_SPI_SHADER_UINT16_ABGR || spi_format == V_028714_SPI_SHADER_SINT16_ABGR) { |
| if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV) |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4); |
| else |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4); |
| } |
| break; |
| |
| case V_028C70_COLOR_10_11_11: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4); |
| break; |
| |
| case V_028C70_COLOR_2_10_10_10: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) { |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4); |
| sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT_0_5 << (i * 4); |
| } |
| break; |
| case V_028C70_COLOR_5_9_9_9: |
| if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) |
| sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4); |
| break; |
| } |
| } |
| |
| /* Do not set the DISABLE bits for the unused attachments, as that |
| * breaks dual source blending in SkQP and does not seem to improve |
| * performance. */ |
| |
| radeon_opt_set_context_reg3(cmd_buffer, R_028754_SX_PS_DOWNCONVERT, RADV_TRACKED_SX_PS_DOWNCONVERT, |
| sx_ps_downconvert, sx_blend_opt_epsilon, sx_blend_opt_control); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RBPLUS; |
| } |
| |
| static void |
| radv_emit_ps_epilog_state(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_part *ps_epilog) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_shader *ps_shader = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| if (cmd_buffer->state.emitted_ps_epilog == ps_epilog) |
| return; |
| |
| assert(ps_shader->config.num_shared_vgprs == 0); |
| if (G_00B848_VGPRS(ps_epilog->rsrc1) > G_00B848_VGPRS(ps_shader->config.rsrc1)) { |
| uint32_t rsrc1 = ps_shader->config.rsrc1; |
| rsrc1 = (rsrc1 & C_00B848_VGPRS) | (ps_epilog->rsrc1 & ~C_00B848_VGPRS); |
| radeon_set_sh_reg(cmd_buffer->cs, ps_shader->info.regs.pgm_rsrc1, rsrc1); |
| } |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, ps_epilog->bo); |
| |
| assert((ps_epilog->va >> 32) == pdev->info.address32_hi); |
| |
| const uint32_t epilog_pc_offset = radv_get_user_sgpr_loc(ps_shader, AC_UD_EPILOG_PC); |
| radv_emit_shader_pointer(device, cmd_buffer->cs, epilog_pc_offset, ps_epilog->va, false); |
| |
| cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, ps_epilog->upload_seq); |
| |
| cmd_buffer->state.emitted_ps_epilog = ps_epilog; |
| } |
| |
| void |
| radv_emit_compute_shader(const struct radv_physical_device *pdev, struct radeon_cmdbuf *cs, |
| const struct radv_shader *shader) |
| { |
| uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg(cs, shader->info.regs.pgm_lo, va >> 8); |
| |
| radeon_set_sh_reg_seq(cs, shader->info.regs.pgm_rsrc1, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| if (pdev->info.gfx_level >= GFX10) { |
| radeon_set_sh_reg(cs, shader->info.regs.pgm_rsrc3, shader->config.rsrc3); |
| } |
| |
| radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS, shader->info.regs.cs.compute_resource_limits); |
| radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); |
| radeon_emit(cs, shader->info.regs.cs.compute_num_thread_x); |
| radeon_emit(cs, shader->info.regs.cs.compute_num_thread_y); |
| radeon_emit(cs, shader->info.regs.cs.compute_num_thread_z); |
| } |
| |
| static void |
| radv_emit_vgt_gs_mode(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info; |
| unsigned vgt_primitiveid_en = 0; |
| uint32_t vgt_gs_mode = 0; |
| |
| if (info->is_ngg) |
| return; |
| |
| if (info->stage == MESA_SHADER_GEOMETRY) { |
| vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdev->info.gfx_level); |
| } else if (info->outinfo.export_prim_id || info->uses_prim_id) { |
| vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); |
| vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1); |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN, |
| vgt_primitiveid_en); |
| radeon_opt_set_context_reg(cmd_buffer, R_028A40_VGT_GS_MODE, RADV_TRACKED_VGT_GS_MODE, vgt_gs_mode); |
| } |
| |
| static void |
| radv_emit_hw_vs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_00B124_MEM_BASE(va >> 40)); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc2); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG, |
| shader->info.regs.spi_vs_out_config); |
| radeon_opt_set_context_reg(cmd_buffer, R_02870C_SPI_SHADER_POS_FORMAT, RADV_TRACKED_SPI_SHADER_POS_FORMAT, |
| shader->info.regs.spi_shader_pos_format); |
| radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL, |
| shader->info.regs.pa_cl_vs_out_cntl); |
| |
| if (pdev->info.gfx_level <= GFX8) |
| radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF, |
| shader->info.regs.vs.vgt_reuse_off); |
| |
| if (pdev->info.gfx_level >= GFX7) { |
| radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3, |
| shader->info.regs.vs.spi_shader_pgm_rsrc3_vs); |
| radeon_set_sh_reg(cmd_buffer->cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, |
| shader->info.regs.vs.spi_shader_late_alloc_vs); |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc); |
| |
| if (shader->info.stage == MESA_SHADER_TESS_EVAL) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL, |
| shader->info.regs.vgt_gs_onchip_cntl); |
| } |
| } |
| } |
| } |
| |
| static void |
| radv_emit_hw_es(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader) |
| { |
| const uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_00B324_MEM_BASE(va >> 40)); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc2); |
| } |
| |
| static void |
| radv_emit_hw_ls(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader) |
| { |
| const uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1); |
| } |
| |
| static void |
| radv_emit_hw_ngg(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *es, const struct radv_shader *shader) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint64_t va = radv_shader_get_va(shader); |
| gl_shader_stage es_type; |
| const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info; |
| |
| if (shader->info.stage == MESA_SHADER_GEOMETRY) { |
| if (shader->info.merged_shader_compiled_separately) { |
| es_type = es->info.stage; |
| } else { |
| es_type = shader->info.gs.es_type; |
| } |
| } else { |
| es_type = shader->info.stage; |
| } |
| |
| if (!shader->info.merged_shader_compiled_separately) { |
| radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8); |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, 2); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc2); |
| } |
| |
| const struct radv_vs_output_info *outinfo = &shader->info.outinfo; |
| |
| const bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id); |
| bool break_wave_at_eoi = false; |
| |
| if (es_type == MESA_SHADER_TESS_EVAL) { |
| if (es_enable_prim_id || (shader->info.uses_prim_id)) |
| break_wave_at_eoi = true; |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028818_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL, |
| shader->info.regs.pa_cl_vs_out_cntl); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B3C_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT, |
| shader->info.regs.vgt_gs_instance_cnt); |
| |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_030988_VGT_PRIMITIVEID_EN, shader->info.regs.ngg.vgt_primitiveid_en); |
| |
| radeon_opt_set_context_reg2(cmd_buffer, R_028648_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT, |
| shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format); |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL, |
| shader->info.regs.pa_cl_vs_out_cntl); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT, |
| shader->info.regs.vgt_gs_instance_cnt); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN, |
| shader->info.regs.ngg.vgt_primitiveid_en | S_028A84_PRIMITIVEID_EN(es_enable_prim_id)); |
| |
| radeon_opt_set_context_reg2(cmd_buffer, R_028708_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT, |
| shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG, |
| shader->info.regs.spi_vs_out_config); |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, RADV_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP, |
| shader->info.regs.ngg.ge_max_output_per_subgroup); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B4C_GE_NGG_SUBGRP_CNTL, RADV_TRACKED_GE_NGG_SUBGRP_CNTL, |
| shader->info.regs.ngg.ge_ngg_subgrp_cntl); |
| |
| uint32_t ge_cntl = shader->info.regs.ngg.ge_cntl; |
| if (pdev->info.gfx_level >= GFX11) { |
| ge_cntl |= S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi); |
| } else { |
| ge_cntl |= S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); |
| |
| /* Bug workaround for a possible hang with non-tessellation cases. |
| * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0 |
| * |
| * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5 |
| */ |
| if (pdev->info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) { |
| ge_cntl &= C_03096C_VERT_GRP_SIZE; |
| |
| if (ngg_state->hw_max_esverts > 5) { |
| ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5); |
| } |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL, |
| shader->info.regs.vgt_gs_onchip_cntl); |
| } |
| |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_sh_reg(cmd_buffer->cs, R_00B220_SPI_SHADER_PGM_RSRC4_GS, shader->info.regs.spi_shader_pgm_rsrc4_gs); |
| } else { |
| if (pdev->info.gfx_level >= GFX7) { |
| radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, |
| shader->info.regs.spi_shader_pgm_rsrc3_gs); |
| } |
| |
| radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, |
| shader->info.regs.spi_shader_pgm_rsrc4_gs); |
| |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc); |
| } |
| } |
| |
| static void |
| radv_emit_hw_hs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint64_t va = radv_shader_get_va(shader); |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8); |
| radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1); |
| } else { |
| radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_00B424_MEM_BASE(va >> 40)); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, shader->config.rsrc2); |
| } |
| } |
| |
| static void |
| radv_emit_vertex_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *vs = cmd_buffer->state.shaders[MESA_SHADER_VERTEX]; |
| |
| if (vs->info.merged_shader_compiled_separately) { |
| assert(vs->info.next_stage == MESA_SHADER_TESS_CTRL || vs->info.next_stage == MESA_SHADER_GEOMETRY); |
| |
| const struct radv_shader *next_stage = cmd_buffer->state.shaders[vs->info.next_stage]; |
| |
| if (!vs->info.vs.has_prolog) { |
| uint32_t rsrc1, rsrc2; |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_lo, vs->va >> 8); |
| |
| if (vs->info.next_stage == MESA_SHADER_TESS_CTRL) { |
| radv_shader_combine_cfg_vs_tcs(vs, next_stage, &rsrc1, NULL); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, rsrc1); |
| } else { |
| radv_shader_combine_cfg_vs_gs(vs, next_stage, &rsrc1, &rsrc2); |
| |
| unsigned lds_size; |
| if (next_stage->info.is_ngg) { |
| lds_size = DIV_ROUND_UP(next_stage->info.ngg_info.lds_size, pdev->info.lds_encode_granularity); |
| } else { |
| lds_size = next_stage->info.gs_ring_info.lds_size; |
| } |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, 2); |
| radeon_emit(cmd_buffer->cs, rsrc1); |
| radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size)); |
| } |
| } |
| |
| const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(vs, AC_UD_NEXT_STAGE_PC); |
| radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, next_stage->va, false); |
| return; |
| } |
| |
| if (vs->info.vs.as_ls) |
| radv_emit_hw_ls(cmd_buffer, vs); |
| else if (vs->info.vs.as_es) |
| radv_emit_hw_es(cmd_buffer, vs); |
| else if (vs->info.is_ngg) |
| radv_emit_hw_ngg(cmd_buffer, NULL, vs); |
| else |
| radv_emit_hw_vs(cmd_buffer, vs); |
| } |
| |
| static void |
| radv_emit_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]; |
| |
| if (tcs->info.merged_shader_compiled_separately) { |
| /* When VS+TCS are compiled separately on GFX9+, the VS will jump to the TCS and everything is |
| * emitted as part of the VS. |
| */ |
| return; |
| } |
| |
| radv_emit_hw_hs(cmd_buffer, tcs); |
| } |
| |
| static void |
| radv_emit_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *tes = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]; |
| |
| if (tes->info.merged_shader_compiled_separately) { |
| assert(tes->info.next_stage == MESA_SHADER_GEOMETRY); |
| |
| const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]; |
| uint32_t rsrc1, rsrc2; |
| |
| radv_shader_combine_cfg_tes_gs(tes, gs, &rsrc1, &rsrc2); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, tes->info.regs.pgm_lo, tes->va >> 8); |
| |
| unsigned lds_size; |
| if (gs->info.is_ngg) { |
| lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity); |
| } else { |
| lds_size = gs->info.gs_ring_info.lds_size; |
| } |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, tes->info.regs.pgm_rsrc1, 2); |
| radeon_emit(cmd_buffer->cs, rsrc1); |
| radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size)); |
| |
| const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(tes, AC_UD_NEXT_STAGE_PC); |
| radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, gs->va, false); |
| return; |
| } |
| |
| if (tes->info.is_ngg) { |
| radv_emit_hw_ngg(cmd_buffer, NULL, tes); |
| } else if (tes->info.tes.as_es) { |
| radv_emit_hw_es(cmd_buffer, tes); |
| } else { |
| radv_emit_hw_vs(cmd_buffer, tes); |
| } |
| } |
| |
| static void |
| radv_emit_hw_gs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info; |
| const uint64_t va = radv_shader_get_va(gs); |
| |
| radeon_opt_set_context_reg3(cmd_buffer, R_028A60_VGT_GSVS_RING_OFFSET_1, RADV_TRACKED_VGT_GSVS_RING_OFFSET_1, |
| gs->info.regs.gs.vgt_gsvs_ring_offset[0], gs->info.regs.gs.vgt_gsvs_ring_offset[1], |
| gs->info.regs.gs.vgt_gsvs_ring_offset[2]); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028AB0_VGT_GSVS_RING_ITEMSIZE, RADV_TRACKED_VGT_GSVS_RING_ITEMSIZE, |
| gs->info.regs.gs.vgt_gsvs_ring_itemsize); |
| |
| radeon_opt_set_context_reg4(cmd_buffer, R_028B5C_VGT_GS_VERT_ITEMSIZE, RADV_TRACKED_VGT_GS_VERT_ITEMSIZE, |
| gs->info.regs.gs.vgt_gs_vert_itemsize[0], gs->info.regs.gs.vgt_gs_vert_itemsize[1], |
| gs->info.regs.gs.vgt_gs_vert_itemsize[2], gs->info.regs.gs.vgt_gs_vert_itemsize[3]); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT, |
| gs->info.regs.gs.vgt_gs_instance_cnt); |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| if (!gs->info.merged_shader_compiled_separately) { |
| radeon_set_sh_reg(cmd_buffer->cs, gs->info.regs.pgm_lo, va >> 8); |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_rsrc1, 2); |
| radeon_emit(cmd_buffer->cs, gs->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL, |
| gs->info.regs.vgt_gs_onchip_cntl); |
| |
| if (pdev->info.gfx_level == GFX9) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, |
| RADV_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP, |
| gs->info.regs.gs.vgt_gs_max_prims_per_subgroup); |
| } |
| } else { |
| radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_lo, 4); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_00B224_MEM_BASE(va >> 40)); |
| radeon_emit(cmd_buffer->cs, gs->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, gs->config.rsrc2); |
| |
| /* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE. |
| * GFX9+: Only used to set the GS input VGPRs, emulated in shaders. |
| */ |
| radeon_opt_set_context_reg(cmd_buffer, R_028AAC_VGT_ESGS_RING_ITEMSIZE, RADV_TRACKED_VGT_ESGS_RING_ITEMSIZE, |
| gs->info.regs.gs.vgt_esgs_ring_itemsize); |
| } |
| |
| if (pdev->info.gfx_level >= GFX7) { |
| radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, |
| gs->info.regs.spi_shader_pgm_rsrc3_gs); |
| } |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, |
| gs->info.regs.spi_shader_pgm_rsrc4_gs); |
| } |
| } |
| |
| static void |
| radv_emit_geometry_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]; |
| const struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL] |
| ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL] |
| : cmd_buffer->state.shaders[MESA_SHADER_VERTEX]; |
| if (gs->info.is_ngg) { |
| radv_emit_hw_ngg(cmd_buffer, es, gs); |
| } else { |
| radv_emit_hw_gs(cmd_buffer, gs); |
| radv_emit_hw_vs(cmd_buffer, cmd_buffer->state.gs_copy_shader); |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT, |
| gs->info.regs.vgt_gs_max_vert_out); |
| |
| if (gs->info.merged_shader_compiled_separately) { |
| const uint32_t vgt_esgs_ring_itemsize_offset = radv_get_user_sgpr_loc(gs, AC_UD_VGT_ESGS_RING_ITEMSIZE); |
| |
| assert(vgt_esgs_ring_itemsize_offset); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vgt_esgs_ring_itemsize_offset, es->info.esgs_itemsize / 4); |
| |
| if (gs->info.is_ngg) { |
| const uint32_t ngg_lds_layout_offset = radv_get_user_sgpr_loc(gs, AC_UD_NGG_LDS_LAYOUT); |
| |
| assert(ngg_lds_layout_offset); |
| assert(!(gs->info.ngg_info.esgs_ring_size & 0xffff0000) && !(gs->info.ngg_info.scratch_lds_base & 0xffff0000)); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, ngg_lds_layout_offset, |
| SET_SGPR_FIELD(NGG_LDS_LAYOUT_GS_OUT_VERTEX_BASE, gs->info.ngg_info.esgs_ring_size) | |
| SET_SGPR_FIELD(NGG_LDS_LAYOUT_SCRATCH_BASE, gs->info.ngg_info.scratch_lds_base)); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_vgt_gs_out(struct radv_cmd_buffer *cmd_buffer, uint32_t vgt_gs_out_prim_type) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (pdev->info.gfx_level >= GFX11) { |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type); |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_028A6C_VGT_GS_OUT_PRIM_TYPE, RADV_TRACKED_VGT_GS_OUT_PRIM_TYPE, |
| vgt_gs_out_prim_type); |
| } |
| } |
| |
| static void |
| radv_emit_mesh_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ms = cmd_buffer->state.shaders[MESA_SHADER_MESH]; |
| const uint32_t gs_out = radv_conv_gl_prim_to_gs_out(ms->info.ms.output_prim); |
| |
| radv_emit_hw_ngg(cmd_buffer, NULL, ms); |
| radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT, |
| ms->info.regs.vgt_gs_max_vert_out); |
| radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST); |
| |
| if (pdev->mesh_fast_launch_2) { |
| radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2); |
| radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_dim); |
| radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_exp_alloc); |
| } |
| |
| radv_emit_vgt_gs_out(cmd_buffer, gs_out); |
| } |
| |
| enum radv_ps_in_type { |
| radv_ps_in_interpolated, |
| radv_ps_in_flat, |
| radv_ps_in_explicit, |
| radv_ps_in_explicit_strict, |
| radv_ps_in_interpolated_fp16, |
| radv_ps_in_interpolated_fp16_hi, |
| radv_ps_in_per_prim_gfx103, |
| radv_ps_in_per_prim_gfx11, |
| }; |
| |
| static uint32_t |
| offset_to_ps_input(const uint32_t offset, const enum radv_ps_in_type type) |
| { |
| if (offset == AC_EXP_PARAM_UNDEFINED) { |
| /* The input is UNDEFINED, use zero. */ |
| return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(0); |
| } else if (offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111) { |
| /* The input is a DEFAULT_VAL constant. */ |
| return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset - AC_EXP_PARAM_DEFAULT_VAL_0000); |
| } |
| |
| assert(offset <= AC_EXP_PARAM_OFFSET_31); |
| uint32_t ps_input_cntl = S_028644_OFFSET(offset); |
| |
| switch (type) { |
| case radv_ps_in_explicit_strict: |
| /* Rotate parameter cache contents to strict vertex order. */ |
| ps_input_cntl |= S_028644_ROTATE_PC_PTR(1); |
| FALLTHROUGH; |
| case radv_ps_in_explicit: |
| /* Force parameter cache to be read in passthrough mode. */ |
| ps_input_cntl |= S_028644_OFFSET(1 << 5); |
| FALLTHROUGH; |
| case radv_ps_in_flat: |
| ps_input_cntl |= S_028644_FLAT_SHADE(1); |
| break; |
| case radv_ps_in_interpolated_fp16_hi: |
| ps_input_cntl |= S_028644_ATTR1_VALID(1); |
| FALLTHROUGH; |
| case radv_ps_in_interpolated_fp16: |
| /* These must be set even if only the high 16 bits are used. */ |
| ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1); |
| break; |
| case radv_ps_in_per_prim_gfx11: |
| ps_input_cntl |= S_028644_PRIM_ATTR(1); |
| break; |
| case radv_ps_in_interpolated: |
| case radv_ps_in_per_prim_gfx103: |
| break; |
| } |
| |
| return ps_input_cntl; |
| } |
| |
| static void |
| input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask, |
| uint32_t *ps_input_cntl, unsigned *ps_offset, const enum radv_ps_in_type default_type) |
| { |
| u_foreach_bit (i, input_mask) { |
| const unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; |
| enum radv_ps_in_type type = default_type; |
| |
| if (ps->info.ps.explicit_shaded_mask & BITFIELD_BIT(*ps_offset)) |
| type = radv_ps_in_explicit; |
| else if (ps->info.ps.explicit_strict_shaded_mask & BITFIELD_BIT(*ps_offset)) |
| type = radv_ps_in_explicit_strict; |
| else if (ps->info.ps.float16_hi_shaded_mask & BITFIELD_BIT(*ps_offset)) |
| type = radv_ps_in_interpolated_fp16_hi; |
| else if (ps->info.ps.float16_shaded_mask & BITFIELD_BIT(*ps_offset)) |
| type = radv_ps_in_interpolated_fp16; |
| else if (ps->info.ps.float32_shaded_mask & BITFIELD_BIT(*ps_offset)) |
| type = radv_ps_in_interpolated; |
| |
| ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, type); |
| ++(*ps_offset); |
| } |
| } |
| |
| static void |
| radv_emit_ps_inputs(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo; |
| const bool gfx11plus = pdev->info.gfx_level >= GFX11; |
| const enum radv_ps_in_type per_prim = gfx11plus ? radv_ps_in_per_prim_gfx11 : radv_ps_in_per_prim_gfx103; |
| |
| unsigned num_per_primitive_params = 0; |
| uint32_t ps_input_cntl[32]; |
| unsigned ps_offset = 0; |
| |
| if (ps->info.ps.has_pcoord) |
| ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); |
| |
| if (ps->info.ps.input_clips_culls_mask & 0x0f) |
| ps_input_cntl[ps_offset++] = |
| offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0], radv_ps_in_interpolated); |
| |
| if (ps->info.ps.input_clips_culls_mask & 0xf0) |
| ps_input_cntl[ps_offset++] = |
| offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1], radv_ps_in_interpolated); |
| |
| input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, radv_ps_in_flat); |
| |
| /* Potentially per-primitive PS inputs */ |
| if (ps->info.ps.viewport_index_input) { |
| num_per_primitive_params += !!outinfo->writes_viewport_index_per_primitive; |
| const enum radv_ps_in_type t = outinfo->writes_viewport_index_per_primitive ? per_prim : radv_ps_in_flat; |
| ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT], t); |
| } |
| if (ps->info.ps.prim_id_input) { |
| num_per_primitive_params += !!outinfo->export_prim_id_per_primitive; |
| const enum radv_ps_in_type t = outinfo->export_prim_id_per_primitive ? per_prim : radv_ps_in_flat; |
| ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID], t); |
| } |
| |
| /* Per-primitive PS inputs: the HW needs these to be last. */ |
| num_per_primitive_params += util_bitcount(ps->info.ps.input_per_primitive_mask); |
| input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, per_prim); |
| |
| /* Only GFX10.3+ support per-primitive params */ |
| assert(pdev->info.gfx_level >= GFX10_3 || num_per_primitive_params == 0); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_regn(cmd_buffer, R_028664_SPI_PS_INPUT_CNTL_0, ps_input_cntl, |
| cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset); |
| } else { |
| if (pdev->info.gfx_level == GFX10_3) { |
| /* NUM_INTERP / NUM_PRIM_INTERP separately contain |
| * the number of per-vertex and per-primitive PS input attributes. |
| * These are only exactly known here so couldn't be precomputed. |
| */ |
| const unsigned num_per_vertex_params = ps->info.ps.num_inputs - num_per_primitive_params; |
| radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL, |
| ps->info.regs.ps.spi_ps_in_control | S_0286D8_NUM_INTERP(num_per_vertex_params) | |
| S_0286D8_NUM_PRIM_INTERP(num_per_primitive_params)); |
| } |
| |
| radeon_opt_set_context_regn(cmd_buffer, R_028644_SPI_PS_INPUT_CNTL_0, ps_input_cntl, |
| cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset); |
| } |
| } |
| |
| static void |
| radv_emit_fragment_shader(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const uint64_t va = radv_shader_get_va(ps); |
| |
| radeon_set_sh_reg_seq(cmd_buffer->cs, ps->info.regs.pgm_lo, 4); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_00B024_MEM_BASE(va >> 40)); |
| radeon_emit(cmd_buffer->cs, ps->config.rsrc1); |
| radeon_emit(cmd_buffer->cs, ps->config.rsrc2); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg2(cmd_buffer, R_02865C_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA, |
| ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028640_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL, |
| ps->info.regs.ps.spi_ps_in_control); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028BBC_PA_SC_HISZ_CONTROL, ps->info.regs.ps.pa_sc_hisz_control); |
| } else { |
| radeon_opt_set_context_reg2(cmd_buffer, R_0286CC_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA, |
| ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr); |
| |
| if (pdev->info.gfx_level != GFX10_3) { |
| radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL, |
| ps->info.regs.ps.spi_ps_in_control); |
| } |
| |
| if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11) |
| radeon_opt_set_context_reg(cmd_buffer, R_028C40_PA_SC_SHADER_CONTROL, RADV_TRACKED_PA_SC_SHADER_CONTROL, |
| ps->info.regs.ps.pa_sc_shader_control); |
| } |
| } |
| |
| static void |
| radv_emit_vgt_reuse(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL); |
| |
| if (pdev->info.gfx_level == GFX10_3) { |
| /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */ |
| const bool has_legacy_tess_gs = key->tess && key->gs && !key->ngg; |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF, |
| S_028AB4_REUSE_OFF(has_legacy_tess_gs)); |
| } |
| |
| if (pdev->info.family >= CHIP_POLARIS10 && pdev->info.gfx_level < GFX10) { |
| unsigned vtx_reuse_depth = 30; |
| if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { |
| vtx_reuse_depth = 14; |
| } |
| radeon_opt_set_context_reg(cmd_buffer, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, |
| RADV_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); |
| } |
| } |
| |
| static void |
| radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key) |
| { |
| const bool ngg_wave_id_en = key->ngg_streamout || (key->mesh && key->mesh_scratch_ring); |
| uint32_t stages = 0; |
| |
| stages |= S_028A98_GS_EN(key->gs) | S_028A98_GS_FAST_LAUNCH(key->mesh) | S_028A98_GS_W32_EN(key->gs_wave32) | |
| S_028A98_NGG_WAVE_ID_EN(ngg_wave_id_en) | S_028A98_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough); |
| |
| if (key->tess) |
| stages |= S_028A98_HS_EN(1) | S_028A98_HS_W32_EN(key->hs_wave32); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages); |
| } |
| |
| static void |
| radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t stages = 0; |
| |
| if (key->tess) { |
| stages |= |
| S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(pdev->info.gfx_level != GFX9); |
| |
| if (key->gs) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1); |
| else if (key->ngg) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); |
| else |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); |
| } else if (key->gs) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1); |
| } else if (key->mesh) { |
| assert(!key->ngg_passthrough); |
| unsigned gs_fast_launch = pdev->mesh_fast_launch_2 ? 2 : 1; |
| stages |= |
| S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring); |
| } else if (key->ngg) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); |
| } |
| |
| if (key->ngg) { |
| stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->ngg_streamout) | |
| S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) | |
| S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdev->info.family >= CHIP_NAVI23); |
| } else if (key->gs) { |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| } |
| |
| if (pdev->info.gfx_level >= GFX9) |
| stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) | |
| S_028B54_VS_W32_EN(pdev->info.gfx_level < GFX11 && key->vs_wave32); |
| /* Legacy GS only supports Wave64. Read it as an implication. */ |
| assert(!(key->gs && !key->ngg) || !key->gs_wave32); |
| } |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028B54_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages); |
| } |
| |
| static void |
| radv_emit_vgt_shader_config(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radv_emit_vgt_shader_config_gfx12(cmd_buffer, key); |
| } else { |
| radv_emit_vgt_shader_config_gfx6(cmd_buffer, key); |
| } |
| } |
| |
| static void |
| gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH]; |
| const bool enable_vrs = cmd_buffer->state.uses_vrs; |
| bool enable_prim_payload = false; |
| |
| /* Enables the second channel of the primitive export instruction. |
| * This channel contains: VRS rate x, y, viewport and layer. |
| */ |
| if (mesh_shader) { |
| const struct radv_vs_output_info *outinfo = &mesh_shader->info.outinfo; |
| |
| enable_prim_payload = (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive || |
| outinfo->writes_primitive_shading_rate_per_primitive); |
| } |
| |
| const uint32_t vgt_draw_payload_cntl = |
| S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028AA0_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL, |
| vgt_draw_payload_cntl); |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL, |
| vgt_draw_payload_cntl); |
| } |
| } |
| |
| static void |
| gfx103_emit_vrs_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const bool force_vrs_per_vertex = cmd_buffer->state.last_vgt_shader->info.force_vrs_per_vertex; |
| const bool enable_vrs_coarse_shading = cmd_buffer->state.uses_vrs_coarse_shading; |
| uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU; |
| uint8_t rate_x = 0, rate_y = 0; |
| |
| if (enable_vrs_coarse_shading) { |
| /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver |
| * determined that it's safe to enable. |
| */ |
| mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE; |
| rate_x = rate_y = 1; |
| } else if (force_vrs_per_vertex) { |
| /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if |
| * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because |
| * in DX12 it's fully dynamic. |
| */ |
| radeon_opt_set_context_reg(cmd_buffer, R_028848_PA_CL_VRS_CNTL, RADV_TRACKED_PA_CL_VRS_CNTL, |
| S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) | |
| S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE)); |
| |
| /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel |
| * granularity degrades quality too much. MIN allows sample shading but not coarse shading. |
| */ |
| mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU; |
| } |
| |
| if (pdev->info.gfx_level < GFX11) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028064_DB_VRS_OVERRIDE_CNTL, RADV_TRACKED_DB_VRS_OVERRIDE_CNTL, |
| S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) | |
| S_028064_VRS_OVERRIDE_RATE_Y(rate_y)); |
| } |
| } |
| |
| static void |
| radv_emit_graphics_shaders(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| radv_foreach_stage(s, cmd_buffer->state.active_stages & RADV_GRAPHICS_STAGE_BITS) |
| { |
| switch (s) { |
| case MESA_SHADER_VERTEX: |
| radv_emit_vertex_shader(cmd_buffer); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| radv_emit_tess_ctrl_shader(cmd_buffer); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| radv_emit_tess_eval_shader(cmd_buffer); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| radv_emit_geometry_shader(cmd_buffer); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| radv_emit_fragment_shader(cmd_buffer); |
| radv_emit_ps_inputs(cmd_buffer); |
| break; |
| case MESA_SHADER_MESH: |
| radv_emit_mesh_shader(cmd_buffer); |
| break; |
| case MESA_SHADER_TASK: |
| radv_emit_compute_shader(pdev, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK]); |
| break; |
| default: |
| unreachable("invalid bind stage"); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const uint32_t gs_out_config_ps = |
| last_vgt_shader->info.regs.spi_vs_out_config | (ps ? ps->info.regs.ps.spi_gs_out_config_ps : 0); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS, gs_out_config_ps); |
| } |
| |
| const struct radv_vgt_shader_key vgt_shader_cfg_key = |
| radv_get_vgt_shader_key(device, cmd_buffer->state.shaders, cmd_buffer->state.gs_copy_shader); |
| |
| radv_emit_vgt_gs_mode(cmd_buffer); |
| radv_emit_vgt_reuse(cmd_buffer, &vgt_shader_cfg_key); |
| radv_emit_vgt_shader_config(cmd_buffer, &vgt_shader_cfg_key); |
| |
| if (pdev->info.gfx_level >= GFX10_3) { |
| gfx103_emit_vgt_draw_payload_cntl(cmd_buffer); |
| gfx103_emit_vrs_state(cmd_buffer); |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS; |
| } |
| |
| static void |
| radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline == pipeline) |
| return; |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline) { |
| if (radv_rast_prim_is_points_or_lines(cmd_buffer->state.emitted_graphics_pipeline->rast_prim) != |
| radv_rast_prim_is_points_or_lines(pipeline->rast_prim)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline->rast_prim != pipeline->rast_prim) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline->ms.min_sample_shading != pipeline->ms.min_sample_shading || |
| cmd_buffer->state.emitted_graphics_pipeline->uses_out_of_order_rast != pipeline->uses_out_of_order_rast || |
| cmd_buffer->state.emitted_graphics_pipeline->uses_vrs_attachment != pipeline->uses_vrs_attachment) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline->ms.sample_shading_enable != pipeline->ms.sample_shading_enable) { |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| if (pdev->info.gfx_level >= GFX10_3) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| } |
| |
| if (cmd_buffer->state.emitted_graphics_pipeline->db_render_control != pipeline->db_render_control) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER; |
| } |
| |
| radv_emit_graphics_shaders(cmd_buffer); |
| |
| if (device->pbb_allowed) { |
| const struct radv_binning_settings *settings = &pdev->binning_settings; |
| |
| if ((!cmd_buffer->state.emitted_graphics_pipeline || |
| cmd_buffer->state.emitted_graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT] != |
| cmd_buffer->state.graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT]) && |
| (settings->context_states_per_bin > 1 || settings->persistent_states_per_bin > 1)) { |
| /* Break the batch on PS changes. */ |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0)); |
| } |
| } |
| |
| if (pipeline->sqtt_shaders_reloc) { |
| /* Emit shaders relocation because RGP requires them to be contiguous in memory. */ |
| radv_sqtt_emit_relocated_shaders(cmd_buffer, pipeline); |
| |
| struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK]; |
| if (task_shader) { |
| const struct radv_sqtt_shaders_reloc *reloc = pipeline->sqtt_shaders_reloc; |
| const uint64_t va = reloc->va[MESA_SHADER_TASK]; |
| |
| radeon_set_sh_reg(cmd_buffer->gang.cs, task_shader->info.regs.pgm_lo, va >> 8); |
| } |
| } |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_pipeline(cmd_buffer, &pipeline->base); |
| |
| cmd_buffer->state.emitted_graphics_pipeline = pipeline; |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE; |
| } |
| |
| static bool |
| radv_get_depth_clip_enable(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| return d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE || |
| (d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_NOT_CLAMP && !d->vk.rs.depth_clamp_enable); |
| } |
| |
| enum radv_depth_clamp_mode { |
| RADV_DEPTH_CLAMP_MODE_VIEWPORT = 0, /* Clamp to the viewport min/max depth bounds */ |
| RADV_DEPTH_CLAMP_MODE_USER_DEFINED = 1, /* Range set using VK_EXT_depth_clamp_control */ |
| RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE = 2, /* Clamp between 0.0f and 1.0f */ |
| RADV_DEPTH_CLAMP_MODE_DISABLED = 3, /* Disable depth clamping */ |
| }; |
| |
| static enum radv_depth_clamp_mode |
| radv_get_depth_clamp_mode(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| enum radv_depth_clamp_mode mode; |
| |
| mode = d->vk.vp.depth_clamp_mode; |
| if (!d->vk.rs.depth_clamp_enable) { |
| /* For optimal performance, depth clamping should always be enabled except if the application |
| * disables clamping explicitly or uses depth values outside of the [0.0, 1.0] range. |
| */ |
| if (!depth_clip_enable || device->vk.enabled_extensions.EXT_depth_range_unrestricted) { |
| mode = RADV_DEPTH_CLAMP_MODE_DISABLED; |
| } else { |
| mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE; |
| } |
| } |
| |
| return mode; |
| } |
| |
| static void |
| radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer *cmd_buffer, uint32_t vp_idx, float *zscale, |
| float *ztranslate) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| if (d->vk.vp.depth_clip_negative_one_to_one) { |
| *zscale = d->hw_vp.xform[vp_idx].scale[2] * 0.5f; |
| *ztranslate = (d->hw_vp.xform[vp_idx].translate[2] + d->vk.vp.viewports[vp_idx].maxDepth) * 0.5f; |
| } else { |
| *zscale = d->hw_vp.xform[vp_idx].scale[2]; |
| *ztranslate = d->hw_vp.xform[vp_idx].translate[2]; |
| } |
| } |
| |
| static void |
| radv_get_viewport_zmin_zmax(struct radv_cmd_buffer *cmd_buffer, const VkViewport *viewport, float *zmin, float *zmax) |
| { |
| const enum radv_depth_clamp_mode depth_clamp_mode = radv_get_depth_clamp_mode(cmd_buffer); |
| |
| if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE) { |
| *zmin = 0.0f; |
| *zmax = 1.0f; |
| } else if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_USER_DEFINED) { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| *zmin = d->vk.vp.depth_clamp_range.minDepthClamp; |
| *zmax = d->vk.vp.depth_clamp_range.maxDepthClamp; |
| } else { |
| *zmin = MIN2(viewport->minDepth, viewport->maxDepth); |
| *zmax = MAX2(viewport->minDepth, viewport->maxDepth); |
| } |
| } |
| |
| static void |
| radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| assert(d->vk.vp.viewport_count); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 8); |
| |
| for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) { |
| float zscale, ztranslate, zmin, zmax; |
| |
| radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate); |
| radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax); |
| |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1])); |
| radeon_emit(cmd_buffer->cs, fui(zscale)); |
| radeon_emit(cmd_buffer->cs, fui(ztranslate)); |
| radeon_emit(cmd_buffer->cs, fui(zmin)); |
| radeon_emit(cmd_buffer->cs, fui(zmax)); |
| } |
| } else { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 6); |
| |
| for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) { |
| float zscale, ztranslate; |
| |
| radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate); |
| |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1])); |
| radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1])); |
| radeon_emit(cmd_buffer->cs, fui(zscale)); |
| radeon_emit(cmd_buffer->cs, fui(ztranslate)); |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_0282D0_PA_SC_VPORT_ZMIN_0, d->vk.vp.viewport_count * 2); |
| for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) { |
| float zmin, zmax; |
| |
| radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax); |
| |
| radeon_emit(cmd_buffer->cs, fui(zmin)); |
| radeon_emit(cmd_buffer->cs, fui(zmax)); |
| } |
| } |
| } |
| |
| static VkRect2D |
| radv_scissor_from_viewport(const float scale[3], const float translate[3]) |
| { |
| VkRect2D rect; |
| |
| rect.offset.x = translate[0] - fabsf(scale[0]); |
| rect.offset.y = translate[1] - fabsf(scale[1]); |
| rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x; |
| rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y; |
| |
| return rect; |
| } |
| |
| static VkRect2D |
| radv_intersect_scissor(const VkRect2D *a, const VkRect2D *b) |
| { |
| VkRect2D ret; |
| ret.offset.x = MAX2(a->offset.x, b->offset.x); |
| ret.offset.y = MAX2(a->offset.y, b->offset.y); |
| ret.extent.width = MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x; |
| ret.extent.height = MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y; |
| return ret; |
| } |
| |
| static void |
| radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| if (!d->vk.vp.scissor_count) |
| return; |
| |
| radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, d->vk.vp.scissor_count * 2); |
| for (unsigned i = 0; i < d->vk.vp.scissor_count; i++) { |
| VkRect2D viewport_scissor = radv_scissor_from_viewport(d->hw_vp.xform[i].scale, d->hw_vp.xform[i].translate); |
| VkRect2D scissor = radv_intersect_scissor(&d->vk.vp.scissors[i], &viewport_scissor); |
| |
| uint32_t minx = scissor.offset.x; |
| uint32_t miny = scissor.offset.y; |
| uint32_t maxx = minx + scissor.extent.width; |
| uint32_t maxy = miny + scissor.extent.height; |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| /* On GFX12, an empty scissor must be done like this because the bottom-right bounds are inclusive. */ |
| if (maxx == 0 || maxy == 0) { |
| minx = miny = maxx = maxy = 1; |
| } |
| |
| radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX12(miny)); |
| radeon_emit(cs, S_028254_BR_X(maxx - 1) | S_028254_BR_Y(maxy - 1)); |
| } else { |
| radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX6(miny) | S_028250_WINDOW_OFFSET_DISABLE(1)); |
| radeon_emit(cs, S_028254_BR_X(maxx) | S_028254_BR_Y(maxy)); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| uint32_t cliprect_rule = 0; |
| |
| if (!d->vk.dr.enable) { |
| cliprect_rule = 0xffff; |
| } else { |
| for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { |
| /* Interpret i as a bitmask, and then set the bit in |
| * the mask if that combination of rectangles in which |
| * the pixel is contained should pass the cliprect |
| * test. |
| */ |
| unsigned relevant_subset = i & ((1u << d->vk.dr.rectangle_count) - 1); |
| |
| if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset) |
| continue; |
| |
| if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset) |
| continue; |
| |
| cliprect_rule |= 1u << i; |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL, d->vk.dr.rectangle_count * 2); |
| for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) { |
| VkRect2D rect = d->vk.dr.rectangles[i]; |
| radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y)); |
| radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) | |
| S_028214_BR_Y(rect.offset.y + rect.extent.height)); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028374_PA_SC_CLIPRECT_0_EXT, d->vk.dr.rectangle_count); |
| for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) { |
| VkRect2D rect = d->vk.dr.rectangles[i]; |
| radeon_emit(cmd_buffer->cs, S_028374_TL_X_EXT(rect.offset.x >> 15) | |
| S_028374_TL_Y_EXT(rect.offset.y >> 15) | |
| S_028374_BR_X_EXT((rect.offset.x + rect.extent.width) >> 15) | |
| S_028374_BR_Y_EXT((rect.offset.y + rect.extent.height) >> 15)); |
| } |
| } |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule); |
| } |
| |
| static void |
| radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4); |
| radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->vk.cb.blend_constants, 4); |
| } |
| |
| static void |
| radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| unsigned slope = fui(d->vk.rs.depth_bias.slope_factor * 16.0f); |
| unsigned pa_su_poly_offset_db_fmt_cntl = 0; |
| |
| if (vk_format_has_depth(render->ds_att.format) && |
| d->vk.rs.depth_bias.representation != VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT) { |
| VkFormat format = vk_format_depth_only(render->ds_att.format); |
| |
| if (format == VK_FORMAT_D16_UNORM) { |
| pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16); |
| } else { |
| assert(format == VK_FORMAT_D32_SFLOAT); |
| if (d->vk.rs.depth_bias.representation == |
| VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT) { |
| pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24); |
| } else { |
| pa_su_poly_offset_db_fmt_cntl = |
| S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1); |
| } |
| } |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5); |
| radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.clamp)); /* CLAMP */ |
| radeon_emit(cmd_buffer->cs, slope); /* FRONT SCALE */ |
| radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor)); /* FRONT OFFSET */ |
| radeon_emit(cmd_buffer->cs, slope); /* BACK SCALE */ |
| radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor)); /* BACK OFFSET */ |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL, pa_su_poly_offset_db_fmt_cntl); |
| } |
| |
| static void |
| radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint32_t vgt_gs_out_prim_type = radv_get_rasterization_prim(cmd_buffer); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| assert(!cmd_buffer->state.mesh_shading); |
| |
| if (pdev->info.gfx_level >= GFX7) { |
| uint32_t vgt_prim = d->vk.ia.primitive_topology; |
| |
| if (pdev->info.gfx_level >= GFX12) |
| vgt_prim |= S_030908_NUM_INPUT_CP(d->vk.ts.patch_control_points); |
| |
| radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim); |
| } else { |
| radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->vk.ia.primitive_topology); |
| } |
| |
| radv_emit_vgt_gs_out(cmd_buffer, vgt_gs_out_prim_type); |
| } |
| |
| static bool |
| radv_should_force_vrs1x1(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| return pdev->info.gfx_level >= GFX10_3 && |
| (cmd_buffer->state.ms.sample_shading_enable || (ps && ps->info.ps.force_sample_iter_shading_rate)); |
| } |
| |
| static void |
| radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| /* When per-vertex VRS is forced and the dynamic fragment shading rate is a no-op, ignore |
| * it. This is needed for vkd3d-proton because it always declares per-draw VRS as dynamic. |
| */ |
| if (device->force_vrs != RADV_FORCE_VRS_1x1 && d->vk.fsr.fragment_size.width == 1 && |
| d->vk.fsr.fragment_size.height == 1 && |
| d->vk.fsr.combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR && |
| d->vk.fsr.combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR) |
| return; |
| |
| uint32_t rate_x = MIN2(2, d->vk.fsr.fragment_size.width) - 1; |
| uint32_t rate_y = MIN2(2, d->vk.fsr.fragment_size.height) - 1; |
| uint32_t pipeline_comb_mode = d->vk.fsr.combiner_ops[0]; |
| uint32_t htile_comb_mode = d->vk.fsr.combiner_ops[1]; |
| uint32_t pa_cl_vrs_cntl = 0; |
| |
| assert(pdev->info.gfx_level >= GFX10_3); |
| |
| if (!cmd_buffer->state.render.vrs_att.iview) { |
| /* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we |
| * can cheat by tweaking the different combiner modes. |
| */ |
| switch (htile_comb_mode) { |
| case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR: |
| /* The result of min(A, 1x1) is always 1x1. */ |
| FALLTHROUGH; |
| case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR: |
| /* Force the per-draw VRS rate to 1x1. */ |
| rate_x = rate_y = 0; |
| |
| /* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate |
| * combiner mode as passthrough. |
| */ |
| pipeline_comb_mode = V_028848_SC_VRS_COMB_MODE_PASSTHRU; |
| break; |
| case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR: |
| /* The result of max(A, 1x1) is always A. */ |
| FALLTHROUGH; |
| case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR: |
| /* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */ |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Emit per-draw VRS rate which is the first combiner. */ |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE, S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y)); |
| |
| /* Disable VRS and use the rates from PS_ITER_SAMPLES if: |
| * |
| * 1) sample shading is enabled or per-sample interpolation is used by the fragment shader |
| * 2) the fragment shader requires 1x1 shading rate for some other reason |
| */ |
| if (radv_should_force_vrs1x1(cmd_buffer)) { |
| pa_cl_vrs_cntl |= S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE); |
| } |
| |
| /* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the |
| * draw rate and the vertex rate. |
| */ |
| if (cmd_buffer->state.mesh_shading) { |
| pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU) | |
| S_028848_PRIMITIVE_RATE_COMBINER_MODE(pipeline_comb_mode); |
| } else { |
| pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(pipeline_comb_mode) | |
| S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU); |
| } |
| |
| /* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE |
| * rate. |
| */ |
| pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl); |
| } |
| |
| static uint32_t |
| radv_get_primitive_reset_index(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| const uint32_t index_type = G_028A7C_INDEX_TYPE(cmd_buffer->state.index_type); |
| switch (index_type) { |
| case V_028A7C_VGT_INDEX_8: |
| return 0xffu; |
| case V_028A7C_VGT_INDEX_16: |
| return 0xffffu; |
| case V_028A7C_VGT_INDEX_32: |
| return 0xffffffffu; |
| default: |
| unreachable("invalid index type"); |
| } |
| } |
| |
| static void |
| radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const struct radv_dynamic_state *const d = &cmd_buffer->state.dynamic; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const bool en = d->vk.ia.primitive_restart_enable; |
| |
| if (gfx_level >= GFX11) { |
| radeon_set_uconfig_reg(cs, R_03092C_GE_MULTI_PRIM_IB_RESET_EN, |
| S_03092C_RESET_EN(en) | |
| /* This disables primitive restart for non-indexed draws. |
| * By keeping this set, we don't have to unset RESET_EN |
| * for non-indexed draws. */ |
| S_03092C_DISABLE_FOR_AUTO_INDEX(1)); |
| } else if (gfx_level >= GFX9) { |
| radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, en); |
| } else { |
| radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, en); |
| |
| /* GFX6-7: All 32 bits are compared. |
| * GFX8: Only index type bits are compared. |
| * GFX9+: Default is same as GFX8, MATCH_ALL_BITS=1 selects GFX6-7 behavior |
| */ |
| if (en && gfx_level <= GFX7) { |
| const uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, |
| RADV_TRACKED_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_logic_op(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned cb_color_control = 0; |
| |
| if (d->vk.cb.logic_op_enable) { |
| cb_color_control |= S_028808_ROP3(d->vk.cb.logic_op); |
| } else { |
| cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY); |
| } |
| |
| if (pdev->info.has_rbplus) { |
| /* RB+ doesn't work with dual source blending, logic op and CB_RESOLVE. */ |
| const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]); |
| |
| cb_color_control |= S_028808_DISABLE_DUAL_QUAD(mrt0_is_dual_src || d->vk.cb.logic_op_enable || |
| cmd_buffer->state.custom_blend_mode == V_028808_CB_RESOLVE); |
| } |
| |
| if (cmd_buffer->state.custom_blend_mode) { |
| cb_color_control |= S_028808_MODE(cmd_buffer->state.custom_blend_mode); |
| } else { |
| bool color_write_enabled = false; |
| |
| for (unsigned i = 0; i < MAX_RTS; i++) { |
| if (d->vk.cb.attachments[i].write_mask) { |
| color_write_enabled = true; |
| break; |
| } |
| } |
| |
| if (color_write_enabled) { |
| cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL); |
| } else { |
| cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028858_CB_COLOR_CONTROL, cb_color_control); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, cb_color_control); |
| } |
| } |
| |
| static void |
| radv_emit_color_write(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_binning_settings *settings = &pdev->binning_settings; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| uint32_t color_write_enable = 0, color_write_mask = 0; |
| |
| u_foreach_bit (i, d->vk.cb.color_write_enables) { |
| color_write_enable |= 0xfu << (i * 4); |
| } |
| |
| for (unsigned i = 0; i < MAX_RTS; i++) { |
| color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i); |
| } |
| |
| const uint32_t cb_target_mask = color_write_enable & color_write_mask; |
| |
| if (device->pbb_allowed && settings->context_states_per_bin > 1 && |
| cmd_buffer->state.last_cb_target_mask != cb_target_mask) { |
| /* Flush DFSM on CB_TARGET_MASK changes. */ |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0)); |
| |
| cmd_buffer->state.last_cb_target_mask = cb_target_mask; |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028850_CB_TARGET_MASK, cb_target_mask); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK, cb_target_mask); |
| } |
| } |
| |
| static void |
| radv_emit_patch_control_points(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX); |
| const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]; |
| const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned ls_hs_config; |
| |
| /* Compute tessellation info that depends on the number of patch control points when this state |
| * is dynamic. |
| */ |
| if (cmd_buffer->state.uses_dynamic_patch_control_points) { |
| struct shader_info tcs_info; |
| |
| /* No other shader_info fields are needed. */ |
| tcs_info.tess.tcs_vertices_out = tcs->info.tcs.tcs_vertices_out; |
| /* These are only used to determine the LDS layout for TCS outputs. */ |
| tcs_info.outputs_read = tcs->info.tcs.tcs_outputs_read; |
| tcs_info.outputs_written = tcs->info.tcs.tcs_outputs_written; |
| tcs_info.patch_outputs_read = tcs->info.tcs.tcs_patch_outputs_read; |
| tcs_info.patch_outputs_written = tcs->info.tcs.tcs_patch_outputs_written; |
| |
| radv_get_tess_wg_info(pdev, &tcs_info, d->vk.ts.patch_control_points, |
| /* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */ |
| vs->info.vs.num_linked_outputs, tcs->info.tcs.num_linked_outputs, |
| tcs->info.tcs.num_linked_patch_outputs, |
| tcs->info.tcs.info.all_invocations_define_tess_levels, &cmd_buffer->state.tess_num_patches, |
| &cmd_buffer->state.tess_lds_size); |
| } |
| |
| ls_hs_config = S_028B58_NUM_PATCHES(cmd_buffer->state.tess_num_patches) | |
| /* GFX12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. */ |
| S_028B58_HS_NUM_INPUT_CP(pdev->info.gfx_level < GFX12 ? d->vk.ts.patch_control_points : 0) | |
| S_028B58_HS_NUM_OUTPUT_CP(tcs->info.tcs.tcs_vertices_out); |
| |
| if (pdev->info.gfx_level >= GFX7) { |
| radeon_set_context_reg_idx(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config); |
| } |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| unsigned hs_rsrc2; |
| |
| if (tcs->info.merged_shader_compiled_separately) { |
| radv_shader_combine_cfg_vs_tcs(cmd_buffer->state.shaders[MESA_SHADER_VERTEX], tcs, NULL, &hs_rsrc2); |
| } else { |
| hs_rsrc2 = tcs->config.rsrc2; |
| } |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(cmd_buffer->state.tess_lds_size); |
| } else { |
| hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(cmd_buffer->state.tess_lds_size); |
| } |
| |
| radeon_set_sh_reg(cmd_buffer->cs, tcs->info.regs.pgm_rsrc2, hs_rsrc2); |
| } else { |
| unsigned ls_rsrc2 = vs->config.rsrc2 | S_00B52C_LDS_SIZE(cmd_buffer->state.tess_lds_size); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc2, ls_rsrc2); |
| } |
| |
| /* Emit user SGPRs for dynamic patch control points. */ |
| uint32_t tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tcs, AC_UD_TCS_OFFCHIP_LAYOUT); |
| if (!tcs_offchip_layout_offset) |
| return; |
| |
| unsigned tcs_offchip_layout = |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PATCH_CONTROL_POINTS, d->vk.ts.patch_control_points - 1) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_OUT_PATCH_CP, tcs->info.tcs.tcs_vertices_out - 1) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_PATCHES, cmd_buffer->state.tess_num_patches - 1) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_LS_OUTPUTS, vs->info.vs.num_linked_outputs) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_HS_OUTPUTS, tcs->info.tcs.num_linked_outputs) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_TES_READS_TF, tes->info.tes.reads_tess_factors) | |
| SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PRIMITIVE_MODE, tes->info.tes._primitive_mode); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout); |
| |
| tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tes, AC_UD_TCS_OFFCHIP_LAYOUT); |
| assert(tcs_offchip_layout_offset); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout); |
| } |
| |
| static void |
| radv_emit_conservative_rast_mode(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| uint32_t pa_sc_conservative_rast; |
| |
| if (d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const bool uses_inner_coverage = ps && ps->info.ps.reads_fully_covered; |
| |
| pa_sc_conservative_rast = |
| S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1); |
| |
| /* Inner coverage requires underestimate conservative rasterization. */ |
| if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT && |
| !uses_inner_coverage) { |
| pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) | |
| S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1); |
| } else { |
| pa_sc_conservative_rast |= S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1); |
| } |
| } else { |
| pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C54_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, |
| pa_sc_conservative_rast); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, |
| pa_sc_conservative_rast); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_depth_clamp_enable(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| enum radv_depth_clamp_mode mode = radv_get_depth_clamp_mode(cmd_buffer); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028064_DB_VIEWPORT_CONTROL, |
| S_028064_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED)); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE, |
| S_02800C_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED)); |
| } |
| } |
| |
| static void |
| radv_emit_rasterization_samples(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(0); |
| unsigned pa_sc_mode_cntl_1; |
| bool walk_align8; |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| bool has_hiz_his = false; |
| |
| if (render->ds_att.iview) { |
| const struct radeon_surf *surf = &render->ds_att.iview->image->planes[0].surface; |
| has_hiz_his = surf->u.gfx9.zs.hiz.offset || surf->u.gfx9.zs.his.offset; |
| } |
| |
| walk_align8 = !has_hiz_his && !cmd_buffer->state.uses_vrs_attachment; |
| } else if (pdev->info.gfx_level >= GFX11) { |
| walk_align8 = !cmd_buffer->state.uses_vrs_attachment; |
| } else { |
| walk_align8 = true; |
| } |
| |
| pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes |
| S_028A4C_WALK_FENCE_SIZE(pdev->info.num_tile_pipes == 2 ? 2 : 3) | |
| S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(cmd_buffer->state.uses_out_of_order_rast) | |
| S_028A4C_OUT_OF_ORDER_WATER_MARK(pdev->info.gfx_level >= GFX12 ? 0 : 0x7) | |
| /* always 1: */ |
| S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | |
| S_028A4C_FORCE_EOV_REZ_ENABLE(1) | S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(walk_align8); |
| |
| if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) |
| radv_emit_default_sample_locations(pdev, cmd_buffer->cs, rasterization_samples); |
| |
| if (ps_iter_samples > 1) { |
| spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); |
| pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1); |
| } |
| |
| if (radv_should_force_vrs1x1(cmd_buffer)) { |
| /* Make sure sample shading is enabled even if only MSAA1x is used because the SAMPLE_ITER |
| * combiner is in passthrough mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. The |
| * default VRS rate when sample shading is enabled is 1x1. |
| */ |
| if (!G_028A4C_PS_ITER_SAMPLE(pa_sc_mode_cntl_1)) |
| pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028658_SPI_BARYC_CNTL, spi_baryc_cntl); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl); |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1); |
| } |
| |
| static void |
| radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index, struct radv_color_buffer_info *cb, |
| struct radv_image_view *iview, VkImageLayout layout) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool is_vi = pdev->info.gfx_level >= GFX8; |
| uint32_t cb_fdcc_control = cb->ac.cb_dcc_control; |
| uint32_t cb_color_info = cb->ac.cb_color_info; |
| struct radv_image *image = iview->image; |
| |
| if (!radv_layout_dcc_compressed(device, image, iview->vk.base_mip_level, layout, |
| radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf))) { |
| if (pdev->info.gfx_level >= GFX11) { |
| cb_fdcc_control &= C_028C78_FDCC_ENABLE; |
| } else { |
| cb_color_info &= C_028C70_DCC_ENABLE; |
| } |
| } |
| |
| const enum radv_fmask_compression fmask_comp = radv_layout_fmask_compression( |
| device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf)); |
| if (fmask_comp == RADV_FMASK_COMPRESSION_NONE) { |
| cb_color_info &= C_028C70_COMPRESSION; |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x24, cb->ac.cb_color_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C64_CB_COLOR0_VIEW + index * 0x24, cb->ac.cb_color_view); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C68_CB_COLOR0_VIEW2 + index * 0x24, cb->ac.cb_color_view2); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C6C_CB_COLOR0_ATTRIB + index * 0x24, cb->ac.cb_color_attrib); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_FDCC_CONTROL + index * 0x24, cb_fdcc_control); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_ATTRIB2 + index * 0x24, cb->ac.cb_color_attrib2); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C7C_CB_COLOR0_ATTRIB3 + index * 0x24, cb->ac.cb_color_attrib3); |
| radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4, |
| S_028E40_BASE_256B(cb->ac.cb_color_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + index * 4, cb->ac.cb_color_info); |
| } else if (pdev->info.gfx_level >= GFX11) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C6C_CB_COLOR0_VIEW + index * 0x3c, 4); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view); /* CB_COLOR0_VIEW */ |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_info); /* CB_COLOR0_INFO */ |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib); /* CB_COLOR0_ATTRIB */ |
| radeon_emit(cmd_buffer->cs, cb_fdcc_control); /* CB_COLOR0_FDCC_CONTROL */ |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, cb->ac.cb_color_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4, |
| S_028E40_BASE_256B(cb->ac.cb_color_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4, |
| S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3); |
| } else if (pdev->info.gfx_level >= GFX10) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base); |
| radeon_emit(cmd_buffer->cs, 0); |
| radeon_emit(cmd_buffer->cs, 0); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view); |
| radeon_emit(cmd_buffer->cs, cb_color_info); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask); |
| radeon_emit(cmd_buffer->cs, 0); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask); |
| radeon_emit(cmd_buffer->cs, 0); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4, |
| S_028E40_BASE_256B(cb->ac.cb_color_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4, |
| S_028E60_BASE_256B(cb->ac.cb_color_cmask >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4, |
| S_028E80_BASE_256B(cb->ac.cb_color_fmask >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4, |
| S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2); |
| radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3); |
| } else if (pdev->info.gfx_level == GFX9) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base); |
| radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->ac.cb_color_base >> 32)); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib2); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view); |
| radeon_emit(cmd_buffer->cs, cb_color_info); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask); |
| radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->ac.cb_color_cmask >> 32)); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask); |
| radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->ac.cb_color_fmask >> 32)); |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_base); |
| radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->ac.cb_dcc_base >> 32)); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4, cb->ac.cb_mrt_epitch); |
| } else { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 6); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_pitch); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_slice); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view); |
| radeon_emit(cmd_buffer->cs, cb_color_info); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib); |
| |
| if (pdev->info.gfx_level == GFX8) |
| radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_DCC_CONTROL + index * 0x3c, cb->ac.cb_dcc_control); |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C7C_CB_COLOR0_CMASK + index * 0x3c, 4); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask_slice); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask); |
| radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask_slice); |
| |
| if (is_vi) { /* DCC BASE */ |
| radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX11 ? G_028C78_FDCC_ENABLE(cb_fdcc_control) : G_028C70_DCC_ENABLE(cb_color_info)) { |
| /* Drawing with DCC enabled also compresses colorbuffers. */ |
| VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| radv_update_dcc_metadata(cmd_buffer, image, &range, true); |
| } |
| } |
| |
| static void |
| radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds, |
| const struct radv_image_view *iview, bool requires_cond_exec) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_image *image = iview->image; |
| uint32_t db_z_info = ds->ac.db_z_info; |
| uint32_t db_z_info_reg; |
| |
| if (!pdev->info.has_tc_compat_zrange_bug || !radv_image_is_tc_compat_htile(image)) |
| return; |
| |
| db_z_info &= C_028040_ZRANGE_PRECISION; |
| |
| if (pdev->info.gfx_level == GFX9) { |
| db_z_info_reg = R_028038_DB_Z_INFO; |
| } else { |
| db_z_info_reg = R_028040_DB_Z_INFO; |
| } |
| |
| /* When we don't know the last fast clear value we need to emit a |
| * conditional packet that will eventually skip the following |
| * SET_CONTEXT_REG packet. |
| */ |
| if (requires_cond_exec) { |
| uint64_t va = radv_get_tc_compat_zrange_va(image, iview->vk.base_mip_level); |
| |
| radv_emit_cond_exec(device, cmd_buffer->cs, va, 3 /* SET_CONTEXT_REG size */); |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info); |
| } |
| |
| static struct radv_image * |
| radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!device->vrs.image) { |
| VkResult result; |
| |
| /* The global VRS state is initialized on-demand to avoid wasting VRAM. */ |
| result = radv_device_init_vrs_state(device); |
| if (result != VK_SUCCESS) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, result); |
| return NULL; |
| } |
| } |
| |
| return device->vrs.image; |
| } |
| |
| static void |
| radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds, struct radv_image_view *iview, |
| bool depth_compressed, bool stencil_compressed) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint64_t db_htile_data_base = ds->ac.u.gfx6.db_htile_data_base; |
| uint32_t db_htile_surface = ds->ac.u.gfx6.db_htile_surface; |
| uint32_t db_render_control = ds->db_render_control | cmd_buffer->state.db_render_control; |
| uint32_t db_z_info = ds->ac.db_z_info; |
| |
| if (!depth_compressed) |
| db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(1); |
| if (!stencil_compressed) |
| db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(1); |
| |
| if (pdev->info.gfx_level == GFX10_3) { |
| if (!cmd_buffer->state.render.vrs_att.iview) { |
| db_htile_surface &= C_028ABC_VRS_HTILE_ENCODING; |
| } else { |
| /* On GFX10.3, when a subpass uses VRS attachment but HTILE can't be enabled, we fallback to |
| * our internal HTILE buffer. |
| */ |
| if (!radv_htile_enabled(iview->image, iview->vk.base_mip_level) && radv_cmd_buffer_get_vrs_image(cmd_buffer)) { |
| struct radv_buffer *htile_buffer = device->vrs.buffer; |
| |
| assert(!G_028038_TILE_SURFACE_ENABLE(db_z_info) && !db_htile_data_base && !db_htile_surface); |
| db_z_info |= S_028038_TILE_SURFACE_ENABLE(1); |
| db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8; |
| db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) | |
| S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING); |
| } |
| } |
| } |
| |
| if (pdev->info.gfx_level < GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control); |
| radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->ac.db_depth_view); |
| radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, db_htile_surface); |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, ds->db_render_override2); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_DEPTH_VIEW, ds->ac.db_depth_view); |
| radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW1, ds->ac.u.gfx12.db_depth_view1); |
| radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size); |
| radeon_set_context_reg(cmd_buffer->cs, R_028018_DB_Z_INFO, ds->ac.db_z_info); |
| radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_STENCIL_INFO, ds->ac.db_stencil_info); |
| radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_Z_READ_BASE, ds->ac.db_depth_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_Z_READ_BASE_HI, S_028024_BASE_HI(ds->ac.db_depth_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028028_DB_Z_WRITE_BASE, ds->ac.db_depth_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_02802C_DB_Z_WRITE_BASE_HI, S_02802C_BASE_HI(ds->ac.db_depth_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028030_DB_STENCIL_READ_BASE, ds->ac.db_stencil_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028034_DB_STENCIL_READ_BASE_HI, |
| S_028034_BASE_HI(ds->ac.db_stencil_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028038_DB_STENCIL_WRITE_BASE, ds->ac.db_stencil_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_02803C_DB_STENCIL_WRITE_BASE_HI, |
| S_02803C_BASE_HI(ds->ac.db_stencil_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, ds->ac.u.gfx12.hiz_info); |
| radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, ds->ac.u.gfx12.his_info); |
| |
| if (ds->ac.u.gfx12.hiz_info) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028B9C_PA_SC_HIZ_BASE, ds->ac.u.gfx12.hiz_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028BA0_PA_SC_HIZ_BASE_EXT, |
| S_028BA0_BASE_256B(ds->ac.u.gfx12.hiz_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028BA4_PA_SC_HIZ_SIZE_XY, ds->ac.u.gfx12.hiz_size_xy); |
| } |
| if (ds->ac.u.gfx12.his_info) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028BA8_PA_SC_HIS_BASE, ds->ac.u.gfx12.his_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_028BAC_PA_SC_HIS_BASE_EXT, |
| S_028BAC_BASE_256B(ds->ac.u.gfx12.his_base >> 32)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028BB0_PA_SC_HIS_SIZE_XY, ds->ac.u.gfx12.his_size_xy); |
| } |
| } else if (pdev->info.gfx_level >= GFX10) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base); |
| radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size); |
| |
| if (pdev->info.gfx_level >= GFX11) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 6); |
| } else { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7); |
| radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1)); |
| } |
| radeon_emit(cmd_buffer->cs, db_z_info); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5); |
| radeon_emit(cmd_buffer->cs, S_028068_BASE_HI(ds->ac.db_depth_base >> 32)); |
| radeon_emit(cmd_buffer->cs, S_02806C_BASE_HI(ds->ac.db_stencil_base >> 32)); |
| radeon_emit(cmd_buffer->cs, S_028070_BASE_HI(ds->ac.db_depth_base >> 32)); |
| radeon_emit(cmd_buffer->cs, S_028074_BASE_HI(ds->ac.db_stencil_base >> 32)); |
| radeon_emit(cmd_buffer->cs, S_028078_BASE_HI(db_htile_data_base >> 32)); |
| } else if (pdev->info.gfx_level == GFX9) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3); |
| radeon_emit(cmd_buffer->cs, db_htile_data_base); |
| radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(db_htile_data_base >> 32)); |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size); |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10); |
| radeon_emit(cmd_buffer->cs, db_z_info); /* DB_Z_INFO */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info); /* DB_STENCIL_INFO */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* DB_Z_READ_BASE */ |
| radeon_emit(cmd_buffer->cs, S_028044_BASE_HI(ds->ac.db_depth_base >> 32)); /* DB_Z_READ_BASE_HI */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* DB_STENCIL_READ_BASE */ |
| radeon_emit(cmd_buffer->cs, S_02804C_BASE_HI(ds->ac.db_stencil_base >> 32)); /* DB_STENCIL_READ_BASE_HI */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* DB_Z_WRITE_BASE */ |
| radeon_emit(cmd_buffer->cs, S_028054_BASE_HI(ds->ac.db_depth_base >> 32)); /* DB_Z_WRITE_BASE_HI */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* DB_STENCIL_WRITE_BASE */ |
| radeon_emit(cmd_buffer->cs, S_02805C_BASE_HI(ds->ac.db_stencil_base >> 32)); /* DB_STENCIL_WRITE_BASE_HI */ |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2); |
| radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_z_info2); |
| radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_stencil_info2); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base); |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9); |
| radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_info); /* R_02803C_DB_DEPTH_INFO */ |
| radeon_emit(cmd_buffer->cs, db_z_info); /* R_028040_DB_Z_INFO */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info); /* R_028044_DB_STENCIL_INFO */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* R_028048_DB_Z_READ_BASE */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* R_02804C_DB_STENCIL_READ_BASE */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* R_028050_DB_Z_WRITE_BASE */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* R_028054_DB_STENCIL_WRITE_BASE */ |
| radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size); /* R_028058_DB_DEPTH_SIZE */ |
| radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */ |
| } |
| |
| /* Update the ZRANGE_PRECISION value for the TC-compat bug. */ |
| radv_update_zrange_precision(cmd_buffer, ds, iview, true); |
| } |
| |
| static void |
| radv_emit_null_ds_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028018_DB_Z_INFO, 2); |
| radeon_emit(cmd_buffer->cs, S_028018_FORMAT(V_028018_Z_INVALID) | S_028018_NUM_SAMPLES(3)); |
| radeon_emit(cmd_buffer->cs, S_02801C_FORMAT(V_02801C_STENCIL_INVALID) | S_02801C_TILE_STENCIL_DISABLE(1)); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, S_028B94_SURFACE_ENABLE(0)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, S_028B98_SURFACE_ENABLE(0)); |
| } else { |
| if (gfx_level == GFX9) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2); |
| } else { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2); |
| } |
| |
| /* On GFX11+, the hw intentionally looks at DB_Z_INFO.NUM_SAMPLES when there is no bound |
| * depth/stencil buffer and it clamps the number of samples like MIN2(DB_Z_INFO.NUM_SAMPLES, |
| * PA_SC_AA_CONFIG.MSAA_EXPOSED_SAMPLES). Use 8x for DB_Z_INFO.NUM_SAMPLES to make sure it's not |
| * the constraining factor. This affects VRS, occlusion queries and POPS. |
| */ |
| radeon_emit(cmd_buffer->cs, |
| S_028040_FORMAT(V_028040_Z_INVALID) | S_028040_NUM_SAMPLES(pdev->info.gfx_level >= GFX11 ? 3 : 0)); |
| radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID)); |
| uint32_t db_render_control = 0; |
| |
| if (gfx_level == GFX11 || gfx_level == GFX11_5) |
| radv_gfx11_set_db_render_control(device, 1, &db_render_control); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control); |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, |
| S_028010_CENTROID_COMPUTATION_MODE(gfx_level >= GFX10_3)); |
| } |
| /** |
| * Update the fast clear depth/stencil values if the image is bound as a |
| * depth/stencil buffer. |
| */ |
| static void |
| radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, |
| VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects) |
| { |
| const struct radv_image *image = iview->image; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| if (cmd_buffer->state.render.ds_att.iview == NULL || cmd_buffer->state.render.ds_att.iview->image != image) |
| return; |
| |
| if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { |
| radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2); |
| radeon_emit(cs, ds_clear_value.stencil); |
| radeon_emit(cs, fui(ds_clear_value.depth)); |
| } else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| radeon_set_context_reg(cs, R_02802C_DB_DEPTH_CLEAR, fui(ds_clear_value.depth)); |
| } else { |
| assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT); |
| radeon_set_context_reg(cs, R_028028_DB_STENCIL_CLEAR, ds_clear_value.stencil); |
| } |
| |
| /* Update the ZRANGE_PRECISION value for the TC-compat bug. This is |
| * only needed when clearing Z to 0.0. |
| */ |
| if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) { |
| radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.render.ds_att.ds, iview, false); |
| } |
| |
| cmd_buffer->state.context_roll_without_scissor_emitted = true; |
| } |
| |
| /** |
| * Set the clear depth/stencil values to the image's metadata. |
| */ |
| static void |
| radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range, VkClearDepthStencilValue ds_clear_value, |
| VkImageAspectFlags aspects) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); |
| |
| if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { |
| uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel); |
| |
| /* Use the fastest way when both aspects are used. */ |
| ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, |
| 2 * level_count, cmd_buffer->state.predicating); |
| |
| for (uint32_t l = 0; l < level_count; l++) { |
| radeon_emit(cs, ds_clear_value.stencil); |
| radeon_emit(cs, fui(ds_clear_value.depth)); |
| } |
| |
| assert(cmd_buffer->cs->cdw == cdw_end); |
| } else { |
| /* Otherwise we need one WRITE_DATA packet per level. */ |
| for (uint32_t l = 0; l < level_count; l++) { |
| uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l); |
| unsigned value; |
| |
| if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) { |
| value = fui(ds_clear_value.depth); |
| va += 4; |
| } else { |
| assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT); |
| value = ds_clear_value.stencil; |
| } |
| |
| radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, cmd_buffer->state.predicating); |
| } |
| } |
| } |
| |
| /** |
| * Update the TC-compat metadata value for this image. |
| */ |
| static void |
| radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range, uint32_t value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| if (!pdev->info.has_tc_compat_zrange_bug) |
| return; |
| |
| uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel); |
| uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); |
| |
| ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, |
| level_count, cmd_buffer->state.predicating); |
| |
| for (uint32_t l = 0; l < level_count; l++) |
| radeon_emit(cs, value); |
| |
| assert(cmd_buffer->cs->cdw == cdw_end); |
| } |
| |
| static void |
| radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, |
| VkClearDepthStencilValue ds_clear_value) |
| { |
| VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| uint32_t cond_val; |
| |
| /* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last |
| * depth clear value is 0.0f. |
| */ |
| cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0; |
| |
| radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val); |
| } |
| |
| /** |
| * Update the clear depth/stencil values for this image. |
| */ |
| void |
| radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, |
| VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects) |
| { |
| VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| struct radv_image *image = iview->image; |
| |
| assert(radv_htile_enabled(image, range.baseMipLevel)); |
| |
| radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects); |
| |
| if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { |
| radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value); |
| } |
| |
| radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects); |
| } |
| |
| /** |
| * Load the clear depth/stencil values from the image's metadata. |
| */ |
| static void |
| radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const struct radv_image *image = iview->image; |
| VkImageAspectFlags aspects = vk_format_aspects(image->vk.format); |
| uint64_t va = radv_get_ds_clear_value_va(image, iview->vk.base_mip_level); |
| unsigned reg_offset = 0, reg_count = 0; |
| |
| assert(radv_image_has_htile(image)); |
| |
| if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { |
| ++reg_count; |
| } else { |
| ++reg_offset; |
| va += 4; |
| } |
| if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) |
| ++reg_count; |
| |
| uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset; |
| |
| if (pdev->info.has_load_ctx_reg_pkt) { |
| radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2); |
| radeon_emit(cs, reg_count); |
| } else { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | |
| (reg_count == 2 ? COPY_DATA_COUNT_SEL : 0)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, reg >> 2); |
| radeon_emit(cs, 0); |
| |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); |
| radeon_emit(cs, 0); |
| } |
| } |
| |
| /* |
| * With DCC some colors don't require CMASK elimination before being |
| * used as a texture. This sets a predicate value to determine if the |
| * cmask eliminate is required. |
| */ |
| void |
| radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range, bool value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!image->fce_pred_offset) |
| return; |
| |
| uint64_t pred_val = value; |
| uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel); |
| uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); |
| |
| ASSERTED unsigned cdw_end = |
| radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false); |
| |
| for (uint32_t l = 0; l < level_count; l++) { |
| radeon_emit(cmd_buffer->cs, pred_val); |
| radeon_emit(cmd_buffer->cs, pred_val >> 32); |
| } |
| |
| assert(cmd_buffer->cs->cdw == cdw_end); |
| } |
| |
| /** |
| * Update the DCC predicate to reflect the compression state. |
| */ |
| void |
| radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range, bool value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (image->dcc_pred_offset == 0) |
| return; |
| |
| uint64_t pred_val = value; |
| uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel); |
| uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); |
| |
| assert(radv_dcc_enabled(image, range->baseMipLevel)); |
| |
| ASSERTED unsigned cdw_end = |
| radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false); |
| |
| for (uint32_t l = 0; l < level_count; l++) { |
| radeon_emit(cmd_buffer->cs, pred_val); |
| radeon_emit(cmd_buffer->cs, pred_val >> 32); |
| } |
| |
| assert(cmd_buffer->cs->cdw == cdw_end); |
| } |
| |
| /** |
| * Update the fast clear color values if the image is bound as a color buffer. |
| */ |
| static void |
| radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, int cb_idx, |
| uint32_t color_values[2]) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| if (cb_idx >= cmd_buffer->state.render.color_att_count || cmd_buffer->state.render.color_att[cb_idx].iview == NULL || |
| cmd_buffer->state.render.color_att[cb_idx].iview->image != image) |
| return; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4); |
| |
| radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2); |
| radeon_emit(cs, color_values[0]); |
| radeon_emit(cs, color_values[1]); |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| cmd_buffer->state.context_roll_without_scissor_emitted = true; |
| } |
| |
| /** |
| * Set the clear color values to the image's metadata. |
| */ |
| static void |
| radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range, uint32_t color_values[2]) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint32_t level_count = vk_image_subresource_level_count(&image->vk, range); |
| |
| assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)); |
| |
| if (radv_image_has_clear_value(image)) { |
| uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel); |
| |
| ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, |
| 2 * level_count, cmd_buffer->state.predicating); |
| |
| for (uint32_t l = 0; l < level_count; l++) { |
| radeon_emit(cs, color_values[0]); |
| radeon_emit(cs, color_values[1]); |
| } |
| |
| assert(cmd_buffer->cs->cdw == cdw_end); |
| } else { |
| /* Some default value we can set in the update. */ |
| assert(color_values[0] == 0 && color_values[1] == 0); |
| } |
| } |
| |
| /** |
| * Update the clear color values for this image. |
| */ |
| void |
| radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx, |
| uint32_t color_values[2]) |
| { |
| struct radv_image *image = iview->image; |
| VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->vk.base_mip_level)); |
| |
| /* Do not need to update the clear value for images that are fast cleared with the comp-to-single |
| * mode because the hardware gets the value from the image directly. |
| */ |
| if (iview->image->support_comp_to_single) |
| return; |
| |
| radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values); |
| |
| radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values); |
| } |
| |
| /** |
| * Load the clear color values from the image's metadata. |
| */ |
| static void |
| radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview, int cb_idx) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| struct radv_image *image = iview->image; |
| |
| if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->vk.base_mip_level)) |
| return; |
| |
| if (iview->image->support_comp_to_single) |
| return; |
| |
| if (!radv_image_has_clear_value(image)) { |
| uint32_t color_values[2] = {0, 0}; |
| radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values); |
| return; |
| } |
| |
| uint64_t va = radv_image_get_fast_clear_va(image, iview->vk.base_mip_level); |
| uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c; |
| |
| if (pdev->info.has_load_ctx_reg_pkt) { |
| radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2); |
| radeon_emit(cs, 2); |
| } else { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_COUNT_SEL); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, reg >> 2); |
| radeon_emit(cs, 0); |
| |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating)); |
| radeon_emit(cs, 0); |
| } |
| } |
| |
| /* GFX9+ metadata cache flushing workaround. metadata cache coherency is |
| * broken if the CB caches data of multiple mips of the same image at the |
| * same time. |
| * |
| * Insert some flushes to avoid this. |
| */ |
| static void |
| radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| bool color_mip_changed = false; |
| |
| /* Entire workaround is not applicable before GFX9 */ |
| if (pdev->info.gfx_level < GFX9) |
| return; |
| |
| for (int i = 0; i < render->color_att_count; ++i) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| if (!iview) |
| continue; |
| |
| if ((radv_image_has_cmask(iview->image) || radv_dcc_enabled(iview->image, iview->vk.base_mip_level) || |
| radv_dcc_enabled(iview->image, cmd_buffer->state.cb_mip[i])) && |
| cmd_buffer->state.cb_mip[i] != iview->vk.base_mip_level) |
| color_mip_changed = true; |
| |
| cmd_buffer->state.cb_mip[i] = iview->vk.base_mip_level; |
| } |
| |
| if (color_mip_changed) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; |
| } |
| |
| const struct radv_image_view *iview = render->ds_att.iview; |
| if (iview) { |
| if ((radv_htile_enabled(iview->image, iview->vk.base_mip_level) || |
| radv_htile_enabled(iview->image, cmd_buffer->state.ds_mip)) && |
| cmd_buffer->state.ds_mip != iview->vk.base_mip_level) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| |
| cmd_buffer->state.ds_mip = iview->vk.base_mip_level; |
| } |
| } |
| |
| /* This function does the flushes for mip changes if the levels are not zero for |
| * all render targets. This way we can assume at the start of the next cmd_buffer |
| * that rendering to mip 0 doesn't need any flushes. As that is the most common |
| * case that saves some flushes. */ |
| static void |
| radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| /* Entire workaround is not applicable before GFX9 */ |
| if (pdev->info.gfx_level < GFX9) |
| return; |
| |
| bool need_color_mip_flush = false; |
| for (unsigned i = 0; i < 8; ++i) { |
| if (cmd_buffer->state.cb_mip[i]) { |
| need_color_mip_flush = true; |
| break; |
| } |
| } |
| |
| if (need_color_mip_flush) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; |
| } |
| |
| if (cmd_buffer->state.ds_mip) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| |
| memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip)); |
| cmd_buffer->state.ds_mip = 0; |
| } |
| |
| static void |
| radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| int i; |
| bool disable_constant_encode_ac01 = false; |
| unsigned color_invalid = pdev->info.gfx_level >= GFX12 ? S_028EC0_FORMAT(V_028EC0_COLOR_INVALID) |
| : pdev->info.gfx_level >= GFX11 ? S_028C70_FORMAT_GFX11(V_028C70_COLOR_INVALID) |
| : S_028C70_FORMAT_GFX6(V_028C70_COLOR_INVALID); |
| VkExtent2D extent = {MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT}; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 51 + MAX_RTS * 70); |
| |
| for (i = 0; i < render->color_att_count; ++i) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| if (!iview) { |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid); |
| } |
| continue; |
| } |
| |
| VkImageLayout layout = render->color_att[i].layout; |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[0].bo); |
| |
| assert(iview->vk.aspects & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT | |
| VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)); |
| |
| if (iview->image->disjoint && iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) { |
| for (uint32_t plane_id = 0; plane_id < iview->image->plane_count; plane_id++) { |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo); |
| } |
| } else { |
| uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0; |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo); |
| } |
| |
| radv_emit_fb_color_state(cmd_buffer, i, &render->color_att[i].cb, iview, layout); |
| |
| radv_load_color_clear_metadata(cmd_buffer, iview, i); |
| |
| if (pdev->info.gfx_level >= GFX9 && iview->image->dcc_sign_reinterpret) { |
| /* Disable constant encoding with the clear value of "1" with different DCC signedness |
| * because the hardware will fill "1" instead of the clear value. |
| */ |
| disable_constant_encode_ac01 = true; |
| } |
| |
| extent.width = MIN2(extent.width, iview->vk.extent.width); |
| extent.height = MIN2(extent.height, iview->vk.extent.height); |
| } |
| for (; i < cmd_buffer->state.last_subpass_color_count; i++) { |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid); |
| } |
| } |
| cmd_buffer->state.last_subpass_color_count = render->color_att_count; |
| |
| if (render->ds_att.iview) { |
| struct radv_image_view *iview = render->ds_att.iview; |
| const struct radv_image *image = iview->image; |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, image->bindings[0].bo); |
| |
| uint32_t qf_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf); |
| bool depth_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.layout, qf_mask); |
| bool stencil_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.stencil_layout, qf_mask); |
| |
| radv_emit_fb_ds_state(cmd_buffer, &render->ds_att.ds, iview, depth_compressed, stencil_compressed); |
| |
| if (depth_compressed || stencil_compressed) { |
| /* Only load the depth/stencil fast clear values when |
| * compressed rendering is enabled. |
| */ |
| radv_load_ds_clear_metadata(cmd_buffer, iview); |
| } |
| |
| extent.width = MIN2(extent.width, iview->vk.extent.width); |
| extent.height = MIN2(extent.height, iview->vk.extent.height); |
| } else if (pdev->info.gfx_level == GFX10_3 && render->vrs_att.iview && radv_cmd_buffer_get_vrs_image(cmd_buffer)) { |
| /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to |
| * bind our internal depth buffer that contains the VRS data as part of HTILE. |
| */ |
| VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| struct radv_buffer *htile_buffer = device->vrs.buffer; |
| struct radv_image *image = device->vrs.image; |
| struct radv_ds_buffer_info ds; |
| struct radv_image_view iview; |
| |
| radv_image_view_init(&iview, device, |
| &(VkImageViewCreateInfo){ |
| .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, |
| .image = radv_image_to_handle(image), |
| .viewType = radv_meta_get_view_type(image), |
| .format = image->vk.format, |
| .subresourceRange = |
| { |
| .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, |
| .baseMipLevel = 0, |
| .levelCount = 1, |
| .baseArrayLayer = 0, |
| .layerCount = 1, |
| }, |
| }, |
| NULL); |
| |
| radv_initialise_vrs_surface(image, htile_buffer, &ds); |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, htile_buffer->bo); |
| |
| bool depth_compressed = radv_layout_is_htile_compressed( |
| device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf)); |
| radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, depth_compressed, false); |
| |
| radv_image_view_finish(&iview); |
| } else { |
| radv_emit_null_ds_state(cmd_buffer); |
| } |
| |
| if (pdev->info.gfx_level >= GFX11) { |
| bool vrs_surface_enable = render->vrs_att.iview != NULL; |
| unsigned xmax = 0, ymax = 0; |
| uint64_t va = 0; |
| |
| if (vrs_surface_enable) { |
| const struct radv_image_view *vrs_iview = render->vrs_att.iview; |
| struct radv_image *vrs_image = vrs_iview->image; |
| |
| va = radv_image_get_va(vrs_image, 0); |
| va |= vrs_image->planes[0].surface.tile_swizzle << 8; |
| |
| xmax = vrs_iview->vk.extent.width - 1; |
| ymax = vrs_iview->vk.extent.height - 1; |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_0283E0_PA_SC_VRS_INFO, |
| S_0283E0_RATE_SW_MODE(vrs_image->planes[0].surface.u.gfx9.swizzle_mode)); |
| } |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_0283F0_PA_SC_VRS_RATE_BASE, 3); |
| radeon_emit(cmd_buffer->cs, va >> 8); |
| radeon_emit(cmd_buffer->cs, S_0283F4_BASE_256B(va >> 40)); |
| radeon_emit(cmd_buffer->cs, S_0283F8_X_MAX(xmax) | S_0283F8_Y_MAX(ymax)); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL, |
| S_0283D0_VRS_SURFACE_ENABLE(vrs_surface_enable)); |
| } |
| |
| if (pdev->info.gfx_level >= GFX8 && pdev->info.gfx_level < GFX12) { |
| bool disable_constant_encode = pdev->info.has_dcc_constant_encode; |
| enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| if (pdev->info.gfx_level >= GFX11) { |
| const bool has_dedicated_vram = pdev->info.has_dedicated_vram; |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_FDCC_CONTROL, |
| S_028424_SAMPLE_MASK_TRACKER_WATERMARK(has_dedicated_vram ? 0 : 15)); |
| } else { |
| uint8_t watermark = gfx_level >= GFX10 ? 6 : 4; |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL, |
| S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(gfx_level <= GFX9) | |
| S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) | |
| S_028424_DISABLE_CONSTANT_ENCODE_AC01(disable_constant_encode_ac01) | |
| S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode)); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028184_PA_SC_SCREEN_SCISSOR_BR, |
| S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height)); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028034_PA_SC_SCREEN_SCISSOR_BR, |
| S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height)); |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER; |
| } |
| |
| static void |
| radv_emit_guardband_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer); |
| const bool draw_points = radv_rast_prim_is_point(rast_prim) || radv_polygon_mode_is_point(d->vk.rs.polygon_mode); |
| const bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| int i; |
| float guardband_x = INFINITY, guardband_y = INFINITY; |
| float discard_x = 1.0f, discard_y = 1.0f; |
| const float max_range = 32767.0f; |
| |
| if (!d->vk.vp.viewport_count) |
| return; |
| |
| for (i = 0; i < d->vk.vp.viewport_count; i++) { |
| float scale_x = fabsf(d->hw_vp.xform[i].scale[0]); |
| float scale_y = fabsf(d->hw_vp.xform[i].scale[1]); |
| const float translate_x = fabsf(d->hw_vp.xform[i].translate[0]); |
| const float translate_y = fabsf(d->hw_vp.xform[i].translate[1]); |
| |
| if (scale_x < 0.5) |
| scale_x = 0.5; |
| if (scale_y < 0.5) |
| scale_y = 0.5; |
| |
| guardband_x = MIN2(guardband_x, (max_range - translate_x) / scale_x); |
| guardband_y = MIN2(guardband_y, (max_range - translate_y) / scale_y); |
| |
| if (draw_points || draw_lines) { |
| /* When rendering wide points or lines, we need to be more conservative about when to |
| * discard them entirely. */ |
| float pixels; |
| |
| if (draw_points) { |
| pixels = 8191.875f; |
| } else { |
| pixels = d->vk.rs.line.width; |
| } |
| |
| /* Add half the point size / line width. */ |
| discard_x += pixels / (2.0 * scale_x); |
| discard_y += pixels / (2.0 * scale_y); |
| |
| /* Discard primitives that would lie entirely outside the clip region. */ |
| discard_x = MIN2(discard_x, guardband_x); |
| discard_y = MIN2(discard_y, guardband_y); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg_seq(cs, R_02842C_PA_CL_GB_VERT_CLIP_ADJ, 4); |
| } else { |
| radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4); |
| } |
| radeon_emit(cs, fui(guardband_y)); |
| radeon_emit(cs, fui(discard_y)); |
| radeon_emit(cs, fui(guardband_x)); |
| radeon_emit(cs, fui(discard_x)); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GUARDBAND; |
| } |
| |
| /* Bind an internal index buffer for GPUs that hang with 0-sized index buffers to handle robustness2 |
| * which requires 0 for out-of-bounds access. |
| */ |
| static void |
| radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer *cmd_buffer, uint64_t *index_va, uint32_t *remaining_indexes) |
| { |
| const uint32_t zero = 0; |
| uint32_t offset; |
| |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint32_t), &zero, &offset)) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return; |
| } |
| |
| *index_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset; |
| *remaining_indexes = 1; |
| } |
| |
| static void |
| radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| uint32_t max_index_count = state->max_index_count; |
| uint64_t index_va = state->index_va; |
| |
| /* With indirect generated commands the index buffer bind may be part of the |
| * indirect command buffer, in which case the app may not have bound any yet. */ |
| if (state->index_type < 0) |
| return; |
| |
| /* Handle indirect draw calls with NULL index buffer if the GPU doesn't support them. */ |
| if (!max_index_count && pdev->info.has_zero_index_buffer_bug) { |
| radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &max_index_count); |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0)); |
| radeon_emit(cs, index_va); |
| radeon_emit(cs, index_va >> 32); |
| |
| radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0)); |
| radeon_emit(cs, max_index_count); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER; |
| } |
| |
| static void |
| radv_flush_occlusion_query_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const bool enable_occlusion_queries = |
| cmd_buffer->state.active_occlusion_queries || cmd_buffer->state.inherited_occlusion_queries; |
| uint32_t db_count_control; |
| |
| if (!enable_occlusion_queries) { |
| db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(gfx_level < GFX11); |
| } else { |
| bool gfx10_perfect = |
| gfx_level >= GFX10 && (cmd_buffer->state.perfect_occlusion_queries_enabled || |
| cmd_buffer->state.inherited_query_control_flags & VK_QUERY_CONTROL_PRECISE_BIT); |
| |
| if (gfx_level >= GFX7) { |
| /* Always enable PERFECT_ZPASS_COUNTS due to issues with partially |
| * covered tiles, discards, and early depth testing. For more details, |
| * see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */ |
| db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) | |
| S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) | S_028004_ZPASS_ENABLE(1) | |
| S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1); |
| } else { |
| db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1); |
| } |
| |
| if (gfx_level < GFX12) { |
| const uint32_t rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| const uint32_t sample_rate = util_logbase2(rasterization_samples); |
| |
| db_count_control |= S_028004_SAMPLE_RATE(sample_rate); |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028060_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL, |
| db_count_control); |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_028004_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL, |
| db_count_control); |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_OCCLUSION_QUERY; |
| } |
| |
| unsigned |
| radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs) |
| { |
| /* instance_rate_vs_prologs is a flattened array of array of arrays of different sizes, or a |
| * single array sorted in ascending order using: |
| * - total number of attributes |
| * - number of instanced attributes |
| * - index of first instanced attribute |
| */ |
| |
| /* From total number of attributes to offset. */ |
| static const uint16_t total_to_offset[16] = {0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680}; |
| unsigned start_index = total_to_offset[num_attributes - 1]; |
| |
| /* From number of instanced attributes to offset. This would require a different LUT depending on |
| * the total number of attributes, but we can exploit a pattern to use just the LUT for 16 total |
| * attributes. |
| */ |
| static const uint8_t count_to_offset_total16[16] = {0, 16, 31, 45, 58, 70, 81, 91, |
| 100, 108, 115, 121, 126, 130, 133, 135}; |
| unsigned count = util_bitcount(instance_rate_inputs); |
| unsigned offset_from_start_index = count_to_offset_total16[count - 1] - ((16 - num_attributes) * (count - 1)); |
| |
| unsigned first = ffs(instance_rate_inputs) - 1; |
| return start_index + offset_from_start_index + first; |
| } |
| |
| static struct radv_shader_part * |
| lookup_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, uint32_t *nontrivial_divisors) |
| { |
| assert(vs_shader->info.vs.dynamic_inputs); |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input; |
| |
| unsigned num_attributes = util_last_bit(vs_shader->info.vs.vb_desc_usage_mask); |
| uint32_t attribute_mask = BITFIELD_MASK(num_attributes); |
| |
| uint32_t instance_rate_inputs = vi_state->instance_rate_inputs & attribute_mask; |
| uint32_t zero_divisors = vi_state->zero_divisors & attribute_mask; |
| *nontrivial_divisors = vi_state->nontrivial_divisors & attribute_mask; |
| uint32_t misaligned_mask = cmd_buffer->state.vbo_misaligned_mask; |
| uint32_t unaligned_mask = cmd_buffer->state.vbo_unaligned_mask; |
| if (cmd_buffer->state.vbo_misaligned_mask_invalid) { |
| bool misalignment_possible = pdev->info.gfx_level == GFX6 || pdev->info.gfx_level >= GFX10; |
| u_foreach_bit (index, cmd_buffer->state.vbo_misaligned_mask_invalid & attribute_mask) { |
| uint8_t binding = vi_state->bindings[index]; |
| if (!(cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(binding))) |
| continue; |
| |
| uint8_t format_req = vi_state->format_align_req_minus_1[index]; |
| uint8_t component_req = vi_state->component_align_req_minus_1[index]; |
| uint64_t vb_offset = cmd_buffer->vertex_bindings[binding].offset; |
| uint64_t vb_stride = cmd_buffer->vertex_bindings[binding].stride; |
| |
| VkDeviceSize offset = vb_offset + vi_state->offsets[index]; |
| |
| if (misalignment_possible && ((offset | vb_stride) & format_req)) |
| misaligned_mask |= BITFIELD_BIT(index); |
| if ((offset | vb_stride) & component_req) |
| unaligned_mask |= BITFIELD_BIT(index); |
| } |
| cmd_buffer->state.vbo_misaligned_mask = misaligned_mask; |
| cmd_buffer->state.vbo_unaligned_mask = unaligned_mask; |
| cmd_buffer->state.vbo_misaligned_mask_invalid &= ~attribute_mask; |
| } |
| misaligned_mask |= vi_state->nontrivial_formats | unaligned_mask; |
| misaligned_mask &= attribute_mask; |
| unaligned_mask &= attribute_mask; |
| |
| const bool can_use_simple_input = |
| cmd_buffer->state.shaders[MESA_SHADER_VERTEX] && |
| !cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.merged_shader_compiled_separately && |
| cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.is_ngg == pdev->use_ngg && |
| cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.wave_size == pdev->ge_wave_size; |
| |
| /* The instance ID input VGPR is placed differently when as_ls=true. as_ls is also needed to |
| * workaround the LS VGPR initialization bug. |
| */ |
| bool as_ls = vs_shader->info.vs.as_ls && (instance_rate_inputs || pdev->info.has_ls_vgpr_init_bug); |
| |
| /* try to use a pre-compiled prolog first */ |
| struct radv_shader_part *prolog = NULL; |
| if (can_use_simple_input && !as_ls && !misaligned_mask && !vi_state->alpha_adjust_lo && !vi_state->alpha_adjust_hi) { |
| if (!instance_rate_inputs) { |
| prolog = device->simple_vs_prologs[num_attributes - 1]; |
| } else if (num_attributes <= 16 && !*nontrivial_divisors && !zero_divisors && |
| util_bitcount(instance_rate_inputs) == |
| (util_last_bit(instance_rate_inputs) - ffs(instance_rate_inputs) + 1)) { |
| unsigned index = radv_instance_rate_prolog_index(num_attributes, instance_rate_inputs); |
| prolog = device->instance_rate_vs_prologs[index]; |
| } |
| } |
| if (prolog) |
| return prolog; |
| |
| struct radv_vs_prolog_key key; |
| memset(&key, 0, sizeof(key)); |
| key.instance_rate_inputs = instance_rate_inputs; |
| key.nontrivial_divisors = *nontrivial_divisors; |
| key.zero_divisors = zero_divisors; |
| /* If the attribute is aligned, post shuffle is implemented using DST_SEL instead. */ |
| key.post_shuffle = vi_state->post_shuffle & misaligned_mask; |
| key.alpha_adjust_hi = vi_state->alpha_adjust_hi & attribute_mask & ~unaligned_mask; |
| key.alpha_adjust_lo = vi_state->alpha_adjust_lo & attribute_mask & ~unaligned_mask; |
| u_foreach_bit (index, misaligned_mask) |
| key.formats[index] = vi_state->formats[index]; |
| key.num_attributes = num_attributes; |
| key.misaligned_mask = misaligned_mask; |
| key.unaligned_mask = unaligned_mask; |
| key.as_ls = as_ls; |
| key.is_ngg = vs_shader->info.is_ngg; |
| key.wave32 = vs_shader->info.wave_size == 32; |
| |
| if (vs_shader->info.merged_shader_compiled_separately) { |
| assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL || vs_shader->info.next_stage == MESA_SHADER_GEOMETRY); |
| key.next_stage = vs_shader->info.next_stage; |
| } else { |
| key.next_stage = vs_shader->info.stage; |
| } |
| |
| return radv_shader_part_cache_get(device, &device->vs_prologs, &cmd_buffer->vs_prologs, &key); |
| } |
| |
| static void |
| emit_prolog_regs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, |
| const struct radv_shader_part *prolog) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t rsrc1, rsrc2; |
| |
| /* no need to re-emit anything in this case */ |
| if (cmd_buffer->state.emitted_vs_prolog == prolog) |
| return; |
| |
| enum amd_gfx_level chip = pdev->info.gfx_level; |
| |
| assert(cmd_buffer->state.emitted_graphics_pipeline == cmd_buffer->state.graphics_pipeline); |
| |
| if (vs_shader->info.merged_shader_compiled_separately) { |
| if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) { |
| radv_shader_combine_cfg_vs_gs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY], &rsrc1, &rsrc2); |
| } else { |
| assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL); |
| |
| radv_shader_combine_cfg_vs_tcs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL], &rsrc1, &rsrc2); |
| } |
| } else { |
| rsrc1 = vs_shader->config.rsrc1; |
| } |
| |
| if (chip < GFX10 && G_00B228_SGPRS(prolog->rsrc1) > G_00B228_SGPRS(rsrc1)) |
| rsrc1 = (rsrc1 & C_00B228_SGPRS) | (prolog->rsrc1 & ~C_00B228_SGPRS); |
| |
| if (G_00B848_VGPRS(prolog->rsrc1) > G_00B848_VGPRS(rsrc1)) |
| rsrc1 = (rsrc1 & C_00B848_VGPRS) | (prolog->rsrc1 & ~C_00B848_VGPRS); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_lo, prolog->va >> 8); |
| radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc1, rsrc1); |
| |
| if (vs_shader->info.merged_shader_compiled_separately) { |
| if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) { |
| const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]; |
| unsigned lds_size; |
| |
| if (gs->info.is_ngg) { |
| lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity); |
| } else { |
| lds_size = gs->info.gs_ring_info.lds_size; |
| } |
| |
| radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2 | S_00B22C_LDS_SIZE(lds_size)); |
| } else { |
| radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2); |
| } |
| } |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, prolog->bo); |
| } |
| |
| static void |
| emit_prolog_inputs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, |
| uint32_t nontrivial_divisors) |
| { |
| /* no need to re-emit anything in this case */ |
| if (!nontrivial_divisors && cmd_buffer->state.emitted_vs_prolog && |
| !cmd_buffer->state.emitted_vs_prolog->nontrivial_divisors) |
| return; |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input; |
| uint64_t input_va = radv_shader_get_va(vs_shader); |
| |
| if (nontrivial_divisors) { |
| unsigned inputs_offset; |
| uint32_t *inputs; |
| unsigned size = 8 + util_bitcount(nontrivial_divisors) * 8; |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &inputs_offset, (void **)&inputs)) |
| return; |
| |
| *(inputs++) = input_va; |
| *(inputs++) = input_va >> 32; |
| |
| u_foreach_bit (index, nontrivial_divisors) { |
| uint32_t div = vi_state->divisors[index]; |
| if (div == 0) { |
| *(inputs++) = 0; |
| *(inputs++) = 1; |
| } else if (util_is_power_of_two_or_zero(div)) { |
| *(inputs++) = util_logbase2(div) | (1 << 8); |
| *(inputs++) = 0xffffffffu; |
| } else { |
| struct util_fast_udiv_info info = util_compute_fast_udiv_info(div, 32, 32); |
| *(inputs++) = info.pre_shift | (info.increment << 8) | (info.post_shift << 16); |
| *(inputs++) = info.multiplier; |
| } |
| } |
| |
| input_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + inputs_offset; |
| } |
| |
| const uint32_t vs_prolog_inputs_offset = radv_get_user_sgpr_loc(vs_shader, AC_UD_VS_PROLOG_INPUTS); |
| radv_emit_shader_pointer(device, cmd_buffer->cs, vs_prolog_inputs_offset, input_va, true); |
| } |
| |
| static void |
| radv_emit_vertex_input(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(!cmd_buffer->state.mesh_shading); |
| |
| if (!vs_shader->info.vs.has_prolog) |
| return; |
| |
| uint32_t nontrivial_divisors; |
| struct radv_shader_part *prolog = lookup_vs_prolog(cmd_buffer, vs_shader, &nontrivial_divisors); |
| if (!prolog) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return; |
| } |
| emit_prolog_regs(cmd_buffer, vs_shader, prolog); |
| emit_prolog_inputs(cmd_buffer, vs_shader, nontrivial_divisors); |
| |
| cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, prolog->upload_seq); |
| |
| cmd_buffer->state.emitted_vs_prolog = prolog; |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_vs_prolog(cmd_buffer, prolog); |
| } |
| |
| static void |
| radv_emit_tess_domain_origin(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned type = 0, partitioning = 0; |
| unsigned topology; |
| |
| switch (tes->info.tes._primitive_mode) { |
| case TESS_PRIMITIVE_TRIANGLES: |
| type = V_028B6C_TESS_TRIANGLE; |
| break; |
| case TESS_PRIMITIVE_QUADS: |
| type = V_028B6C_TESS_QUAD; |
| break; |
| case TESS_PRIMITIVE_ISOLINES: |
| type = V_028B6C_TESS_ISOLINE; |
| break; |
| default: |
| unreachable("Invalid tess primitive type"); |
| } |
| |
| switch (tes->info.tes.spacing) { |
| case TESS_SPACING_EQUAL: |
| partitioning = V_028B6C_PART_INTEGER; |
| break; |
| case TESS_SPACING_FRACTIONAL_ODD: |
| partitioning = V_028B6C_PART_FRAC_ODD; |
| break; |
| case TESS_SPACING_FRACTIONAL_EVEN: |
| partitioning = V_028B6C_PART_FRAC_EVEN; |
| break; |
| default: |
| unreachable("Invalid tess spacing type"); |
| } |
| |
| if (tes->info.tes.point_mode) { |
| topology = V_028B6C_OUTPUT_POINT; |
| } else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) { |
| topology = V_028B6C_OUTPUT_LINE; |
| } else { |
| bool ccw = tes->info.tes.ccw; |
| |
| if (d->vk.ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) { |
| ccw = !ccw; |
| } |
| |
| topology = ccw ? V_028B6C_OUTPUT_TRIANGLE_CCW : V_028B6C_OUTPUT_TRIANGLE_CW; |
| } |
| |
| uint32_t vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | |
| S_028B6C_DISTRIBUTION_MODE(pdev->tess_distribution_mode); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028AA4_VGT_TF_PARAM, vgt_tf_param); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028B6C_VGT_TF_PARAM, vgt_tf_param); |
| } |
| } |
| |
| static void |
| radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned db_alpha_to_mask = 0; |
| |
| if (instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING) { |
| db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) | |
| S_028B70_OFFSET_ROUND(0); |
| } else { |
| db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) | |
| S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) | |
| S_028B70_OFFSET_ROUND(1); |
| } |
| |
| db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(d->vk.ms.alpha_to_coverage_enable); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_02807C_DB_ALPHA_TO_MASK, db_alpha_to_mask); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028B70_DB_ALPHA_TO_MASK, db_alpha_to_mask); |
| } |
| } |
| |
| static void |
| radv_emit_sample_mask(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2); |
| radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16)); |
| radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16)); |
| } |
| |
| static void |
| radv_emit_color_blend(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned cb_blend_control[MAX_RTS], sx_mrt_blend_opt[MAX_RTS]; |
| const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]); |
| |
| for (unsigned i = 0; i < MAX_RTS; i++) { |
| VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op; |
| VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor; |
| VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor; |
| VkBlendOp eqA = d->vk.cb.attachments[i].alpha_blend_op; |
| VkBlendFactor srcA = d->vk.cb.attachments[i].src_alpha_blend_factor; |
| VkBlendFactor dstA = d->vk.cb.attachments[i].dst_alpha_blend_factor; |
| unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; |
| unsigned blend_cntl = 0; |
| |
| cb_blend_control[i] = sx_mrt_blend_opt[i] = 0; |
| |
| /* Ignore other blend targets if dual-source blending is enabled to prevent wrong behaviour. |
| */ |
| if (i > 0 && mrt0_is_dual_src) |
| continue; |
| |
| if (!d->vk.cb.attachments[i].blend_enable) { |
| /* Disable logic op for float/srgb formats when blending isn't enabled. Otherwise it's |
| * implicitly disabled. |
| */ |
| if (vk_format_is_float(render->color_att[i].format) || vk_format_is_srgb(render->color_att[i].format)) |
| cb_blend_control[i] |= S_028780_DISABLE_ROP3(1); |
| |
| sx_mrt_blend_opt[i] |= S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | |
| S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| continue; |
| } |
| |
| radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB); |
| radv_normalize_blend_factor(eqA, &srcA, &dstA); |
| |
| /* Blending optimizations for RB+. |
| * These transformations don't change the behavior. |
| * |
| * First, get rid of DST in the blend factors: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| radv_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); |
| |
| radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); |
| |
| radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA); |
| |
| /* Look up the ideal settings from tables. */ |
| srcRGB_opt = radv_translate_blend_opt_factor(srcRGB, false); |
| dstRGB_opt = radv_translate_blend_opt_factor(dstRGB, false); |
| srcA_opt = radv_translate_blend_opt_factor(srcA, true); |
| dstA_opt = radv_translate_blend_opt_factor(dstA, true); |
| |
| /* Handle interdependencies. */ |
| if (radv_blend_factor_uses_dst(srcRGB)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| if (radv_blend_factor_uses_dst(srcA)) |
| dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && |
| (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| |
| /* Set the final value. */ |
| sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) | |
| S_028760_COLOR_COMB_FCN(radv_translate_blend_opt_function(eqRGB)) | |
| S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) | |
| S_028760_ALPHA_COMB_FCN(radv_translate_blend_opt_function(eqA)); |
| |
| blend_cntl |= S_028780_ENABLE(1); |
| blend_cntl |= S_028780_COLOR_COMB_FCN(radv_translate_blend_function(eqRGB)); |
| blend_cntl |= S_028780_COLOR_SRCBLEND(radv_translate_blend_factor(gfx_level, srcRGB)); |
| blend_cntl |= S_028780_COLOR_DESTBLEND(radv_translate_blend_factor(gfx_level, dstRGB)); |
| if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { |
| blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); |
| blend_cntl |= S_028780_ALPHA_COMB_FCN(radv_translate_blend_function(eqA)); |
| blend_cntl |= S_028780_ALPHA_SRCBLEND(radv_translate_blend_factor(gfx_level, srcA)); |
| blend_cntl |= S_028780_ALPHA_DESTBLEND(radv_translate_blend_factor(gfx_level, dstA)); |
| } |
| cb_blend_control[i] = blend_cntl; |
| } |
| |
| if (pdev->info.has_rbplus) { |
| /* Disable RB+ blend optimizations for dual source blending. */ |
| if (mrt0_is_dual_src) { |
| for (unsigned i = 0; i < MAX_RTS; i++) { |
| sx_mrt_blend_opt[i] = |
| S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); |
| } |
| } |
| |
| /* Disable RB+ blend optimizations on GFX11 when alpha-to-coverage is enabled. */ |
| if (gfx_level >= GFX11 && d->vk.ms.alpha_to_coverage_enable) { |
| sx_mrt_blend_opt[0] = |
| S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); |
| } |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028780_CB_BLEND0_CONTROL, MAX_RTS); |
| radeon_emit_array(cmd_buffer->cs, cb_blend_control, MAX_RTS); |
| |
| if (pdev->info.has_rbplus) { |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028760_SX_MRT0_BLEND_OPT, MAX_RTS); |
| radeon_emit_array(cmd_buffer->cs, sx_mrt_blend_opt, MAX_RTS); |
| } |
| } |
| |
| static struct radv_shader_part * |
| lookup_ps_epilog(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radv_ps_epilog_state state = {0}; |
| uint8_t color_remap[MAX_RTS]; |
| |
| memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap)); |
| |
| state.color_attachment_count = render->color_att_count; |
| for (unsigned i = 0; i < render->color_att_count; ++i) { |
| state.color_attachment_formats[i] = render->color_att[i].format; |
| } |
| |
| for (unsigned i = 0; i < MAX_RTS; i++) { |
| VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op; |
| VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor; |
| VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor; |
| |
| state.color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i); |
| state.color_blend_enable |= d->vk.cb.attachments[i].blend_enable << (4 * i); |
| |
| radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB); |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| state.need_src_alpha |= 1 << i; |
| |
| state.color_attachment_mappings[i] = d->vk.cal.color_map[i]; |
| if (state.color_attachment_mappings[i] != MESA_VK_ATTACHMENT_UNUSED) |
| color_remap[state.color_attachment_mappings[i]] = i; |
| } |
| |
| state.mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]); |
| |
| if (d->vk.ms.alpha_to_coverage_enable) { |
| /* Select a color export format with alpha when alpha to coverage is enabled. */ |
| state.need_src_alpha |= 0x1; |
| } |
| |
| state.alpha_to_one = d->vk.ms.alpha_to_one_enable; |
| |
| if (ps) { |
| state.colors_written = ps->info.ps.colors_written; |
| |
| if (ps->info.ps.exports_mrtz_via_epilog) { |
| const bool export_z_stencil_samplemask = |
| ps->info.ps.writes_z || ps->info.ps.writes_stencil || ps->info.ps.writes_sample_mask; |
| |
| state.export_depth = ps->info.ps.writes_z; |
| state.export_stencil = ps->info.ps.writes_stencil; |
| state.export_sample_mask = ps->info.ps.writes_sample_mask; |
| |
| if (d->vk.ms.alpha_to_coverage_enable) { |
| /* We need coverage-to-mask when alpha-to-one is also enabled. On GFX11, it's always |
| * enabled if there's a mrtz export. |
| */ |
| const bool coverage_to_mask = |
| d->vk.ms.alpha_to_one_enable || (pdev->info.gfx_level >= GFX11 && export_z_stencil_samplemask); |
| state.alpha_to_coverage_via_mrtz = coverage_to_mask; |
| } |
| } |
| } |
| |
| struct radv_ps_epilog_key key = radv_generate_ps_epilog_key(device, &state); |
| |
| /* Determine the actual colors written if outputs are remapped. */ |
| uint32_t colors_written = 0; |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (!((ps->info.ps.colors_written >> (i * 4)) & 0xf)) |
| continue; |
| |
| if (color_remap[i] == MESA_VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| colors_written |= 0xfu << (4 * color_remap[i]); |
| } |
| |
| /* Clear color attachments that aren't exported by the FS to match IO shader arguments. */ |
| key.spi_shader_col_format &= colors_written; |
| |
| return radv_shader_part_cache_get(device, &device->ps_epilogs, &cmd_buffer->ps_epilogs, &key); |
| } |
| |
| static void |
| radv_emit_msaa_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| unsigned log_samples = util_logbase2(rasterization_samples); |
| unsigned pa_sc_aa_config = 0; |
| unsigned max_sample_dist = 0; |
| unsigned db_eqaa; |
| |
| db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(pdev->info.gfx_level < GFX12) | |
| S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); |
| |
| if (pdev->info.gfx_level >= GFX9 && d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { |
| /* Adjust MSAA state if conservative rasterization is enabled. */ |
| db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(4); |
| pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1); |
| } |
| |
| if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) { |
| max_sample_dist = radv_get_default_max_sample_dist(log_samples); |
| } else { |
| uint32_t num_samples = (uint32_t)d->sample_location.per_pixel; |
| VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */ |
| |
| /* Convert the user sample locations to hardware sample locations. */ |
| radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]); |
| radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]); |
| radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]); |
| radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]); |
| |
| /* Compute the maximum sample distance from the specified locations. */ |
| for (unsigned i = 0; i < 4; ++i) { |
| for (uint32_t j = 0; j < num_samples; j++) { |
| VkOffset2D offset = sample_locs[i][j]; |
| max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y))); |
| } |
| } |
| } |
| |
| if (rasterization_samples > 1) { |
| unsigned z_samples = MAX2(render->ds_samples, rasterization_samples); |
| unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer); |
| unsigned log_z_samples = util_logbase2(z_samples); |
| unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples); |
| bool uses_underestimate = d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT; |
| |
| pa_sc_aa_config |= |
| S_028BE0_MSAA_NUM_SAMPLES(uses_underestimate ? 0 : log_samples) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| pa_sc_aa_config |= S_028BE0_PS_ITER_SAMPLES(log_ps_iter_samples); |
| |
| db_eqaa |= S_028078_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028078_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); |
| } else { |
| pa_sc_aa_config |= S_028BE0_MAX_SAMPLE_DIST(max_sample_dist) | |
| S_028BE0_COVERED_CENTROID_IS_CENTER(pdev->info.gfx_level >= GFX10_3); |
| |
| db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | |
| S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); |
| } |
| |
| if (radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH) |
| db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(log_samples); |
| } |
| |
| /* GFX12 programs it in SPI_PS_INPUT_ENA.COVERAGE_TO_SHADER_SELECT */ |
| pa_sc_aa_config |= |
| S_028BE0_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level < GFX12 && ps && ps->info.ps.reads_fully_covered); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028C5C_PA_SC_SAMPLE_PROPERTIES, |
| S_028C5C_MAX_SAMPLE_DIST(max_sample_dist)); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028078_DB_EQAA, db_eqaa); |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028804_DB_EQAA, db_eqaa); |
| } |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_028BE0_PA_SC_AA_CONFIG, pa_sc_aa_config); |
| radeon_set_context_reg( |
| cmd_buffer->cs, R_028A48_PA_SC_MODE_CNTL_0, |
| S_028A48_ALTERNATE_RBS_PER_TILE(pdev->info.gfx_level >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1) | |
| S_028A48_LINE_STIPPLE_ENABLE(d->vk.rs.line.stipple.enable) | S_028A48_MSAA_ENABLE(rasterization_samples > 1)); |
| } |
| |
| static void |
| radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const uint64_t states) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (states & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_DEPTH_CLIP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE | |
| RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLAMP_RANGE)) |
| radv_emit_viewport(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_SCISSOR | RADV_DYNAMIC_VIEWPORT) && !pdev->info.has_gfx9_scissor_bug) |
| radv_emit_scissor(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_BLEND_CONSTANTS) |
| radv_emit_blend_constants(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS) |
| radv_emit_depth_bias(cmd_buffer); |
| |
| if (states & |
| (RADV_DYNAMIC_DISCARD_RECTANGLE | RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE | RADV_DYNAMIC_DISCARD_RECTANGLE_MODE)) |
| radv_emit_discard_rectangle(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) |
| radv_emit_conservative_rast_mode(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_SAMPLE_LOCATIONS | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE)) |
| radv_emit_sample_locations(cmd_buffer); |
| |
| if ((states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) || |
| (pdev->info.gfx_level >= GFX12 && states & RADV_DYNAMIC_PATCH_CONTROL_POINTS)) |
| radv_emit_primitive_topology(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) |
| radv_emit_fragment_shading_rate(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) |
| radv_emit_primitive_restart_enable(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK | |
| RADV_DYNAMIC_COLOR_BLEND_EQUATION)) |
| radv_emit_logic_op(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_COLOR_WRITE_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK)) |
| radv_emit_color_write(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_VERTEX_INPUT) |
| radv_emit_vertex_input(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) |
| radv_emit_patch_control_points(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) |
| radv_emit_tess_domain_origin(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) |
| radv_emit_alpha_to_coverage_enable(cmd_buffer); |
| |
| if (states & RADV_DYNAMIC_SAMPLE_MASK) |
| radv_emit_sample_mask(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE)) |
| radv_emit_depth_clamp_enable(cmd_buffer); |
| |
| if (states & |
| (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE)) |
| radv_emit_color_blend(cmd_buffer); |
| |
| if (states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE | |
| RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE)) |
| radv_emit_rasterization_samples(cmd_buffer); |
| |
| if (states & |
| (RADV_DYNAMIC_LINE_STIPPLE_ENABLE | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS | |
| RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES | |
| RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE)) |
| radv_emit_msaa_state(cmd_buffer); |
| |
| /* RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE is handled by radv_emit_db_shader_control. */ |
| |
| cmd_buffer->state.dirty_dynamic &= ~states; |
| } |
| |
| static void |
| radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_state *descriptors_state) |
| { |
| struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set; |
| unsigned bo_offset; |
| |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr, &bo_offset)) |
| return; |
| |
| set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| set->header.va += bo_offset; |
| } |
| |
| void |
| radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer, |
| struct radv_descriptor_state *descriptors_state) |
| { |
| uint32_t size = MAX_SETS * 4; |
| uint32_t offset; |
| void *ptr; |
| |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr)) |
| return; |
| |
| descriptors_state->indirect_descriptor_sets_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset; |
| |
| for (unsigned i = 0; i < MAX_SETS; i++) { |
| uint32_t *uptr = ((uint32_t *)ptr) + i; |
| uint64_t set_va = 0; |
| if (descriptors_state->valid & (1u << i)) |
| set_va = radv_descriptor_get_va(descriptors_state, i); |
| |
| uptr[0] = set_va & 0xffffffff; |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| bool flush_indirect_descriptors; |
| |
| if (!descriptors_state->dirty) |
| return; |
| |
| flush_indirect_descriptors = descriptors_state->need_indirect_descriptor_sets; |
| |
| if (flush_indirect_descriptors) |
| radv_upload_indirect_descriptor_sets(cmd_buffer, descriptors_state); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, MAX_SETS * MESA_VULKAN_SHADER_STAGES * 4); |
| |
| if (stages & VK_SHADER_STAGE_COMPUTE_BIT) { |
| struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE |
| ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE] |
| : cmd_buffer->state.rt_prolog; |
| |
| radv_emit_descriptors_per_stage(device, cs, compute_shader, descriptors_state); |
| } else { |
| radv_foreach_stage(stage, stages & ~VK_SHADER_STAGE_TASK_BIT_EXT) |
| { |
| if (!cmd_buffer->state.shaders[stage]) |
| continue; |
| |
| radv_emit_descriptors_per_stage(device, cs, cmd_buffer->state.shaders[stage], descriptors_state); |
| } |
| |
| if (stages & VK_SHADER_STAGE_TASK_BIT_EXT) { |
| radv_emit_descriptors_per_stage(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK], |
| descriptors_state); |
| } |
| } |
| |
| descriptors_state->dirty = 0; |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_descriptors(cmd_buffer, bind_point); |
| } |
| |
| static void |
| radv_emit_all_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs, |
| const struct radv_shader *shader, const uint32_t *values, bool *need_push_constants) |
| { |
| if (radv_get_user_sgpr_info(shader, AC_UD_PUSH_CONSTANTS)->sgpr_idx != -1) |
| *need_push_constants |= true; |
| |
| const uint64_t mask = shader->info.inline_push_constant_mask; |
| if (!mask) |
| return; |
| |
| const uint8_t base = ffs(mask) - 1; |
| if (mask == u_bit_consecutive64(base, util_last_bit64(mask) - base)) { |
| /* consecutive inline push constants */ |
| radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, values + base); |
| } else { |
| /* sparse inline push constants */ |
| uint32_t consts[AC_MAX_INLINE_PUSH_CONSTS]; |
| unsigned num_consts = 0; |
| u_foreach_bit64 (idx, mask) |
| consts[num_consts++] = values[idx]; |
| radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, consts); |
| } |
| } |
| |
| ALWAYS_INLINE static VkShaderStageFlags |
| radv_must_flush_constants(const struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, |
| VkPipelineBindPoint bind_point) |
| { |
| const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point); |
| |
| if (push_constants->size || push_constants->dynamic_offset_count) |
| return stages & cmd_buffer->push_constant_stages; |
| |
| return 0; |
| } |
| |
| static void |
| radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point); |
| struct radv_shader *shader, *prev_shader; |
| bool need_push_constants = false; |
| unsigned offset; |
| void *ptr; |
| uint64_t va; |
| uint32_t internal_stages = stages; |
| uint32_t dirty_stages = 0; |
| |
| switch (bind_point) { |
| case VK_PIPELINE_BIND_POINT_GRAPHICS: |
| break; |
| case VK_PIPELINE_BIND_POINT_COMPUTE: |
| dirty_stages = RADV_RT_STAGE_BITS; |
| break; |
| case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: |
| internal_stages = VK_SHADER_STAGE_COMPUTE_BIT; |
| dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT; |
| break; |
| default: |
| unreachable("Unhandled bind point"); |
| } |
| |
| if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) { |
| struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE |
| ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE] |
| : cmd_buffer->state.rt_prolog; |
| |
| radv_emit_all_inline_push_consts(device, cs, compute_shader, (uint32_t *)cmd_buffer->push_constants, |
| &need_push_constants); |
| } else { |
| radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT) |
| { |
| shader = radv_get_shader(cmd_buffer->state.shaders, stage); |
| |
| if (!shader) |
| continue; |
| |
| radv_emit_all_inline_push_consts(device, cs, shader, (uint32_t *)cmd_buffer->push_constants, |
| &need_push_constants); |
| } |
| |
| if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) { |
| radv_emit_all_inline_push_consts(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK], |
| (uint32_t *)cmd_buffer->push_constants, &need_push_constants); |
| } |
| } |
| |
| if (need_push_constants) { |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_constants->size + 16 * push_constants->dynamic_offset_count, |
| &offset, &ptr)) |
| return; |
| |
| memcpy(ptr, cmd_buffer->push_constants, push_constants->size); |
| memcpy((char *)ptr + push_constants->size, descriptors_state->dynamic_buffers, |
| 16 * push_constants->dynamic_offset_count); |
| |
| va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| va += offset; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MESA_VULKAN_SHADER_STAGES * 4); |
| |
| if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) { |
| struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE |
| ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE] |
| : cmd_buffer->state.rt_prolog; |
| |
| radv_emit_userdata_address(device, cs, compute_shader, AC_UD_PUSH_CONSTANTS, va); |
| } else { |
| prev_shader = NULL; |
| radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT) |
| { |
| shader = radv_get_shader(cmd_buffer->state.shaders, stage); |
| |
| /* Avoid redundantly emitting the address for merged stages. */ |
| if (shader && shader != prev_shader) { |
| radv_emit_userdata_address(device, cs, shader, AC_UD_PUSH_CONSTANTS, va); |
| |
| prev_shader = shader; |
| } |
| } |
| |
| if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) { |
| radv_emit_userdata_address(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK], |
| AC_UD_PUSH_CONSTANTS, va); |
| } |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| cmd_buffer->push_constant_stages &= ~stages; |
| cmd_buffer->push_constant_stages |= dirty_stages; |
| } |
| |
| void |
| radv_get_vbo_info(const struct radv_cmd_buffer *cmd_buffer, uint32_t idx, struct radv_vbo_info *vbo_info) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input; |
| const uint32_t binding = vi_state->bindings[idx]; |
| |
| memset(vbo_info, 0, sizeof(*vbo_info)); |
| |
| vbo_info->binding = binding; |
| vbo_info->stride = cmd_buffer->vertex_bindings[binding].stride; |
| |
| vbo_info->attrib_offset = vi_state->offsets[idx]; |
| vbo_info->attrib_index_offset = vi_state->attrib_index_offset[idx]; |
| vbo_info->attrib_format_size = vi_state->format_sizes[idx]; |
| |
| if (!(vi_state->nontrivial_formats & BITFIELD_BIT(idx))) { |
| const struct ac_vtx_format_info *vtx_info_table = |
| ac_get_vtx_format_info_table(pdev->info.gfx_level, pdev->info.family); |
| const struct ac_vtx_format_info *vtx_info = &vtx_info_table[vi_state->formats[idx]]; |
| const uint32_t hw_format = vtx_info->hw_format[vtx_info->num_channels - 1]; |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| vbo_info->non_trivial_format |= vtx_info->dst_sel | S_008F0C_FORMAT_GFX10(hw_format); |
| } else { |
| vbo_info->non_trivial_format |= |
| vtx_info->dst_sel | S_008F0C_NUM_FORMAT((hw_format >> 4) & 0x7) | S_008F0C_DATA_FORMAT(hw_format & 0xf); |
| } |
| } |
| |
| const struct radv_buffer *buffer = cmd_buffer->vertex_binding_buffers[binding]; |
| |
| if (!buffer) |
| return; |
| |
| const uint32_t offset = cmd_buffer->vertex_bindings[binding].offset; |
| |
| vbo_info->va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset; |
| |
| if (cmd_buffer->vertex_bindings[binding].size) { |
| vbo_info->size = cmd_buffer->vertex_bindings[binding].size; |
| } else { |
| vbo_info->size = vk_buffer_range(&buffer->vk, offset, VK_WHOLE_SIZE); |
| } |
| } |
| |
| static void |
| radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs, void *vb_ptr) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| enum amd_gfx_level chip = pdev->info.gfx_level; |
| unsigned desc_index = 0; |
| uint32_t mask = vs->info.vs.vb_desc_usage_mask; |
| const bool uses_dynamic_inputs = vs->info.vs.dynamic_inputs; |
| const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input; |
| |
| while (mask) { |
| unsigned i = u_bit_scan(&mask); |
| uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4]; |
| |
| if (uses_dynamic_inputs && !(vi_state->attribute_mask & BITFIELD_BIT(i))) { |
| /* No vertex attribute description given: assume that the shader doesn't use this |
| * location (vb_desc_usage_mask can be larger than attribute usage) and use a null |
| * descriptor to avoid hangs (prologs load all attributes, even if there are holes). |
| */ |
| memset(desc, 0, 4 * 4); |
| continue; |
| } |
| |
| struct radv_vbo_info vbo_info; |
| radv_get_vbo_info(cmd_buffer, i, &vbo_info); |
| |
| uint32_t rsrc_word3; |
| |
| if (uses_dynamic_inputs && vbo_info.non_trivial_format) { |
| rsrc_word3 = vbo_info.non_trivial_format; |
| } else { |
| rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | |
| S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); |
| |
| if (pdev->info.gfx_level >= GFX10) { |
| rsrc_word3 |= S_008F0C_FORMAT_GFX10(V_008F0C_GFX10_FORMAT_32_UINT); |
| } else { |
| rsrc_word3 |= |
| S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); |
| } |
| } |
| |
| if (!vbo_info.va) { |
| if (uses_dynamic_inputs) { |
| /* Stride needs to be non-zero on GFX9, or else bounds checking is disabled. We need |
| * to include the format/word3 so that the alpha channel is 1 for formats without an |
| * alpha channel. |
| */ |
| desc[0] = 0; |
| desc[1] = S_008F04_STRIDE(16); |
| desc[2] = 0; |
| desc[3] = rsrc_word3; |
| } else { |
| memset(desc, 0, 4 * 4); |
| } |
| |
| continue; |
| } |
| |
| const unsigned stride = vbo_info.stride; |
| uint32_t num_records = vbo_info.size; |
| |
| if (vs->info.vs.use_per_attribute_vb_descs) { |
| const uint32_t attrib_end = vbo_info.attrib_offset + vbo_info.attrib_format_size; |
| |
| if (num_records < attrib_end) { |
| num_records = 0; /* not enough space for one vertex */ |
| } else if (stride == 0) { |
| num_records = 1; /* only one vertex */ |
| } else { |
| num_records = (num_records - attrib_end) / stride + 1; |
| /* If attrib_offset>stride, then the compiler will increase the vertex index by |
| * attrib_offset/stride and decrease the offset by attrib_offset%stride. This is |
| * only allowed with static strides. |
| */ |
| num_records += vbo_info.attrib_index_offset; |
| } |
| |
| /* GFX10 uses OOB_SELECT_RAW if stride==0, so convert num_records from elements into |
| * into bytes in that case. GFX8 always uses bytes. |
| */ |
| if (num_records && (chip == GFX8 || (chip != GFX9 && !stride))) { |
| num_records = (num_records - 1) * stride + attrib_end; |
| } else if (!num_records) { |
| /* On GFX9, it seems bounds checking is disabled if both |
| * num_records and stride are zero. This doesn't seem necessary on GFX8, GFX10 and |
| * GFX10.3 but it doesn't hurt. |
| */ |
| if (uses_dynamic_inputs) { |
| desc[0] = 0; |
| desc[1] = S_008F04_STRIDE(16); |
| desc[2] = 0; |
| desc[3] = rsrc_word3; |
| } else { |
| memset(desc, 0, 16); |
| } |
| |
| continue; |
| } |
| } else { |
| if (chip != GFX8 && stride) |
| num_records = DIV_ROUND_UP(num_records, stride); |
| } |
| |
| if (chip >= GFX10) { |
| /* OOB_SELECT chooses the out-of-bounds check: |
| * - 1: index >= NUM_RECORDS (Structured) |
| * - 3: offset >= NUM_RECORDS (Raw) |
| */ |
| int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW; |
| rsrc_word3 |= S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(chip < GFX11); |
| } |
| |
| uint64_t va = vbo_info.va; |
| if (uses_dynamic_inputs) |
| va += vbo_info.attrib_offset; |
| |
| desc[0] = va; |
| desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride); |
| desc[2] = num_records; |
| desc[3] = rsrc_word3; |
| } |
| } |
| |
| static void |
| radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!vs->info.vs.vb_desc_usage_mask) |
| return; |
| |
| /* Mesh shaders don't have vertex descriptors. */ |
| assert(!cmd_buffer->state.mesh_shading); |
| |
| unsigned vb_desc_alloc_size = util_bitcount(vs->info.vs.vb_desc_usage_mask) * 16; |
| unsigned vb_offset; |
| void *vb_ptr; |
| uint64_t va; |
| |
| /* allocate some descriptor state for vertex buffers */ |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, vb_desc_alloc_size, &vb_offset, &vb_ptr)) |
| return; |
| |
| radv_write_vertex_descriptors(cmd_buffer, vs, vb_ptr); |
| |
| va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| va += vb_offset; |
| |
| radv_emit_userdata_address(device, cmd_buffer->cs, vs, AC_UD_VS_VERTEX_BUFFERS, va); |
| |
| cmd_buffer->state.vb_va = va; |
| cmd_buffer->state.vb_size = vb_desc_alloc_size; |
| cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS; |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER; |
| } |
| |
| static void |
| radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| uint32_t streamout_buffers_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_BUFFERS); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!streamout_buffers_offset) |
| return; |
| |
| radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false); |
| |
| if (cmd_buffer->state.gs_copy_shader) { |
| streamout_buffers_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_STREAMOUT_BUFFERS); |
| if (streamout_buffers_offset) |
| radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false); |
| } |
| } |
| |
| static void |
| radv_emit_streamout_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const uint32_t streamout_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_STATE); |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!streamout_state_offset) |
| return; |
| |
| radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_state_offset, va, false); |
| } |
| |
| static void |
| radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) { |
| struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings; |
| struct radv_streamout_state *so = &cmd_buffer->state.streamout; |
| unsigned so_offset; |
| uint64_t desc_va; |
| void *so_ptr; |
| |
| /* Allocate some descriptor state for streamout buffers. */ |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr)) |
| return; |
| |
| for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) { |
| struct radv_buffer *buffer = sb[i].buffer; |
| uint32_t *desc = &((uint32_t *)so_ptr)[i * 4]; |
| uint32_t size = 0; |
| uint64_t va = 0; |
| |
| if (so->enabled_mask & (1 << i)) { |
| va = radv_buffer_get_va(buffer->bo) + buffer->offset; |
| |
| va += sb[i].offset; |
| |
| /* Set the descriptor. |
| * |
| * On GFX8, the format must be non-INVALID, otherwise |
| * the buffer will be considered not bound and store |
| * instructions will be no-ops. |
| */ |
| size = 0xffffffff; |
| |
| if (pdev->use_ngg_streamout) { |
| /* With NGG streamout, the buffer size is used to determine the max emit per buffer |
| * and also acts as a disable bit when it's 0. |
| */ |
| size = radv_is_streamout_enabled(cmd_buffer) ? sb[i].size : 0; |
| } |
| } |
| |
| ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, desc); |
| } |
| |
| desc_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| desc_va += so_offset; |
| |
| radv_emit_streamout_buffers(cmd_buffer, desc_va); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| const uint8_t first_target = ffs(so->enabled_mask) - 1; |
| unsigned state_offset; |
| uint64_t state_va; |
| void *state_ptr; |
| |
| /* The layout is: |
| * struct { |
| * struct { |
| * uint32_t ordered_id; // equal for all buffers |
| * uint32_t dwords_written; |
| * } buffer[4]; |
| * }; |
| * |
| * The buffer must be initialized to 0 and the address must be aligned to 64 |
| * because it's faster when the atomic doesn't straddle a 64B block boundary. |
| */ |
| if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, MAX_SO_BUFFERS * 8, 64, &state_offset, &state_ptr)) |
| return; |
| |
| memset(state_ptr, 0, MAX_SO_BUFFERS * 8); |
| |
| state_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| state_va += state_offset; |
| |
| /* The first enabled streamout target will contain the ordered ID/offset buffer for all |
| * targets. |
| */ |
| state_va += first_target * 8; |
| |
| radv_emit_streamout_state(cmd_buffer, state_va); |
| } |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER; |
| } |
| |
| static void |
| radv_flush_force_vrs_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| uint32_t force_vrs_rates_offset; |
| |
| if (!last_vgt_shader->info.force_vrs_per_vertex) { |
| /* Un-set the SGPR index so we know to re-emit it later. */ |
| cmd_buffer->state.last_force_vrs_rates_offset = -1; |
| return; |
| } |
| |
| if (cmd_buffer->state.gs_copy_shader) { |
| force_vrs_rates_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_FORCE_VRS_RATES); |
| } else { |
| force_vrs_rates_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_FORCE_VRS_RATES); |
| } |
| |
| enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| uint32_t vrs_rates = 0; |
| |
| switch (device->force_vrs) { |
| case RADV_FORCE_VRS_2x2: |
| vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X2 : (1u << 2) | (1u << 4); |
| break; |
| case RADV_FORCE_VRS_2x1: |
| vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X1 : (1u << 2) | (0u << 4); |
| break; |
| case RADV_FORCE_VRS_1x2: |
| vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_1X2 : (0u << 2) | (1u << 4); |
| break; |
| default: |
| break; |
| } |
| |
| if (cmd_buffer->state.last_vrs_rates != vrs_rates || |
| cmd_buffer->state.last_force_vrs_rates_offset != force_vrs_rates_offset) { |
| radeon_set_sh_reg(cmd_buffer->cs, force_vrs_rates_offset, vrs_rates); |
| } |
| |
| cmd_buffer->state.last_vrs_rates = vrs_rates; |
| cmd_buffer->state.last_force_vrs_rates_offset = force_vrs_rates_offset; |
| } |
| |
| static void |
| radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER) |
| radv_flush_vertex_descriptors(cmd_buffer); |
| |
| radv_flush_streamout_descriptors(cmd_buffer); |
| |
| VkShaderStageFlags stages = VK_SHADER_STAGE_ALL_GRAPHICS; |
| radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| if (pc_stages) |
| radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| radv_flush_force_vrs_state(cmd_buffer); |
| } |
| |
| struct radv_draw_info { |
| /** |
| * Number of vertices. |
| */ |
| uint32_t count; |
| |
| /** |
| * First instance id. |
| */ |
| uint32_t first_instance; |
| |
| /** |
| * Number of instances. |
| */ |
| uint32_t instance_count; |
| |
| /** |
| * Whether it's an indexed draw. |
| */ |
| bool indexed; |
| |
| /** |
| * Indirect draw parameters resource. |
| */ |
| struct radv_buffer *indirect; |
| uint64_t indirect_offset; |
| uint32_t stride; |
| |
| /** |
| * Draw count parameters resource. |
| */ |
| struct radv_buffer *count_buffer; |
| uint64_t count_buffer_offset; |
| |
| /** |
| * Stream output parameters resource. |
| */ |
| struct radv_buffer *strmout_buffer; |
| uint64_t strmout_buffer_offset; |
| }; |
| |
| struct radv_prim_vertex_count { |
| uint8_t min; |
| uint8_t incr; |
| }; |
| |
| static inline unsigned |
| radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num) |
| { |
| if (num == 0) |
| return 0; |
| |
| if (info->incr == 0) |
| return 0; |
| |
| if (num < info->min) |
| return 0; |
| |
| return 1 + ((num - info->min) / info->incr); |
| } |
| |
| static const struct radv_prim_vertex_count prim_size_table[] = { |
| [V_008958_DI_PT_NONE] = {0, 0}, [V_008958_DI_PT_POINTLIST] = {1, 1}, |
| [V_008958_DI_PT_LINELIST] = {2, 2}, [V_008958_DI_PT_LINESTRIP] = {2, 1}, |
| [V_008958_DI_PT_TRILIST] = {3, 3}, [V_008958_DI_PT_TRIFAN] = {3, 1}, |
| [V_008958_DI_PT_TRISTRIP] = {3, 1}, [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, |
| [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, |
| [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, [V_008958_DI_PT_RECTLIST] = {3, 3}, |
| [V_008958_DI_PT_LINELOOP] = {2, 1}, [V_008958_DI_PT_POLYGON] = {3, 1}, |
| [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, |
| }; |
| |
| static uint32_t |
| radv_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw, |
| bool count_from_stream_output, uint32_t draw_vertex_count, unsigned topology, |
| bool prim_restart_enable, unsigned patch_control_points, unsigned num_tess_patches) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| const unsigned max_primgroup_in_wave = 2; |
| /* SWITCH_ON_EOP(0) is always preferable. */ |
| bool wd_switch_on_eop = false; |
| bool ia_switch_on_eop = false; |
| bool ia_switch_on_eoi = false; |
| bool partial_vs_wave = false; |
| bool partial_es_wave = cmd_buffer->state.ia_multi_vgt_param.partial_es_wave; |
| bool multi_instances_smaller_than_primgroup; |
| struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology]; |
| unsigned primgroup_size; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) { |
| primgroup_size = num_tess_patches; |
| } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) { |
| primgroup_size = 64; |
| } else { |
| primgroup_size = 128; /* recommended without a GS */ |
| } |
| |
| /* GS requirement. */ |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) && gpu_info->gfx_level <= GFX8) { |
| unsigned gs_table_depth = pdev->gs_table_depth; |
| if (SI_GS_PER_ES / primgroup_size >= gs_table_depth - 3) |
| partial_es_wave = true; |
| } |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) { |
| if (topology == V_008958_DI_PT_PATCH) { |
| prim_vertex_count.min = patch_control_points; |
| prim_vertex_count.incr = 1; |
| } |
| } |
| |
| multi_instances_smaller_than_primgroup = indirect_draw; |
| if (!multi_instances_smaller_than_primgroup && instanced_draw) { |
| uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count); |
| if (num_prims < primgroup_size) |
| multi_instances_smaller_than_primgroup = true; |
| } |
| |
| ia_switch_on_eoi = cmd_buffer->state.ia_multi_vgt_param.ia_switch_on_eoi; |
| partial_vs_wave = cmd_buffer->state.ia_multi_vgt_param.partial_vs_wave; |
| |
| if (gpu_info->gfx_level >= GFX7) { |
| /* WD_SWITCH_ON_EOP has no effect on GPUs with less than |
| * 4 shader engines. Set 1 to pass the assertion below. |
| * The other cases are hardware requirements. */ |
| if (gpu_info->max_se < 4 || topology == V_008958_DI_PT_POLYGON || topology == V_008958_DI_PT_LINELOOP || |
| topology == V_008958_DI_PT_TRIFAN || topology == V_008958_DI_PT_TRISTRIP_ADJ || |
| (prim_restart_enable && (gpu_info->family < CHIP_POLARIS10 || |
| (topology != V_008958_DI_PT_POINTLIST && topology != V_008958_DI_PT_LINESTRIP)))) |
| wd_switch_on_eop = true; |
| |
| /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0. |
| * We don't know that for indirect drawing, so treat it as |
| * always problematic. */ |
| if (gpu_info->family == CHIP_HAWAII && (instanced_draw || indirect_draw)) |
| wd_switch_on_eop = true; |
| |
| /* Performance recommendation for 4 SE Gfx7-8 parts if |
| * instances are smaller than a primgroup. |
| * Assume indirect draws always use small instances. |
| * This is needed for good VS wave utilization. |
| */ |
| if (gpu_info->gfx_level <= GFX8 && gpu_info->max_se == 4 && multi_instances_smaller_than_primgroup) |
| wd_switch_on_eop = true; |
| |
| /* Hardware requirement when drawing primitives from a stream |
| * output buffer. |
| */ |
| if (count_from_stream_output) |
| wd_switch_on_eop = true; |
| |
| /* Required on GFX7 and later. */ |
| if (gpu_info->max_se > 2 && !wd_switch_on_eop) |
| ia_switch_on_eoi = true; |
| |
| /* Required by Hawaii and, for some special cases, by GFX8. */ |
| if (ia_switch_on_eoi && |
| (gpu_info->family == CHIP_HAWAII || |
| (gpu_info->gfx_level == GFX8 && |
| /* max primgroup in wave is always 2 - leave this for documentation */ |
| (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) || max_primgroup_in_wave != 2)))) |
| partial_vs_wave = true; |
| |
| /* Instancing bug on Bonaire. */ |
| if (gpu_info->family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw)) |
| partial_vs_wave = true; |
| |
| /* If the WD switch is false, the IA switch must be false too. */ |
| assert(wd_switch_on_eop || !ia_switch_on_eop); |
| } |
| /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */ |
| if (gpu_info->gfx_level <= GFX8 && ia_switch_on_eoi) |
| partial_es_wave = true; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) { |
| /* GS hw bug with single-primitive instances and SWITCH_ON_EOI. |
| * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan |
| * only applies it to Hawaii. Do what amdgpu-pro Vulkan does. |
| */ |
| if (gpu_info->family == CHIP_HAWAII && ia_switch_on_eoi) { |
| bool set_vgt_flush = indirect_draw; |
| if (!set_vgt_flush && instanced_draw) { |
| uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count); |
| if (num_prims <= 1) |
| set_vgt_flush = true; |
| } |
| if (set_vgt_flush) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH; |
| } |
| } |
| |
| /* Workaround for a VGT hang when strip primitive types are used with |
| * primitive restart. |
| */ |
| if (prim_restart_enable && (topology == V_008958_DI_PT_LINESTRIP || topology == V_008958_DI_PT_TRISTRIP || |
| topology == V_008958_DI_PT_LINESTRIP_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) { |
| partial_vs_wave = true; |
| } |
| |
| return cmd_buffer->state.ia_multi_vgt_param.base | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) | |
| S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) | |
| S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) | |
| S_028AA8_WD_SWITCH_ON_EOP(gpu_info->gfx_level >= GFX7 ? wd_switch_on_eop : 0); |
| } |
| |
| static void |
| radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw, |
| bool count_from_stream_output, uint32_t draw_vertex_count) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| const unsigned patch_control_points = state->dynamic.vk.ts.patch_control_points; |
| const unsigned topology = state->dynamic.vk.ia.primitive_topology; |
| const bool prim_restart_enable = state->dynamic.vk.ia.primitive_restart_enable; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| unsigned ia_multi_vgt_param; |
| |
| ia_multi_vgt_param = radv_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output, |
| draw_vertex_count, topology, prim_restart_enable, |
| patch_control_points, state->tess_num_patches); |
| |
| if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) { |
| if (gpu_info->gfx_level == GFX9) { |
| radeon_set_uconfig_reg_idx(&pdev->info, cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param); |
| } else if (gpu_info->gfx_level >= GFX7) { |
| radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param); |
| } else { |
| radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param); |
| } |
| state->last_ia_multi_vgt_param = ia_multi_vgt_param; |
| } |
| } |
| |
| static void |
| gfx10_emit_ge_cntl(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| bool break_wave_at_eoi = false; |
| unsigned primgroup_size; |
| unsigned ge_cntl; |
| |
| if (last_vgt_shader->info.is_ngg) |
| return; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) { |
| const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL); |
| |
| primgroup_size = state->tess_num_patches; |
| |
| if (cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id || |
| (tes->info.merged_shader_compiled_separately && |
| cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)) { |
| break_wave_at_eoi = true; |
| } |
| } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) { |
| const struct radv_legacy_gs_info *gs_state = &cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info; |
| primgroup_size = gs_state->gs_prims_per_subgroup; |
| } else { |
| primgroup_size = 128; /* recommended without a GS and tess */ |
| } |
| |
| ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) | S_03096C_VERT_GRP_SIZE(256) | /* disable vertex grouping */ |
| S_03096C_PACKET_TO_ONE_PA(0) /* this should only be set if LINE_STIPPLE_TEX_ENA == 1 */ | |
| S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); |
| |
| if (state->last_ge_cntl != ge_cntl) { |
| radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl); |
| state->last_ge_cntl = ge_cntl; |
| } |
| } |
| |
| static void |
| radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint32_t topology = state->dynamic.vk.ia.primitive_topology; |
| bool disable_instance_packing = false; |
| |
| /* Draw state. */ |
| if (gpu_info->gfx_level >= GFX10) { |
| gfx10_emit_ge_cntl(cmd_buffer); |
| } else { |
| radv_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect, |
| !!draw_info->strmout_buffer, draw_info->indirect ? 0 : draw_info->count); |
| } |
| |
| /* RDNA2 is affected by a hardware bug when instance packing is enabled for adjacent primitive |
| * topologies and instance_count > 1, pipeline stats generated by GE are incorrect. It needs to |
| * be applied for indexed and non-indexed draws. |
| */ |
| if (gpu_info->gfx_level == GFX10_3 && state->active_pipeline_queries > 0 && |
| (draw_info->instance_count > 1 || draw_info->indirect) && |
| (topology == V_008958_DI_PT_LINELIST_ADJ || topology == V_008958_DI_PT_LINESTRIP_ADJ || |
| topology == V_008958_DI_PT_TRILIST_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) { |
| disable_instance_packing = true; |
| } |
| |
| if ((draw_info->indexed && state->index_type != state->last_index_type) || |
| (gpu_info->gfx_level == GFX10_3 && |
| (state->last_index_type == -1 || |
| disable_instance_packing != G_028A7C_DISABLE_INSTANCE_PACKING(state->last_index_type)))) { |
| uint32_t index_type = state->index_type | S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing); |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| radeon_set_uconfig_reg_idx(&pdev->info, cs, R_03090C_VGT_INDEX_TYPE, 2, index_type); |
| } else { |
| radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0)); |
| radeon_emit(cs, index_type); |
| } |
| |
| state->last_index_type = index_type; |
| } |
| } |
| |
| static void |
| radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask) |
| { |
| /* For simplicity, if the barrier wants to wait for the task shader, |
| * just make it wait for the mesh shader too. |
| */ |
| if (src_stage_mask & VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT) |
| src_stage_mask |= VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT; |
| |
| if (src_stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT | |
| VK_PIPELINE_STAGE_2_CLEAR_BIT)) { |
| /* Be conservative for now. */ |
| src_stage_mask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT; |
| } |
| |
| if (src_stage_mask & |
| (VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | |
| VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR | |
| VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR | VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR | |
| VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | |
| VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| } |
| |
| if (src_stage_mask & (VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT | |
| VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | |
| VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH; |
| } else if (src_stage_mask & |
| (VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT | |
| VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT | VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | |
| VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH; |
| } |
| } |
| |
| static bool |
| can_skip_buffer_l2_flushes(struct radv_device *device) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| return pdev->info.gfx_level == GFX9 || (pdev->info.gfx_level >= GFX10 && !pdev->info.tcc_rb_non_coherent); |
| } |
| |
| /* |
| * In vulkan barriers have two kinds of operations: |
| * |
| * - visibility (implemented with radv_src_access_flush) |
| * - availability (implemented with radv_dst_access_flush) |
| * |
| * for a memory operation to observe the result of a previous memory operation |
| * one needs to do a visibility operation from the source memory and then an |
| * availability operation to the target memory. |
| * |
| * The complication is the availability and visibility operations do not need to |
| * be in the same barrier. |
| * |
| * The cleanest way to implement this is to define the visibility operation to |
| * bring the caches to a "state of rest", which none of the caches below that |
| * level dirty. |
| * |
| * For GFX8 and earlier this would be VRAM/GTT with none of the caches dirty. |
| * |
| * For GFX9+ we can define the state at rest to be L2 instead of VRAM for all |
| * buffers and for images marked as coherent, and VRAM/GTT for non-coherent |
| * images. However, given the existence of memory barriers which do not specify |
| * the image/buffer it often devolves to just VRAM/GTT anyway. |
| * |
| * To help reducing the invalidations for GPUs that have L2 coherency between the |
| * RB and the shader caches, we always invalidate L2 on the src side, as we can |
| * use our knowledge of past usage to optimize flushes away. |
| */ |
| |
| enum radv_cmd_flush_bits |
| radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stages, VkAccessFlags2 src_flags, |
| const struct radv_image *image, const VkImageSubresourceRange *range) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| src_flags = vk_expand_src_access_flags2(src_stages, src_flags); |
| |
| bool has_CB_meta = true, has_DB_meta = true; |
| bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false; |
| enum radv_cmd_flush_bits flush_bits = 0; |
| |
| if (image) { |
| if (!radv_image_has_CB_metadata(image)) |
| has_CB_meta = false; |
| if (!radv_image_has_htile(image)) |
| has_DB_meta = false; |
| } |
| |
| if (src_flags & VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_EXT) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| |
| if (src_flags & (VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT | VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR)) { |
| /* since the STORAGE bit isn't set we know that this is a meta operation. |
| * on the dst flush side we skip CB/DB flushes without the STORAGE bit, so |
| * set it here. */ |
| if (image && !(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) { |
| if (vk_format_is_depth_or_stencil(image->vk.format)) { |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB; |
| } else { |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB; |
| } |
| } |
| |
| if (!image_is_coherent) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| } |
| |
| if (src_flags & |
| (VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT)) { |
| if (!image_is_coherent) |
| flush_bits |= RADV_CMD_FLAG_WB_L2; |
| } |
| |
| if (src_flags & VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT) { |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB; |
| if (has_CB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; |
| } |
| |
| if (src_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT) { |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB; |
| if (has_DB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| |
| if (src_flags & VK_ACCESS_2_TRANSFER_WRITE_BIT) { |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB; |
| |
| if (!image_is_coherent) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| if (has_CB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; |
| if (has_DB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| |
| return flush_bits; |
| } |
| |
| enum radv_cmd_flush_bits |
| radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 dst_stages, VkAccessFlags2 dst_flags, |
| const struct radv_image *image, const VkImageSubresourceRange *range) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool has_CB_meta = true, has_DB_meta = true; |
| enum radv_cmd_flush_bits flush_bits = 0; |
| bool flush_CB = true, flush_DB = true; |
| bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false; |
| bool flush_L2_metadata = false; |
| |
| dst_flags = vk_expand_dst_access_flags2(dst_stages, dst_flags); |
| |
| if (image) { |
| if (!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) { |
| flush_CB = false; |
| flush_DB = false; |
| } |
| |
| if (!radv_image_has_CB_metadata(image)) |
| has_CB_meta = false; |
| if (!radv_image_has_htile(image)) |
| has_DB_meta = false; |
| } |
| |
| flush_L2_metadata = (has_CB_meta || has_DB_meta) && pdev->info.gfx_level < GFX12; |
| |
| /* All the L2 invalidations below are not the CB/DB. So if there are no incoherent images |
| * in the L2 cache in CB/DB mode then they are already usable from all the other L2 clients. */ |
| image_is_coherent |= can_skip_buffer_l2_flushes(device) && !cmd_buffer->state.rb_noncoherent_dirty; |
| |
| if (dst_flags & VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT) { |
| /* SMEM loads are used to read compute dispatch size in shaders */ |
| if (!device->load_grid_size_from_user_sgpr) |
| flush_bits |= RADV_CMD_FLAG_INV_SCACHE; |
| |
| /* Ensure the DGC meta shader can read the commands. */ |
| if (device->vk.enabled_features.deviceGeneratedCommands) { |
| flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE; |
| if (pdev->info.gfx_level < GFX9) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| } |
| } |
| |
| if (dst_flags & VK_ACCESS_2_UNIFORM_READ_BIT) |
| flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE; |
| |
| if (dst_flags & (VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | |
| VK_ACCESS_2_TRANSFER_READ_BIT)) { |
| flush_bits |= RADV_CMD_FLAG_INV_VCACHE; |
| |
| if (flush_L2_metadata) |
| flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA; |
| if (!image_is_coherent) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| } |
| |
| if (dst_flags & VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT) |
| flush_bits |= RADV_CMD_FLAG_INV_SCACHE; |
| |
| if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR | |
| VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_2_SHADER_SAMPLED_READ_BIT)) { |
| if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR | |
| VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR)) { |
| /* Unlike LLVM, ACO uses SMEM for SSBOs and we have to |
| * invalidate the scalar cache. */ |
| if (!pdev->use_llvm && !image) |
| flush_bits |= RADV_CMD_FLAG_INV_SCACHE; |
| } |
| |
| flush_bits |= RADV_CMD_FLAG_INV_VCACHE; |
| if (flush_L2_metadata) |
| flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA; |
| if (!image_is_coherent) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| } |
| |
| if (dst_flags & VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_EXT) { |
| flush_bits |= RADV_CMD_FLAG_INV_VCACHE; |
| if (pdev->info.gfx_level < GFX9) |
| flush_bits |= RADV_CMD_FLAG_INV_L2; |
| } |
| |
| if (dst_flags & VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT) { |
| if (flush_CB) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB; |
| if (has_CB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META; |
| } |
| |
| if (dst_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT) { |
| if (flush_DB) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB; |
| if (has_DB_meta) |
| flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| |
| return flush_bits; |
| } |
| |
| void |
| radv_emit_resolve_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_resolve_barrier *barrier) |
| { |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| |
| for (uint32_t i = 0; i < render->color_att_count; i++) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| if (!iview) |
| continue; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| cmd_buffer->state.flush_bits |= |
| radv_src_access_flush(cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, iview->image, &range); |
| } |
| if (render->ds_att.iview) { |
| struct radv_image_view *iview = render->ds_att.iview; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| cmd_buffer->state.flush_bits |= radv_src_access_flush( |
| cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, render->ds_att.iview->image, &range); |
| } |
| |
| radv_stage_flush(cmd_buffer, barrier->src_stage_mask); |
| |
| for (uint32_t i = 0; i < render->color_att_count; i++) { |
| struct radv_image_view *iview = render->color_att[i].iview; |
| if (!iview) |
| continue; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| cmd_buffer->state.flush_bits |= |
| radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range); |
| } |
| if (render->ds_att.iview) { |
| struct radv_image_view *iview = render->ds_att.iview; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| cmd_buffer->state.flush_bits |= |
| radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range); |
| } |
| |
| radv_gang_barrier(cmd_buffer, barrier->src_stage_mask, barrier->dst_stage_mask); |
| } |
| |
| static void |
| radv_handle_image_transition_separate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| VkImageLayout src_layout, VkImageLayout dst_layout, |
| VkImageLayout src_stencil_layout, VkImageLayout dst_stencil_layout, |
| uint32_t src_family_index, uint32_t dst_family_index, |
| const VkImageSubresourceRange *range, |
| struct radv_sample_locations_state *sample_locs) |
| { |
| /* If we have a stencil layout that's different from depth, we need to |
| * perform the stencil transition separately. |
| */ |
| if ((range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) && |
| (src_layout != src_stencil_layout || dst_layout != dst_stencil_layout)) { |
| VkImageSubresourceRange aspect_range = *range; |
| /* Depth-only transitions. */ |
| if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { |
| aspect_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index, |
| &aspect_range, sample_locs); |
| } |
| |
| /* Stencil-only transitions. */ |
| aspect_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| radv_handle_image_transition(cmd_buffer, image, src_stencil_layout, dst_stencil_layout, src_family_index, |
| dst_family_index, &aspect_range, sample_locs); |
| } else { |
| radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index, range, |
| sample_locs); |
| } |
| } |
| |
| static void |
| radv_handle_rendering_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *view, |
| uint32_t layer_count, uint32_t view_mask, VkImageLayout initial_layout, |
| VkImageLayout initial_stencil_layout, VkImageLayout final_layout, |
| VkImageLayout final_stencil_layout, |
| struct radv_sample_locations_state *sample_locs) |
| { |
| VkImageSubresourceRange range; |
| range.aspectMask = view->image->vk.aspects; |
| range.baseMipLevel = view->vk.base_mip_level; |
| range.levelCount = 1; |
| |
| if (view_mask) { |
| while (view_mask) { |
| int start, count; |
| u_bit_scan_consecutive_range(&view_mask, &start, &count); |
| |
| range.baseArrayLayer = view->vk.base_array_layer + start; |
| range.layerCount = count; |
| |
| radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout, |
| initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs); |
| } |
| } else { |
| range.baseArrayLayer = view->vk.base_array_layer; |
| range.layerCount = layer_count; |
| radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout, |
| initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs); |
| } |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| VkResult result = VK_SUCCESS; |
| |
| vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_SPARSE) |
| return result; |
| |
| memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state)); |
| cmd_buffer->state.last_index_type = -1; |
| cmd_buffer->state.last_num_instances = -1; |
| cmd_buffer->state.last_vertex_offset_valid = false; |
| cmd_buffer->state.last_first_instance = -1; |
| cmd_buffer->state.last_drawid = -1; |
| cmd_buffer->state.last_subpass_color_count = MAX_RTS; |
| cmd_buffer->state.predication_type = -1; |
| cmd_buffer->state.mesh_shading = false; |
| cmd_buffer->state.last_vrs_rates = -1; |
| cmd_buffer->state.last_force_vrs_rates_offset = -1; |
| |
| radv_reset_tracked_regs(cmd_buffer); |
| |
| cmd_buffer->usage_flags = pBeginInfo->flags; |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND | RADV_CMD_DIRTY_OCCLUSION_QUERY | |
| RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT; |
| if (pdev->info.rbplus_allowed) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS; |
| |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_ALL; |
| |
| if (cmd_buffer->qf == RADV_QUEUE_GENERAL) |
| vk_dynamic_graphics_state_init(&cmd_buffer->state.dynamic.vk); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_COMPUTE || device->vk.enabled_features.taskShader) { |
| uint32_t pred_value = 0; |
| uint32_t pred_offset; |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &pred_value, &pred_offset)) |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| cmd_buffer->state.mec_inv_pred_emitted = false; |
| cmd_buffer->state.mec_inv_pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset; |
| } |
| |
| if (pdev->info.gfx_level >= GFX9 && cmd_buffer->qf == RADV_QUEUE_GENERAL) { |
| unsigned num_db = pdev->info.max_render_backends; |
| unsigned fence_offset, eop_bug_offset; |
| void *fence_ptr; |
| |
| radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr); |
| memset(fence_ptr, 0, 8); |
| |
| cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| cmd_buffer->gfx9_fence_va += fence_offset; |
| |
| radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_fence_va, 8); |
| |
| if (pdev->info.gfx_level == GFX9) { |
| /* Allocate a buffer for the EOP bug on GFX9. */ |
| radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr); |
| memset(fence_ptr, 0, 16 * num_db); |
| cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| cmd_buffer->gfx9_eop_bug_va += eop_bug_offset; |
| |
| radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_eop_bug_va, 16 * num_db); |
| } |
| } |
| |
| if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY && |
| (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) { |
| |
| char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)]; |
| const VkRenderingInfo *resume_info = |
| vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level, pBeginInfo, gcbiar_data); |
| if (resume_info) { |
| radv_CmdBeginRendering(commandBuffer, resume_info); |
| } else { |
| const VkCommandBufferInheritanceRenderingInfo *inheritance_info = |
| vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, pBeginInfo); |
| |
| radv_cmd_buffer_reset_rendering(cmd_buffer); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| render->active = true; |
| render->view_mask = inheritance_info->viewMask; |
| render->max_samples = inheritance_info->rasterizationSamples; |
| render->color_att_count = inheritance_info->colorAttachmentCount; |
| for (uint32_t i = 0; i < render->color_att_count; i++) { |
| render->color_att[i] = (struct radv_attachment){ |
| .format = inheritance_info->pColorAttachmentFormats[i], |
| }; |
| } |
| assert(inheritance_info->depthAttachmentFormat == VK_FORMAT_UNDEFINED || |
| inheritance_info->stencilAttachmentFormat == VK_FORMAT_UNDEFINED || |
| inheritance_info->depthAttachmentFormat == inheritance_info->stencilAttachmentFormat); |
| render->ds_att = (struct radv_attachment){.iview = NULL}; |
| if (inheritance_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED) |
| render->ds_att.format = inheritance_info->depthAttachmentFormat; |
| if (inheritance_info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED) |
| render->ds_att.format = inheritance_info->stencilAttachmentFormat; |
| |
| if (vk_format_has_depth(render->ds_att.format)) |
| render->ds_att_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; |
| if (vk_format_has_stencil(render->ds_att.format)) |
| render->ds_att_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; |
| } |
| |
| cmd_buffer->state.inherited_pipeline_statistics = pBeginInfo->pInheritanceInfo->pipelineStatistics; |
| |
| if (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY; |
| |
| cmd_buffer->state.inherited_occlusion_queries = pBeginInfo->pInheritanceInfo->occlusionQueryEnable; |
| cmd_buffer->state.inherited_query_control_flags = pBeginInfo->pInheritanceInfo->queryFlags; |
| if (cmd_buffer->state.inherited_occlusion_queries) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_OCCLUSION_QUERY; |
| } |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| |
| radv_describe_begin_cmd_buffer(cmd_buffer); |
| |
| return result; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, |
| const VkBuffer *pBuffers, const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes, |
| const VkDeviceSize *pStrides) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings; |
| const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input; |
| |
| /* We have to defer setting up vertex buffer since we need the buffer |
| * stride from the pipeline. */ |
| |
| assert(firstBinding + bindingCount <= MAX_VBS); |
| |
| if (firstBinding + bindingCount > cmd_buffer->used_vertex_bindings) |
| cmd_buffer->used_vertex_bindings = firstBinding + bindingCount; |
| |
| uint32_t misaligned_mask_invalid = 0; |
| |
| for (uint32_t i = 0; i < bindingCount; i++) { |
| VK_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]); |
| uint32_t idx = firstBinding + i; |
| VkDeviceSize size = pSizes ? pSizes[i] : 0; |
| /* if pStrides=NULL, it shouldn't overwrite the strides specified by CmdSetVertexInputEXT */ |
| VkDeviceSize stride = pStrides ? pStrides[i] : vb[idx].stride; |
| |
| if (!!cmd_buffer->vertex_binding_buffers[idx] != !!buffer || |
| (buffer && ((vb[idx].offset & 0x3) != (pOffsets[i] & 0x3) || (vb[idx].stride & 0x3) != (stride & 0x3)))) { |
| misaligned_mask_invalid |= vi_state->bindings_match_attrib ? BITFIELD_BIT(idx) : 0xffffffff; |
| } |
| |
| cmd_buffer->vertex_binding_buffers[idx] = buffer; |
| vb[idx].offset = pOffsets[i]; |
| vb[idx].size = buffer ? vk_buffer_range(&buffer->vk, pOffsets[i], size) : size; |
| vb[idx].stride = stride; |
| |
| uint32_t bit = BITFIELD_BIT(idx); |
| if (buffer) { |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->vertex_binding_buffers[idx]->bo); |
| cmd_buffer->state.vbo_bound_mask |= bit; |
| } else { |
| cmd_buffer->state.vbo_bound_mask &= ~bit; |
| } |
| } |
| |
| if (misaligned_mask_invalid) { |
| cmd_buffer->state.vbo_misaligned_mask_invalid = misaligned_mask_invalid; |
| cmd_buffer->state.vbo_misaligned_mask &= ~misaligned_mask_invalid; |
| cmd_buffer->state.vbo_unaligned_mask &= ~misaligned_mask_invalid; |
| } |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT; |
| } |
| |
| static uint32_t |
| vk_to_index_type(VkIndexType type) |
| { |
| switch (type) { |
| case VK_INDEX_TYPE_UINT8: |
| return V_028A7C_VGT_INDEX_8; |
| case VK_INDEX_TYPE_UINT16: |
| return V_028A7C_VGT_INDEX_16; |
| case VK_INDEX_TYPE_UINT32: |
| return V_028A7C_VGT_INDEX_32; |
| default: |
| unreachable("invalid index type"); |
| } |
| } |
| |
| static uint32_t |
| radv_get_vgt_index_size(uint32_t type) |
| { |
| uint32_t index_type = G_028A7C_INDEX_TYPE(type); |
| switch (index_type) { |
| case V_028A7C_VGT_INDEX_8: |
| return 1; |
| case V_028A7C_VGT_INDEX_16: |
| return 2; |
| case V_028A7C_VGT_INDEX_32: |
| return 4; |
| default: |
| unreachable("invalid index type"); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize size, |
| VkIndexType indexType) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, index_buffer, buffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| cmd_buffer->state.index_type = vk_to_index_type(indexType); |
| |
| if (index_buffer) { |
| cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo); |
| cmd_buffer->state.index_va += index_buffer->offset + offset; |
| |
| int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType)); |
| cmd_buffer->state.max_index_count = (vk_buffer_range(&index_buffer->vk, offset, size)) / index_size; |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, index_buffer->bo); |
| } else { |
| cmd_buffer->state.index_va = 0; |
| cmd_buffer->state.max_index_count = 0; |
| |
| if (pdev->info.has_null_index_buffer_clamping_bug) |
| cmd_buffer->state.index_va = 0x2; |
| } |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER; |
| |
| /* Primitive restart state depends on the index type. */ |
| if (cmd_buffer->state.dynamic.vk.ia.primitive_restart_enable) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; |
| } |
| |
| static void |
| radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point, |
| struct radv_descriptor_set *set, unsigned idx) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_winsys *ws = device->ws; |
| |
| radv_set_descriptor_set(cmd_buffer, bind_point, set, idx); |
| |
| assert(set); |
| assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT)); |
| |
| if (!device->use_global_bo_list) { |
| for (unsigned j = 0; j < set->header.buffer_count; ++j) |
| if (set->descriptors[j]) |
| radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]); |
| } |
| |
| if (set->header.bo) |
| radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo); |
| } |
| |
| static void |
| radv_bind_descriptor_sets(struct radv_cmd_buffer *cmd_buffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(radv_pipeline_layout, layout, pBindDescriptorSetsInfo->layout); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| const bool no_dynamic_bounds = instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS; |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| unsigned dyn_idx = 0; |
| |
| for (unsigned i = 0; i < pBindDescriptorSetsInfo->descriptorSetCount; ++i) { |
| unsigned set_idx = i + pBindDescriptorSetsInfo->firstSet; |
| VK_FROM_HANDLE(radv_descriptor_set, set, pBindDescriptorSetsInfo->pDescriptorSets[i]); |
| |
| if (!set) |
| continue; |
| |
| /* If the set is already bound we only need to update the |
| * (potentially changed) dynamic offsets. */ |
| if (descriptors_state->sets[set_idx] != set || !(descriptors_state->valid & (1u << set_idx))) { |
| radv_bind_descriptor_set(cmd_buffer, bind_point, set, set_idx); |
| } |
| |
| for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) { |
| unsigned idx = j + layout->set[i + pBindDescriptorSetsInfo->firstSet].dynamic_offset_start; |
| uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4; |
| assert(dyn_idx < pBindDescriptorSetsInfo->dynamicOffsetCount); |
| |
| struct radv_descriptor_range *range = set->header.dynamic_descriptors + j; |
| |
| if (!range->va) { |
| memset(dst, 0, 4 * 4); |
| } else { |
| uint64_t va = range->va + pBindDescriptorSetsInfo->pDynamicOffsets[dyn_idx]; |
| const uint32_t size = no_dynamic_bounds ? 0xffffffffu : range->size; |
| |
| ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, dst); |
| } |
| |
| cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages; |
| } |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) { |
| radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pBindDescriptorSetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) { |
| radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| |
| if (pBindDescriptorSetsInfo->stageFlags & RADV_RT_STAGE_BITS) { |
| radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| } |
| } |
| |
| static bool |
| radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set, |
| struct radv_descriptor_set_layout *layout, VkPipelineBindPoint bind_point) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| set->header.size = layout->size; |
| |
| if (set->header.layout != layout) { |
| if (set->header.layout) |
| vk_descriptor_set_layout_unref(&device->vk, &set->header.layout->vk); |
| vk_descriptor_set_layout_ref(&layout->vk); |
| set->header.layout = layout; |
| } |
| |
| if (descriptors_state->push_set.capacity < set->header.size) { |
| size_t new_size = MAX2(set->header.size, 1024); |
| new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity); |
| new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS); |
| |
| free(set->header.mapped_ptr); |
| set->header.mapped_ptr = malloc(new_size); |
| |
| if (!set->header.mapped_ptr) { |
| descriptors_state->push_set.capacity = 0; |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return false; |
| } |
| |
| descriptors_state->push_set.capacity = new_size; |
| } |
| |
| return true; |
| } |
| |
| void |
| radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint, |
| VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount, |
| const VkWriteDescriptorSet *pDescriptorWrites) |
| { |
| VK_FROM_HANDLE(radv_pipeline_layout, layout, _layout); |
| struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| unsigned bo_offset; |
| |
| assert(set == 0); |
| assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT); |
| |
| push_set->header.size = layout->set[set].layout->size; |
| push_set->header.layout = layout->set[set].layout; |
| |
| if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset, |
| (void **)&push_set->header.mapped_ptr)) |
| return; |
| |
| push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); |
| push_set->header.va += bo_offset; |
| |
| radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set), descriptorWriteCount, |
| pDescriptorWrites, 0, NULL); |
| |
| radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set); |
| } |
| |
| static void |
| radv_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo, |
| VkPipelineBindPoint bind_point) |
| { |
| VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetInfo->layout); |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(layout->set[pPushDescriptorSetInfo->set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT); |
| |
| if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetInfo->set].layout, |
| bind_point)) |
| return; |
| |
| /* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSet() |
| * because it is invalid, according to Vulkan spec. |
| */ |
| for (int i = 0; i < pPushDescriptorSetInfo->descriptorWriteCount; i++) { |
| ASSERTED const VkWriteDescriptorSet *writeset = &pPushDescriptorSetInfo->pDescriptorWrites[i]; |
| assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK); |
| } |
| |
| radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set), |
| pPushDescriptorSetInfo->descriptorWriteCount, |
| pPushDescriptorSetInfo->pDescriptorWrites, 0, NULL); |
| |
| radv_set_descriptor_set(cmd_buffer, bind_point, push_set, pPushDescriptorSetInfo->set); |
| |
| radv_flush_push_descriptors(cmd_buffer, descriptors_state); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) { |
| radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pPushDescriptorSetInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) { |
| radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| |
| if (pPushDescriptorSetInfo->stageFlags & RADV_RT_STAGE_BITS) { |
| radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdPushDescriptorSetWithTemplate2KHR( |
| VkCommandBuffer commandBuffer, const VkPushDescriptorSetWithTemplateInfoKHR *pPushDescriptorSetWithTemplateInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetWithTemplateInfo->layout); |
| VK_FROM_HANDLE(radv_descriptor_update_template, templ, pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate); |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, templ->bind_point); |
| struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(layout->set[pPushDescriptorSetWithTemplateInfo->set].layout->flags & |
| VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT); |
| |
| if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetWithTemplateInfo->set].layout, |
| templ->bind_point)) |
| return; |
| |
| radv_cmd_update_descriptor_set_with_template(device, cmd_buffer, push_set, |
| pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate, |
| pPushDescriptorSetWithTemplateInfo->pData); |
| |
| radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, pPushDescriptorSetWithTemplateInfo->set); |
| |
| radv_flush_push_descriptors(cmd_buffer, descriptors_state); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdPushConstants2(VkCommandBuffer commandBuffer, const VkPushConstantsInfo *pPushConstantsInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| memcpy(cmd_buffer->push_constants + pPushConstantsInfo->offset, pPushConstantsInfo->pValues, |
| pPushConstantsInfo->size); |
| cmd_buffer->push_constant_stages |= pPushConstantsInfo->stageFlags; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_EndCommandBuffer(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_SPARSE) |
| return vk_command_buffer_end(&cmd_buffer->vk); |
| |
| radv_emit_mip_change_flush_default(cmd_buffer); |
| |
| const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE; |
| |
| if (is_gfx_or_ace) { |
| /* Make sure to sync all pending active queries at the end of |
| * command buffer. |
| */ |
| cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits; |
| |
| /* Flush noncoherent images when needed so we can assume they're clean on the start of a |
| * command buffer. |
| */ |
| if (cmd_buffer->state.rb_noncoherent_dirty && !can_skip_buffer_l2_flushes(device)) |
| cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_TRANSFER_WRITE_BIT, NULL, NULL); |
| |
| /* Since NGG streamout uses GDS, we need to make GDS idle when |
| * we leave the IB, otherwise another process might overwrite |
| * it while our shaders are busy. |
| */ |
| if (cmd_buffer->gds_needed) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH; |
| } |
| |
| /* Finalize the internal compute command stream, if it exists. */ |
| if (cmd_buffer->gang.cs) { |
| VkResult result = radv_gang_finalize(cmd_buffer); |
| if (result != VK_SUCCESS) |
| return vk_error(cmd_buffer, result); |
| } |
| |
| if (is_gfx_or_ace) { |
| radv_emit_cache_flush(cmd_buffer); |
| |
| /* Make sure CP DMA is idle at the end of IBs because the kernel |
| * doesn't wait for it. |
| */ |
| radv_cp_dma_wait_for_idle(cmd_buffer); |
| } |
| |
| radv_describe_end_cmd_buffer(cmd_buffer); |
| |
| VkResult result = device->ws->cs_finalize(cmd_buffer->cs); |
| if (result != VK_SUCCESS) |
| return vk_error(cmd_buffer, result); |
| |
| return vk_command_buffer_end(&cmd_buffer->vk); |
| } |
| |
| static void |
| radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_compute_pipeline *pipeline) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (pipeline == cmd_buffer->state.emitted_compute_pipeline) |
| return; |
| |
| radeon_check_space(device->ws, cmd_buffer->cs, pdev->info.gfx_level >= GFX10 ? 25 : 22); |
| |
| if (pipeline->base.type == RADV_PIPELINE_COMPUTE) { |
| radv_emit_compute_shader(pdev, cmd_buffer->cs, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]); |
| } else { |
| const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog; |
| |
| radv_emit_compute_shader(pdev, cmd_buffer->cs, rt_prolog); |
| |
| const uint32_t ray_dynamic_callback_stack_base_offset = |
| radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_DYNAMIC_CALLABLE_STACK_BASE); |
| if (ray_dynamic_callback_stack_base_offset) { |
| const struct radv_shader_info *cs_info = &rt_prolog->info; |
| radeon_set_sh_reg(cmd_buffer->cs, ray_dynamic_callback_stack_base_offset, |
| rt_prolog->config.scratch_bytes_per_wave / cs_info->wave_size); |
| } |
| |
| const uint32_t traversal_shader_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_TRAVERSAL_SHADER_ADDR); |
| struct radv_shader *traversal_shader = cmd_buffer->state.shaders[MESA_SHADER_INTERSECTION]; |
| if (traversal_shader_addr_offset && traversal_shader) { |
| uint64_t traversal_va = traversal_shader->va | radv_rt_priority_traversal; |
| radv_emit_shader_pointer(device, cmd_buffer->cs, traversal_shader_addr_offset, traversal_va, true); |
| } |
| } |
| |
| cmd_buffer->state.emitted_compute_pipeline = pipeline; |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_pipeline(cmd_buffer, &pipeline->base); |
| } |
| |
| static void |
| radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| |
| descriptors_state->dirty |= descriptors_state->valid; |
| } |
| |
| static void |
| radv_bind_vs_input_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX); |
| const struct radv_vertex_input_state *src = &pipeline->vertex_input; |
| |
| /* Bind the vertex input state from the pipeline when it's static. */ |
| if (!vs_shader || !vs_shader->info.vs.vb_desc_usage_mask || (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) |
| return; |
| |
| cmd_buffer->state.vertex_input = *src; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) { |
| for (uint32_t i = 0; i < MAX_VBS; i++) |
| cmd_buffer->vertex_bindings[i].stride = pipeline->binding_stride[i]; |
| } |
| |
| /* When the vertex input state is static but the VS has been compiled without it (GPL), the |
| * driver needs to compile a VS prolog. |
| */ |
| if (!vs_shader->info.vs.has_prolog) |
| return; |
| |
| cmd_buffer->state.vbo_misaligned_mask = 0; |
| cmd_buffer->state.vbo_unaligned_mask = 0; |
| cmd_buffer->state.vbo_misaligned_mask_invalid = src->attribute_mask; |
| |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT; |
| } |
| |
| static void |
| radv_bind_multisample_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_multisample_state *ms) |
| { |
| if (ms->sample_shading_enable) { |
| cmd_buffer->state.ms.sample_shading_enable = true; |
| cmd_buffer->state.ms.min_sample_shading = ms->min_sample_shading; |
| } |
| } |
| |
| static void |
| radv_bind_custom_blend_mode(struct radv_cmd_buffer *cmd_buffer, unsigned custom_blend_mode) |
| { |
| /* Re-emit CB_COLOR_CONTROL when the custom blending mode changes. */ |
| if (cmd_buffer->state.custom_blend_mode != custom_blend_mode) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE; |
| |
| cmd_buffer->state.custom_blend_mode = custom_blend_mode; |
| } |
| |
| static void |
| radv_bind_pre_rast_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool mesh_shading = shader->info.stage == MESA_SHADER_MESH; |
| const struct radv_userdata_info *loc; |
| |
| assert(shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_TESS_CTRL || |
| shader->info.stage == MESA_SHADER_TESS_EVAL || shader->info.stage == MESA_SHADER_GEOMETRY || |
| shader->info.stage == MESA_SHADER_MESH); |
| |
| if (radv_get_user_sgpr_info(shader, AC_UD_NGG_STATE)->sgpr_idx != -1) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE; |
| |
| if (radv_get_user_sgpr_info(shader, AC_UD_STREAMOUT_BUFFERS)->sgpr_idx != -1) { |
| /* Re-emit the streamout buffers because the SGPR idx can be different and with NGG streamout |
| * they always need to be emitted because a buffer size of 0 is used to disable streamout. |
| */ |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER; |
| |
| if (pdev->use_ngg_streamout && pdev->info.gfx_level < GFX12) { |
| /* GFX11 needs GDS OA for streamout. */ |
| cmd_buffer->gds_oa_needed = true; |
| } |
| } |
| |
| const bool needs_vtx_sgpr = |
| shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_MESH || |
| (shader->info.stage == MESA_SHADER_GEOMETRY && !shader->info.merged_shader_compiled_separately) || |
| (shader->info.stage == MESA_SHADER_TESS_CTRL && !shader->info.merged_shader_compiled_separately); |
| |
| loc = radv_get_user_sgpr_info(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| if (needs_vtx_sgpr && loc->sgpr_idx != -1) { |
| cmd_buffer->state.vtx_base_sgpr = shader->info.user_data_0 + loc->sgpr_idx * 4; |
| cmd_buffer->state.vtx_emit_num = loc->num_sgprs; |
| cmd_buffer->state.uses_drawid = shader->info.vs.needs_draw_id; |
| cmd_buffer->state.uses_baseinstance = shader->info.vs.needs_base_instance; |
| |
| if (shader->info.merged_shader_compiled_separately) { |
| /* Merged shaders compiled separately (eg. VS+TCS) always declare these user SGPRS |
| * because the input arguments must match. |
| */ |
| cmd_buffer->state.uses_drawid = true; |
| cmd_buffer->state.uses_baseinstance = true; |
| } |
| |
| /* Re-emit some vertex states because the SGPR idx can be different. */ |
| cmd_buffer->state.last_first_instance = -1; |
| cmd_buffer->state.last_vertex_offset_valid = false; |
| cmd_buffer->state.last_drawid = -1; |
| } |
| |
| if (mesh_shading != cmd_buffer->state.mesh_shading) { |
| /* Re-emit VRS state because the combiner is different (vertex vs primitive). Re-emit |
| * primitive topology because the mesh shading pipeline clobbered it. |
| */ |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; |
| } |
| |
| cmd_buffer->state.mesh_shading = mesh_shading; |
| } |
| |
| static void |
| radv_bind_vertex_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs) |
| { |
| radv_bind_pre_rast_shader(cmd_buffer, vs); |
| |
| /* Re-emit states that need to be updated when the vertex shader is compiled separately |
| * because shader configs are combined. |
| */ |
| if (vs->info.merged_shader_compiled_separately && vs->info.next_stage == MESA_SHADER_TESS_CTRL) { |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS; |
| } |
| |
| /* Can't put anything else here due to merged shaders */ |
| } |
| |
| static void |
| radv_bind_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tcs) |
| { |
| radv_bind_pre_rast_shader(cmd_buffer, tcs); |
| |
| cmd_buffer->tess_rings_needed = true; |
| |
| /* Always re-emit patch control points/domain origin when a new pipeline with tessellation is |
| * bound because a bunch of parameters (user SGPRs, TCS vertices out, ccw, etc) can be different. |
| */ |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| |
| /* Re-emit the VS prolog when the tessellation control shader is compiled separately because |
| * shader configs are combined and need to be updated. |
| */ |
| if (tcs->info.merged_shader_compiled_separately) |
| cmd_buffer->state.emitted_vs_prolog = NULL; |
| } |
| |
| static void |
| radv_bind_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tes) |
| { |
| radv_bind_pre_rast_shader(cmd_buffer, tes); |
| |
| /* Can't put anything else here due to merged shaders */ |
| } |
| |
| static void |
| radv_bind_geometry_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs) |
| { |
| radv_bind_pre_rast_shader(cmd_buffer, gs); |
| |
| cmd_buffer->esgs_ring_size_needed = MAX2(cmd_buffer->esgs_ring_size_needed, gs->info.gs_ring_info.esgs_ring_size); |
| cmd_buffer->gsvs_ring_size_needed = MAX2(cmd_buffer->gsvs_ring_size_needed, gs->info.gs_ring_info.gsvs_ring_size); |
| |
| /* Re-emit the VS prolog when the geometry shader is compiled separately because shader configs |
| * are combined and need to be updated. |
| */ |
| if (gs->info.merged_shader_compiled_separately) |
| cmd_buffer->state.emitted_vs_prolog = NULL; |
| } |
| |
| static void |
| radv_bind_gs_copy_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *gs_copy_shader) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| cmd_buffer->state.gs_copy_shader = gs_copy_shader; |
| |
| if (gs_copy_shader) { |
| cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, gs_copy_shader->upload_seq); |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, gs_copy_shader->bo); |
| } |
| } |
| |
| static void |
| radv_bind_mesh_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ms) |
| { |
| radv_bind_pre_rast_shader(cmd_buffer, ms); |
| |
| cmd_buffer->mesh_scratch_ring_needed |= ms->info.ms.needs_ms_scratch_ring; |
| } |
| |
| static void |
| radv_bind_fragment_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const struct radv_shader *previous_ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const float min_sample_shading = 1.0f; |
| |
| if (ps->info.ps.needs_sample_positions) { |
| cmd_buffer->sample_positions_needed = true; |
| } |
| |
| if (radv_get_user_sgpr_info(ps, AC_UD_PS_STATE)->sgpr_idx != -1) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE; |
| |
| /* Re-emit the conservative rasterization mode because inner coverage is different. */ |
| if (!previous_ps || previous_ps->info.ps.reads_fully_covered != ps->info.ps.reads_fully_covered) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE; |
| |
| if (gfx_level >= GFX10_3 && (!previous_ps || previous_ps->info.ps.force_sample_iter_shading_rate != |
| ps->info.ps.force_sample_iter_shading_rate)) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| |
| if (cmd_buffer->state.ms.sample_shading_enable != ps->info.ps.uses_sample_shading) { |
| cmd_buffer->state.ms.sample_shading_enable = ps->info.ps.uses_sample_shading; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| |
| if (gfx_level >= GFX10_3) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| } |
| |
| if (cmd_buffer->state.ms.min_sample_shading != min_sample_shading) { |
| cmd_buffer->state.ms.min_sample_shading = min_sample_shading; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| } |
| |
| if (!previous_ps || previous_ps->info.regs.ps.db_shader_control != ps->info.regs.ps.db_shader_control || |
| previous_ps->info.ps.pops_is_per_sample != ps->info.ps.pops_is_per_sample) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL; |
| |
| if (!previous_ps || cmd_buffer->state.uses_fbfetch_output != ps->info.ps.uses_fbfetch_output) { |
| cmd_buffer->state.uses_fbfetch_output = ps->info.ps.uses_fbfetch_output; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| } |
| |
| /* Re-emit the PS epilog when a new fragment shader is bound. */ |
| if (ps->info.ps.has_epilog) |
| cmd_buffer->state.emitted_ps_epilog = NULL; |
| } |
| |
| static void |
| radv_bind_task_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ts) |
| { |
| if (!radv_gang_init(cmd_buffer)) |
| return; |
| |
| if (radv_get_user_sgpr_info(ts, AC_UD_TASK_STATE)->sgpr_idx != -1) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_TASK_STATE; |
| |
| cmd_buffer->task_rings_needed = true; |
| } |
| |
| static void |
| radv_bind_rt_prolog(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *rt_prolog) |
| { |
| cmd_buffer->state.rt_prolog = rt_prolog; |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const unsigned max_scratch_waves = radv_get_max_scratch_waves(device, rt_prolog); |
| cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_scratch_waves); |
| |
| cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, rt_prolog->upload_seq); |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, rt_prolog->bo); |
| } |
| |
| /* This function binds/unbinds a shader to the cmdbuffer state. */ |
| static void |
| radv_bind_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader, gl_shader_stage stage) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!shader) { |
| cmd_buffer->state.shaders[stage] = NULL; |
| cmd_buffer->state.active_stages &= ~mesa_to_vk_shader_stage(stage); |
| |
| /* Reset some dynamic states when a shader stage is unbound. */ |
| switch (stage) { |
| case MESA_SHADER_FRAGMENT: |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES | |
| RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| break; |
| default: |
| break; |
| } |
| return; |
| } |
| |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| radv_bind_vertex_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| radv_bind_tess_ctrl_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| radv_bind_tess_eval_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| radv_bind_geometry_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| radv_bind_fragment_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_MESH: |
| radv_bind_mesh_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_TASK: |
| radv_bind_task_shader(cmd_buffer, shader); |
| break; |
| case MESA_SHADER_COMPUTE: { |
| cmd_buffer->compute_scratch_size_per_wave_needed = |
| MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave); |
| |
| const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader); |
| cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_stage_waves); |
| break; |
| } |
| case MESA_SHADER_INTERSECTION: |
| /* no-op */ |
| break; |
| default: |
| unreachable("invalid shader stage"); |
| } |
| |
| cmd_buffer->state.shaders[stage] = shader; |
| cmd_buffer->state.active_stages |= mesa_to_vk_shader_stage(stage); |
| |
| if (mesa_to_vk_shader_stage(stage) & RADV_GRAPHICS_STAGE_BITS) { |
| cmd_buffer->scratch_size_per_wave_needed = |
| MAX2(cmd_buffer->scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave); |
| |
| const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader); |
| cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, max_stage_waves); |
| } |
| |
| cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, shader->upload_seq); |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo); |
| } |
| |
| static void |
| radv_bind_fragment_output_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps, |
| const struct radv_shader_part *ps_epilog, uint32_t custom_blend_mode) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t col_format = 0, z_format = 0, cb_shader_mask = 0; |
| |
| if (ps) { |
| col_format = ps_epilog ? ps_epilog->spi_shader_col_format : ps->info.ps.spi_shader_col_format; |
| z_format = ps_epilog && ps->info.ps.exports_mrtz_via_epilog ? ps_epilog->spi_shader_z_format |
| : ps->info.regs.ps.spi_shader_z_format; |
| cb_shader_mask = ps_epilog ? ps_epilog->cb_shader_mask : ps->info.ps.cb_shader_mask; |
| } |
| |
| if (custom_blend_mode) { |
| /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four |
| * channels of MRT0. |
| */ |
| cb_shader_mask = 0xf; |
| } |
| |
| if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !col_format) |
| col_format = V_028714_SPI_SHADER_32_R; |
| |
| if (cmd_buffer->state.spi_shader_col_format != col_format) { |
| cmd_buffer->state.spi_shader_col_format = col_format; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT; |
| if (pdev->info.rbplus_allowed) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS; |
| } |
| |
| if (cmd_buffer->state.cb_shader_mask != cb_shader_mask || cmd_buffer->state.spi_shader_z_format != z_format) { |
| cmd_buffer->state.cb_shader_mask = cb_shader_mask; |
| cmd_buffer->state.spi_shader_z_format = z_format; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT; |
| } |
| } |
| |
| static void |
| radv_reset_shader_object_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint) |
| { |
| switch (pipelineBindPoint) { |
| case VK_PIPELINE_BIND_POINT_COMPUTE: |
| if (cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]) { |
| radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE); |
| cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE] = NULL; |
| } |
| break; |
| case VK_PIPELINE_BIND_POINT_GRAPHICS: |
| radv_foreach_stage(s, RADV_GRAPHICS_STAGE_BITS) |
| { |
| if (cmd_buffer->state.shader_objs[s]) { |
| radv_bind_shader(cmd_buffer, NULL, s); |
| cmd_buffer->state.shader_objs[s] = NULL; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| radv_reset_shader_object_state(cmd_buffer, pipelineBindPoint); |
| |
| switch (pipelineBindPoint) { |
| case VK_PIPELINE_BIND_POINT_COMPUTE: { |
| struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline); |
| |
| if (cmd_buffer->state.compute_pipeline == compute_pipeline) |
| return; |
| radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint); |
| |
| radv_bind_shader(cmd_buffer, compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE); |
| |
| cmd_buffer->state.compute_pipeline = compute_pipeline; |
| cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT; |
| break; |
| } |
| case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: { |
| struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline); |
| |
| if (cmd_buffer->state.rt_pipeline == rt_pipeline) |
| return; |
| radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint); |
| |
| radv_bind_shader(cmd_buffer, rt_pipeline->base.base.shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION); |
| radv_bind_rt_prolog(cmd_buffer, rt_pipeline->prolog); |
| |
| for (unsigned i = 0; i < rt_pipeline->stage_count; ++i) { |
| struct radv_shader *shader = rt_pipeline->stages[i].shader; |
| if (shader) |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo); |
| } |
| |
| cmd_buffer->state.rt_pipeline = rt_pipeline; |
| cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS; |
| |
| /* Bind the stack size when it's not dynamic. */ |
| if (rt_pipeline->stack_size != -1u) |
| cmd_buffer->state.rt_stack_size = rt_pipeline->stack_size; |
| |
| break; |
| } |
| case VK_PIPELINE_BIND_POINT_GRAPHICS: { |
| struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); |
| |
| /* Bind the non-dynamic graphics state from the pipeline unconditionally because some PSO |
| * might have been overwritten between two binds of the same pipeline. |
| */ |
| radv_bind_dynamic_state(cmd_buffer, &graphics_pipeline->dynamic_state); |
| |
| if (cmd_buffer->state.graphics_pipeline == graphics_pipeline) |
| return; |
| radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint); |
| |
| radv_foreach_stage( |
| stage, (cmd_buffer->state.active_stages | graphics_pipeline->active_stages) & RADV_GRAPHICS_STAGE_BITS) |
| { |
| radv_bind_shader(cmd_buffer, graphics_pipeline->base.shaders[stage], stage); |
| } |
| |
| radv_bind_gs_copy_shader(cmd_buffer, graphics_pipeline->base.gs_copy_shader); |
| |
| cmd_buffer->state.last_vgt_shader = graphics_pipeline->base.shaders[graphics_pipeline->last_vgt_api_stage]; |
| |
| cmd_buffer->state.graphics_pipeline = graphics_pipeline; |
| |
| cmd_buffer->state.has_nggc = graphics_pipeline->has_ngg_culling; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE; |
| cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages; |
| |
| /* Prefetch all pipeline shaders at first draw time. */ |
| cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS; |
| |
| if (pdev->info.has_vgt_flush_ngg_legacy_bug && |
| (!cmd_buffer->state.emitted_graphics_pipeline || |
| (cmd_buffer->state.emitted_graphics_pipeline->is_ngg && !cmd_buffer->state.graphics_pipeline->is_ngg))) { |
| /* Transitioning from NGG to legacy GS requires |
| * VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH |
| * is also emitted at the beginning of IBs when legacy |
| * GS ring pointers are set. |
| */ |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH; |
| } |
| |
| cmd_buffer->state.uses_dynamic_patch_control_points = |
| !!(graphics_pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS); |
| |
| if (graphics_pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { |
| if (!cmd_buffer->state.uses_dynamic_patch_control_points) { |
| /* Bind the tessellation state from the pipeline when it's not dynamic. */ |
| struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]; |
| |
| cmd_buffer->state.tess_num_patches = tcs->info.num_tess_patches; |
| cmd_buffer->state.tess_lds_size = tcs->info.tcs.num_lds_blocks; |
| } |
| } |
| |
| const struct radv_shader *vs = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_VERTEX); |
| if (vs) { |
| /* Re-emit the VS prolog when a new vertex shader is bound. */ |
| if (vs->info.vs.has_prolog) { |
| cmd_buffer->state.emitted_vs_prolog = NULL; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT; |
| } |
| |
| /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */ |
| if (vs->info.vs.vb_desc_usage_mask) { |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER; |
| } |
| } |
| |
| const struct radv_shader *ps = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_FRAGMENT); |
| |
| radv_bind_fragment_output_state(cmd_buffer, ps, NULL, graphics_pipeline->custom_blend_mode); |
| |
| radv_bind_vs_input_state(cmd_buffer, graphics_pipeline); |
| |
| radv_bind_multisample_state(cmd_buffer, &graphics_pipeline->ms); |
| |
| radv_bind_custom_blend_mode(cmd_buffer, graphics_pipeline->custom_blend_mode); |
| |
| cmd_buffer->state.db_render_control = graphics_pipeline->db_render_control; |
| |
| cmd_buffer->state.rast_prim = graphics_pipeline->rast_prim; |
| |
| cmd_buffer->state.ia_multi_vgt_param = graphics_pipeline->ia_multi_vgt_param; |
| |
| cmd_buffer->state.uses_out_of_order_rast = graphics_pipeline->uses_out_of_order_rast; |
| cmd_buffer->state.uses_vrs = graphics_pipeline->uses_vrs; |
| cmd_buffer->state.uses_vrs_attachment = graphics_pipeline->uses_vrs_attachment; |
| cmd_buffer->state.uses_vrs_coarse_shading = graphics_pipeline->uses_vrs_coarse_shading; |
| break; |
| } |
| default: |
| assert(!"invalid bind point"); |
| break; |
| } |
| |
| cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].size = pipeline->push_constant_size; |
| cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].dynamic_offset_count = |
| pipeline->dynamic_offset_count; |
| cmd_buffer->descriptors[vk_to_bind_point(pipelineBindPoint)].need_indirect_descriptor_sets = |
| pipeline->need_indirect_descriptor_sets; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, |
| const VkViewport *pViewports) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| ASSERTED const uint32_t total_count = firstViewport + viewportCount; |
| |
| assert(firstViewport < MAX_VIEWPORTS); |
| assert(total_count >= 1 && total_count <= MAX_VIEWPORTS); |
| |
| if (state->dynamic.vk.vp.viewport_count < total_count) |
| state->dynamic.vk.vp.viewport_count = total_count; |
| |
| memcpy(state->dynamic.vk.vp.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports)); |
| for (unsigned i = 0; i < viewportCount; i++) { |
| radv_get_viewport_xform(&pViewports[i], state->dynamic.hw_vp.xform[i + firstViewport].scale, |
| state->dynamic.hw_vp.xform[i + firstViewport].translate); |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_VIEWPORT; |
| state->dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, |
| const VkRect2D *pScissors) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| ASSERTED const uint32_t total_count = firstScissor + scissorCount; |
| |
| assert(firstScissor < MAX_SCISSORS); |
| assert(total_count >= 1 && total_count <= MAX_SCISSORS); |
| |
| if (state->dynamic.vk.vp.scissor_count < total_count) |
| state->dynamic.vk.vp.scissor_count = total_count; |
| |
| memcpy(state->dynamic.vk.vp.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors)); |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_SCISSOR; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.line.width = lineWidth; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LINE_WIDTH; |
| state->dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4]) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| memcpy(state->dynamic.vk.cb.blend_constants, blendConstants, sizeof(float) * 4); |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_BLEND_CONSTANTS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.depth.bounds_test.min = minDepthBounds; |
| state->dynamic.vk.ds.depth.bounds_test.max = maxDepthBounds; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| if (faceMask & VK_STENCIL_FACE_FRONT_BIT) |
| state->dynamic.vk.ds.stencil.front.compare_mask = compareMask; |
| if (faceMask & VK_STENCIL_FACE_BACK_BIT) |
| state->dynamic.vk.ds.stencil.back.compare_mask = compareMask; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_COMPARE_MASK; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| if (faceMask & VK_STENCIL_FACE_FRONT_BIT) |
| state->dynamic.vk.ds.stencil.front.write_mask = writeMask; |
| if (faceMask & VK_STENCIL_FACE_BACK_BIT) |
| state->dynamic.vk.ds.stencil.back.write_mask = writeMask; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_WRITE_MASK; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| if (faceMask & VK_STENCIL_FACE_FRONT_BIT) |
| state->dynamic.vk.ds.stencil.front.reference = reference; |
| if (faceMask & VK_STENCIL_FACE_BACK_BIT) |
| state->dynamic.vk.ds.stencil.back.reference = reference; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_REFERENCE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle, |
| uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount; |
| |
| assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES); |
| assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES); |
| |
| typed_memcpy(&state->dynamic.vk.dr.rectangles[firstDiscardRectangle], pDiscardRectangles, discardRectangleCount); |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer, const VkSampleLocationsInfoEXT *pSampleLocationsInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS); |
| |
| state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel; |
| state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize; |
| state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount; |
| typed_memcpy(&state->dynamic.sample_location.locations[0], pSampleLocationsInfo->pSampleLocations, |
| pSampleLocationsInfo->sampleLocationsCount); |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLineStipple(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor, uint16_t lineStipplePattern) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.line.stipple.factor = lineStippleFactor; |
| state->dynamic.vk.rs.line.stipple.pattern = lineStipplePattern; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCullMode(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.cull_mode = cullMode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_CULL_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetFrontFace(VkCommandBuffer commandBuffer, VkFrontFace frontFace) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.front_face = frontFace; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_FRONT_FACE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer, VkPrimitiveTopology primitiveTopology) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| unsigned primitive_topology = radv_translate_prim(primitiveTopology); |
| |
| if (radv_primitive_topology_is_line_list(state->dynamic.vk.ia.primitive_topology) != |
| radv_primitive_topology_is_line_list(primitive_topology)) |
| state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE; |
| |
| if (radv_prim_is_points_or_lines(state->dynamic.vk.ia.primitive_topology) != |
| radv_prim_is_points_or_lines(primitive_topology)) |
| state->dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| |
| state->dynamic.vk.ia.primitive_topology = primitive_topology; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer, uint32_t viewportCount, const VkViewport *pViewports) |
| { |
| radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer, uint32_t scissorCount, const VkRect2D *pScissors) |
| { |
| radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable) |
| |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.depth.test_enable = depthTestEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_TEST_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.depth.write_enable = depthWriteEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_WRITE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.depth.compare_op = depthCompareOp; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_COMPARE_OP; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.depth.bounds_test.enable = depthBoundsTestEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ds.stencil.test_enable = stencilTestEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_TEST_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetStencilOp(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, VkStencilOp failOp, VkStencilOp passOp, |
| VkStencilOp depthFailOp, VkCompareOp compareOp) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| if (faceMask & VK_STENCIL_FACE_FRONT_BIT) { |
| state->dynamic.vk.ds.stencil.front.op.fail = failOp; |
| state->dynamic.vk.ds.stencil.front.op.pass = passOp; |
| state->dynamic.vk.ds.stencil.front.op.depth_fail = depthFailOp; |
| state->dynamic.vk.ds.stencil.front.op.compare = compareOp; |
| } |
| |
| if (faceMask & VK_STENCIL_FACE_BACK_BIT) { |
| state->dynamic.vk.ds.stencil.back.op.fail = failOp; |
| state->dynamic.vk.ds.stencil.back.op.pass = passOp; |
| state->dynamic.vk.ds.stencil.back.op.depth_fail = depthFailOp; |
| state->dynamic.vk.ds.stencil.back.op.compare = compareOp; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_OP; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize, |
| const VkFragmentShadingRateCombinerOpKHR combinerOps[2]) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.fsr.fragment_size = *pFragmentSize; |
| for (unsigned i = 0; i < 2; i++) |
| state->dynamic.vk.fsr.combiner_ops[i] = combinerOps[i]; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.depth_bias.enable = depthBiasEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ia.primitive_restart_enable = primitiveRestartEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer, VkBool32 rasterizerDiscardEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.rasterizer_discard_enable = rasterizerDiscardEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ts.patch_control_points = patchControlPoints; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| unsigned logic_op = radv_translate_blend_logic_op(logicOp); |
| |
| state->dynamic.vk.cb.logic_op = logic_op; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount, |
| const VkBool32 *pColorWriteEnables) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| uint8_t color_write_enable = 0; |
| |
| assert(attachmentCount <= MAX_RTS); |
| |
| for (uint32_t i = 0; i < attachmentCount; i++) { |
| if (pColorWriteEnables[i]) { |
| color_write_enable |= BITFIELD_BIT(i); |
| } |
| } |
| |
| state->dynamic.vk.cb.color_write_enables = color_write_enable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer, uint32_t vertexBindingDescriptionCount, |
| const VkVertexInputBindingDescription2EXT *pVertexBindingDescriptions, |
| uint32_t vertexAttributeDescriptionCount, |
| const VkVertexInputAttributeDescription2EXT *pVertexAttributeDescriptions) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radv_vertex_input_state *vi_state = &state->vertex_input; |
| |
| const VkVertexInputBindingDescription2EXT *bindings[MAX_VBS]; |
| for (unsigned i = 0; i < vertexBindingDescriptionCount; i++) |
| bindings[pVertexBindingDescriptions[i].binding] = &pVertexBindingDescriptions[i]; |
| |
| state->vbo_misaligned_mask = 0; |
| state->vbo_unaligned_mask = 0; |
| state->vbo_misaligned_mask_invalid = 0; |
| |
| vi_state->attribute_mask = 0; |
| vi_state->instance_rate_inputs = 0; |
| vi_state->nontrivial_divisors = 0; |
| vi_state->zero_divisors = 0; |
| vi_state->post_shuffle = 0; |
| vi_state->alpha_adjust_lo = 0; |
| vi_state->alpha_adjust_hi = 0; |
| vi_state->nontrivial_formats = 0; |
| vi_state->bindings_match_attrib = true; |
| |
| enum amd_gfx_level chip = pdev->info.gfx_level; |
| enum radeon_family family = pdev->info.family; |
| const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(chip, family); |
| |
| for (unsigned i = 0; i < vertexAttributeDescriptionCount; i++) { |
| const VkVertexInputAttributeDescription2EXT *attrib = &pVertexAttributeDescriptions[i]; |
| const VkVertexInputBindingDescription2EXT *binding = bindings[attrib->binding]; |
| unsigned loc = attrib->location; |
| |
| vi_state->attribute_mask |= 1u << loc; |
| vi_state->bindings[loc] = attrib->binding; |
| if (attrib->binding != loc) |
| vi_state->bindings_match_attrib = false; |
| if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) { |
| vi_state->instance_rate_inputs |= 1u << loc; |
| vi_state->divisors[loc] = binding->divisor; |
| if (binding->divisor == 0) { |
| vi_state->zero_divisors |= 1u << loc; |
| } else if (binding->divisor > 1) { |
| vi_state->nontrivial_divisors |= 1u << loc; |
| } |
| } |
| cmd_buffer->vertex_bindings[attrib->binding].stride = binding->stride; |
| vi_state->offsets[loc] = attrib->offset; |
| |
| enum pipe_format format = vk_format_map[attrib->format]; |
| const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format]; |
| |
| vi_state->formats[loc] = format; |
| uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1); |
| vi_state->format_align_req_minus_1[loc] = format_align_req_minus_1; |
| uint8_t component_align_req_minus_1 = |
| MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1; |
| vi_state->component_align_req_minus_1[loc] = component_align_req_minus_1; |
| vi_state->format_sizes[loc] = vtx_info->element_size; |
| vi_state->alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << loc; |
| vi_state->alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << loc; |
| if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) |
| vi_state->post_shuffle |= BITFIELD_BIT(loc); |
| |
| if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) |
| vi_state->nontrivial_formats |= BITFIELD_BIT(loc); |
| |
| if (state->vbo_bound_mask & BITFIELD_BIT(attrib->binding)) { |
| uint32_t stride = binding->stride; |
| uint64_t offset = cmd_buffer->vertex_bindings[attrib->binding].offset + vi_state->offsets[loc]; |
| if ((chip == GFX6 || chip >= GFX10) && ((stride | offset) & format_align_req_minus_1)) |
| state->vbo_misaligned_mask |= BITFIELD_BIT(loc); |
| if ((stride | offset) & component_align_req_minus_1) |
| state->vbo_unaligned_mask |= BITFIELD_BIT(loc); |
| } |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT; |
| state->dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer, VkPolygonMode polygonMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| unsigned polygon_mode = radv_translate_fill(polygonMode); |
| |
| if (radv_polygon_mode_is_points_or_lines(state->dynamic.vk.rs.polygon_mode) != |
| radv_polygon_mode_is_points_or_lines(polygon_mode)) |
| state->dirty |= RADV_CMD_DIRTY_GUARDBAND; |
| |
| state->dynamic.vk.rs.polygon_mode = polygon_mode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_POLYGON_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer, VkTessellationDomainOrigin domainOrigin) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ts.domain_origin = domainOrigin; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer, VkBool32 logicOpEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.cb.logic_op_enable = logicOpEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 stippledLineEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.line.stipple.enable = stippledLineEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToCoverageEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ms.alpha_to_coverage_enable = alphaToCoverageEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToOneEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ms.alpha_to_one_enable = alphaToOneEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits samples, const VkSampleMask *pSampleMask) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ms.sample_mask = pSampleMask[0] & 0xffff; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_MASK; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClipEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.depth_clip_enable = depthClipEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer, |
| VkConservativeRasterizationModeEXT conservativeRasterizationMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.conservative_mode = conservativeRasterizationMode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer, VkBool32 negativeOneToOne) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.vp.depth_clip_negative_one_to_one = negativeOneToOne; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer, VkProvokingVertexModeEXT provokingVertexMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.provoking_vertex = provokingVertexMode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_PROVOKING_VERTEX_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClampEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.depth_clamp_enable = depthClampEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount, |
| const VkColorComponentFlags *pColorWriteMasks) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assert(firstAttachment + attachmentCount <= MAX_RTS); |
| |
| for (uint32_t i = 0; i < attachmentCount; i++) { |
| uint32_t idx = firstAttachment + i; |
| |
| state->dynamic.vk.cb.attachments[idx].write_mask = pColorWriteMasks[i]; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_MASK; |
| |
| if (pdev->info.rbplus_allowed) |
| state->dirty |= RADV_CMD_DIRTY_RBPLUS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount, |
| const VkBool32 *pColorBlendEnables) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assert(firstAttachment + attachmentCount <= MAX_RTS); |
| |
| for (uint32_t i = 0; i < attachmentCount; i++) { |
| uint32_t idx = firstAttachment + i; |
| |
| state->dynamic.vk.cb.attachments[idx].blend_enable = pColorBlendEnables[i]; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits rasterizationSamples) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ms.rasterization_samples = rasterizationSamples; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer, VkLineRasterizationMode lineRasterizationMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.rs.line.mode = lineRasterizationMode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_LINE_RASTERIZATION_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount, |
| const VkColorBlendEquationEXT *pColorBlendEquations) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assert(firstAttachment + attachmentCount <= MAX_RTS); |
| for (uint32_t i = 0; i < attachmentCount; i++) { |
| unsigned idx = firstAttachment + i; |
| |
| state->dynamic.vk.cb.attachments[idx].src_color_blend_factor = pColorBlendEquations[i].srcColorBlendFactor; |
| state->dynamic.vk.cb.attachments[idx].dst_color_blend_factor = pColorBlendEquations[i].dstColorBlendFactor; |
| state->dynamic.vk.cb.attachments[idx].color_blend_op = pColorBlendEquations[i].colorBlendOp; |
| state->dynamic.vk.cb.attachments[idx].src_alpha_blend_factor = pColorBlendEquations[i].srcAlphaBlendFactor; |
| state->dynamic.vk.cb.attachments[idx].dst_alpha_blend_factor = pColorBlendEquations[i].dstAlphaBlendFactor; |
| state->dynamic.vk.cb.attachments[idx].alpha_blend_op = pColorBlendEquations[i].alphaBlendOp; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_EQUATION; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer, VkBool32 sampleLocationsEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.ms.sample_locations_enable = sampleLocationsEnable; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 discardRectangleEnable) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.dr.enable = discardRectangleEnable; |
| state->dynamic.vk.dr.rectangle_count = discardRectangleEnable ? MAX_DISCARD_RECTANGLES : 0; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer, VkDiscardRectangleModeEXT discardRectangleMode) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.dr.mode = discardRectangleMode; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_MODE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer, VkImageAspectFlags aspectMask) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.feedback_loop_aspects = aspectMask; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer, const VkDepthBiasInfoEXT *pDepthBiasInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| const VkDepthBiasRepresentationInfoEXT *dbr_info = |
| vk_find_struct_const(pDepthBiasInfo->pNext, DEPTH_BIAS_REPRESENTATION_INFO_EXT); |
| |
| state->dynamic.vk.rs.depth_bias.constant_factor = pDepthBiasInfo->depthBiasConstantFactor; |
| state->dynamic.vk.rs.depth_bias.clamp = pDepthBiasInfo->depthBiasClamp; |
| state->dynamic.vk.rs.depth_bias.slope_factor = pDepthBiasInfo->depthBiasSlopeFactor; |
| state->dynamic.vk.rs.depth_bias.representation = |
| dbr_info ? dbr_info->depthBiasRepresentation : VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer, |
| const VkRenderingAttachmentLocationInfo *pLocationInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS); |
| for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) { |
| state->dynamic.vk.cal.color_map[i] = pLocationInfo->pColorAttachmentLocations[i] == VK_ATTACHMENT_UNUSED |
| ? MESA_VK_ATTACHMENT_UNUSED |
| : pLocationInfo->pColorAttachmentLocations[i]; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP; |
| state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer, |
| const VkRenderingInputAttachmentIndexInfo *pLocationInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS); |
| for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) { |
| uint8_t val; |
| |
| if (!pLocationInfo->pColorAttachmentInputIndices) { |
| val = i; |
| } else if (pLocationInfo->pColorAttachmentInputIndices[i] == VK_ATTACHMENT_UNUSED) { |
| val = MESA_VK_ATTACHMENT_UNUSED; |
| } else { |
| val = pLocationInfo->pColorAttachmentInputIndices[i]; |
| } |
| |
| state->dynamic.vk.ial.color_map[i] = val; |
| } |
| |
| state->dynamic.vk.ial.depth_att = (pLocationInfo->pDepthInputAttachmentIndex == NULL || |
| *pLocationInfo->pDepthInputAttachmentIndex == VK_ATTACHMENT_UNUSED) |
| ? MESA_VK_ATTACHMENT_UNUSED |
| : *pLocationInfo->pDepthInputAttachmentIndex; |
| state->dynamic.vk.ial.stencil_att = (pLocationInfo->pStencilInputAttachmentIndex == NULL || |
| *pLocationInfo->pStencilInputAttachmentIndex == VK_ATTACHMENT_UNUSED) |
| ? MESA_VK_ATTACHMENT_UNUSED |
| : *pLocationInfo->pStencilInputAttachmentIndex; |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP; |
| state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| } |
| |
| static void |
| radv_handle_color_fbfetch_output(struct radv_cmd_buffer *cmd_buffer, uint32_t index) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radv_attachment *att = &render->color_att[index]; |
| |
| if (!att->iview) |
| return; |
| |
| const struct radv_image *image = att->iview->image; |
| if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) |
| return; |
| |
| if (!radv_layout_dcc_compressed(device, image, att->iview->vk.base_mip_level, att->layout, |
| radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf))) |
| return; |
| |
| const uint32_t color_att_idx = d->vk.cal.color_map[index]; |
| if (color_att_idx == MESA_VK_ATTACHMENT_UNUSED) |
| return; |
| |
| if (d->vk.ial.color_map[color_att_idx] != color_att_idx) |
| return; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk); |
| |
| /* Consider previous rendering work for WAW hazards. */ |
| cmd_buffer->state.flush_bits |= |
| radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, |
| att->iview->image, &range); |
| |
| /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress DCC. */ |
| radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout, |
| VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL, |
| RADV_QUEUE_GENERAL, &range, NULL); |
| |
| att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT; |
| |
| cmd_buffer->state.flush_bits |= radv_dst_access_flush( |
| cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, att->iview->image, &range); |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER; |
| } |
| |
| static void |
| radv_handle_depth_fbfetch_output(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| struct radv_attachment *att = &render->ds_att; |
| |
| if (!att->iview) |
| return; |
| |
| const struct radv_image *image = att->iview->image; |
| if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) |
| return; |
| |
| if (!radv_layout_is_htile_compressed( |
| device, att->iview->image, att->layout, |
| radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf))) |
| return; |
| |
| if (d->vk.ial.depth_att == MESA_VK_ATTACHMENT_UNUSED && d->vk.ial.stencil_att == MESA_VK_ATTACHMENT_UNUSED) |
| return; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk); |
| |
| /* Consider previous rendering work for WAW hazards. */ |
| cmd_buffer->state.flush_bits |= |
| radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, att->iview->image, &range); |
| |
| /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress HTILE. */ |
| radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout, |
| VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL, |
| RADV_QUEUE_GENERAL, &range, NULL); |
| |
| att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT; |
| att->stencil_layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT; |
| |
| cmd_buffer->state.flush_bits |= radv_dst_access_flush( |
| cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, att->iview->image, &range); |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER; |
| } |
| |
| static void |
| radv_handle_fbfetch_output(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| |
| /* Nothing to do when dynamic rendering doesn't use concurrent input attachment writes. */ |
| if (render->has_input_attachment_no_concurrent_writes) |
| return; |
| |
| /* Nothing to do when the bound fragment shader doesn't use subpass input attachments. */ |
| if (!cmd_buffer->state.uses_fbfetch_output) |
| return; |
| |
| /* Check if any color attachments are compressed and also used as input attachments. */ |
| for (uint32_t i = 0; i < render->color_att_count; i++) { |
| radv_handle_color_fbfetch_output(cmd_buffer, i); |
| } |
| |
| /* Check if the depth/stencil attachment is compressed and also used as input attachment. */ |
| radv_handle_depth_fbfetch_output(cmd_buffer); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCmdBuffers) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(primary); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| assert(commandBufferCount > 0); |
| |
| radv_emit_mip_change_flush_default(primary); |
| |
| /* Emit pending flushes on primary prior to executing secondary */ |
| radv_emit_cache_flush(primary); |
| |
| /* Make sure CP DMA is idle on primary prior to executing secondary. */ |
| radv_cp_dma_wait_for_idle(primary); |
| |
| for (uint32_t i = 0; i < commandBufferCount; i++) { |
| VK_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]); |
| |
| /* Do not launch an IB2 for secondary command buffers that contain |
| * DRAW_{INDEX}_INDIRECT_{MULTI} on GFX6-7 because it's illegal and hangs the GPU. |
| */ |
| const bool allow_ib2 = !secondary->state.uses_draw_indirect || pdev->info.gfx_level >= GFX8; |
| |
| primary->scratch_size_per_wave_needed = |
| MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed); |
| primary->scratch_waves_wanted = MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted); |
| primary->compute_scratch_size_per_wave_needed = |
| MAX2(primary->compute_scratch_size_per_wave_needed, secondary->compute_scratch_size_per_wave_needed); |
| primary->compute_scratch_waves_wanted = |
| MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted); |
| |
| if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed) |
| primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed; |
| if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed) |
| primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed; |
| if (secondary->tess_rings_needed) |
| primary->tess_rings_needed = true; |
| if (secondary->task_rings_needed) |
| primary->task_rings_needed = true; |
| if (secondary->mesh_scratch_ring_needed) |
| primary->mesh_scratch_ring_needed = true; |
| if (secondary->sample_positions_needed) |
| primary->sample_positions_needed = true; |
| if (secondary->gds_needed) |
| primary->gds_needed = true; |
| if (secondary->gds_oa_needed) |
| primary->gds_oa_needed = true; |
| |
| primary->shader_upload_seq = MAX2(primary->shader_upload_seq, secondary->shader_upload_seq); |
| |
| primary->state.uses_fbfetch_output |= secondary->state.uses_fbfetch_output; |
| |
| if (!secondary->state.render.has_image_views) { |
| if (primary->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT) |
| radv_handle_fbfetch_output(primary); |
| |
| if (primary->state.render.active && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) { |
| /* Emit the framebuffer state from primary if secondary |
| * has been recorded without a framebuffer, otherwise |
| * fast color/depth clears can't work. |
| */ |
| radv_emit_framebuffer_state(primary); |
| } |
| } |
| |
| if (secondary->gang.cs) { |
| if (!radv_gang_init(primary)) |
| return; |
| |
| struct radeon_cmdbuf *ace_primary = primary->gang.cs; |
| struct radeon_cmdbuf *ace_secondary = secondary->gang.cs; |
| |
| /* Emit pending flushes on primary prior to executing secondary. */ |
| radv_gang_cache_flush(primary); |
| |
| /* Wait for gang semaphores, if necessary. */ |
| if (radv_flush_gang_leader_semaphore(primary)) |
| radv_wait_gang_leader(primary); |
| if (radv_flush_gang_follower_semaphore(primary)) |
| radv_wait_gang_follower(primary); |
| |
| /* Execute the secondary compute cmdbuf. |
| * Don't use IB2 packets because they are not supported on compute queues. |
| */ |
| device->ws->cs_execute_secondary(ace_primary, ace_secondary, false); |
| } |
| |
| /* Update pending ACE internal flush bits from the secondary cmdbuf */ |
| primary->gang.flush_bits |= secondary->gang.flush_bits; |
| |
| /* Increment gang semaphores if secondary was dirty. |
| * This happens when the secondary cmdbuf has a barrier which |
| * isn't consumed by a draw call. |
| */ |
| if (radv_gang_leader_sem_dirty(secondary)) |
| primary->gang.sem.leader_value++; |
| if (radv_gang_follower_sem_dirty(secondary)) |
| primary->gang.sem.follower_value++; |
| |
| device->ws->cs_execute_secondary(primary->cs, secondary->cs, allow_ib2); |
| |
| /* When the secondary command buffer is compute only we don't |
| * need to re-emit the current graphics pipeline. |
| */ |
| if (secondary->state.emitted_graphics_pipeline) { |
| primary->state.emitted_graphics_pipeline = secondary->state.emitted_graphics_pipeline; |
| } |
| |
| /* When the secondary command buffer is graphics only we don't |
| * need to re-emit the current compute pipeline. |
| */ |
| if (secondary->state.emitted_compute_pipeline) { |
| primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline; |
| } |
| |
| if (secondary->state.last_ia_multi_vgt_param) { |
| primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param; |
| } |
| |
| if (secondary->state.last_ge_cntl) { |
| primary->state.last_ge_cntl = secondary->state.last_ge_cntl; |
| } |
| |
| primary->state.last_num_instances = secondary->state.last_num_instances; |
| primary->state.last_subpass_color_count = secondary->state.last_subpass_color_count; |
| |
| if (secondary->state.last_index_type != -1) { |
| primary->state.last_index_type = secondary->state.last_index_type; |
| } |
| |
| primary->state.last_vrs_rates = secondary->state.last_vrs_rates; |
| primary->state.last_force_vrs_rates_offset = secondary->state.last_force_vrs_rates_offset; |
| |
| primary->state.rb_noncoherent_dirty |= secondary->state.rb_noncoherent_dirty; |
| |
| primary->state.uses_draw_indirect |= secondary->state.uses_draw_indirect; |
| |
| for (uint32_t reg = 0; reg < RADV_NUM_ALL_TRACKED_REGS; reg++) { |
| if (!BITSET_TEST(secondary->tracked_regs.reg_saved_mask, reg)) |
| continue; |
| |
| BITSET_SET(primary->tracked_regs.reg_saved_mask, reg); |
| primary->tracked_regs.reg_value[reg] = secondary->tracked_regs.reg_value[reg]; |
| } |
| |
| memcpy(primary->tracked_regs.spi_ps_input_cntl, secondary->tracked_regs.spi_ps_input_cntl, |
| sizeof(primary->tracked_regs.spi_ps_input_cntl)); |
| } |
| |
| /* After executing commands from secondary buffers we have to dirty |
| * some states. |
| */ |
| primary->state.dirty_dynamic |= RADV_DYNAMIC_ALL; |
| primary->state.dirty |= RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_GUARDBAND | |
| RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_OCCLUSION_QUERY | |
| RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT; |
| radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE); |
| |
| primary->state.last_first_instance = -1; |
| primary->state.last_drawid = -1; |
| primary->state.last_vertex_offset_valid = false; |
| } |
| |
| static void |
| radv_mark_noncoherent_rb(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| |
| /* Have to be conservative in cmdbuffers with inherited attachments. */ |
| if (!render->has_image_views) { |
| cmd_buffer->state.rb_noncoherent_dirty = true; |
| return; |
| } |
| |
| for (uint32_t i = 0; i < render->color_att_count; i++) { |
| const struct radv_image_view *iview = render->color_att[i].iview; |
| |
| if (!iview) |
| continue; |
| |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| if (!radv_image_is_l2_coherent(device, iview->image, &range)) { |
| cmd_buffer->state.rb_noncoherent_dirty = true; |
| return; |
| } |
| } |
| |
| const struct radv_image_view *iview = render->ds_att.iview; |
| |
| if (iview) { |
| const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk); |
| |
| if (!radv_image_is_l2_coherent(device, iview->image, &range)) |
| cmd_buffer->state.rb_noncoherent_dirty = true; |
| } |
| } |
| |
| static VkImageLayout |
| attachment_initial_layout(const VkRenderingAttachmentInfo *att) |
| { |
| const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info = |
| vk_find_struct_const(att->pNext, RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA); |
| if (layout_info != NULL) |
| return layout_info->initialLayout; |
| |
| return att->imageLayout; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo *pRenderingInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| const struct VkSampleLocationsInfoEXT *sample_locs_info = |
| vk_find_struct_const(pRenderingInfo->pNext, SAMPLE_LOCATIONS_INFO_EXT); |
| |
| struct radv_sample_locations_state sample_locations = { |
| .count = 0, |
| }; |
| if (sample_locs_info) { |
| sample_locations = (struct radv_sample_locations_state){ |
| .per_pixel = sample_locs_info->sampleLocationsPerPixel, |
| .grid_size = sample_locs_info->sampleLocationGridSize, |
| .count = sample_locs_info->sampleLocationsCount, |
| }; |
| typed_memcpy(sample_locations.locations, sample_locs_info->pSampleLocations, |
| sample_locs_info->sampleLocationsCount); |
| } |
| |
| /* Dynamic rendering does not have implicit transitions, so limit the marker to |
| * when a render pass is used. |
| * Additionally, some internal meta operations called inside a barrier may issue |
| * render calls (with dynamic rendering), so this makes sure those case don't |
| * create a nested barrier scope. |
| */ |
| if (cmd_buffer->vk.render_pass) |
| radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC); |
| uint32_t color_samples = 0, ds_samples = 0; |
| struct radv_attachment color_att[MAX_RTS]; |
| for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) { |
| const VkRenderingAttachmentInfo *att_info = &pRenderingInfo->pColorAttachments[i]; |
| |
| color_att[i] = (struct radv_attachment){.iview = NULL}; |
| if (att_info->imageView == VK_NULL_HANDLE) |
| continue; |
| |
| VK_FROM_HANDLE(radv_image_view, iview, att_info->imageView); |
| color_att[i].format = iview->vk.format; |
| color_att[i].iview = iview; |
| color_att[i].layout = att_info->imageLayout; |
| radv_initialise_color_surface(device, &color_att[i].cb, iview); |
| |
| if (att_info->resolveMode != VK_RESOLVE_MODE_NONE && att_info->resolveImageView != VK_NULL_HANDLE) { |
| color_att[i].resolve_mode = att_info->resolveMode; |
| color_att[i].resolve_iview = radv_image_view_from_handle(att_info->resolveImageView); |
| color_att[i].resolve_layout = att_info->resolveImageLayout; |
| } |
| |
| color_samples = MAX2(color_samples, color_att[i].iview->vk.image->samples); |
| |
| VkImageLayout initial_layout = attachment_initial_layout(att_info); |
| if (initial_layout != color_att[i].layout) { |
| assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT)); |
| radv_handle_rendering_image_transition(cmd_buffer, color_att[i].iview, pRenderingInfo->layerCount, |
| pRenderingInfo->viewMask, initial_layout, VK_IMAGE_LAYOUT_UNDEFINED, |
| color_att[i].layout, VK_IMAGE_LAYOUT_UNDEFINED, &sample_locations); |
| } |
| } |
| |
| struct radv_attachment ds_att = {.iview = NULL}; |
| VkImageAspectFlags ds_att_aspects = 0; |
| const VkRenderingAttachmentInfo *d_att_info = pRenderingInfo->pDepthAttachment; |
| const VkRenderingAttachmentInfo *s_att_info = pRenderingInfo->pStencilAttachment; |
| if ((d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) || |
| (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE)) { |
| struct radv_image_view *d_iview = NULL, *s_iview = NULL; |
| struct radv_image_view *d_res_iview = NULL, *s_res_iview = NULL; |
| VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED; |
| VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED; |
| |
| if (d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) { |
| d_iview = radv_image_view_from_handle(d_att_info->imageView); |
| initial_depth_layout = attachment_initial_layout(d_att_info); |
| ds_att.layout = d_att_info->imageLayout; |
| |
| if (d_att_info->resolveMode != VK_RESOLVE_MODE_NONE && d_att_info->resolveImageView != VK_NULL_HANDLE) { |
| d_res_iview = radv_image_view_from_handle(d_att_info->resolveImageView); |
| ds_att.resolve_mode = d_att_info->resolveMode; |
| ds_att.resolve_layout = d_att_info->resolveImageLayout; |
| } |
| } |
| |
| if (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE) { |
| s_iview = radv_image_view_from_handle(s_att_info->imageView); |
| initial_stencil_layout = attachment_initial_layout(s_att_info); |
| ds_att.stencil_layout = s_att_info->imageLayout; |
| |
| if (s_att_info->resolveMode != VK_RESOLVE_MODE_NONE && s_att_info->resolveImageView != VK_NULL_HANDLE) { |
| s_res_iview = radv_image_view_from_handle(s_att_info->resolveImageView); |
| ds_att.stencil_resolve_mode = s_att_info->resolveMode; |
| ds_att.stencil_resolve_layout = s_att_info->resolveImageLayout; |
| } |
| } |
| |
| assert(d_iview == NULL || s_iview == NULL || d_iview == s_iview); |
| ds_att.iview = d_iview ? d_iview : s_iview, ds_att.format = ds_att.iview->vk.format; |
| |
| if (d_iview && s_iview) { |
| ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; |
| } else if (d_iview) { |
| ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT; |
| } else { |
| ds_att_aspects = VK_IMAGE_ASPECT_STENCIL_BIT; |
| } |
| |
| radv_initialise_ds_surface(device, &ds_att.ds, ds_att.iview, ds_att_aspects); |
| |
| assert(d_res_iview == NULL || s_res_iview == NULL || d_res_iview == s_res_iview); |
| ds_att.resolve_iview = d_res_iview ? d_res_iview : s_res_iview; |
| |
| ds_samples = ds_att.iview->vk.image->samples; |
| |
| if (initial_depth_layout != ds_att.layout || initial_stencil_layout != ds_att.stencil_layout) { |
| assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT)); |
| radv_handle_rendering_image_transition(cmd_buffer, ds_att.iview, pRenderingInfo->layerCount, |
| pRenderingInfo->viewMask, initial_depth_layout, initial_stencil_layout, |
| ds_att.layout, ds_att.stencil_layout, &sample_locations); |
| } |
| } |
| if (cmd_buffer->vk.render_pass) |
| radv_describe_barrier_end(cmd_buffer); |
| |
| const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info = |
| vk_find_struct_const(pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR); |
| struct radv_attachment vrs_att = {.iview = NULL}; |
| VkExtent2D vrs_texel_size = {.width = 0}; |
| if (fsr_info && fsr_info->imageView) { |
| VK_FROM_HANDLE(radv_image_view, iview, fsr_info->imageView); |
| vrs_att = (struct radv_attachment){ |
| .format = iview->vk.format, |
| .iview = iview, |
| .layout = fsr_info->imageLayout, |
| }; |
| vrs_texel_size = fsr_info->shadingRateAttachmentTexelSize; |
| } |
| |
| /* Now that we've done any layout transitions which may invoke meta, we can |
| * fill out the actual rendering info and set up for the client's render pass. |
| */ |
| radv_cmd_buffer_reset_rendering(cmd_buffer); |
| |
| struct radv_rendering_state *render = &cmd_buffer->state.render; |
| render->active = true; |
| render->has_image_views = true; |
| render->has_input_attachment_no_concurrent_writes = |
| !!(pRenderingInfo->flags & VK_RENDERING_INPUT_ATTACHMENT_NO_CONCURRENT_WRITES_BIT_MESA); |
| render->area = pRenderingInfo->renderArea; |
| render->view_mask = pRenderingInfo->viewMask; |
| render->layer_count = pRenderingInfo->layerCount; |
| render->color_samples = color_samples; |
| render->ds_samples = ds_samples; |
| render->max_samples = MAX2(color_samples, ds_samples); |
| render->sample_locations = sample_locations; |
| render->color_att_count = pRenderingInfo->colorAttachmentCount; |
| typed_memcpy(render->color_att, color_att, render->color_att_count); |
| render->ds_att = ds_att; |
| render->ds_att_aspects = ds_att_aspects; |
| render->vrs_att = vrs_att; |
| render->vrs_texel_size = vrs_texel_size; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER | RADV_CMD_DIRTY_FBFETCH_OUTPUT; |
| |
| if (pdev->info.rbplus_allowed) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS; |
| |
| cmd_buffer->state.dirty_dynamic |= |
| RADV_DYNAMIC_DEPTH_BIAS | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_COLOR_BLEND_ENABLE; |
| if (pdev->info.gfx_level >= GFX12) |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| |
| if (render->vrs_att.iview && pdev->info.gfx_level == GFX10_3) { |
| if (render->ds_att.iview && |
| radv_htile_enabled(render->ds_att.iview->image, render->ds_att.iview->vk.base_mip_level)) { |
| /* When we have a VRS attachment and a depth/stencil attachment, we just need to copy the |
| * VRS rates to the HTILE buffer of the attachment. |
| */ |
| struct radv_image_view *ds_iview = render->ds_att.iview; |
| struct radv_image *ds_image = ds_iview->image; |
| uint32_t level = ds_iview->vk.base_mip_level; |
| |
| /* HTILE buffer */ |
| uint64_t htile_offset = ds_image->bindings[0].offset + ds_image->planes[0].surface.meta_offset + |
| ds_image->planes[0].surface.u.gfx9.meta_levels[level].offset; |
| uint64_t htile_size = ds_image->planes[0].surface.u.gfx9.meta_levels[level].size; |
| struct radv_buffer htile_buffer; |
| |
| radv_buffer_init(&htile_buffer, device, ds_image->bindings[0].bo, htile_size, htile_offset); |
| |
| assert(render->area.offset.x + render->area.extent.width <= ds_image->vk.extent.width && |
| render->area.offset.x + render->area.extent.height <= ds_image->vk.extent.height); |
| |
| /* Copy the VRS rates to the HTILE buffer. */ |
| radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &render->area, ds_image, &htile_buffer, true); |
| |
| radv_buffer_finish(&htile_buffer); |
| } else { |
| /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, or when |
| * HTILE isn't enabled, we use a fallback that copies the VRS rates to our internal HTILE buffer. |
| */ |
| struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer); |
| |
| if (ds_image && render->area.offset.x < ds_image->vk.extent.width && |
| render->area.offset.y < ds_image->vk.extent.height) { |
| /* HTILE buffer */ |
| struct radv_buffer *htile_buffer = device->vrs.buffer; |
| |
| VkRect2D area = render->area; |
| area.extent.width = MIN2(area.extent.width, ds_image->vk.extent.width - area.offset.x); |
| area.extent.height = MIN2(area.extent.height, ds_image->vk.extent.height - area.offset.y); |
| |
| /* Copy the VRS rates to the HTILE buffer. */ |
| radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &area, ds_image, htile_buffer, false); |
| } |
| } |
| } |
| |
| const uint32_t minx = render->area.offset.x; |
| const uint32_t miny = render->area.offset.y; |
| const uint32_t maxx = minx + render->area.extent.width; |
| const uint32_t maxy = miny + render->area.extent.height; |
| |
| radeon_check_space(device->ws, cmd_buffer->cs, 6); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL, |
| S_028204_TL_X(minx) | S_028204_TL_Y_GFX12(miny)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR, |
| S_028208_BR_X(maxx - 1) | S_028208_BR_Y(maxy - 1)); /* inclusive */ |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL, |
| S_028204_TL_X(minx) | S_028204_TL_Y_GFX6(miny)); |
| radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR, |
| S_028208_BR_X(maxx) | S_028208_BR_Y(maxy)); |
| } |
| |
| radv_emit_fb_mip_change_flush(cmd_buffer); |
| |
| if (!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT)) |
| radv_cmd_buffer_clear_rendering(cmd_buffer, pRenderingInfo); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdEndRendering(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| radv_mark_noncoherent_rb(cmd_buffer); |
| radv_cmd_buffer_resolve_rendering(cmd_buffer); |
| radv_cmd_buffer_reset_rendering(cmd_buffer); |
| } |
| |
| static void |
| radv_emit_view_index_per_stage(struct radeon_cmdbuf *cs, const struct radv_shader *shader, uint32_t base_reg, |
| unsigned index) |
| { |
| const uint32_t view_index_offset = radv_get_user_sgpr_loc(shader, AC_UD_VIEW_INDEX); |
| |
| if (!view_index_offset) |
| return; |
| |
| radeon_set_sh_reg(cs, view_index_offset, index); |
| } |
| |
| static void |
| radv_emit_view_index(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *cs, unsigned index) |
| { |
| radv_foreach_stage(stage, cmd_state->active_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT) |
| { |
| const struct radv_shader *shader = radv_get_shader(cmd_state->shaders, stage); |
| |
| radv_emit_view_index_per_stage(cs, shader, shader->info.user_data_0, index); |
| } |
| |
| if (cmd_state->gs_copy_shader) { |
| radv_emit_view_index_per_stage(cs, cmd_state->gs_copy_shader, R_00B130_SPI_SHADER_USER_DATA_VS_0, index); |
| } |
| } |
| |
| /** |
| * Emulates predication for MEC using COND_EXEC. |
| * When the current command buffer is predicating, emit a COND_EXEC packet |
| * so that the MEC skips the next few dwords worth of packets. |
| * |
| * To make it work with inverted conditional rendering, we allocate |
| * space in the upload BO and emit some packets to invert the condition. |
| */ |
| static void |
| radv_cs_emit_compute_predication(const struct radv_device *device, struct radv_cmd_state *state, |
| struct radeon_cmdbuf *cs, uint64_t inv_va, bool *inv_emitted, unsigned dwords) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (!state->predicating) |
| return; |
| |
| uint64_t va = state->predication_va; |
| |
| if (!state->predication_type) { |
| /* Invert the condition the first time it is needed. */ |
| if (!*inv_emitted) { |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| *inv_emitted = true; |
| |
| /* Write 1 to the inverted predication VA. */ |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | |
| COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0)); |
| radeon_emit(cs, 1); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, inv_va); |
| radeon_emit(cs, inv_va >> 32); |
| |
| /* If the API predication VA == 0, skip next command. */ |
| radv_emit_cond_exec(device, cs, va, 6 /* 1x COPY_DATA size */); |
| |
| /* Write 0 to the new predication VA (when the API condition != 0) */ |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | |
| COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0)); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, inv_va); |
| radeon_emit(cs, inv_va >> 32); |
| } |
| |
| va = inv_va; |
| } |
| |
| radv_emit_cond_exec(device, cs, va, dwords); |
| } |
| |
| static void |
| radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count, uint32_t use_opaque) |
| { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating)); |
| radeon_emit(cmd_buffer->cs, vertex_count); |
| radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque); |
| } |
| |
| /** |
| * Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices. |
| * |
| * The starting address "index_va" may point anywhere within the index buffer. The number of |
| * indexes allocated in the index buffer *past that point* is specified by "max_index_count". |
| * Hardware uses this information to return 0 for out-of-bounds reads. |
| */ |
| static void |
| radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va, uint32_t max_index_count, |
| uint32_t index_count, bool not_eop) |
| { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating)); |
| radeon_emit(cmd_buffer->cs, max_index_count); |
| radeon_emit(cmd_buffer->cs, index_va); |
| radeon_emit(cmd_buffer->cs, index_va >> 32); |
| radeon_emit(cmd_buffer->cs, index_count); |
| /* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs |
| * can be changed between draws and GS fast launch must be disabled. |
| * NOT_EOP doesn't work on gfx6-gfx9 and gfx12. |
| */ |
| radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(not_eop)); |
| } |
| |
| /* MUST inline this function to avoid massive perf loss in drawoverhead */ |
| ALWAYS_INLINE static void |
| radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed, uint32_t draw_count, |
| uint64_t count_va, uint32_t stride) |
| { |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX; |
| bool draw_id_enable = cmd_buffer->state.uses_drawid; |
| uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr; |
| uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0; |
| bool predicating = cmd_buffer->state.predicating; |
| assert(base_reg); |
| |
| /* just reset draw state for vertex data */ |
| cmd_buffer->state.last_first_instance = -1; |
| cmd_buffer->state.last_num_instances = -1; |
| cmd_buffer->state.last_drawid = -1; |
| cmd_buffer->state.last_vertex_offset_valid = false; |
| |
| vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2; |
| if (cmd_buffer->state.uses_baseinstance) |
| start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2; |
| if (draw_id_enable) |
| draw_id_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2; |
| |
| if (draw_count == 1 && !count_va && !draw_id_enable) { |
| radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating)); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, vertex_offset_reg); |
| radeon_emit(cs, start_instance_reg); |
| radeon_emit(cs, di_src_sel); |
| } else { |
| radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8, predicating)); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, vertex_offset_reg); |
| radeon_emit(cs, start_instance_reg); |
| radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) | S_2C3_COUNT_INDIRECT_ENABLE(!!count_va)); |
| radeon_emit(cs, draw_count); /* count */ |
| radeon_emit(cs, count_va); /* count_addr */ |
| radeon_emit(cs, count_va >> 32); |
| radeon_emit(cs, stride); /* stride */ |
| radeon_emit(cs, di_src_sel); |
| } |
| |
| cmd_buffer->state.uses_draw_indirect = true; |
| } |
| |
| ALWAYS_INLINE static void |
| radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t draw_count, uint64_t count_va, |
| uint32_t stride) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH]; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr; |
| bool predicating = cmd_buffer->state.predicating; |
| assert(base_reg || (!cmd_buffer->state.uses_drawid && !mesh_shader->info.cs.uses_grid_size)); |
| |
| /* Reset draw state. */ |
| cmd_buffer->state.last_first_instance = -1; |
| cmd_buffer->state.last_num_instances = -1; |
| cmd_buffer->state.last_drawid = -1; |
| cmd_buffer->state.last_vertex_offset_valid = false; |
| |
| uint32_t xyz_dim_enable = mesh_shader->info.cs.uses_grid_size; |
| uint32_t xyz_dim_reg = !xyz_dim_enable ? 0 : (base_reg - SI_SH_REG_OFFSET) >> 2; |
| uint32_t draw_id_enable = !!cmd_buffer->state.uses_drawid; |
| uint32_t draw_id_reg = !draw_id_enable ? 0 : (base_reg + (xyz_dim_enable ? 12 : 0) - SI_SH_REG_OFFSET) >> 2; |
| |
| uint32_t mode1_enable = !pdev->mesh_fast_launch_2; |
| |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_MESH_INDIRECT_MULTI, 7, predicating) | PKT3_RESET_FILTER_CAM_S(1)); |
| radeon_emit(cs, 0); /* data_offset */ |
| radeon_emit(cs, S_4C1_XYZ_DIM_REG(xyz_dim_reg) | S_4C1_DRAW_INDEX_REG(draw_id_reg)); |
| if (pdev->info.gfx_level >= GFX11) |
| radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va) | |
| S_4C2_XYZ_DIM_ENABLE(xyz_dim_enable) | S_4C2_MODE1_ENABLE(mode1_enable)); |
| else |
| radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va)); |
| radeon_emit(cs, draw_count); |
| radeon_emit(cs, count_va); |
| radeon_emit(cs, count_va >> 32); |
| radeon_emit(cs, stride); |
| radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device *device, |
| const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs, |
| const uint32_t x, const uint32_t y, const uint32_t z) |
| { |
| const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK]; |
| const bool predicating = cmd_state->predicating; |
| const uint32_t dispatch_initiator = |
| device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32); |
| const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY); |
| |
| radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_DIRECT_ACE, 4, predicating) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(ace_cs, x); |
| radeon_emit(ace_cs, y); |
| radeon_emit(ace_cs, z); |
| radeon_emit(ace_cs, dispatch_initiator); |
| radeon_emit(ace_cs, ring_entry_reg & 0xFFFF); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device *device, |
| const struct radv_cmd_state *cmd_state, |
| struct radeon_cmdbuf *ace_cs, uint64_t data_va, |
| uint32_t draw_count, uint64_t count_va, uint32_t stride) |
| { |
| assert((data_va & 0x03) == 0); |
| assert((count_va & 0x03) == 0); |
| |
| const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK]; |
| |
| const uint32_t dispatch_initiator = |
| device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32); |
| const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY); |
| const uint32_t xyz_dim_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_GRID_SIZE); |
| const uint32_t draw_id_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_TASK_DRAW_ID); |
| |
| radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_INDIRECT_MULTI_ACE, 9, 0) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(ace_cs, data_va); |
| radeon_emit(ace_cs, data_va >> 32); |
| radeon_emit(ace_cs, S_AD2_RING_ENTRY_REG(ring_entry_reg)); |
| radeon_emit(ace_cs, S_AD3_COUNT_INDIRECT_ENABLE(!!count_va) | S_AD3_DRAW_INDEX_ENABLE(!!draw_id_reg) | |
| S_AD3_XYZ_DIM_ENABLE(!!xyz_dim_reg) | S_AD3_DRAW_INDEX_REG(draw_id_reg)); |
| radeon_emit(ace_cs, S_AD4_XYZ_DIM_REG(xyz_dim_reg)); |
| radeon_emit(ace_cs, draw_count); |
| radeon_emit(ace_cs, count_va); |
| radeon_emit(ace_cs, count_va >> 32); |
| radeon_emit(ace_cs, stride); |
| radeon_emit(ace_cs, dispatch_initiator); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device *device, const struct radv_cmd_state *cmd_state, |
| struct radeon_cmdbuf *cs) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *mesh_shader = cmd_state->shaders[MESA_SHADER_MESH]; |
| const bool predicating = cmd_state->predicating; |
| |
| const uint32_t ring_entry_reg = radv_get_user_sgpr(mesh_shader, AC_UD_TASK_RING_ENTRY); |
| |
| uint32_t xyz_dim_en = mesh_shader->info.cs.uses_grid_size; |
| uint32_t xyz_dim_reg = !xyz_dim_en ? 0 : (cmd_state->vtx_base_sgpr - SI_SH_REG_OFFSET) >> 2; |
| uint32_t mode1_en = !pdev->mesh_fast_launch_2; |
| uint32_t linear_dispatch_en = cmd_state->shaders[MESA_SHADER_TASK]->info.cs.linear_taskmesh_dispatch; |
| const bool sqtt_en = !!device->sqtt.bo; |
| |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_GFX, 2, predicating) | PKT3_RESET_FILTER_CAM_S(1)); |
| radeon_emit(cs, S_4D0_RING_ENTRY_REG(ring_entry_reg) | S_4D0_XYZ_DIM_REG(xyz_dim_reg)); |
| if (pdev->info.gfx_level >= GFX11) |
| radeon_emit(cs, S_4D1_XYZ_DIM_ENABLE(xyz_dim_en) | S_4D1_MODE1_ENABLE(mode1_en) | |
| S_4D1_LINEAR_DISPATCH_ENABLE(linear_dispatch_en) | S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en)); |
| else |
| radeon_emit(cs, S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en)); |
| radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, |
| const uint32_t vertex_offset) |
| { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const bool uses_baseinstance = state->uses_baseinstance; |
| const bool uses_drawid = state->uses_drawid; |
| |
| radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num); |
| |
| radeon_emit(cs, vertex_offset); |
| state->last_vertex_offset_valid = true; |
| state->last_vertex_offset = vertex_offset; |
| if (uses_drawid) { |
| radeon_emit(cs, 0); |
| state->last_drawid = 0; |
| } |
| if (uses_baseinstance) { |
| radeon_emit(cs, info->first_instance); |
| state->last_first_instance = info->first_instance; |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, |
| const uint32_t vertex_offset) |
| { |
| const struct radv_cmd_state *state = &cmd_buffer->state; |
| const bool uses_baseinstance = state->uses_baseinstance; |
| const bool uses_drawid = state->uses_drawid; |
| |
| if (!state->last_vertex_offset_valid || vertex_offset != state->last_vertex_offset || |
| (uses_drawid && 0 != state->last_drawid) || |
| (uses_baseinstance && info->first_instance != state->last_first_instance)) |
| radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_offset, uint32_t drawid) |
| { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, 1 + !!drawid); |
| radeon_emit(cs, vertex_offset); |
| state->last_vertex_offset_valid = true; |
| state->last_vertex_offset = vertex_offset; |
| if (drawid) |
| radeon_emit(cs, drawid); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_userdata_mesh(struct radv_cmd_buffer *cmd_buffer, const uint32_t x, const uint32_t y, const uint32_t z) |
| { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH]; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const bool uses_drawid = state->uses_drawid; |
| const bool uses_grid_size = mesh_shader->info.cs.uses_grid_size; |
| |
| if (!uses_drawid && !uses_grid_size) |
| return; |
| |
| radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num); |
| if (uses_grid_size) { |
| radeon_emit(cs, x); |
| radeon_emit(cs, y); |
| radeon_emit(cs, z); |
| } |
| if (uses_drawid) { |
| radeon_emit(cs, 0); |
| state->last_drawid = 0; |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_userdata_task(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y, |
| uint32_t z) |
| { |
| const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK]; |
| |
| const uint32_t xyz_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_GRID_SIZE); |
| const uint32_t draw_id_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_TASK_DRAW_ID); |
| |
| if (xyz_offset) { |
| radeon_set_sh_reg_seq(ace_cs, xyz_offset, 3); |
| radeon_emit(ace_cs, x); |
| radeon_emit(ace_cs, y); |
| radeon_emit(ace_cs, z); |
| } |
| |
| if (draw_id_offset) { |
| radeon_set_sh_reg_seq(ace_cs, draw_id_offset, 1); |
| radeon_emit(ace_cs, 0); |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, |
| uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *minfo, uint32_t stride, |
| const int32_t *vertexOffset) |
| |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const int index_size = radv_get_vgt_index_size(state->index_type); |
| unsigned i = 0; |
| const bool uses_drawid = state->uses_drawid; |
| const bool can_eop = !uses_drawid && pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12; |
| |
| if (uses_drawid) { |
| if (vertexOffset) { |
| radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset); |
| vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) { |
| uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex; |
| uint64_t index_va = state->index_va + draw->firstIndex * index_size; |
| |
| /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */ |
| if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug) |
| radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes); |
| |
| if (i > 0) |
| radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i); |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } else { |
| u_foreach_bit (view, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } |
| } |
| } |
| } else { |
| vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) { |
| uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex; |
| uint64_t index_va = state->index_va + draw->firstIndex * index_size; |
| |
| /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */ |
| if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug) |
| radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes); |
| |
| if (i > 0) { |
| assert(state->last_vertex_offset_valid); |
| if (state->last_vertex_offset != draw->vertexOffset) |
| radv_emit_userdata_vertex_drawid(cmd_buffer, draw->vertexOffset, i); |
| else |
| radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i); |
| } else |
| radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset); |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } else { |
| u_foreach_bit (view, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } |
| } |
| } |
| } |
| if (drawCount > 1) { |
| state->last_drawid = drawCount - 1; |
| } |
| } else { |
| if (vertexOffset) { |
| if (pdev->info.gfx_level == GFX10) { |
| /* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have |
| * count == 0 for the last draw that doesn't have NOT_EOP. |
| */ |
| while (drawCount > 1) { |
| const VkMultiDrawIndexedInfoEXT *last = |
| (const VkMultiDrawIndexedInfoEXT *)(((const uint8_t *)minfo) + (drawCount - 1) * stride); |
| if (last->indexCount) |
| break; |
| drawCount--; |
| } |
| } |
| |
| radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset); |
| vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) { |
| uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex; |
| uint64_t index_va = state->index_va + draw->firstIndex * index_size; |
| |
| /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */ |
| if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug) |
| radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes); |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, |
| can_eop && i < drawCount - 1); |
| } else { |
| u_foreach_bit (view, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } |
| } |
| } |
| } else { |
| vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) { |
| uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex; |
| uint64_t index_va = state->index_va + draw->firstIndex * index_size; |
| |
| /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */ |
| if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug) |
| radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes); |
| |
| const VkMultiDrawIndexedInfoEXT *next = |
| (const VkMultiDrawIndexedInfoEXT *)(i < drawCount - 1 ? ((uint8_t *)draw + stride) : NULL); |
| const bool offset_changes = next && next->vertexOffset != draw->vertexOffset; |
| radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset); |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, |
| can_eop && !offset_changes && i < drawCount - 1); |
| } else { |
| u_foreach_bit (view, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| |
| radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false); |
| } |
| } |
| } |
| } |
| if (drawCount > 1) { |
| state->last_drawid = drawCount - 1; |
| } |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, |
| const VkMultiDrawInfoEXT *minfo, uint32_t use_opaque, uint32_t stride) |
| { |
| unsigned i = 0; |
| const uint32_t view_mask = cmd_buffer->state.render.view_mask; |
| const bool uses_drawid = cmd_buffer->state.uses_drawid; |
| uint32_t last_start = 0; |
| |
| vk_foreach_multi_draw (draw, i, minfo, drawCount, stride) { |
| if (!i) |
| radv_emit_userdata_vertex(cmd_buffer, info, draw->firstVertex); |
| else |
| radv_emit_userdata_vertex_drawid(cmd_buffer, draw->firstVertex, uses_drawid ? i : 0); |
| |
| if (!view_mask) { |
| radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque); |
| } |
| } |
| last_start = draw->firstVertex; |
| } |
| if (drawCount > 1) { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| assert(state->last_vertex_offset_valid); |
| state->last_vertex_offset = last_start; |
| if (uses_drawid) |
| state->last_drawid = drawCount - 1; |
| } |
| } |
| |
| static void |
| radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z) |
| { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_DISPATCH_MESH_DIRECT, 3, cmd_buffer->state.predicating)); |
| radeon_emit(cmd_buffer->cs, x); |
| radeon_emit(cmd_buffer->cs, y); |
| radeon_emit(cmd_buffer->cs, z); |
| radeon_emit(cmd_buffer->cs, S_0287F0_SOURCE_SELECT(V_0287F0_DI_SRC_SEL_AUTO_INDEX)); |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint32_t view_mask = cmd_buffer->state.render.view_mask; |
| |
| radv_emit_userdata_mesh(cmd_buffer, x, y, z); |
| |
| if (pdev->mesh_fast_launch_2) { |
| if (!view_mask) { |
| radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z); |
| } |
| } |
| } else { |
| const uint32_t count = x * y * z; |
| if (!view_mask) { |
| radv_cs_emit_draw_packet(cmd_buffer, count, 0); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| radv_cs_emit_draw_packet(cmd_buffer, count, 0); |
| } |
| } |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info) |
| { |
| const struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_winsys *ws = device->ws; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset; |
| const uint64_t count_va = !info->count_buffer ? 0 |
| : radv_buffer_get_va(info->count_buffer->bo) + |
| info->count_buffer->offset + info->count_buffer_offset; |
| |
| radv_cs_add_buffer(ws, cs, info->indirect->bo); |
| |
| if (info->count_buffer) { |
| radv_cs_add_buffer(ws, cs, info->count_buffer->bo); |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0)); |
| radeon_emit(cs, 1); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| |
| if (state->uses_drawid) { |
| const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH]; |
| unsigned reg = state->vtx_base_sgpr + (mesh_shader->info.cs.uses_grid_size ? 12 : 0); |
| radeon_set_sh_reg_seq(cs, reg, 1); |
| radeon_emit(cs, 0); |
| } |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride); |
| } else { |
| u_foreach_bit (i, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cs, i); |
| radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride); |
| } |
| } |
| } |
| |
| ALWAYS_INLINE static void |
| radv_emit_direct_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state, |
| struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y, |
| uint32_t z) |
| { |
| const uint32_t view_mask = cmd_state->render.view_mask; |
| const unsigned num_views = MAX2(1, util_bitcount(view_mask)); |
| const unsigned ace_predication_size = num_views * 6; /* DISPATCH_TASKMESH_DIRECT_ACE size */ |
| |
| radv_emit_userdata_task(cmd_state, ace_cs, x, y, z); |
| radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va, |
| &cmd_state->mec_inv_pred_emitted, ace_predication_size); |
| |
| if (!view_mask) { |
| radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z); |
| radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(cmd_state, cs, view); |
| |
| radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z); |
| radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_indirect_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state, |
| struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs, |
| const struct radv_draw_info *info, uint64_t workaround_cond_va) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const uint32_t view_mask = cmd_state->render.view_mask; |
| struct radeon_winsys *ws = device->ws; |
| const unsigned num_views = MAX2(1, util_bitcount(view_mask)); |
| unsigned ace_predication_size = num_views * 11; /* DISPATCH_TASKMESH_INDIRECT_MULTI_ACE size */ |
| |
| const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset; |
| const uint64_t count_va = !info->count_buffer ? 0 |
| : radv_buffer_get_va(info->count_buffer->bo) + |
| info->count_buffer->offset + info->count_buffer_offset; |
| |
| if (count_va) |
| radv_cs_add_buffer(ws, ace_cs, info->count_buffer->bo); |
| |
| if (pdev->info.has_taskmesh_indirect0_bug && count_va) { |
| /* MEC firmware bug workaround. |
| * When the count buffer contains zero, DISPATCH_TASKMESH_INDIRECT_MULTI_ACE hangs. |
| * - We must ensure that DISPATCH_TASKMESH_INDIRECT_MULTI_ACE |
| * is only executed when the count buffer contains non-zero. |
| * - Furthermore, we must also ensure that each DISPATCH_TASKMESH_GFX packet |
| * has a matching ACE packet. |
| * |
| * As a workaround: |
| * - Reserve a dword in the upload buffer and initialize it to 1 for the workaround |
| * - When count != 0, write 0 to the workaround BO and execute the indirect dispatch |
| * - When workaround BO != 0 (count was 0), execute an empty direct dispatch |
| */ |
| radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(ace_cs, |
| COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(ace_cs, 1); |
| radeon_emit(ace_cs, 0); |
| radeon_emit(ace_cs, workaround_cond_va); |
| radeon_emit(ace_cs, workaround_cond_va >> 32); |
| |
| /* 2x COND_EXEC + 1x COPY_DATA + Nx DISPATCH_TASKMESH_DIRECT_ACE */ |
| ace_predication_size += 2 * 5 + 6 + 6 * num_views; |
| } |
| |
| radv_cs_add_buffer(ws, ace_cs, info->indirect->bo); |
| radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va, |
| &cmd_state->mec_inv_pred_emitted, ace_predication_size); |
| |
| if (workaround_cond_va) { |
| radv_emit_cond_exec(device, ace_cs, count_va, |
| 6 + 11 * num_views /* 1x COPY_DATA + Nx DISPATCH_TASKMESH_INDIRECT_MULTI_ACE */); |
| |
| radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(ace_cs, |
| COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(ace_cs, 0); |
| radeon_emit(ace_cs, 0); |
| radeon_emit(ace_cs, workaround_cond_va); |
| radeon_emit(ace_cs, workaround_cond_va >> 32); |
| } |
| |
| if (!view_mask) { |
| radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va, |
| info->stride); |
| radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(cmd_state, cs, view); |
| |
| radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va, |
| info->stride); |
| radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs); |
| } |
| } |
| |
| if (workaround_cond_va) { |
| radv_emit_cond_exec(device, ace_cs, workaround_cond_va, 6 * num_views /* Nx DISPATCH_TASKMESH_DIRECT_ACE */); |
| |
| for (unsigned v = 0; v < num_views; ++v) { |
| radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, 0, 0, 0); |
| } |
| } |
| } |
| |
| static void |
| radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info) |
| { |
| const struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_winsys *ws = device->ws; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset; |
| const uint64_t count_va = info->count_buffer ? radv_buffer_get_va(info->count_buffer->bo) + |
| info->count_buffer->offset + info->count_buffer_offset |
| : 0; |
| |
| radv_cs_add_buffer(ws, cs, info->indirect->bo); |
| |
| radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0)); |
| radeon_emit(cs, 1); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| |
| if (info->count_buffer) { |
| radv_cs_add_buffer(ws, cs, info->count_buffer->bo); |
| } |
| |
| if (!state->render.view_mask) { |
| radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride); |
| } else { |
| u_foreach_bit (i, state->render.view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cs, i); |
| |
| radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride); |
| } |
| } |
| } |
| |
| static uint64_t |
| radv_get_needed_dynamic_states(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint64_t dynamic_states = RADV_DYNAMIC_ALL; |
| |
| if (cmd_buffer->state.graphics_pipeline) |
| return cmd_buffer->state.graphics_pipeline->needed_dynamic_state; |
| |
| /* Clear unnecessary dynamic states for shader objects. */ |
| if (!cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]) |
| dynamic_states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN); |
| |
| if (pdev->info.gfx_level >= GFX10_3) { |
| if (cmd_buffer->state.shaders[MESA_SHADER_MESH]) |
| dynamic_states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | |
| RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY); |
| } else { |
| dynamic_states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| } |
| |
| return dynamic_states; |
| } |
| |
| /* |
| * Vega and raven have a bug which triggers if there are multiple context |
| * register contexts active at the same time with different scissor values. |
| * |
| * There are two possible workarounds: |
| * 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way |
| * there is only ever 1 active set of scissor values at the same time. |
| * |
| * 2) Whenever the hardware switches contexts we have to set the scissor |
| * registers again even if it is a noop. That way the new context gets |
| * the correct scissor values. |
| * |
| * This implements option 2. radv_need_late_scissor_emission needs to |
| * return true on affected HW if radv_emit_all_graphics_states sets |
| * any context registers. |
| */ |
| static bool |
| radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info) |
| { |
| if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer) |
| return true; |
| |
| uint64_t used_dynamic_states = radv_get_needed_dynamic_states(cmd_buffer); |
| |
| used_dynamic_states &= ~RADV_DYNAMIC_VERTEX_INPUT; |
| |
| if (cmd_buffer->state.dirty_dynamic & used_dynamic_states) |
| return true; |
| |
| /* Index, vertex and streamout buffers don't change context regs. |
| * We assume that any other dirty flag causes context rolls. |
| */ |
| uint64_t used_states = RADV_CMD_DIRTY_ALL; |
| used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER | RADV_CMD_DIRTY_STREAMOUT_BUFFER); |
| |
| return cmd_buffer->state.dirty & used_states; |
| } |
| |
| ALWAYS_INLINE static uint32_t |
| radv_get_ngg_culling_settings(struct radv_cmd_buffer *cmd_buffer, bool vp_y_inverted) |
| { |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| /* Disable shader culling entirely when conservative overestimate is used. |
| * The face culling algorithm can delete very tiny triangles (even if unintended). |
| */ |
| if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) |
| return radv_nggc_none; |
| |
| /* With graphics pipeline library, NGG culling is unconditionally compiled into shaders |
| * because we don't know the primitive topology at compile time, so we should |
| * disable it dynamically for points or lines. |
| */ |
| const unsigned num_vertices_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, true) + 1; |
| if (num_vertices_per_prim != 3) |
| return radv_nggc_none; |
| |
| /* Cull every triangle when rasterizer discard is enabled. */ |
| if (d->vk.rs.rasterizer_discard_enable) |
| return radv_nggc_front_face | radv_nggc_back_face; |
| |
| uint32_t nggc_settings = radv_nggc_none; |
| |
| /* The culling code needs to know whether face is CW or CCW. */ |
| bool ccw = d->vk.rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE; |
| |
| /* Take inverted viewport into account. */ |
| ccw ^= vp_y_inverted; |
| |
| if (ccw) |
| nggc_settings |= radv_nggc_face_is_ccw; |
| |
| /* Face culling settings. */ |
| if (d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT) |
| nggc_settings |= radv_nggc_front_face; |
| if (d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT) |
| nggc_settings |= radv_nggc_back_face; |
| |
| /* Small primitive culling assumes a sample position at (0.5, 0.5) |
| * so don't enable it with user sample locations. |
| */ |
| if (!d->vk.ms.sample_locations_enable) { |
| nggc_settings |= radv_nggc_small_primitives; |
| |
| /* small_prim_precision = num_samples / 2^subpixel_bits |
| * num_samples is also always a power of two, so the small prim precision can only be |
| * a power of two between 2^-2 and 2^-6, therefore it's enough to remember the exponent. |
| */ |
| unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| unsigned subpixel_bits = 256; |
| int32_t small_prim_precision_log2 = util_logbase2(rasterization_samples) - util_logbase2(subpixel_bits); |
| nggc_settings |= ((uint32_t)small_prim_precision_log2 << 24u); |
| } |
| |
| return nggc_settings; |
| } |
| |
| static void |
| radv_emit_ngg_culling_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| |
| /* Get viewport transform. */ |
| float vp_scale[2], vp_translate[2]; |
| memcpy(vp_scale, cmd_buffer->state.dynamic.hw_vp.xform[0].scale, 2 * sizeof(float)); |
| memcpy(vp_translate, cmd_buffer->state.dynamic.hw_vp.xform[0].translate, 2 * sizeof(float)); |
| bool vp_y_inverted = (-vp_scale[1] + vp_translate[1]) > (vp_scale[1] + vp_translate[1]); |
| |
| /* Get current culling settings. */ |
| uint32_t nggc_settings = radv_get_ngg_culling_settings(cmd_buffer, vp_y_inverted); |
| |
| if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) || |
| (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_RASTERIZATION_SAMPLES))) { |
| /* Correction for inverted Y */ |
| if (vp_y_inverted) { |
| vp_scale[1] = -vp_scale[1]; |
| vp_translate[1] = -vp_translate[1]; |
| } |
| |
| /* Correction for number of samples per pixel. */ |
| for (unsigned i = 0; i < 2; ++i) { |
| vp_scale[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples; |
| vp_translate[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples; |
| } |
| |
| uint32_t vp_reg_values[4] = {fui(vp_scale[0]), fui(vp_scale[1]), fui(vp_translate[0]), fui(vp_translate[1])}; |
| const uint32_t ngg_viewport_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_VIEWPORT); |
| radeon_set_sh_reg_seq(cmd_buffer->cs, ngg_viewport_offset, 4); |
| radeon_emit_array(cmd_buffer->cs, vp_reg_values, 4); |
| } |
| |
| const uint32_t ngg_culling_settings_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_CULLING_SETTINGS); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, ngg_culling_settings_offset, nggc_settings); |
| } |
| |
| static void |
| radv_emit_fs_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| |
| if (!ps) |
| return; |
| |
| const uint32_t ps_state_offset = radv_get_user_sgpr_loc(ps, AC_UD_PS_STATE); |
| if (!ps_state_offset) |
| return; |
| |
| const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| const unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer); |
| const uint16_t ps_iter_mask = ac_get_ps_iter_mask(ps_iter_samples); |
| const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer); |
| const unsigned ps_state = SET_SGPR_FIELD(PS_STATE_NUM_SAMPLES, rasterization_samples) | |
| SET_SGPR_FIELD(PS_STATE_PS_ITER_MASK, ps_iter_mask) | |
| SET_SGPR_FIELD(PS_STATE_LINE_RAST_MODE, radv_get_line_mode(cmd_buffer)) | |
| SET_SGPR_FIELD(PS_STATE_RAST_PRIM, rast_prim); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, ps_state_offset, ps_state); |
| } |
| |
| static uint32_t |
| radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| uint32_t num_verts_per_prim = 0; |
| |
| if (last_vgt_shader->info.stage == MESA_SHADER_VERTEX) |
| num_verts_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg) + 1; |
| |
| return num_verts_per_prim; |
| } |
| |
| static uint32_t |
| radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| const unsigned stage = last_vgt_shader->info.stage; |
| unsigned provoking_vtx = 0; |
| |
| if (d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) { |
| if (stage == MESA_SHADER_VERTEX) { |
| provoking_vtx = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg); |
| } else if (stage == MESA_SHADER_GEOMETRY) { |
| provoking_vtx = last_vgt_shader->info.gs.vertices_in - 1; |
| } |
| } |
| |
| return provoking_vtx; |
| } |
| |
| static uint32_t |
| radv_get_ngg_state_query(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| enum radv_shader_query_state shader_query_state = radv_shader_query_none; |
| |
| /* By default shader queries are disabled but they are enabled if the command buffer has active GDS |
| * queries or if it's a secondary command buffer that inherits the number of generated |
| * primitives. |
| */ |
| if (cmd_buffer->state.active_emulated_pipeline_queries || |
| (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT) || |
| (pdev->emulate_mesh_shader_queries && (cmd_buffer->state.inherited_pipeline_statistics & |
| VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT))) |
| shader_query_state |= radv_shader_query_pipeline_stat; |
| |
| if (cmd_buffer->state.active_emulated_prims_gen_queries) |
| shader_query_state |= radv_shader_query_prim_gen; |
| |
| if (cmd_buffer->state.active_emulated_prims_xfb_queries && radv_is_streamout_enabled(cmd_buffer)) |
| shader_query_state |= radv_shader_query_prim_xfb | radv_shader_query_prim_gen; |
| |
| return shader_query_state; |
| } |
| |
| static void |
| radv_emit_ngg_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader; |
| |
| const uint32_t ngg_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_STATE); |
| if (!ngg_state_offset) |
| return; |
| |
| const uint32_t ngg_state = |
| SET_SGPR_FIELD(NGG_STATE_NUM_VERTS_PER_PRIM, radv_get_ngg_state_num_verts_per_prim(cmd_buffer)) | |
| SET_SGPR_FIELD(NGG_STATE_PROVOKING_VTX, radv_get_ngg_state_provoking_vtx(cmd_buffer)) | |
| SET_SGPR_FIELD(NGG_STATE_QUERY, radv_get_ngg_state_query(cmd_buffer)); |
| |
| radeon_set_sh_reg(cmd_buffer->cs, ngg_state_offset, ngg_state); |
| } |
| |
| static void |
| radv_emit_task_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK]; |
| |
| if (!task_shader || !pdev->emulate_mesh_shader_queries) |
| return; |
| |
| const uint32_t task_state_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_TASK_STATE); |
| enum radv_shader_query_state shader_query_state = radv_shader_query_none; |
| |
| if (!task_state_offset) |
| return; |
| |
| /* By default shader queries are disabled but they are enabled if the command buffer has active ACE |
| * queries or if it's a secondary command buffer that inherits the number of task shader |
| * invocations query. |
| */ |
| if (cmd_buffer->state.active_pipeline_ace_queries || |
| (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT)) |
| shader_query_state |= radv_shader_query_pipeline_stat; |
| |
| radeon_set_sh_reg(cmd_buffer->gang.cs, task_state_offset, shader_query_state); |
| } |
| |
| static void |
| radv_emit_shaders_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FS_STATE) { |
| radv_emit_fs_state(cmd_buffer); |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FS_STATE; |
| } |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_NGG_STATE) { |
| radv_emit_ngg_state(cmd_buffer); |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_NGG_STATE; |
| } |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_TASK_STATE) { |
| radv_emit_task_state(cmd_buffer); |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_TASK_STATE; |
| } |
| } |
| |
| static void |
| radv_emit_db_shader_control(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| const bool uses_ds_feedback_loop = |
| !!(d->feedback_loop_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); |
| const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer); |
| |
| uint32_t db_shader_control; |
| |
| if (ps) { |
| db_shader_control = ps->info.regs.ps.db_shader_control; |
| } else { |
| db_shader_control = S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_ANY_Z) | |
| S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) | |
| S_02880C_DUAL_QUAD_DISABLE(gpu_info->has_rbplus && !gpu_info->rbplus_allowed); |
| } |
| |
| /* When a depth/stencil attachment is used inside feedback loops, use LATE_Z to make sure shader invocations read the |
| * correct value. |
| * Also apply the bug workaround for smoothing (overrasterization) on GFX6. |
| */ |
| if (uses_ds_feedback_loop || |
| (gpu_info->gfx_level == GFX6 && radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH)) |
| db_shader_control = (db_shader_control & C_02880C_Z_ORDER) | S_02880C_Z_ORDER(V_02880C_LATE_Z); |
| |
| if (ps && ps->info.ps.pops) { |
| /* POPS_OVERLAP_NUM_SAMPLES (OVERRIDE_INTRINSIC_RATE on GFX11, must always be enabled for POPS) controls the |
| * interlock granularity. |
| * PixelInterlock: 1x. |
| * SampleInterlock: MSAA_EXPOSED_SAMPLES (much faster at common edges of adjacent primitives with MSAA). |
| */ |
| if (gpu_info->gfx_level >= GFX11) { |
| db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1); |
| if (ps->info.ps.pops_is_per_sample) |
| db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE(util_logbase2(rasterization_samples)); |
| } else { |
| if (ps->info.ps.pops_is_per_sample) |
| db_shader_control |= S_02880C_POPS_OVERLAP_NUM_SAMPLES(util_logbase2(rasterization_samples)); |
| |
| if (gpu_info->has_pops_missed_overlap_bug) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028060_DB_DFSM_CONTROL, |
| S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF) | |
| S_028060_POPS_DRAIN_PS_ON_OVERLAP(rasterization_samples >= 8)); |
| } |
| } |
| } else if (gpu_info->has_export_conflict_bug && rasterization_samples == 1) { |
| for (uint32_t i = 0; i < MAX_RTS; i++) { |
| if (d->vk.cb.attachments[i].write_mask && d->vk.cb.attachments[i].blend_enable) { |
| db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1) | S_02880C_OVERRIDE_INTRINSIC_RATE(2); |
| break; |
| } |
| } |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg(cmd_buffer, R_02806C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL, |
| db_shader_control); |
| } else { |
| /* Use the alpha value from MRTZ.a for alpha-to-coverage when alpha-to-one is also enabled. |
| * GFX11+ selects MRTZ.a by default if present. |
| */ |
| db_shader_control |= S_02880C_COVERAGE_TO_MASK_ENABLE( |
| pdev->info.gfx_level < GFX11 && d->vk.ms.alpha_to_coverage_enable && d->vk.ms.alpha_to_one_enable); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_02880C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL, |
| db_shader_control); |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DB_SHADER_CONTROL; |
| } |
| |
| static void |
| radv_emit_streamout_enable_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_streamout_state *so = &cmd_buffer->state.streamout; |
| const bool streamout_enabled = radv_is_streamout_enabled(cmd_buffer); |
| uint32_t enabled_stream_buffers_mask = 0; |
| |
| assert(!pdev->use_ngg_streamout); |
| |
| if (streamout_enabled && cmd_buffer->state.last_vgt_shader) { |
| const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info; |
| |
| enabled_stream_buffers_mask = info->so.enabled_stream_buffers_mask; |
| |
| u_foreach_bit (i, so->enabled_mask) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028AD4_VGT_STRMOUT_VTX_STRIDE_0 + 16 * i, info->so.strides[i]); |
| } |
| } |
| |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028B94_VGT_STRMOUT_CONFIG, 2); |
| radeon_emit(cmd_buffer->cs, S_028B94_STREAMOUT_0_EN(streamout_enabled) | S_028B94_RAST_STREAM(0) | |
| S_028B94_STREAMOUT_1_EN(streamout_enabled) | |
| S_028B94_STREAMOUT_2_EN(streamout_enabled) | |
| S_028B94_STREAMOUT_3_EN(streamout_enabled)); |
| radeon_emit(cmd_buffer->cs, so->hw_enabled_mask & enabled_stream_buffers_mask); |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_ENABLE; |
| } |
| |
| static gl_shader_stage |
| radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->state.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT) |
| return MESA_SHADER_MESH; |
| |
| return util_last_bit(cmd_buffer->state.active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1; |
| } |
| |
| static unsigned |
| radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format) |
| { |
| unsigned value = 0, num_mrts = 0; |
| unsigned i, num_targets; |
| |
| /* Compute the number of MRTs. */ |
| num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4); |
| |
| /* Remove holes in spi_shader_col_format. */ |
| for (i = 0; i < num_targets; i++) { |
| unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf; |
| |
| if (spi_format) { |
| value |= spi_format << (num_mrts * 4); |
| num_mrts++; |
| } |
| } |
| |
| return value; |
| } |
| |
| static void |
| radv_emit_fragment_output_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| uint32_t col_format_compacted = radv_compact_spi_shader_col_format(cmd_buffer->state.spi_shader_col_format); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_set_context_reg(cmd_buffer->cs, R_028854_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask); |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028650_SPI_SHADER_Z_FORMAT, 2); |
| radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format); |
| radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */ |
| } else { |
| radeon_set_context_reg(cmd_buffer->cs, R_02823C_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask); |
| radeon_set_context_reg_seq(cmd_buffer->cs, R_028710_SPI_SHADER_Z_FORMAT, 2); |
| radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format); |
| radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */ |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAGMENT_OUTPUT; |
| } |
| |
| static void |
| radv_emit_depth_stencil_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_rendering_state *render = &cmd_buffer->state.render; |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| const bool stencil_test_enable = |
| d->vk.ds.stencil.test_enable && (render->ds_att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT); |
| |
| const uint32_t db_depth_control = |
| S_028800_Z_ENABLE(d->vk.ds.depth.test_enable ? 1 : 0) | |
| S_028800_Z_WRITE_ENABLE(d->vk.ds.depth.write_enable ? 1 : 0) | S_028800_ZFUNC(d->vk.ds.depth.compare_op) | |
| S_028800_DEPTH_BOUNDS_ENABLE(d->vk.ds.depth.bounds_test.enable ? 1 : 0) | |
| S_028800_STENCIL_ENABLE(stencil_test_enable) | S_028800_BACKFACE_ENABLE(stencil_test_enable) | |
| S_028800_STENCILFUNC(d->vk.ds.stencil.front.op.compare) | |
| S_028800_STENCILFUNC_BF(d->vk.ds.stencil.back.op.compare); |
| |
| const uint32_t db_stencil_control = |
| S_02842C_STENCILFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.fail)) | |
| S_02842C_STENCILZPASS(radv_translate_stencil_op(d->vk.ds.stencil.front.op.pass)) | |
| S_02842C_STENCILZFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.depth_fail)) | |
| S_02842C_STENCILFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.fail)) | |
| S_02842C_STENCILZPASS_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.pass)) | |
| S_02842C_STENCILZFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.depth_fail)); |
| |
| const uint32_t depth_bounds_min = fui(d->vk.ds.depth.bounds_test.min); |
| const uint32_t depth_bounds_max = fui(d->vk.ds.depth.bounds_test.max); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| const bool force_s_valid = |
| stencil_test_enable && ((d->vk.ds.stencil.front.op.pass != d->vk.ds.stencil.front.op.depth_fail) || |
| (d->vk.ds.stencil.back.op.pass != d->vk.ds.stencil.back.op.depth_fail)); |
| |
| radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE, |
| S_02800C_FORCE_STENCIL_READ(1) | S_02800C_FORCE_STENCIL_VALID(force_s_valid)); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028070_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL, |
| db_depth_control); |
| |
| if (stencil_test_enable) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028074_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL, |
| db_stencil_control); |
| |
| radeon_opt_set_context_reg( |
| cmd_buffer, R_028088_DB_STENCIL_REF, RADV_TRACKED_DB_STENCIL_REF, |
| S_028088_TESTVAL(d->vk.ds.stencil.front.reference) | S_028088_TESTVAL_BF(d->vk.ds.stencil.back.reference)); |
| |
| radeon_opt_set_context_reg2(cmd_buffer, R_028090_DB_STENCIL_READ_MASK, RADV_TRACKED_DB_STENCIL_READ_MASK, |
| S_028090_TESTMASK(d->vk.ds.stencil.front.compare_mask) | |
| S_028090_TESTMASK_BF(d->vk.ds.stencil.back.compare_mask), |
| S_028094_WRITEMASK(d->vk.ds.stencil.front.write_mask) | |
| S_028094_WRITEMASK_BF(d->vk.ds.stencil.back.write_mask)); |
| } |
| |
| if (d->vk.ds.depth.bounds_test.enable) { |
| radeon_opt_set_context_reg2(cmd_buffer, R_028050_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN, |
| depth_bounds_min, depth_bounds_max); |
| } |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_028800_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL, |
| db_depth_control); |
| |
| if (stencil_test_enable) { |
| radeon_opt_set_context_reg(cmd_buffer, R_02842C_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL, |
| db_stencil_control); |
| |
| radeon_opt_set_context_reg2( |
| cmd_buffer, R_028430_DB_STENCILREFMASK, RADV_TRACKED_DB_STENCILREFMASK, |
| S_028430_STENCILTESTVAL(d->vk.ds.stencil.front.reference) | |
| S_028430_STENCILMASK(d->vk.ds.stencil.front.compare_mask) | |
| S_028430_STENCILWRITEMASK(d->vk.ds.stencil.front.write_mask) | S_028430_STENCILOPVAL(1), |
| S_028434_STENCILTESTVAL_BF(d->vk.ds.stencil.back.reference) | |
| S_028434_STENCILMASK_BF(d->vk.ds.stencil.back.compare_mask) | |
| S_028434_STENCILWRITEMASK_BF(d->vk.ds.stencil.back.write_mask) | S_028434_STENCILOPVAL_BF(1)); |
| } |
| |
| if (d->vk.ds.depth.bounds_test.enable) { |
| radeon_opt_set_context_reg2(cmd_buffer, R_028020_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN, |
| depth_bounds_min, depth_bounds_max); |
| } |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DEPTH_STENCIL_STATE; |
| } |
| |
| static void |
| radv_emit_raster_state(struct radv_cmd_buffer *cmd_buffer) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic; |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A08_PA_SU_LINE_CNTL, RADV_TRACKED_PA_SU_LINE_CNTL, |
| S_028A08_WIDTH(CLAMP(d->vk.rs.line.width * 8, 0, 0xFFFF))); |
| |
| /* GFX9 chips fail linestrip CTS tests unless this is set to 0 = no reset */ |
| uint32_t auto_reset_cntl = (pdev->info.gfx_level == GFX9) ? 0 : 2; |
| |
| if (radv_primitive_topology_is_line_list(d->vk.ia.primitive_topology)) |
| auto_reset_cntl = 1; |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_028A0C_PA_SC_LINE_STIPPLE, RADV_TRACKED_PA_SC_LINE_STIPPLE, |
| S_028A0C_LINE_PATTERN(d->vk.rs.line.stipple.pattern) | |
| S_028A0C_REPEAT_COUNT(d->vk.rs.line.stipple.factor - 1) | |
| S_028A0C_AUTO_RESET_CNTL(pdev->info.gfx_level < GFX12 ? auto_reset_cntl : 0)); |
| |
| /* The DX10 diamond test is unnecessary with Vulkan and it decreases line rasterization |
| * performance. |
| */ |
| radeon_opt_set_context_reg( |
| cmd_buffer, R_028BDC_PA_SC_LINE_CNTL, RADV_TRACKED_PA_SC_LINE_CNTL, |
| S_028BDC_PERPENDICULAR_ENDCAP_ENA(radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR)); |
| |
| const bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer); |
| |
| radeon_opt_set_context_reg( |
| cmd_buffer, R_028810_PA_CL_CLIP_CNTL, RADV_TRACKED_PA_CL_CLIP_CNTL, |
| S_028810_DX_RASTERIZATION_KILL(d->vk.rs.rasterizer_discard_enable) | |
| S_028810_ZCLIP_NEAR_DISABLE(!depth_clip_enable) | S_028810_ZCLIP_FAR_DISABLE(!depth_clip_enable) | |
| S_028810_DX_CLIP_SPACE_DEF(!d->vk.vp.depth_clip_negative_one_to_one) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1)); |
| |
| unsigned pa_su_sc_mode_cntl = |
| S_028814_CULL_FRONT(!!(d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) | |
| S_028814_CULL_BACK(!!(d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)) | S_028814_FACE(d->vk.rs.front_face) | |
| S_028814_POLY_OFFSET_FRONT_ENABLE(d->vk.rs.depth_bias.enable) | |
| S_028814_POLY_OFFSET_BACK_ENABLE(d->vk.rs.depth_bias.enable) | |
| S_028814_POLY_OFFSET_PARA_ENABLE(d->vk.rs.depth_bias.enable) | |
| S_028814_POLY_MODE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) | |
| S_028814_POLYMODE_FRONT_PTYPE(d->vk.rs.polygon_mode) | S_028814_POLYMODE_BACK_PTYPE(d->vk.rs.polygon_mode) | |
| S_028814_PROVOKING_VTX_LAST(d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT); |
| |
| if (pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12) { |
| /* Ensure that SC processes the primitive group in the same order as PA produced them. Needed |
| * when either POLY_MODE or PERPENDICULAR_ENDCAP_ENA is set. |
| */ |
| pa_su_sc_mode_cntl |= |
| S_028814_KEEP_TOGETHER_ENABLE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES || |
| radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_opt_set_context_reg(cmd_buffer, R_028A44_PA_SC_LINE_STIPPLE_RESET, RADV_TRACKED_PA_SC_LINE_STIPPLE_RESET, |
| S_028A44_AUTO_RESET_CNTL(auto_reset_cntl)); |
| |
| radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL, |
| pa_su_sc_mode_cntl); |
| } else { |
| radeon_opt_set_context_reg(cmd_buffer, R_028814_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL, |
| pa_su_sc_mode_cntl); |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RASTER_STATE; |
| } |
| |
| static void |
| radv_validate_dynamic_states(struct radv_cmd_buffer *cmd_buffer, uint64_t dynamic_states) |
| { |
| if (dynamic_states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE | |
| RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE; |
| |
| if (dynamic_states & (RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_PROVOKING_VERTEX_MODE)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE; |
| |
| if (dynamic_states & |
| (RADV_DYNAMIC_DEPTH_TEST_ENABLE | RADV_DYNAMIC_DEPTH_WRITE_ENABLE | RADV_DYNAMIC_DEPTH_COMPARE_OP | |
| RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_STENCIL_OP | |
| RADV_DYNAMIC_DEPTH_BOUNDS | RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_WRITE_MASK | |
| RADV_DYNAMIC_STENCIL_COMPARE_MASK)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DEPTH_STENCIL_STATE; |
| |
| if (dynamic_states & |
| (RADV_DYNAMIC_LINE_WIDTH | RADV_DYNAMIC_LINE_STIPPLE | RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE | |
| RADV_DYNAMIC_DEPTH_BIAS_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | |
| RADV_DYNAMIC_PROVOKING_VERTEX_MODE | RADV_DYNAMIC_LINE_RASTERIZATION_MODE | |
| RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE | |
| RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE | RADV_DYNAMIC_DEPTH_CLAMP_ENABLE)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RASTER_STATE; |
| } |
| |
| static void |
| radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_shader_part *ps_epilog = NULL; |
| |
| if (cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT] && |
| cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog) { |
| if ((cmd_buffer->state.emitted_graphics_pipeline != cmd_buffer->state.graphics_pipeline || |
| ((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_GRAPHICS_SHADERS | RADV_CMD_DIRTY_FRAMEBUFFER)) || |
| (cmd_buffer->state.dirty_dynamic & |
| (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE | |
| RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE | |
| RADV_DYNAMIC_COLOR_ATTACHMENT_MAP))))) { |
| ps_epilog = lookup_ps_epilog(cmd_buffer); |
| if (!ps_epilog) { |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| return; |
| } |
| |
| assert(cmd_buffer->state.custom_blend_mode == 0); |
| |
| radv_bind_fragment_output_state(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT], ps_epilog, 0); |
| } |
| } |
| |
| /* Determine whether GFX9 late scissor workaround should be applied based on: |
| * 1. radv_need_late_scissor_emission |
| * 2. any dirty dynamic flags that may cause context rolls |
| */ |
| const bool late_scissor_emission = |
| pdev->info.has_gfx9_scissor_bug ? radv_need_late_scissor_emission(cmd_buffer, info) : false; |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RBPLUS) |
| radv_emit_rbplus_state(cmd_buffer); |
| |
| if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_OCCLUSION_QUERY) || |
| (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY))) |
| radv_flush_occlusion_query_state(cmd_buffer); |
| |
| if (((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_GRAPHICS_SHADERS)) || |
| (cmd_buffer->state.dirty_dynamic & |
| (RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | |
| RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES | |
| RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))) && |
| cmd_buffer->state.has_nggc) |
| radv_emit_ngg_culling_state(cmd_buffer); |
| |
| if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) || |
| (cmd_buffer->state.dirty_dynamic & |
| (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE | |
| RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))) |
| radv_emit_binning_state(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) { |
| radv_emit_graphics_pipeline(cmd_buffer); |
| } else if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) { |
| radv_emit_graphics_shaders(cmd_buffer); |
| } |
| |
| if (ps_epilog) |
| radv_emit_ps_epilog_state(cmd_buffer, ps_epilog); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAGMENT_OUTPUT) |
| radv_emit_fragment_output_state(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) |
| radv_emit_framebuffer_state(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GUARDBAND) |
| radv_emit_guardband_state(cmd_buffer); |
| |
| if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_DB_SHADER_CONTROL) || |
| (cmd_buffer->state.dirty_dynamic & |
| (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES | |
| RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | |
| RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE | |
| RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE))) |
| radv_emit_db_shader_control(cmd_buffer); |
| |
| if (info->indexed && info->indirect && cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER) |
| radv_emit_index_buffer(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_ENABLE) |
| radv_emit_streamout_enable_state(cmd_buffer); |
| |
| const uint64_t dynamic_states = cmd_buffer->state.dirty_dynamic & radv_get_needed_dynamic_states(cmd_buffer); |
| |
| if (dynamic_states) { |
| radv_cmd_buffer_flush_dynamic_state(cmd_buffer, dynamic_states); |
| |
| radv_validate_dynamic_states(cmd_buffer, dynamic_states); |
| } |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RASTER_STATE) |
| radv_emit_raster_state(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DEPTH_STENCIL_STATE) |
| radv_emit_depth_stencil_state(cmd_buffer); |
| |
| radv_emit_shaders_state(cmd_buffer); |
| |
| radv_emit_draw_registers(cmd_buffer, info); |
| |
| if (late_scissor_emission) { |
| radv_emit_scissor(cmd_buffer); |
| cmd_buffer->state.context_roll_without_scissor_emitted = false; |
| } |
| } |
| |
| static void |
| radv_bind_graphics_shaders(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t push_constant_size = 0, dynamic_offset_count = 0; |
| bool need_indirect_descriptor_sets = false; |
| |
| for (unsigned s = 0; s <= MESA_SHADER_MESH; s++) { |
| const struct radv_shader_object *shader_obj = cmd_buffer->state.shader_objs[s]; |
| struct radv_shader *shader = NULL; |
| |
| if (s == MESA_SHADER_COMPUTE) |
| continue; |
| |
| if (!shader_obj) { |
| radv_bind_shader(cmd_buffer, NULL, s); |
| continue; |
| } |
| |
| /* Select shader variants. */ |
| if (s == MESA_SHADER_VERTEX && (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL] || |
| cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY])) { |
| if (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL]) { |
| shader = shader_obj->as_ls.shader; |
| } else { |
| shader = shader_obj->as_es.shader; |
| } |
| } else if (s == MESA_SHADER_TESS_EVAL && cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]) { |
| shader = shader_obj->as_es.shader; |
| } else { |
| shader = shader_obj->shader; |
| } |
| |
| radv_bind_shader(cmd_buffer, shader, s); |
| if (!shader) |
| continue; |
| |
| /* Compute push constants/indirect descriptors state. */ |
| need_indirect_descriptor_sets |= radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1; |
| push_constant_size += shader_obj->push_constant_size; |
| dynamic_offset_count += shader_obj->dynamic_offset_count; |
| } |
| |
| /* Determine the last VGT shader. */ |
| const gl_shader_stage last_vgt_api_stage = radv_cmdbuf_get_last_vgt_api_stage(cmd_buffer); |
| |
| assume(last_vgt_api_stage != MESA_SHADER_NONE); |
| if (pdev->info.has_vgt_flush_ngg_legacy_bug && |
| (!cmd_buffer->state.last_vgt_shader || (cmd_buffer->state.last_vgt_shader->info.is_ngg && |
| !cmd_buffer->state.shaders[last_vgt_api_stage]->info.is_ngg))) { |
| /* Transitioning from NGG to legacy GS requires VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH is |
| * also emitted at the beginning of IBs when legacy GS ring pointers are set. |
| */ |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH; |
| } |
| |
| cmd_buffer->state.last_vgt_shader = cmd_buffer->state.shaders[last_vgt_api_stage]; |
| |
| cmd_buffer->state.has_nggc = cmd_buffer->state.last_vgt_shader->info.has_ngg_culling; |
| |
| struct radv_shader *gs_copy_shader = cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY] |
| ? cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]->gs.copy_shader |
| : NULL; |
| |
| radv_bind_gs_copy_shader(cmd_buffer, gs_copy_shader); |
| |
| /* Determine NGG GS info. */ |
| if (cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY] && |
| cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.is_ngg && |
| cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.merged_shader_compiled_separately) { |
| struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL] |
| ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL] |
| : cmd_buffer->state.shaders[MESA_SHADER_VERTEX]; |
| struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]; |
| |
| gfx10_get_ngg_info(device, &es->info, &gs->info, &gs->info.ngg_info); |
| radv_precompute_registers_hw_ngg(device, &gs->config, &gs->info); |
| } |
| |
| /* Determine the rasterized primitive. */ |
| if (cmd_buffer->state.active_stages & |
| (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | |
| VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) { |
| cmd_buffer->state.rast_prim = radv_get_vgt_gs_out(cmd_buffer->state.shaders, 0, false); |
| } |
| |
| const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX); |
| if (vs) { |
| /* Re-emit the VS prolog when a new vertex shader is bound. */ |
| if (vs->info.vs.has_prolog) { |
| cmd_buffer->state.emitted_vs_prolog = NULL; |
| cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT; |
| } |
| |
| /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */ |
| if (vs->info.vs.vb_desc_usage_mask) { |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER; |
| } |
| } |
| |
| const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]; |
| if (ps && !ps->info.ps.has_epilog) { |
| radv_bind_fragment_output_state(cmd_buffer, ps, NULL, 0); |
| } |
| |
| /* Update push constants/indirect descriptors state. */ |
| struct radv_descriptor_state *descriptors_state = |
| radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_GRAPHICS]; |
| |
| descriptors_state->need_indirect_descriptor_sets = need_indirect_descriptor_sets; |
| pc_state->size = push_constant_size; |
| pc_state->dynamic_offset_count = dynamic_offset_count; |
| |
| if (pdev->info.gfx_level <= GFX9) { |
| cmd_buffer->state.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, cmd_buffer->state.shaders); |
| } |
| |
| if (cmd_buffer->state.active_stages & |
| (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) { |
| cmd_buffer->state.uses_dynamic_patch_control_points = true; |
| } |
| } |
| |
| /* MUST inline this function to avoid massive perf loss in drawoverhead */ |
| ALWAYS_INLINE static bool |
| radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, bool dgc) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const bool has_prefetch = pdev->info.gfx_level >= GFX7; |
| |
| ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1)); |
| |
| if (likely(!info->indirect)) { |
| /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is |
| * no workaround for indirect draws, but we can at least skip |
| * direct draws. |
| */ |
| if (unlikely(!info->instance_count)) |
| return false; |
| |
| /* Handle count == 0. */ |
| if (unlikely(!info->count && !info->strmout_buffer)) |
| return false; |
| } |
| |
| if (!info->indexed && pdev->info.gfx_level >= GFX7) { |
| /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE, |
| * so the state must be re-emitted before the next indexed |
| * draw. |
| */ |
| cmd_buffer->state.last_index_type = -1; |
| } |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT) |
| radv_handle_fbfetch_output(cmd_buffer); |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) { |
| radv_bind_graphics_shaders(cmd_buffer); |
| } |
| |
| /* Use optimal packet order based on whether we need to sync the |
| * pipeline. |
| */ |
| if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB | |
| RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) { |
| /* If we have to wait for idle, set all states first, so that |
| * all SET packets are processed in parallel with previous draw |
| * calls. Then upload descriptors, set shader pointers, and |
| * draw, and prefetch at the end. This ensures that the time |
| * the CUs are idle is very short. (there are only SET_SH |
| * packets between the wait and the draw) |
| */ |
| radv_emit_all_graphics_states(cmd_buffer, info); |
| radv_emit_cache_flush(cmd_buffer); |
| /* <-- CUs are idle here --> */ |
| |
| radv_upload_graphics_shader_descriptors(cmd_buffer); |
| } else { |
| const bool need_prefetch = has_prefetch && cmd_buffer->state.prefetch_L2_mask; |
| |
| /* If we don't wait for idle, start prefetches first, then set |
| * states, and draw at the end. |
| */ |
| radv_emit_cache_flush(cmd_buffer); |
| |
| if (need_prefetch) { |
| /* Only prefetch the vertex shader and VBO descriptors |
| * in order to start the draw as soon as possible. |
| */ |
| radv_emit_prefetch_L2(cmd_buffer, true); |
| } |
| |
| radv_upload_graphics_shader_descriptors(cmd_buffer); |
| |
| radv_emit_all_graphics_states(cmd_buffer, info); |
| } |
| |
| if (!dgc) |
| radv_describe_draw(cmd_buffer); |
| if (likely(!info->indirect)) { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| assert(state->vtx_base_sgpr); |
| if (state->last_num_instances != info->instance_count) { |
| radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false)); |
| radeon_emit(cs, info->instance_count); |
| state->last_num_instances = info->instance_count; |
| } |
| } |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| return true; |
| } |
| |
| ALWAYS_INLINE static bool |
| radv_before_taskmesh_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, |
| bool dgc) |
| { |
| /* For direct draws, this makes sure we don't draw anything. |
| * For indirect draws, this is necessary to prevent a GPU hang (on MEC version < 100). |
| */ |
| if (unlikely(!info->count)) |
| return false; |
| |
| if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) { |
| radv_bind_graphics_shaders(cmd_buffer); |
| } |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs; |
| struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK]; |
| |
| assert(!task_shader || ace_cs); |
| |
| const VkShaderStageFlags stages = |
| VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_FRAGMENT_BIT | (task_shader ? VK_SHADER_STAGE_TASK_BIT_EXT : 0); |
| const bool need_task_semaphore = task_shader && radv_flush_gang_leader_semaphore(cmd_buffer); |
| |
| ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1)); |
| ASSERTED const unsigned ace_cdw_max = |
| !ace_cs ? 0 : radeon_check_space(device->ws, ace_cs, 4096 + 128 * (drawCount - 1)); |
| |
| radv_emit_all_graphics_states(cmd_buffer, info); |
| |
| radv_emit_cache_flush(cmd_buffer); |
| |
| if (task_shader) { |
| radv_gang_cache_flush(cmd_buffer); |
| |
| if (need_task_semaphore) { |
| radv_wait_gang_leader(cmd_buffer); |
| } |
| } |
| |
| radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| if (pc_stages) |
| radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| if (!dgc) |
| radv_describe_draw(cmd_buffer); |
| if (likely(!info->indirect)) { |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| if (unlikely(state->last_num_instances != 1)) { |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false)); |
| radeon_emit(cs, 1); |
| state->last_num_instances = 1; |
| } |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| assert(!ace_cs || ace_cs->cdw <= ace_cdw_max); |
| |
| cmd_buffer->state.last_index_type = -1; |
| |
| return true; |
| } |
| |
| ALWAYS_INLINE static void |
| radv_after_draw(struct radv_cmd_buffer *cmd_buffer, bool dgc) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radeon_info *gpu_info = &pdev->info; |
| bool has_prefetch = pdev->info.gfx_level >= GFX7; |
| /* Start prefetches after the draw has been started. Both will |
| * run in parallel, but starting the draw first is more |
| * important. |
| */ |
| if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) { |
| radv_emit_prefetch_L2(cmd_buffer, false); |
| } |
| |
| /* Workaround for a VGT hang when streamout is enabled. |
| * It must be done after drawing. |
| */ |
| if (radv_is_streamout_enabled(cmd_buffer) && |
| (gpu_info->family == CHIP_HAWAII || gpu_info->family == CHIP_TONGA || gpu_info->family == CHIP_FIJI)) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC; |
| } |
| |
| radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH, dgc); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, |
| uint32_t firstInstance) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_draw_info info; |
| |
| info.count = vertexCount; |
| info.instance_count = instanceCount; |
| info.first_instance = firstInstance; |
| info.strmout_buffer = NULL; |
| info.indirect = NULL; |
| info.indexed = false; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| const VkMultiDrawInfoEXT minfo = {firstVertex, vertexCount}; |
| radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, 0, 0); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo, |
| uint32_t instanceCount, uint32_t firstInstance, uint32_t stride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_draw_info info; |
| |
| if (!drawCount) |
| return; |
| |
| info.count = pVertexInfo->vertexCount; |
| info.instance_count = instanceCount; |
| info.first_instance = firstInstance; |
| info.strmout_buffer = NULL; |
| info.indirect = NULL; |
| info.indexed = false; |
| |
| if (!radv_before_draw(cmd_buffer, &info, drawCount, false)) |
| return; |
| radv_emit_direct_draw_packets(cmd_buffer, &info, drawCount, pVertexInfo, 0, stride); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, |
| int32_t vertexOffset, uint32_t firstInstance) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_draw_info info; |
| |
| info.indexed = true; |
| info.count = indexCount; |
| info.instance_count = instanceCount; |
| info.first_instance = firstInstance; |
| info.strmout_buffer = NULL; |
| info.indirect = NULL; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| const VkMultiDrawIndexedInfoEXT minfo = {firstIndex, indexCount, vertexOffset}; |
| radv_emit_draw_packets_indexed(cmd_buffer, &info, 1, &minfo, 0, NULL); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, |
| const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount, uint32_t firstInstance, |
| uint32_t stride, const int32_t *pVertexOffset) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_draw_info info; |
| |
| if (!drawCount) |
| return; |
| |
| const VkMultiDrawIndexedInfoEXT *minfo = pIndexInfo; |
| info.indexed = true; |
| info.count = minfo->indexCount; |
| info.instance_count = instanceCount; |
| info.first_instance = firstInstance; |
| info.strmout_buffer = NULL; |
| info.indirect = NULL; |
| |
| if (!radv_before_draw(cmd_buffer, &info, drawCount, false)) |
| return; |
| radv_emit_draw_packets_indexed(cmd_buffer, &info, drawCount, pIndexInfo, stride, pVertexOffset); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| struct radv_draw_info info; |
| |
| info.count = drawCount; |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.stride = stride; |
| info.strmout_buffer = NULL; |
| info.count_buffer = NULL; |
| info.indexed = false; |
| info.instance_count = 0; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| radv_emit_indirect_draw_packets(cmd_buffer, &info); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| struct radv_draw_info info; |
| |
| info.indexed = true; |
| info.count = drawCount; |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.stride = stride; |
| info.count_buffer = NULL; |
| info.strmout_buffer = NULL; |
| info.instance_count = 0; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| radv_emit_indirect_draw_packets(cmd_buffer, &info); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, |
| VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer); |
| struct radv_draw_info info; |
| |
| info.count = maxDrawCount; |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.count_buffer = count_buffer; |
| info.count_buffer_offset = countBufferOffset; |
| info.stride = stride; |
| info.strmout_buffer = NULL; |
| info.indexed = false; |
| info.instance_count = 0; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| radv_emit_indirect_draw_packets(cmd_buffer, &info); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, |
| VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, |
| uint32_t stride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer); |
| struct radv_draw_info info; |
| |
| info.indexed = true; |
| info.count = maxDrawCount; |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.count_buffer = count_buffer; |
| info.count_buffer_offset = countBufferOffset; |
| info.stride = stride; |
| info.strmout_buffer = NULL; |
| info.instance_count = 0; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| radv_emit_indirect_draw_packets(cmd_buffer, &info); |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_draw_info info; |
| |
| info.count = x * y * z; |
| info.instance_count = 1; |
| info.first_instance = 0; |
| info.stride = 0; |
| info.indexed = false; |
| info.strmout_buffer = NULL; |
| info.count_buffer = NULL; |
| info.indirect = NULL; |
| |
| if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, false)) |
| return; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) { |
| radv_emit_direct_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, x, y, z); |
| } else { |
| radv_emit_direct_mesh_draw_packet(cmd_buffer, x, y, z); |
| } |
| |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, |
| uint32_t drawCount, uint32_t stride) |
| { |
| if (!drawCount) |
| return; |
| |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_draw_info info; |
| |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.stride = stride; |
| info.count = drawCount; |
| info.strmout_buffer = NULL; |
| info.count_buffer = NULL; |
| info.indexed = false; |
| info.instance_count = 0; |
| |
| if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount, false)) |
| return; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) { |
| radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info, |
| 0); |
| } else { |
| radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info); |
| } |
| |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, |
| VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, |
| uint32_t stride) |
| { |
| |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_draw_info info; |
| |
| info.indirect = buffer; |
| info.indirect_offset = offset; |
| info.stride = stride; |
| info.count = maxDrawCount; |
| info.strmout_buffer = NULL; |
| info.count_buffer = count_buffer; |
| info.count_buffer_offset = countBufferOffset; |
| info.indexed = false; |
| info.instance_count = 0; |
| |
| if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount, false)) |
| return; |
| |
| if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) { |
| uint64_t workaround_cond_va = 0; |
| |
| if (pdev->info.has_taskmesh_indirect0_bug && info.count_buffer) { |
| /* Allocate a 32-bit value for the MEC firmware bug workaround. */ |
| uint32_t workaround_cond_init = 0; |
| uint32_t workaround_cond_off; |
| |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &workaround_cond_init, &workaround_cond_off)) |
| vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| workaround_cond_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + workaround_cond_off; |
| } |
| |
| radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info, |
| workaround_cond_va); |
| } else { |
| radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info); |
| } |
| |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| /* TODO: Use these functions with the normal dispatch path. */ |
| static void radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point); |
| static void radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer); |
| |
| /* VK_EXT_device_generated_commands */ |
| static void |
| radv_dgc_execute_ib(struct radv_cmd_buffer *cmd_buffer, const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo) |
| { |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const VkGeneratedCommandsPipelineInfoEXT *pipeline_info = |
| vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT); |
| const VkGeneratedCommandsShaderInfoEXT *eso_info = |
| vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT); |
| const struct radv_shader *task_shader = radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK); |
| const uint32_t cmdbuf_size = radv_get_indirect_main_cmdbuf_size(pGeneratedCommandsInfo); |
| const uint64_t ib_va = pGeneratedCommandsInfo->preprocessAddress; |
| const uint64_t main_ib_va = ib_va + radv_get_indirect_main_cmdbuf_offset(pGeneratedCommandsInfo); |
| const uint64_t main_trailer_va = ib_va + radv_get_indirect_main_trailer_offset(pGeneratedCommandsInfo); |
| |
| device->ws->cs_chain_dgc_ib(cmd_buffer->cs, main_ib_va, cmdbuf_size >> 2, main_trailer_va, |
| cmd_buffer->state.predicating); |
| |
| if (task_shader) { |
| const uint32_t ace_cmdbuf_size = radv_get_indirect_ace_cmdbuf_size(pGeneratedCommandsInfo); |
| const uint64_t ace_ib_va = ib_va + radv_get_indirect_ace_cmdbuf_offset(pGeneratedCommandsInfo); |
| const uint64_t ace_trailer_va = ib_va + radv_get_indirect_ace_trailer_offset(pGeneratedCommandsInfo); |
| |
| assert(cmd_buffer->gang.cs); |
| device->ws->cs_chain_dgc_ib(cmd_buffer->gang.cs, ace_ib_va, ace_cmdbuf_size >> 2, ace_trailer_va, |
| cmd_buffer->state.predicating); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer, VkBool32 isPreprocessed, |
| const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo) |
| { |
| VK_FROM_HANDLE(radv_indirect_command_layout, layout, pGeneratedCommandsInfo->indirectCommandsLayout); |
| VK_FROM_HANDLE(radv_indirect_execution_set, ies, pGeneratedCommandsInfo->indirectExecutionSet); |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const bool use_predication = radv_use_dgc_predication(cmd_buffer, pGeneratedCommandsInfo); |
| const bool compute = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DISPATCH)); |
| const bool rt = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_RT)); |
| const VkGeneratedCommandsPipelineInfoEXT *pipeline_info = |
| vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT); |
| const VkGeneratedCommandsShaderInfoEXT *eso_info = |
| vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT); |
| |
| if (ies) { |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, ies->bo); |
| |
| cmd_buffer->compute_scratch_size_per_wave_needed = |
| MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, ies->compute_scratch_size_per_wave); |
| cmd_buffer->compute_scratch_waves_wanted = |
| MAX2(cmd_buffer->compute_scratch_waves_wanted, ies->compute_scratch_waves); |
| } |
| |
| /* Secondary command buffers are banned. */ |
| assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); |
| |
| if (use_predication) { |
| const uint64_t va = pGeneratedCommandsInfo->sequenceCountAddress; |
| radv_begin_conditional_rendering(cmd_buffer, va, true); |
| } |
| |
| if (!(layout->vk.usage & VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_EXT)) { |
| /* Suspend conditional rendering when the DGC execute is called on the compute queue to |
| * generate a cmdbuf which will skips dispatches when necessary. This is because the compute |
| * queue is missing IB2 which means it's not possible to skip the cmdbuf entirely. This |
| * should also be suspended when task shaders are used because the DGC ACE IB would be |
| * uninitialized otherwise. |
| */ |
| const bool suspend_conditional_rendering = |
| (cmd_buffer->qf == RADV_QUEUE_COMPUTE || radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK)); |
| const bool old_predicating = cmd_buffer->state.predicating; |
| |
| if (suspend_conditional_rendering && cmd_buffer->state.predicating) { |
| cmd_buffer->state.predicating = false; |
| } |
| |
| radv_prepare_dgc(cmd_buffer, pGeneratedCommandsInfo, cmd_buffer, old_predicating); |
| |
| if (suspend_conditional_rendering) { |
| cmd_buffer->state.predicating = old_predicating; |
| } |
| |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2; |
| |
| /* Make sure the DGC ACE IB will wait for the DGC prepare shader before the execution |
| * starts. |
| */ |
| if (radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK)) { |
| radv_gang_barrier(cmd_buffer, VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV, |
| VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT); |
| } |
| } |
| |
| if (rt) { |
| radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| } else if (compute) { |
| radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE); |
| } else { |
| struct radv_draw_info info = { |
| .count = pGeneratedCommandsInfo->maxSequenceCount, |
| .indirect = (void *)&info, |
| .indexed = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED)), |
| }; |
| |
| if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_MESH)) { |
| if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, true)) |
| return; |
| } else { |
| if (!radv_before_draw(cmd_buffer, &info, 1, true)) |
| return; |
| } |
| } |
| |
| if (!radv_cmd_buffer_uses_mec(cmd_buffer)) { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating)); |
| radeon_emit(cmd_buffer->cs, 0); |
| } |
| |
| const uint32_t view_mask = cmd_buffer->state.render.view_mask; |
| if (rt || compute || !view_mask) { |
| radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo); |
| } else { |
| u_foreach_bit (view, view_mask) { |
| radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view); |
| radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo); |
| } |
| } |
| |
| if (rt) { |
| cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS; |
| |
| radv_dgc_after_dispatch(cmd_buffer); |
| } else if (compute) { |
| cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT; |
| |
| if (ies) |
| radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE); |
| |
| radv_dgc_after_dispatch(cmd_buffer); |
| } else { |
| if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_IB)) { |
| cmd_buffer->state.last_index_type = -1; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER; |
| } |
| |
| if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_VB)) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER; |
| |
| if (pipeline_info) { |
| VK_FROM_HANDLE(radv_pipeline, pipeline, pipeline_info->pipeline); |
| struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); |
| |
| cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages; |
| } else { |
| assert(eso_info); |
| |
| for (unsigned i = 0; i < eso_info->shaderCount; ++i) { |
| VK_FROM_HANDLE(radv_shader_object, shader_object, eso_info->pShaders[i]); |
| |
| cmd_buffer->push_constant_stages |= mesa_to_vk_shader_stage(shader_object->stage); |
| } |
| } |
| |
| if (!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED))) { |
| /* Non-indexed draws overwrite VGT_INDEX_TYPE, so the state must be |
| * re-emitted before the next indexed draw. |
| */ |
| cmd_buffer->state.last_index_type = -1; |
| } |
| |
| cmd_buffer->state.last_num_instances = -1; |
| cmd_buffer->state.last_vertex_offset_valid = false; |
| cmd_buffer->state.last_first_instance = -1; |
| cmd_buffer->state.last_drawid = -1; |
| |
| radv_after_draw(cmd_buffer, true); |
| } |
| |
| if (use_predication) { |
| radv_end_conditional_rendering(cmd_buffer); |
| } |
| } |
| |
| static void |
| radv_save_dispatch_size(struct radv_cmd_buffer *cmd_buffer, uint64_t indirect_va) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| radeon_check_space(device->ws, cs, 18); |
| |
| uint64_t va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, indirect_dispatch); |
| |
| for (uint32_t i = 0; i < 3; i++) { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, |
| COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, indirect_va); |
| radeon_emit(cs, indirect_va >> 32); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| |
| indirect_va += 4; |
| va += 4; |
| } |
| } |
| |
| static void |
| radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *compute_shader, |
| const struct radv_dispatch_info *info) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned dispatch_initiator = device->dispatch_initiator; |
| struct radeon_winsys *ws = device->ws; |
| bool predicating = cmd_buffer->state.predicating; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const uint32_t grid_size_offset = radv_get_user_sgpr_loc(compute_shader, AC_UD_CS_GRID_SIZE); |
| |
| radv_describe_dispatch(cmd_buffer, info); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 30); |
| |
| if (compute_shader->info.wave_size == 32) { |
| assert(pdev->info.gfx_level >= GFX10); |
| dispatch_initiator |= S_00B800_CS_W32_EN(1); |
| } |
| |
| if (info->ordered) |
| dispatch_initiator &= ~S_00B800_ORDER_MODE(1); |
| |
| if (info->va) { |
| if (radv_device_fault_detection_enabled(device)) |
| radv_save_dispatch_size(cmd_buffer, info->va); |
| |
| if (info->indirect) |
| radv_cs_add_buffer(ws, cs, info->indirect); |
| |
| if (info->unaligned) { |
| radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[0])); |
| radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[1])); |
| } else { |
| radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[0])); |
| radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[1])); |
| } |
| radeon_emit(cs, S_00B824_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2])); |
| |
| dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1); |
| } |
| |
| if (grid_size_offset) { |
| if (device->load_grid_size_from_user_sgpr) { |
| assert(pdev->info.gfx_level >= GFX10_3); |
| radeon_emit(cs, PKT3(PKT3_LOAD_SH_REG_INDEX, 3, 0)); |
| radeon_emit(cs, info->va); |
| radeon_emit(cs, info->va >> 32); |
| radeon_emit(cs, (grid_size_offset - SI_SH_REG_OFFSET) >> 2); |
| radeon_emit(cs, 3); |
| } else { |
| radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, info->va, true); |
| } |
| } |
| |
| if (radv_cmd_buffer_uses_mec(cmd_buffer)) { |
| uint64_t indirect_va = info->va; |
| const bool needs_align32_workaround = pdev->info.has_async_compute_align32_bug && |
| cmd_buffer->qf == RADV_QUEUE_COMPUTE && |
| !util_is_aligned(indirect_va, 32); |
| const unsigned ace_predication_size = |
| 4 /* DISPATCH_INDIRECT */ + (needs_align32_workaround ? 6 * 3 /* 3x COPY_DATA */ : 0); |
| |
| radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va, |
| &cmd_buffer->state.mec_inv_pred_emitted, ace_predication_size); |
| |
| if (needs_align32_workaround) { |
| const uint64_t unaligned_va = indirect_va; |
| UNUSED void *ptr; |
| uint32_t offset; |
| |
| if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, sizeof(VkDispatchIndirectCommand), 32, &offset, &ptr)) |
| return; |
| |
| indirect_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset; |
| |
| for (uint32_t i = 0; i < 3; i++) { |
| const uint64_t src_va = unaligned_va + i * 4; |
| const uint64_t dst_va = indirect_va + i * 4; |
| |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | |
| COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, src_va); |
| radeon_emit(cs, src_va >> 32); |
| radeon_emit(cs, dst_va); |
| radeon_emit(cs, dst_va >> 32); |
| } |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(cs, indirect_va); |
| radeon_emit(cs, indirect_va >> 32); |
| radeon_emit(cs, dispatch_initiator); |
| } else { |
| radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(cs, 1); |
| radeon_emit(cs, info->va); |
| radeon_emit(cs, info->va >> 32); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) { |
| radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va, |
| &cmd_buffer->state.mec_inv_pred_emitted, 3 /* PKT3_DISPATCH_INDIRECT */); |
| predicating = false; |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, dispatch_initiator); |
| } |
| } else { |
| const unsigned *cs_block_size = compute_shader->info.cs.block_size; |
| unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]}; |
| unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]}; |
| |
| if (info->unaligned) { |
| unsigned remainder[3]; |
| |
| /* If aligned, these should be an entire block size, |
| * not 0. |
| */ |
| remainder[0] = blocks[0] + cs_block_size[0] - ALIGN_NPOT(blocks[0], cs_block_size[0]); |
| remainder[1] = blocks[1] + cs_block_size[1] - ALIGN_NPOT(blocks[1], cs_block_size[1]); |
| remainder[2] = blocks[2] + cs_block_size[2] - ALIGN_NPOT(blocks[2], cs_block_size[2]); |
| |
| blocks[0] = DIV_ROUND_UP(blocks[0], cs_block_size[0]); |
| blocks[1] = DIV_ROUND_UP(blocks[1], cs_block_size[1]); |
| blocks[2] = DIV_ROUND_UP(blocks[2], cs_block_size[2]); |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| assert(offsets[i] % cs_block_size[i] == 0); |
| offsets[i] /= cs_block_size[i]; |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); |
| if (pdev->info.gfx_level >= GFX12) { |
| radeon_emit(cs, |
| S_00B81C_NUM_THREAD_FULL_GFX12(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0])); |
| radeon_emit(cs, |
| S_00B820_NUM_THREAD_FULL_GFX12(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1])); |
| } else { |
| radeon_emit(cs, |
| S_00B81C_NUM_THREAD_FULL_GFX6(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0])); |
| radeon_emit(cs, |
| S_00B820_NUM_THREAD_FULL_GFX6(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1])); |
| } |
| radeon_emit(cs, S_00B824_NUM_THREAD_FULL(cs_block_size[2]) | S_00B824_NUM_THREAD_PARTIAL(remainder[2])); |
| |
| dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1); |
| } |
| |
| if (grid_size_offset) { |
| if (device->load_grid_size_from_user_sgpr) { |
| radeon_set_sh_reg_seq(cs, grid_size_offset, 3); |
| radeon_emit(cs, blocks[0]); |
| radeon_emit(cs, blocks[1]); |
| radeon_emit(cs, blocks[2]); |
| } else { |
| uint32_t offset; |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, 12, blocks, &offset)) |
| return; |
| |
| uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset; |
| radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, va, true); |
| } |
| } |
| |
| if (offsets[0] || offsets[1] || offsets[2]) { |
| radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3); |
| radeon_emit(cs, offsets[0]); |
| radeon_emit(cs, offsets[1]); |
| radeon_emit(cs, offsets[2]); |
| |
| /* The blocks in the packet are not counts but end values. */ |
| for (unsigned i = 0; i < 3; ++i) |
| blocks[i] += offsets[i]; |
| } else { |
| dispatch_initiator |= S_00B800_FORCE_START_AT_000(1); |
| } |
| |
| if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) { |
| radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va, |
| &cmd_buffer->state.mec_inv_pred_emitted, 5 /* DISPATCH_DIRECT size */); |
| predicating = false; |
| } |
| |
| if (pdev->info.has_async_compute_threadgroup_bug && cmd_buffer->qf == RADV_QUEUE_COMPUTE) { |
| for (unsigned i = 0; i < 3; i++) { |
| if (info->unaligned) { |
| /* info->blocks is already in thread dimensions for unaligned dispatches. */ |
| blocks[i] = info->blocks[i]; |
| } else { |
| /* Force the async compute dispatch to be in "thread" dim mode to workaround a hw bug. */ |
| blocks[i] *= cs_block_size[i]; |
| } |
| |
| dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1); |
| } |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1)); |
| radeon_emit(cs, blocks[0]); |
| radeon_emit(cs, blocks[1]); |
| radeon_emit(cs, blocks[2]); |
| radeon_emit(cs, dispatch_initiator); |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| static void |
| radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) |
| { |
| radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, bind_point); |
| const VkShaderStageFlags stages = |
| bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ? RADV_RT_STAGE_BITS : VK_SHADER_STAGE_COMPUTE_BIT; |
| const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, bind_point); |
| if (pc_stages) |
| radv_flush_constants(cmd_buffer, pc_stages, bind_point); |
| } |
| |
| static void |
| radv_emit_rt_stack_size(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog; |
| unsigned rsrc2 = rt_prolog->config.rsrc2; |
| |
| /* Reserve scratch for stacks manually since it is not handled by the compute path. */ |
| uint32_t scratch_bytes_per_wave = rt_prolog->config.scratch_bytes_per_wave; |
| const uint32_t wave_size = rt_prolog->info.wave_size; |
| |
| /* The hardware register is specified as a multiple of 64 or 256 DWORDS. */ |
| const unsigned scratch_alloc_granule = pdev->info.gfx_level >= GFX11 ? 256 : 1024; |
| |
| scratch_bytes_per_wave += align(cmd_buffer->state.rt_stack_size * wave_size, scratch_alloc_granule); |
| |
| cmd_buffer->compute_scratch_size_per_wave_needed = |
| MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, scratch_bytes_per_wave); |
| |
| if (cmd_buffer->state.rt_stack_size) |
| rsrc2 |= S_00B12C_SCRATCH_EN(1); |
| |
| radeon_check_space(device->ws, cmd_buffer->cs, 3); |
| radeon_set_sh_reg(cmd_buffer->cs, rt_prolog->info.regs.pgm_rsrc2, rsrc2); |
| } |
| |
| static void |
| radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info, |
| struct radv_compute_pipeline *pipeline, struct radv_shader *compute_shader, |
| VkPipelineBindPoint bind_point) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool has_prefetch = pdev->info.gfx_level >= GFX7; |
| bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline; |
| |
| if (compute_shader->info.cs.regalloc_hang_bug) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB | |
| RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) { |
| /* If we have to wait for idle, set all states first, so that |
| * all SET packets are processed in parallel with previous draw |
| * calls. Then upload descriptors, set shader pointers, and |
| * dispatch, and prefetch at the end. This ensures that the |
| * time the CUs are idle is very short. (there are only SET_SH |
| * packets between the wait and the draw) |
| */ |
| radv_emit_compute_pipeline(cmd_buffer, pipeline); |
| if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) |
| radv_emit_rt_stack_size(cmd_buffer); |
| radv_emit_cache_flush(cmd_buffer); |
| /* <-- CUs are idle here --> */ |
| |
| radv_upload_compute_shader_descriptors(cmd_buffer, bind_point); |
| |
| radv_emit_dispatch_packets(cmd_buffer, compute_shader, info); |
| /* <-- CUs are busy here --> */ |
| |
| /* Start prefetches after the dispatch has been started. Both |
| * will run in parallel, but starting the dispatch first is |
| * more important. |
| */ |
| if (has_prefetch && pipeline_is_dirty) { |
| radv_emit_shader_prefetch(cmd_buffer, compute_shader); |
| } |
| } else { |
| /* If we don't wait for idle, start prefetches first, then set |
| * states, and dispatch at the end. |
| */ |
| radv_emit_cache_flush(cmd_buffer); |
| |
| if (has_prefetch && pipeline_is_dirty) { |
| radv_emit_shader_prefetch(cmd_buffer, compute_shader); |
| } |
| |
| radv_upload_compute_shader_descriptors(cmd_buffer, bind_point); |
| |
| radv_emit_compute_pipeline(cmd_buffer, pipeline); |
| if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) |
| radv_emit_rt_stack_size(cmd_buffer); |
| radv_emit_dispatch_packets(cmd_buffer, compute_shader, info); |
| } |
| |
| if (pipeline_is_dirty) { |
| /* Raytracing uses compute shaders but has separate bind points and pipelines. |
| * So if we set compute userdata & shader registers we should dirty the raytracing |
| * ones and the other way around. |
| * |
| * We only need to do this when the pipeline is dirty because when we switch between |
| * the two we always need to switch pipelines. |
| */ |
| radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE |
| ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR |
| : VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (compute_shader->info.cs.regalloc_hang_bug) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, false); |
| } |
| |
| static void |
| radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_compute_pipeline *pipeline = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR |
| ? &cmd_buffer->state.rt_pipeline->base |
| : cmd_buffer->state.compute_pipeline; |
| struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR |
| ? cmd_buffer->state.rt_pipeline->prolog |
| : cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]; |
| bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline; |
| |
| /* We will have run the DGC patch shaders before, so we can assume that there is something to |
| * flush. Otherwise, we just split radv_dispatch in two. One pre-dispatch and another one |
| * post-dispatch. */ |
| |
| if (compute_shader->info.cs.regalloc_hang_bug) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| if (pipeline) |
| radv_emit_compute_pipeline(cmd_buffer, pipeline); |
| if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) |
| radv_emit_rt_stack_size(cmd_buffer); |
| radv_emit_cache_flush(cmd_buffer); |
| |
| radv_upload_compute_shader_descriptors(cmd_buffer, bind_point); |
| |
| if (pipeline_is_dirty) { |
| const bool has_prefetch = pdev->info.gfx_level >= GFX7; |
| |
| if (has_prefetch) |
| radv_emit_shader_prefetch(cmd_buffer, compute_shader); |
| |
| /* Raytracing uses compute shaders but has separate bind points and pipelines. |
| * So if we set compute userdata & shader registers we should dirty the raytracing |
| * ones and the other way around. |
| * |
| * We only need to do this when the pipeline is dirty because when we switch between |
| * the two we always need to switch pipelines. |
| */ |
| radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE |
| ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR |
| : VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| } |
| |
| static void |
| radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_shader *compute_shader = cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]; |
| |
| if (compute_shader->info.cs.regalloc_hang_bug) |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH; |
| |
| radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, true); |
| } |
| |
| void |
| radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info) |
| { |
| radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE], |
| VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y, uint32_t base_z, uint32_t x, |
| uint32_t y, uint32_t z) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_dispatch_info info = {0}; |
| |
| info.blocks[0] = x; |
| info.blocks[1] = y; |
| info.blocks[2] = z; |
| |
| info.offsets[0] = base_x; |
| info.offsets[1] = base_y; |
| info.offsets[2] = base_z; |
| radv_compute_dispatch(cmd_buffer, &info); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, _buffer); |
| struct radv_dispatch_info info = {0}; |
| |
| info.indirect = buffer->bo; |
| info.va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset; |
| |
| radv_compute_dispatch(cmd_buffer, &info); |
| } |
| |
| void |
| radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z) |
| { |
| struct radv_dispatch_info info = {0}; |
| |
| info.blocks[0] = x; |
| info.blocks[1] = y; |
| info.blocks[2] = z; |
| info.unaligned = 1; |
| |
| radv_compute_dispatch(cmd_buffer, &info); |
| } |
| |
| void |
| radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va) |
| { |
| struct radv_dispatch_info info = {0}; |
| |
| info.indirect = bo; |
| info.va = va; |
| |
| radv_compute_dispatch(cmd_buffer, &info); |
| } |
| |
| static void |
| radv_trace_trace_rays(struct radv_cmd_buffer *cmd_buffer, const VkTraceRaysIndirectCommand2KHR *cmd, |
| uint64_t indirect_va) |
| { |
| if (!cmd || indirect_va) |
| return; |
| |
| struct radv_rra_ray_history_data *data = malloc(sizeof(struct radv_rra_ray_history_data)); |
| if (!data) |
| return; |
| |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint32_t width = DIV_ROUND_UP(cmd->width, device->rra_trace.ray_history_resolution_scale); |
| uint32_t height = DIV_ROUND_UP(cmd->height, device->rra_trace.ray_history_resolution_scale); |
| uint32_t depth = DIV_ROUND_UP(cmd->depth, device->rra_trace.ray_history_resolution_scale); |
| |
| struct radv_rra_ray_history_counter counter = { |
| .dispatch_size = {width, height, depth}, |
| .hit_shader_count = cmd->hitShaderBindingTableSize / cmd->hitShaderBindingTableStride, |
| .miss_shader_count = cmd->missShaderBindingTableSize / cmd->missShaderBindingTableStride, |
| .shader_count = cmd_buffer->state.rt_pipeline->stage_count, |
| .pipeline_api_hash = cmd_buffer->state.rt_pipeline->base.base.pipeline_hash, |
| .mode = 1, |
| .stride = sizeof(uint32_t), |
| .data_size = 0, |
| .ray_id_begin = 0, |
| .ray_id_end = 0xFFFFFFFF, |
| .pipeline_type = RADV_RRA_PIPELINE_RAY_TRACING, |
| }; |
| |
| struct radv_rra_ray_history_dispatch_size dispatch_size = { |
| .size = {width, height, depth}, |
| }; |
| |
| struct radv_rra_ray_history_traversal_flags traversal_flags = {0}; |
| |
| data->metadata = (struct radv_rra_ray_history_metadata){ |
| .counter_info.type = RADV_RRA_COUNTER_INFO, |
| .counter_info.size = sizeof(struct radv_rra_ray_history_counter), |
| .counter = counter, |
| |
| .dispatch_size_info.type = RADV_RRA_DISPATCH_SIZE, |
| .dispatch_size_info.size = sizeof(struct radv_rra_ray_history_dispatch_size), |
| .dispatch_size = dispatch_size, |
| |
| .traversal_flags_info.type = RADV_RRA_TRAVERSAL_FLAGS, |
| .traversal_flags_info.size = sizeof(struct radv_rra_ray_history_traversal_flags), |
| .traversal_flags = traversal_flags, |
| }; |
| |
| uint32_t dispatch_index = util_dynarray_num_elements(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *) |
| << 16; |
| |
| util_dynarray_append(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *, data); |
| |
| cmd_buffer->state.flush_bits |= |
| RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_CS_PARTIAL_FLUSH | |
| radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_WRITE_BIT, NULL, |
| NULL) | |
| radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_READ_BIT, NULL, NULL); |
| |
| radv_update_buffer_cp(cmd_buffer, |
| device->rra_trace.ray_history_addr + offsetof(struct radv_ray_history_header, dispatch_index), |
| &dispatch_index, sizeof(dispatch_index)); |
| } |
| |
| enum radv_rt_mode { |
| radv_rt_mode_direct, |
| radv_rt_mode_indirect, |
| radv_rt_mode_indirect2, |
| }; |
| |
| static void |
| radv_upload_trace_rays_params(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables, |
| enum radv_rt_mode mode, uint64_t *launch_size_va, uint64_t *sbt_va) |
| { |
| uint32_t upload_size = mode == radv_rt_mode_direct ? sizeof(VkTraceRaysIndirectCommand2KHR) |
| : offsetof(VkTraceRaysIndirectCommand2KHR, width); |
| |
| uint32_t offset; |
| if (!radv_cmd_buffer_upload_data(cmd_buffer, upload_size, tables, &offset)) |
| return; |
| |
| uint64_t upload_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset; |
| |
| if (mode == radv_rt_mode_direct) |
| *launch_size_va = upload_va + offsetof(VkTraceRaysIndirectCommand2KHR, width); |
| if (sbt_va) |
| *sbt_va = upload_va; |
| } |
| |
| static void |
| radv_trace_rays(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables, uint64_t indirect_va, |
| enum radv_rt_mode mode) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const struct radv_instance *instance = radv_physical_device_instance(pdev); |
| |
| if (instance->debug_flags & RADV_DEBUG_NO_RT) |
| return; |
| |
| if (unlikely(device->rra_trace.ray_history_buffer)) |
| radv_trace_trace_rays(cmd_buffer, tables, indirect_va); |
| |
| struct radv_compute_pipeline *pipeline = &cmd_buffer->state.rt_pipeline->base; |
| struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog; |
| |
| /* Since the workgroup size is 8x4 (or 8x8), 1D dispatches can only fill 8 threads per wave at most. To increase |
| * occupancy, it's beneficial to convert to a 2D dispatch in these cases. */ |
| if (tables && tables->height == 1 && tables->width >= cmd_buffer->state.rt_prolog->info.cs.block_size[0]) |
| tables->height = ACO_RT_CONVERTED_2D_LAUNCH_SIZE; |
| |
| struct radv_dispatch_info info = {0}; |
| info.unaligned = true; |
| |
| uint64_t launch_size_va = 0; |
| uint64_t sbt_va = 0; |
| |
| if (mode != radv_rt_mode_indirect2) { |
| launch_size_va = indirect_va; |
| radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, &sbt_va); |
| } else { |
| launch_size_va = indirect_va + offsetof(VkTraceRaysIndirectCommand2KHR, width); |
| sbt_va = indirect_va; |
| } |
| |
| uint32_t remaining_ray_count = 0; |
| |
| if (mode == radv_rt_mode_direct) { |
| info.blocks[0] = tables->width; |
| info.blocks[1] = tables->height; |
| info.blocks[2] = tables->depth; |
| |
| if (tables->height == ACO_RT_CONVERTED_2D_LAUNCH_SIZE) { |
| /* We need the ray count for the 2D dispatch to be a multiple of the y block size for the division to work, and |
| * a multiple of the x block size because the invocation offset must be a multiple of the block size when |
| * dispatching the remaining rays. Fortunately, the x block size is itself a multiple of the y block size, so |
| * we only need to ensure that the ray count is a multiple of the x block size. */ |
| remaining_ray_count = tables->width % rt_prolog->info.cs.block_size[0]; |
| |
| uint32_t ray_count = tables->width - remaining_ray_count; |
| info.blocks[0] = ray_count / rt_prolog->info.cs.block_size[1]; |
| info.blocks[1] = rt_prolog->info.cs.block_size[1]; |
| } |
| } else |
| info.va = launch_size_va; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 15); |
| |
| const uint32_t sbt_descriptors_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_SBT_DESCRIPTORS); |
| if (sbt_descriptors_offset) { |
| radv_emit_shader_pointer(device, cmd_buffer->cs, sbt_descriptors_offset, sbt_va, true); |
| } |
| |
| const uint32_t ray_launch_size_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR); |
| if (ray_launch_size_addr_offset) { |
| radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true); |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| |
| if (remaining_ray_count) { |
| info.blocks[0] = remaining_ray_count; |
| info.blocks[1] = 1; |
| info.offsets[0] = tables->width - remaining_ray_count; |
| |
| /* Reset the ray launch size so the prolog doesn't think this is a converted dispatch */ |
| tables->height = 1; |
| radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, NULL); |
| if (ray_launch_size_addr_offset) { |
| radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true); |
| } |
| |
| radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width, |
| uint32_t height, uint32_t depth) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| VkTraceRaysIndirectCommand2KHR tables = { |
| .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress, |
| .raygenShaderRecordSize = pRaygenShaderBindingTable->size, |
| .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress, |
| .missShaderBindingTableSize = pMissShaderBindingTable->size, |
| .missShaderBindingTableStride = pMissShaderBindingTable->stride, |
| .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress, |
| .hitShaderBindingTableSize = pHitShaderBindingTable->size, |
| .hitShaderBindingTableStride = pHitShaderBindingTable->stride, |
| .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress, |
| .callableShaderBindingTableSize = pCallableShaderBindingTable->size, |
| .callableShaderBindingTableStride = pCallableShaderBindingTable->stride, |
| .width = width, |
| .height = height, |
| .depth = depth, |
| }; |
| |
| radv_trace_rays(cmd_buffer, &tables, 0, radv_rt_mode_direct); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer, |
| const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable, |
| const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, |
| VkDeviceAddress indirectDeviceAddress) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(device->use_global_bo_list); |
| |
| VkTraceRaysIndirectCommand2KHR tables = { |
| .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress, |
| .raygenShaderRecordSize = pRaygenShaderBindingTable->size, |
| .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress, |
| .missShaderBindingTableSize = pMissShaderBindingTable->size, |
| .missShaderBindingTableStride = pMissShaderBindingTable->stride, |
| .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress, |
| .hitShaderBindingTableSize = pHitShaderBindingTable->size, |
| .hitShaderBindingTableStride = pHitShaderBindingTable->stride, |
| .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress, |
| .callableShaderBindingTableSize = pCallableShaderBindingTable->size, |
| .callableShaderBindingTableStride = pCallableShaderBindingTable->stride, |
| }; |
| |
| radv_trace_rays(cmd_buffer, &tables, indirectDeviceAddress, radv_rt_mode_indirect); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| assert(device->use_global_bo_list); |
| |
| radv_trace_rays(cmd_buffer, NULL, indirectDeviceAddress, radv_rt_mode_indirect2); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer, uint32_t size) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| cmd_buffer->state.rt_stack_size = size; |
| } |
| |
| /* |
| * For HTILE we have the following interesting clear words: |
| * 0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE |
| * 0xfffc000f: Uncompressed, full depth range, for depth only HTILE. |
| * 0xfffffff0: Clear depth to 1.0 |
| * 0x00000000: Clear depth to 0.0 |
| */ |
| static void |
| radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| const VkImageSubresourceRange *range) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| uint32_t htile_value = radv_get_htile_initial_value(device, image); |
| VkClearDepthStencilValue value = {0}; |
| struct radv_barrier_data barrier = {0}; |
| |
| barrier.layout_transitions.init_mask_ram = 1; |
| radv_describe_layout_transition(cmd_buffer, &barrier); |
| |
| /* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent |
| * in considering previous rendering work for WAW hazards. */ |
| state->flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, image, range); |
| |
| if (image->planes[0].surface.has_stencil && |
| !(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) { |
| /* Flush caches before performing a separate aspect initialization because it's a |
| * read-modify-write operation. |
| */ |
| state->flush_bits |= radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_SHADER_READ_BIT, image, range); |
| } |
| |
| state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value, false); |
| |
| radv_set_ds_clear_metadata(cmd_buffer, image, range, value, range->aspectMask); |
| |
| if (radv_image_is_tc_compat_htile(image) && (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)) { |
| /* Initialize the TC-compat metada value to 0 because by |
| * default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only |
| * need have to conditionally update its value when performing |
| * a fast depth clear. |
| */ |
| radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0); |
| } |
| } |
| |
| static void |
| radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask, |
| unsigned dst_queue_mask, const VkImageSubresourceRange *range, |
| struct radv_sample_locations_state *sample_locs) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| |
| if (!radv_htile_enabled(image, range->baseMipLevel)) |
| return; |
| |
| if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) { |
| radv_initialize_htile(cmd_buffer, image, range); |
| } else if (radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) && |
| !radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) { |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| |
| radv_expand_depth_stencil(cmd_buffer, image, range, sample_locs); |
| |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; |
| } |
| } |
| |
| static uint32_t |
| radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, |
| uint32_t value) |
| { |
| struct radv_barrier_data barrier = {0}; |
| |
| barrier.layout_transitions.init_mask_ram = 1; |
| radv_describe_layout_transition(cmd_buffer, &barrier); |
| |
| return radv_clear_cmask(cmd_buffer, image, range, value); |
| } |
| |
| uint32_t |
| radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range) |
| { |
| static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210}; |
| uint32_t log2_samples = util_logbase2(image->vk.samples); |
| uint32_t value = fmask_clear_values[log2_samples]; |
| struct radv_barrier_data barrier = {0}; |
| |
| barrier.layout_transitions.init_mask_ram = 1; |
| radv_describe_layout_transition(cmd_buffer, &barrier); |
| |
| return radv_clear_fmask(cmd_buffer, image, range, value); |
| } |
| |
| uint32_t |
| radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, |
| uint32_t value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_barrier_data barrier = {0}; |
| uint32_t flush_bits = 0; |
| unsigned size = 0; |
| |
| barrier.layout_transitions.init_mask_ram = 1; |
| radv_describe_layout_transition(cmd_buffer, &barrier); |
| |
| flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value); |
| |
| if (pdev->info.gfx_level == GFX8) { |
| /* When DCC is enabled with mipmaps, some levels might not |
| * support fast clears and we have to initialize them as "fully |
| * expanded". |
| */ |
| /* Compute the size of all fast clearable DCC levels. */ |
| for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) { |
| struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i]; |
| unsigned dcc_fast_clear_size = dcc_level->dcc_slice_fast_clear_size * image->vk.array_layers; |
| |
| if (!dcc_fast_clear_size) |
| break; |
| |
| size = dcc_level->dcc_offset + dcc_fast_clear_size; |
| } |
| |
| /* Initialize the mipmap levels without DCC. */ |
| if (size != image->planes[0].surface.meta_size) { |
| flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, |
| radv_image_get_va(image, 0) + image->planes[0].surface.meta_offset + size, |
| image->planes[0].surface.meta_size - size, 0xffffffff); |
| } |
| } |
| |
| return flush_bits; |
| } |
| |
| /** |
| * Initialize DCC/FMASK/CMASK metadata for a color image. |
| */ |
| static void |
| radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout, |
| VkImageLayout dst_layout, unsigned src_queue_mask, unsigned dst_queue_mask, |
| const VkImageSubresourceRange *range) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| uint32_t flush_bits = 0; |
| |
| /* Transitioning from LAYOUT_UNDEFINED layout not everyone is |
| * consistent in considering previous rendering work for WAW hazards. |
| */ |
| cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, |
| VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image, range); |
| |
| if (radv_image_has_cmask(image)) { |
| static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff}; |
| uint32_t log2_samples = util_logbase2(image->vk.samples); |
| |
| flush_bits |= radv_init_cmask(cmd_buffer, image, range, cmask_clear_values[log2_samples]); |
| } |
| |
| if (radv_image_has_fmask(image)) { |
| flush_bits |= radv_init_fmask(cmd_buffer, image, range); |
| } |
| |
| if (radv_dcc_enabled(image, range->baseMipLevel)) { |
| uint32_t value = 0xffffffffu; /* Fully expanded mode. */ |
| |
| if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) { |
| value = 0u; |
| } |
| |
| flush_bits |= radv_init_dcc(cmd_buffer, image, range, value); |
| } |
| |
| if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) { |
| radv_update_fce_metadata(cmd_buffer, image, range, false); |
| |
| uint32_t color_values[2] = {0}; |
| radv_set_color_clear_metadata(cmd_buffer, image, range, color_values); |
| } |
| |
| cmd_buffer->state.flush_bits |= flush_bits; |
| } |
| |
| static void |
| radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout, |
| VkImageLayout dst_layout, unsigned dst_queue_mask) |
| { |
| /* If the image is read-only, we don't have to retile DCC because it can't change. */ |
| if (!(image->vk.usage & RADV_IMAGE_USAGE_WRITE_BITS)) |
| return; |
| |
| if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && |
| (dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR || (dst_queue_mask & (1u << RADV_QUEUE_FOREIGN)))) |
| radv_retile_dcc(cmd_buffer, image); |
| } |
| |
| static bool |
| radv_image_need_retile(const struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image) |
| { |
| return cmd_buffer->qf != RADV_QUEUE_TRANSFER && image->planes[0].surface.display_dcc_offset && |
| image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset; |
| } |
| |
| /** |
| * Handle color image transitions for DCC/FMASK/CMASK. |
| */ |
| static void |
| radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, |
| VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask, |
| unsigned dst_queue_mask, const VkImageSubresourceRange *range) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| bool dcc_decompressed = false, fast_clear_flushed = false; |
| |
| if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) && !radv_dcc_enabled(image, range->baseMipLevel)) |
| return; |
| |
| if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) { |
| radv_init_color_image_metadata(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, range); |
| |
| if (radv_image_need_retile(cmd_buffer, image)) |
| radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask); |
| return; |
| } |
| |
| if (radv_dcc_enabled(image, range->baseMipLevel)) { |
| if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) { |
| cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu); |
| } else if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, src_layout, src_queue_mask) && |
| !radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) { |
| radv_decompress_dcc(cmd_buffer, image, range); |
| dcc_decompressed = true; |
| } else if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) && |
| !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) { |
| radv_fast_clear_flush_image_inplace(cmd_buffer, image, range); |
| fast_clear_flushed = true; |
| } |
| |
| if (radv_image_need_retile(cmd_buffer, image)) |
| radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask); |
| } else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) { |
| if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) && |
| !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) { |
| radv_fast_clear_flush_image_inplace(cmd_buffer, image, range); |
| fast_clear_flushed = true; |
| } |
| } |
| |
| /* MSAA color decompress. */ |
| const enum radv_fmask_compression src_fmask_comp = |
| radv_layout_fmask_compression(device, image, src_layout, src_queue_mask); |
| const enum radv_fmask_compression dst_fmask_comp = |
| radv_layout_fmask_compression(device, image, dst_layout, dst_queue_mask); |
| if (src_fmask_comp <= dst_fmask_comp) |
| return; |
| |
| if (src_fmask_comp == RADV_FMASK_COMPRESSION_FULL) { |
| if (radv_dcc_enabled(image, range->baseMipLevel) && !radv_image_use_dcc_image_stores(device, image) && |
| !dcc_decompressed) { |
| /* A DCC decompress is required before expanding FMASK |
| * when DCC stores aren't supported to avoid being in |
| * a state where DCC is compressed and the main |
| * surface is uncompressed. |
| */ |
| radv_decompress_dcc(cmd_buffer, image, range); |
| } else if (!fast_clear_flushed) { |
| /* A FMASK decompress is required before expanding |
| * FMASK. |
| */ |
| radv_fast_clear_flush_image_inplace(cmd_buffer, image, range); |
| } |
| } |
| |
| if (dst_fmask_comp == RADV_FMASK_COMPRESSION_NONE) { |
| struct radv_barrier_data barrier = {0}; |
| barrier.layout_transitions.fmask_color_expand = 1; |
| radv_describe_layout_transition(cmd_buffer, &barrier); |
| |
| radv_expand_fmask_image_inplace(cmd_buffer, image, range); |
| } |
| } |
| |
| static void |
| radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout, |
| VkImageLayout dst_layout, uint32_t src_family_index, uint32_t dst_family_index, |
| const VkImageSubresourceRange *range, struct radv_sample_locations_state *sample_locs) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| enum radv_queue_family src_qf = vk_queue_to_radv(pdev, src_family_index); |
| enum radv_queue_family dst_qf = vk_queue_to_radv(pdev, dst_family_index); |
| if (image->exclusive && src_family_index != dst_family_index) { |
| /* This is an acquire or a release operation and there will be |
| * a corresponding release/acquire. Do the transition in the |
| * most flexible queue. */ |
| |
| assert(src_qf == cmd_buffer->qf || dst_qf == cmd_buffer->qf); |
| |
| if (src_family_index == VK_QUEUE_FAMILY_EXTERNAL || src_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT) |
| return; |
| |
| if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) |
| return; |
| |
| if (cmd_buffer->qf == RADV_QUEUE_COMPUTE && (src_qf == RADV_QUEUE_GENERAL || dst_qf == RADV_QUEUE_GENERAL)) |
| return; |
| } |
| |
| unsigned src_queue_mask = radv_image_queue_family_mask(image, src_qf, cmd_buffer->qf); |
| unsigned dst_queue_mask = radv_image_queue_family_mask(image, dst_qf, cmd_buffer->qf); |
| |
| if (src_layout == dst_layout && src_queue_mask == dst_queue_mask) |
| return; |
| |
| if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { |
| radv_handle_depth_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, |
| range, sample_locs); |
| } else { |
| radv_handle_color_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, |
| range); |
| } |
| } |
| |
| static void |
| radv_cp_dma_wait_for_stages(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 stage_mask) |
| { |
| /* Make sure CP DMA is idle because the driver might have performed a DMA operation for copying a |
| * buffer (or a MSAA image using FMASK). Note that updating a buffer is considered a clear |
| * operation but it might also use a CP DMA copy in some rare situations. Other operations using |
| * a CP DMA clear are implicitly synchronized (see CP_DMA_SYNC). |
| */ |
| if (stage_mask & |
| (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | |
| VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) |
| radv_cp_dma_wait_for_idle(cmd_buffer); |
| } |
| |
| void |
| radv_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| bool is_compute = cmd_buffer->qf == RADV_QUEUE_COMPUTE; |
| |
| if (is_compute) |
| cmd_buffer->state.flush_bits &= |
| ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB | |
| RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_INV_L2_METADATA | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | |
| RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | RADV_CMD_FLAG_START_PIPELINE_STATS | |
| RADV_CMD_FLAG_STOP_PIPELINE_STATS); |
| |
| if (!cmd_buffer->state.flush_bits) { |
| radv_describe_barrier_end_delayed(cmd_buffer); |
| return; |
| } |
| |
| radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx, |
| cmd_buffer->gfx9_fence_va, radv_cmd_buffer_uses_mec(cmd_buffer), |
| cmd_buffer->state.flush_bits, &cmd_buffer->state.sqtt_flush_bits, |
| cmd_buffer->gfx9_eop_bug_va); |
| |
| if (radv_device_fault_detection_enabled(device)) |
| radv_cmd_buffer_trace_emit(cmd_buffer); |
| |
| if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_L2) |
| cmd_buffer->state.rb_noncoherent_dirty = false; |
| |
| /* Clear the caches that have been flushed to avoid syncing too much |
| * when there is some pending active queries. |
| */ |
| cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits; |
| |
| cmd_buffer->state.flush_bits = 0; |
| |
| /* If the driver used a compute shader for resetting a query pool, it |
| * should be finished at this point. |
| */ |
| cmd_buffer->pending_reset_query = false; |
| |
| radv_describe_barrier_end_delayed(cmd_buffer); |
| } |
| |
| static void |
| radv_barrier(struct radv_cmd_buffer *cmd_buffer, uint32_t dep_count, const VkDependencyInfo *dep_infos, |
| enum rgp_barrier_reason reason) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| enum radv_cmd_flush_bits src_flush_bits = 0; |
| enum radv_cmd_flush_bits dst_flush_bits = 0; |
| VkPipelineStageFlags2 src_stage_mask = 0; |
| VkPipelineStageFlags2 dst_stage_mask = 0; |
| bool has_image_transitions = false; |
| |
| if (cmd_buffer->state.render.active) |
| radv_mark_noncoherent_rb(cmd_buffer); |
| |
| radv_describe_barrier_start(cmd_buffer, reason); |
| |
| for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) { |
| const VkDependencyInfo *dep_info = &dep_infos[dep_idx]; |
| |
| for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) { |
| const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i]; |
| src_stage_mask |= barrier->srcStageMask; |
| src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL); |
| dst_stage_mask |= barrier->dstStageMask; |
| dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL); |
| } |
| |
| for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) { |
| const VkBufferMemoryBarrier2 *barrier = &dep_info->pBufferMemoryBarriers[i]; |
| src_stage_mask |= barrier->srcStageMask; |
| src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL); |
| dst_stage_mask |= barrier->dstStageMask; |
| dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL); |
| } |
| |
| for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) { |
| const VkImageMemoryBarrier2 *barrier = &dep_info->pImageMemoryBarriers[i]; |
| VK_FROM_HANDLE(radv_image, image, barrier->image); |
| |
| src_stage_mask |= barrier->srcStageMask; |
| src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, image, |
| &barrier->subresourceRange); |
| dst_stage_mask |= barrier->dstStageMask; |
| dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, image, |
| &barrier->subresourceRange); |
| } |
| |
| has_image_transitions |= dep_info->imageMemoryBarrierCount > 0; |
| } |
| |
| /* Only optimize BOTTOM_OF_PIPE/NONE as dst when there is no image layout transitions because it might |
| * need to synchronize. |
| */ |
| if (has_image_transitions || |
| (dst_stage_mask != VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT && dst_stage_mask != VK_PIPELINE_STAGE_2_NONE)) |
| radv_stage_flush(cmd_buffer, src_stage_mask); |
| cmd_buffer->state.flush_bits |= src_flush_bits; |
| |
| radv_gang_barrier(cmd_buffer, src_stage_mask, 0); |
| |
| for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) { |
| const VkDependencyInfo *dep_info = &dep_infos[dep_idx]; |
| |
| for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) { |
| VK_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image); |
| |
| const struct VkSampleLocationsInfoEXT *sample_locs_info = |
| vk_find_struct_const(dep_info->pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT); |
| struct radv_sample_locations_state sample_locations; |
| |
| if (sample_locs_info) { |
| assert(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT); |
| sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel; |
| sample_locations.grid_size = sample_locs_info->sampleLocationGridSize; |
| sample_locations.count = sample_locs_info->sampleLocationsCount; |
| typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations, |
| sample_locs_info->sampleLocationsCount); |
| } |
| |
| radv_handle_image_transition( |
| cmd_buffer, image, dep_info->pImageMemoryBarriers[i].oldLayout, dep_info->pImageMemoryBarriers[i].newLayout, |
| dep_info->pImageMemoryBarriers[i].srcQueueFamilyIndex, |
| dep_info->pImageMemoryBarriers[i].dstQueueFamilyIndex, &dep_info->pImageMemoryBarriers[i].subresourceRange, |
| sample_locs_info ? &sample_locations : NULL); |
| } |
| } |
| |
| radv_gang_barrier(cmd_buffer, 0, dst_stage_mask); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) { |
| /* SDMA NOP packet waits for all pending SDMA operations to complete. |
| * Note that GFX9+ is supposed to have RAW dependency tracking, but it's buggy |
| * so we can't rely on it fow now. |
| */ |
| radeon_check_space(device->ws, cmd_buffer->cs, 1); |
| radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); |
| } else { |
| const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE; |
| if (is_gfx_or_ace) |
| radv_cp_dma_wait_for_stages(cmd_buffer, src_stage_mask); |
| } |
| |
| cmd_buffer->state.flush_bits |= dst_flush_bits; |
| |
| radv_describe_barrier_end(cmd_buffer); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| enum rgp_barrier_reason barrier_reason; |
| |
| if (cmd_buffer->vk.runtime_rp_barrier) { |
| barrier_reason = RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC; |
| } else { |
| barrier_reason = RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER; |
| } |
| |
| radv_barrier(cmd_buffer, 1, pDependencyInfo, barrier_reason); |
| } |
| |
| static void |
| write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event, VkPipelineStageFlags2 stageMask, |
| unsigned value) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| uint64_t va = radv_buffer_get_va(event->bo); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC) { |
| radv_vcn_write_event(cmd_buffer, event, value); |
| return; |
| } |
| |
| radv_emit_cache_flush(cmd_buffer); |
| |
| radv_cs_add_buffer(device->ws, cs, event->bo); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 28); |
| |
| if (stageMask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT | |
| VK_PIPELINE_STAGE_2_CLEAR_BIT)) { |
| /* Be conservative for now. */ |
| stageMask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT; |
| } |
| |
| /* Flags that only require a top-of-pipe event. */ |
| VkPipelineStageFlags2 top_of_pipe_flags = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT; |
| |
| /* Flags that only require a post-index-fetch event. */ |
| VkPipelineStageFlags2 post_index_fetch_flags = |
| top_of_pipe_flags | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT; |
| |
| /* Flags that only require signaling post PS. */ |
| VkPipelineStageFlags2 post_ps_flags = |
| post_index_fetch_flags | VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | |
| VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT | |
| VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | |
| VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | |
| VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT; |
| |
| /* Flags that only require signaling post CS. */ |
| VkPipelineStageFlags2 post_cs_flags = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT; |
| |
| radv_cp_dma_wait_for_stages(cmd_buffer, stageMask); |
| |
| if (!(stageMask & ~top_of_pipe_flags)) { |
| /* Just need to sync the PFP engine. */ |
| radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, false); |
| } else if (!(stageMask & ~post_index_fetch_flags)) { |
| /* Sync ME because PFP reads index and indirect buffers. */ |
| radv_write_data(cmd_buffer, V_370_ME, va, 1, &value, false); |
| } else { |
| unsigned event_type; |
| |
| if (!(stageMask & ~post_ps_flags)) { |
| /* Sync previous fragment shaders. */ |
| event_type = V_028A90_PS_DONE; |
| } else if (!(stageMask & ~post_cs_flags)) { |
| /* Sync previous compute shaders. */ |
| event_type = V_028A90_CS_DONE; |
| } else { |
| /* Otherwise, sync all prior GPU work. */ |
| event_type = V_028A90_BOTTOM_OF_PIPE_TS; |
| } |
| |
| radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, event_type, 0, EOP_DST_SEL_MEM, |
| EOP_DATA_SEL_VALUE_32BIT, va, value, cmd_buffer->gfx9_eop_bug_va); |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo *pDependencyInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_event, event, _event); |
| VkPipelineStageFlags2 src_stage_mask = 0; |
| |
| for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++) |
| src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask; |
| for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++) |
| src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask; |
| for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++) |
| src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask; |
| |
| write_event(cmd_buffer, event, src_stage_mask, 1); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_event, event, _event); |
| |
| write_event(cmd_buffer, event, stageMask, 0); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, |
| const VkDependencyInfo *pDependencyInfos) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC) |
| return; |
| |
| for (unsigned i = 0; i < eventCount; ++i) { |
| VK_FROM_HANDLE(radv_event, event, pEvents[i]); |
| uint64_t va = radv_buffer_get_va(event->bo); |
| |
| radv_cs_add_buffer(device->ws, cs, event->bo); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 7); |
| |
| radv_cp_wait_mem(cs, cmd_buffer->qf, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff); |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| radv_barrier(cmd_buffer, eventCount, pDependencyInfos, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS); |
| } |
| |
| void |
| radv_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, unsigned pred_op, uint64_t va) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t op = 0; |
| |
| radeon_check_space(device->ws, cmd_buffer->cs, 4); |
| |
| if (va) { |
| assert(pred_op == PREDICATION_OP_BOOL32 || pred_op == PREDICATION_OP_BOOL64); |
| |
| op = PRED_OP(pred_op); |
| |
| /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is |
| * zero, all rendering commands are discarded. Otherwise, they |
| * are discarded if the value is non zero. |
| */ |
| op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE; |
| } |
| if (pdev->info.gfx_level >= GFX9) { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0)); |
| radeon_emit(cmd_buffer->cs, op); |
| radeon_emit(cmd_buffer->cs, va); |
| radeon_emit(cmd_buffer->cs, va >> 32); |
| } else { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0)); |
| radeon_emit(cmd_buffer->cs, va); |
| radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF)); |
| } |
| } |
| |
| void |
| radv_begin_conditional_rendering(struct radv_cmd_buffer *cmd_buffer, uint64_t va, bool draw_visible) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| unsigned pred_op = PREDICATION_OP_BOOL32; |
| |
| radv_emit_cache_flush(cmd_buffer); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_GENERAL) { |
| if (!pdev->info.has_32bit_predication) { |
| uint64_t pred_value = 0, pred_va; |
| unsigned pred_offset; |
| |
| /* From the Vulkan spec 1.1.107: |
| * |
| * "If the 32-bit value at offset in buffer memory is zero, |
| * then the rendering commands are discarded, otherwise they |
| * are executed as normal. If the value of the predicate in |
| * buffer memory changes while conditional rendering is |
| * active, the rendering commands may be discarded in an |
| * implementation-dependent way. Some implementations may |
| * latch the value of the predicate upon beginning conditional |
| * rendering while others may read it before every rendering |
| * command." |
| * |
| * But, the AMD hardware treats the predicate as a 64-bit |
| * value which means we need a workaround in the driver. |
| * Luckily, it's not required to support if the value changes |
| * when predication is active. |
| * |
| * The workaround is as follows: |
| * 1) allocate a 64-value in the upload BO and initialize it |
| * to 0 |
| * 2) copy the 32-bit predicate value to the upload BO |
| * 3) use the new allocated VA address for predication |
| * |
| * Based on the conditionalrender demo, it's faster to do the |
| * COPY_DATA in ME (+ sync PFP) instead of PFP. |
| */ |
| radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset); |
| |
| pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset; |
| |
| radeon_check_space(device->ws, cmd_buffer->cs, 8); |
| |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit( |
| cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, pred_va); |
| radeon_emit(cs, pred_va >> 32); |
| |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); |
| radeon_emit(cs, 0); |
| |
| va = pred_va; |
| pred_op = PREDICATION_OP_BOOL64; |
| } |
| |
| radv_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va); |
| } else { |
| /* Compute queue doesn't support predication and it's emulated elsewhere. */ |
| } |
| |
| /* Store conditional rendering user info. */ |
| cmd_buffer->state.predicating = true; |
| cmd_buffer->state.predication_type = draw_visible; |
| cmd_buffer->state.predication_op = pred_op; |
| cmd_buffer->state.predication_va = va; |
| cmd_buffer->state.mec_inv_pred_emitted = false; |
| } |
| |
| void |
| radv_end_conditional_rendering(struct radv_cmd_buffer *cmd_buffer) |
| { |
| if (cmd_buffer->qf == RADV_QUEUE_GENERAL) { |
| radv_emit_set_predication_state(cmd_buffer, false, 0, 0); |
| } else { |
| /* Compute queue doesn't support predication, no need to emit anything here. */ |
| } |
| |
| /* Reset conditional rendering user info. */ |
| cmd_buffer->state.predicating = false; |
| cmd_buffer->state.predication_type = -1; |
| cmd_buffer->state.predication_op = 0; |
| cmd_buffer->state.predication_va = 0; |
| cmd_buffer->state.mec_inv_pred_emitted = false; |
| } |
| |
| /* VK_EXT_conditional_rendering */ |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer, |
| const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer); |
| bool draw_visible = true; |
| uint64_t va; |
| |
| va = radv_buffer_get_va(buffer->bo) + buffer->offset + pConditionalRenderingBegin->offset; |
| |
| /* By default, if the 32-bit value at offset in buffer memory is zero, |
| * then the rendering commands are discarded, otherwise they are |
| * executed as normal. If the inverted flag is set, all commands are |
| * discarded if the value is non zero. |
| */ |
| if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) { |
| draw_visible = false; |
| } |
| |
| radv_begin_conditional_rendering(cmd_buffer, va, draw_visible); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| radv_end_conditional_rendering(cmd_buffer); |
| } |
| |
| /* VK_EXT_transform_feedback */ |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, |
| const VkBuffer *pBuffers, const VkDeviceSize *pOffsets, |
| const VkDeviceSize *pSizes) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings; |
| uint8_t enabled_mask = 0; |
| |
| assert(firstBinding + bindingCount <= MAX_SO_BUFFERS); |
| for (uint32_t i = 0; i < bindingCount; i++) { |
| uint32_t idx = firstBinding + i; |
| |
| sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]); |
| sb[idx].offset = pOffsets[i]; |
| |
| if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) { |
| sb[idx].size = sb[idx].buffer->vk.size - sb[idx].offset; |
| } else { |
| sb[idx].size = pSizes[i]; |
| } |
| |
| radv_cs_add_buffer(device->ws, cmd_buffer->cs, sb[idx].buffer->bo); |
| |
| enabled_mask |= 1 << idx; |
| } |
| |
| cmd_buffer->state.streamout.enabled_mask |= enabled_mask; |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER; |
| } |
| |
| static void |
| radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_streamout_state *so = &cmd_buffer->state.streamout; |
| bool old_streamout_enabled = radv_is_streamout_enabled(cmd_buffer); |
| uint32_t old_hw_enabled_mask = so->hw_enabled_mask; |
| |
| so->streamout_enabled = enable; |
| |
| so->hw_enabled_mask = |
| so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) | (so->enabled_mask << 12); |
| |
| if (!pdev->use_ngg_streamout && ((old_streamout_enabled != radv_is_streamout_enabled(cmd_buffer)) || |
| (old_hw_enabled_mask != so->hw_enabled_mask))) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE; |
| |
| if (pdev->use_ngg_streamout) { |
| /* Re-emit streamout desciptors because with NGG streamout, a buffer size of 0 acts like a |
| * disable bit and this is needed when streamout needs to be ignored in shaders. |
| */ |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_STREAMOUT_BUFFER; |
| } |
| } |
| |
| static void |
| radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| unsigned reg_strmout_cntl; |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 14); |
| |
| /* The register is at different places on different ASICs. */ |
| if (pdev->info.gfx_level >= GFX9) { |
| reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL; |
| radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0)); |
| radeon_emit(cs, S_370_DST_SEL(V_370_MEM_MAPPED_REGISTER) | S_370_ENGINE_SEL(V_370_ME)); |
| radeon_emit(cs, R_0300FC_CP_STRMOUT_CNTL >> 2); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, 0); |
| } else if (pdev->info.gfx_level >= GFX7) { |
| reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL; |
| radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0); |
| } else { |
| reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL; |
| radeon_set_config_reg(cs, reg_strmout_cntl, 0); |
| } |
| |
| radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cs, EVENT_TYPE(V_028A90_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0)); |
| |
| radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); |
| radeon_emit(cs, WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */ |
| radeon_emit(cs, reg_strmout_cntl >> 2); /* register */ |
| radeon_emit(cs, 0); |
| radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */ |
| radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */ |
| radeon_emit(cs, 4); /* poll interval */ |
| |
| assert(cs->cdw <= cdw_max); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, |
| uint32_t counterBufferCount, const VkBuffer *pCounterBuffers, |
| const VkDeviceSize *pCounterBufferOffsets) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings; |
| struct radv_streamout_state *so = &cmd_buffer->state.streamout; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| bool first_target = true; |
| |
| assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS); |
| if (!pdev->use_ngg_streamout) |
| radv_flush_vgt_streamout(cmd_buffer); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 10); |
| |
| u_foreach_bit (i, so->enabled_mask) { |
| int32_t counter_buffer_idx = i - firstCounterBuffer; |
| if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount) |
| counter_buffer_idx = -1; |
| |
| bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]; |
| uint64_t va = 0; |
| |
| if (append) { |
| VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]); |
| uint64_t counter_buffer_offset = 0; |
| |
| if (pCounterBufferOffsets) |
| counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx]; |
| |
| va += radv_buffer_get_va(buffer->bo); |
| va += buffer->offset + counter_buffer_offset; |
| |
| radv_cs_add_buffer(device->ws, cs, buffer->bo); |
| } |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| /* Only the first streamout target holds information. */ |
| if (first_target) { |
| if (append) { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit( |
| cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, (R_0309B0_GE_GS_ORDERED_ID_BASE >> 2)); |
| radeon_emit(cs, 0); |
| } else { |
| radeon_set_uconfig_reg(cs, R_0309B0_GE_GS_ORDERED_ID_BASE, 0); |
| } |
| |
| first_target = false; |
| } |
| } else if (pdev->use_ngg_streamout) { |
| if (append) { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, |
| COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i); |
| radeon_emit(cs, 0); |
| } else { |
| /* The PKT3 CAM bit workaround seems needed for initializing this GDS register to zero. */ |
| radeon_set_uconfig_perfctr_reg(pdev->info.gfx_level, cmd_buffer->qf, cs, |
| R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 + i * 4, 0); |
| } |
| } else { |
| /* AMD GCN binds streamout buffers as shader resources. |
| * VGT only counts primitives and tells the shader through |
| * SGPRs what to do. |
| */ |
| radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, sb[i].size >> 2); |
| |
| cmd_buffer->state.context_roll_without_scissor_emitted = true; |
| |
| if (append) { |
| radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); |
| radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */ |
| STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, va); /* src address lo */ |
| radeon_emit(cs, va >> 32); /* src address hi */ |
| } else { |
| /* Start from the beginning. */ |
| radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); |
| radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */ |
| STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, 0); /* unused */ |
| } |
| } |
| } |
| |
| assert(cs->cdw <= cdw_max); |
| |
| radv_set_streamout_enable(cmd_buffer, true); |
| |
| if (!pdev->use_ngg_streamout) |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount, |
| const VkBuffer *pCounterBuffers, const VkDeviceSize *pCounterBufferOffsets) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_streamout_state *so = &cmd_buffer->state.streamout; |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS); |
| |
| if (pdev->info.gfx_level >= GFX12) { |
| /* Nothing to do. The streamout state buffer already contains the next ordered ID, which |
| * is the only thing we need to restore. |
| */ |
| radv_set_streamout_enable(cmd_buffer, false); |
| return; |
| } |
| |
| if (pdev->use_ngg_streamout) { |
| /* Wait for streamout to finish before reading GDS_STRMOUT registers. */ |
| cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH; |
| radv_emit_cache_flush(cmd_buffer); |
| } else { |
| radv_flush_vgt_streamout(cmd_buffer); |
| } |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 12); |
| |
| u_foreach_bit (i, so->enabled_mask) { |
| int32_t counter_buffer_idx = i - firstCounterBuffer; |
| if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount) |
| counter_buffer_idx = -1; |
| |
| bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]; |
| uint64_t va = 0; |
| |
| if (append) { |
| VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]); |
| uint64_t counter_buffer_offset = 0; |
| |
| if (pCounterBufferOffsets) |
| counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx]; |
| |
| va += radv_buffer_get_va(buffer->bo); |
| va += buffer->offset + counter_buffer_offset; |
| |
| radv_cs_add_buffer(device->ws, cs, buffer->bo); |
| } |
| |
| if (pdev->use_ngg_streamout) { |
| if (append) { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, |
| COPY_DATA_SRC_SEL(COPY_DATA_REG) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| } |
| } else { |
| if (append) { |
| radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0)); |
| radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */ |
| STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) | |
| STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */ |
| radeon_emit(cs, va); /* dst address lo */ |
| radeon_emit(cs, va >> 32); /* dst address hi */ |
| radeon_emit(cs, 0); /* unused */ |
| radeon_emit(cs, 0); /* unused */ |
| } |
| |
| /* Deactivate transform feedback by zeroing the buffer size. |
| * The counters (primitives generated, primitives emitted) may |
| * be enabled even if there is not buffer bound. This ensures |
| * that the primitives-emitted query won't increment. |
| */ |
| radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0); |
| |
| cmd_buffer->state.context_roll_without_scissor_emitted = true; |
| } |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| |
| radv_set_streamout_enable(cmd_buffer, false); |
| } |
| |
| static void |
| radv_emit_strmout_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info) |
| { |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset; |
| |
| radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride); |
| |
| if (gfx_level >= GFX10) { |
| /* Emitting a COPY_DATA packet should be enough because RADV doesn't support preemption |
| * (shadow memory) but for unknown reasons, it can lead to GPU hangs on GFX10+. |
| */ |
| radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); |
| radeon_emit(cs, 0); |
| |
| radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, (R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE - SI_CONTEXT_REG_OFFSET) >> 2); |
| radeon_emit(cs, 1); /* 1 DWORD */ |
| } else { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2); |
| radeon_emit(cs, 0); /* unused */ |
| } |
| |
| radv_cs_add_buffer(device->ws, cs, draw_info->strmout_buffer->bo); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance, |
| VkBuffer _counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset, |
| uint32_t vertexStride) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_draw_info info; |
| |
| info.count = 0; |
| info.instance_count = instanceCount; |
| info.first_instance = firstInstance; |
| info.strmout_buffer = counterBuffer; |
| info.strmout_buffer_offset = counterBufferOffset; |
| info.stride = vertexStride; |
| info.indexed = false; |
| info.indirect = NULL; |
| |
| if (!radv_before_draw(cmd_buffer, &info, 1, false)) |
| return; |
| struct VkMultiDrawInfoEXT minfo = {0, 0}; |
| radv_emit_strmout_buffer(cmd_buffer, &info); |
| radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, S_0287F0_USE_OPAQUE(1), 0); |
| |
| if (pdev->info.gfx_level == GFX12) { |
| /* DrawTransformFeedback requires 3 SQ_NON_EVENTs after the packet. */ |
| for (unsigned i = 0; i < 3; i++) { |
| radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); |
| radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0)); |
| } |
| } |
| |
| radv_after_draw(cmd_buffer, false); |
| } |
| |
| /* VK_AMD_buffer_marker */ |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage, VkBuffer dstBuffer, |
| VkDeviceSize dstOffset, uint32_t marker) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VK_FROM_HANDLE(radv_buffer, buffer, dstBuffer); |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| const uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + dstOffset; |
| |
| radv_cs_add_buffer(device->ws, cs, buffer->bo); |
| |
| if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) { |
| radeon_check_space(device->ws, cmd_buffer->cs, 4); |
| radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, SDMA_FENCE_MTYPE_UC)); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| radeon_emit(cs, marker); |
| return; |
| } |
| |
| radv_emit_cache_flush(cmd_buffer); |
| |
| ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 12); |
| |
| if (!(stage & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) { |
| radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); |
| radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM); |
| radeon_emit(cs, marker); |
| radeon_emit(cs, 0); |
| radeon_emit(cs, va); |
| radeon_emit(cs, va >> 32); |
| } else { |
| radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, V_028A90_BOTTOM_OF_PIPE_TS, 0, |
| EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker, cmd_buffer->gfx9_eop_bug_va); |
| } |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| /* VK_EXT_descriptor_buffer */ |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer, uint32_t bufferCount, |
| const VkDescriptorBufferBindingInfoEXT *pBindingInfos) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| for (uint32_t i = 0; i < bufferCount; i++) { |
| cmd_buffer->descriptor_buffers[i] = pBindingInfos[i].address; |
| } |
| } |
| |
| static void |
| radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer *cmd_buffer, |
| const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo, |
| VkPipelineBindPoint bind_point) |
| { |
| struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point); |
| |
| for (unsigned i = 0; i < pSetDescriptorBufferOffsetsInfo->setCount; i++) { |
| const uint32_t buffer_idx = pSetDescriptorBufferOffsetsInfo->pBufferIndices[i]; |
| const uint64_t offset = pSetDescriptorBufferOffsetsInfo->pOffsets[i]; |
| unsigned idx = i + pSetDescriptorBufferOffsetsInfo->firstSet; |
| |
| descriptors_state->descriptor_buffers[idx] = cmd_buffer->descriptor_buffers[buffer_idx] + offset; |
| |
| radv_set_descriptor_set(cmd_buffer, bind_point, NULL, idx); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer, |
| const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| |
| if (pSetDescriptorBufferOffsetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) { |
| radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE); |
| } |
| |
| if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) { |
| radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| } |
| |
| if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_RT_STAGE_BITS) { |
| radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, |
| VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR); |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT( |
| VkCommandBuffer commandBuffer, |
| const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *pBindDescriptorBufferEmbeddedSamplersInfo) |
| { |
| /* This is a no-op because embedded samplers are inlined at compile time. */ |
| } |
| |
| /* VK_EXT_shader_object */ |
| static void |
| radv_reset_pipeline_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint) |
| { |
| switch (pipelineBindPoint) { |
| case VK_PIPELINE_BIND_POINT_COMPUTE: |
| if (cmd_buffer->state.compute_pipeline) { |
| radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE); |
| cmd_buffer->state.compute_pipeline = NULL; |
| } |
| if (cmd_buffer->state.emitted_compute_pipeline) { |
| cmd_buffer->state.emitted_compute_pipeline = NULL; |
| } |
| break; |
| case VK_PIPELINE_BIND_POINT_GRAPHICS: |
| if (cmd_buffer->state.graphics_pipeline) { |
| radv_foreach_stage(s, cmd_buffer->state.graphics_pipeline->active_stages) |
| { |
| radv_bind_shader(cmd_buffer, NULL, s); |
| } |
| cmd_buffer->state.graphics_pipeline = NULL; |
| |
| cmd_buffer->state.gs_copy_shader = NULL; |
| cmd_buffer->state.last_vgt_shader = NULL; |
| cmd_buffer->state.emitted_vs_prolog = NULL; |
| cmd_buffer->state.spi_shader_col_format = 0; |
| cmd_buffer->state.spi_shader_z_format = 0; |
| cmd_buffer->state.cb_shader_mask = 0; |
| cmd_buffer->state.ms.sample_shading_enable = false; |
| cmd_buffer->state.ms.min_sample_shading = 1.0f; |
| cmd_buffer->state.rast_prim = 0; |
| cmd_buffer->state.uses_out_of_order_rast = false; |
| cmd_buffer->state.uses_vrs_attachment = false; |
| } |
| if (cmd_buffer->state.emitted_graphics_pipeline) { |
| radv_bind_custom_blend_mode(cmd_buffer, 0); |
| |
| if (cmd_buffer->state.db_render_control) { |
| cmd_buffer->state.db_render_control = 0; |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER; |
| } |
| |
| cmd_buffer->state.uses_vrs = false; |
| cmd_buffer->state.uses_vrs_coarse_shading = false; |
| |
| cmd_buffer->state.emitted_graphics_pipeline = NULL; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE; |
| } |
| |
| static void |
| radv_bind_compute_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_object *shader_obj) |
| { |
| struct radv_shader *shader = shader_obj ? shader_obj->shader : NULL; |
| struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radeon_cmdbuf *cs = cmd_buffer->cs; |
| |
| radv_bind_shader(cmd_buffer, shader, MESA_SHADER_COMPUTE); |
| |
| if (!shader_obj) |
| return; |
| |
| ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 128); |
| |
| radv_emit_compute_shader(pdev, cs, shader); |
| |
| /* Update push constants/indirect descriptors state. */ |
| struct radv_descriptor_state *descriptors_state = |
| radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE); |
| struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_COMPUTE]; |
| |
| descriptors_state->need_indirect_descriptor_sets = |
| radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1; |
| pc_state->size = shader_obj->push_constant_size; |
| pc_state->dynamic_offset_count = shader_obj->dynamic_offset_count; |
| |
| assert(cmd_buffer->cs->cdw <= cdw_max); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer, uint32_t stageCount, const VkShaderStageFlagBits *pStages, |
| const VkShaderEXT *pShaders) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| VkShaderStageFlagBits bound_stages = 0; |
| |
| for (uint32_t i = 0; i < stageCount; i++) { |
| const gl_shader_stage stage = vk_to_mesa_shader_stage(pStages[i]); |
| |
| if (!pShaders) { |
| cmd_buffer->state.shader_objs[stage] = NULL; |
| continue; |
| } |
| |
| VK_FROM_HANDLE(radv_shader_object, shader_obj, pShaders[i]); |
| |
| cmd_buffer->state.shader_objs[stage] = shader_obj; |
| |
| bound_stages |= pStages[i]; |
| } |
| |
| if (bound_stages & VK_SHADER_STAGE_COMPUTE_BIT) { |
| radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE); |
| radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE); |
| |
| radv_bind_compute_shader(cmd_buffer, cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]); |
| } |
| |
| if (bound_stages & RADV_GRAPHICS_STAGE_BITS) { |
| radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS); |
| |
| /* Graphics shaders are handled at draw time because of shader variants. */ |
| } |
| |
| cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GRAPHICS_SHADERS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer, VkCoverageModulationModeNV coverageModulationMode) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageModulationTableEnable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer, uint32_t coverageModulationTableCount, |
| const float *pCoverageModulationTable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer, VkCoverageReductionModeNV coverageReductionMode) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageToColorEnable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer, uint32_t coverageToColorLocation) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer, VkBool32 representativeFragmentTestEnable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer, VkBool32 shadingRateImageEnable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, |
| const VkViewportSwizzleNV *pViewportSwizzles) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer, VkBool32 viewportWScalingEnable) |
| { |
| unreachable("Not supported by RADV."); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer, VkDepthClampModeEXT depthClampMode, |
| const VkDepthClampRangeEXT *pDepthClampRange) |
| { |
| VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); |
| struct radv_cmd_state *state = &cmd_buffer->state; |
| |
| state->dynamic.vk.vp.depth_clamp_mode = depthClampMode; |
| if (depthClampMode == VK_DEPTH_CLAMP_MODE_USER_DEFINED_RANGE_EXT) { |
| state->dynamic.vk.vp.depth_clamp_range = *pDepthClampRange; |
| } |
| |
| state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_RANGE; |
| } |