| /* |
| * Copyright © 2017 Red Hat |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| #include "radv_shader_info.h" |
| #include "nir/nir.h" |
| #include "nir/nir_xfb_info.h" |
| #include "nir/radv_nir.h" |
| #include "radv_device.h" |
| #include "radv_physical_device.h" |
| #include "radv_pipeline_graphics.h" |
| #include "radv_shader.h" |
| |
| #include "ac_nir.h" |
| |
| static void |
| mark_sampler_desc(const nir_variable *var, struct radv_shader_info *info) |
| { |
| info->desc_set_used_mask |= (1u << var->data.descriptor_set); |
| } |
| |
| static bool |
| radv_use_vs_prolog(const nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state) |
| { |
| return gfx_state->vs.has_prolog && nir->info.inputs_read; |
| } |
| |
| static bool |
| radv_use_per_attribute_vb_descs(const nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state, |
| const struct radv_shader_stage_key *stage_key) |
| { |
| return stage_key->vertex_robustness1 || radv_use_vs_prolog(nir, gfx_state); |
| } |
| |
| static void |
| gather_load_vs_input_info(const nir_shader *nir, const nir_intrinsic_instr *intrin, struct radv_shader_info *info, |
| const struct radv_graphics_state_key *gfx_state, |
| const struct radv_shader_stage_key *stage_key) |
| { |
| const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin); |
| const unsigned location = io_sem.location; |
| const unsigned component = nir_intrinsic_component(intrin); |
| unsigned mask = nir_def_components_read(&intrin->def); |
| mask = (intrin->def.bit_size == 64 ? util_widen_mask(mask, 2) : mask) << component; |
| |
| if (location >= VERT_ATTRIB_GENERIC0) { |
| const unsigned generic_loc = location - VERT_ATTRIB_GENERIC0; |
| |
| if (gfx_state->vi.instance_rate_inputs & BITFIELD_BIT(generic_loc)) { |
| info->vs.needs_instance_id = true; |
| info->vs.needs_base_instance = true; |
| } |
| |
| if (radv_use_per_attribute_vb_descs(nir, gfx_state, stage_key)) |
| info->vs.vb_desc_usage_mask |= BITFIELD_BIT(generic_loc); |
| else |
| info->vs.vb_desc_usage_mask |= BITFIELD_BIT(gfx_state->vi.vertex_attribute_bindings[generic_loc]); |
| |
| info->vs.input_slot_usage_mask |= BITFIELD_RANGE(generic_loc, io_sem.num_slots); |
| } |
| } |
| |
| static void |
| gather_load_fs_input_info(const nir_shader *nir, const nir_intrinsic_instr *intrin, struct radv_shader_info *info, |
| const struct radv_graphics_state_key *gfx_state) |
| { |
| const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin); |
| const unsigned location = io_sem.location; |
| const unsigned mapped_location = nir_intrinsic_base(intrin); |
| const unsigned attrib_count = io_sem.num_slots; |
| const unsigned component = nir_intrinsic_component(intrin); |
| |
| switch (location) { |
| case VARYING_SLOT_CLIP_DIST0: |
| info->ps.input_clips_culls_mask |= BITFIELD_RANGE(component, intrin->num_components); |
| break; |
| case VARYING_SLOT_CLIP_DIST1: |
| info->ps.input_clips_culls_mask |= BITFIELD_RANGE(component, intrin->num_components) << 4; |
| break; |
| default: |
| break; |
| } |
| |
| const uint32_t mapped_mask = BITFIELD_RANGE(mapped_location, attrib_count); |
| const bool per_primitive = nir->info.per_primitive_inputs & BITFIELD64_BIT(location); |
| |
| if (!per_primitive) { |
| if (intrin->intrinsic == nir_intrinsic_load_input_vertex) { |
| if (io_sem.interp_explicit_strict) |
| info->ps.explicit_strict_shaded_mask |= mapped_mask; |
| else |
| info->ps.explicit_shaded_mask |= mapped_mask; |
| } else if (intrin->intrinsic == nir_intrinsic_load_interpolated_input && intrin->def.bit_size == 16) { |
| if (io_sem.high_16bits) |
| info->ps.float16_hi_shaded_mask |= mapped_mask; |
| else |
| info->ps.float16_shaded_mask |= mapped_mask; |
| } else if (intrin->intrinsic == nir_intrinsic_load_interpolated_input) { |
| info->ps.float32_shaded_mask |= mapped_mask; |
| } |
| } |
| |
| if (location >= VARYING_SLOT_VAR0) { |
| const uint32_t var_mask = BITFIELD_RANGE(location - VARYING_SLOT_VAR0, attrib_count); |
| |
| if (per_primitive) |
| info->ps.input_per_primitive_mask |= var_mask; |
| else |
| info->ps.input_mask |= var_mask; |
| } |
| } |
| |
| static void |
| gather_intrinsic_load_input_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info, |
| const struct radv_graphics_state_key *gfx_state, |
| const struct radv_shader_stage_key *stage_key) |
| { |
| switch (nir->info.stage) { |
| case MESA_SHADER_VERTEX: |
| gather_load_vs_input_info(nir, instr, info, gfx_state, stage_key); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| gather_load_fs_input_info(nir, instr, info, gfx_state); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void |
| gather_intrinsic_store_output_info(const nir_shader *nir, const nir_intrinsic_instr *instr, |
| struct radv_shader_info *info, bool consider_force_vrs) |
| { |
| const nir_io_semantics io_sem = nir_intrinsic_io_semantics(instr); |
| const unsigned location = io_sem.location; |
| const unsigned num_slots = io_sem.num_slots; |
| const unsigned component = nir_intrinsic_component(instr); |
| const unsigned write_mask = nir_intrinsic_write_mask(instr); |
| uint8_t *output_usage_mask = NULL; |
| |
| switch (nir->info.stage) { |
| case MESA_SHADER_VERTEX: |
| output_usage_mask = info->vs.output_usage_mask; |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| output_usage_mask = info->tes.output_usage_mask; |
| break; |
| case MESA_SHADER_GEOMETRY: |
| output_usage_mask = info->gs.output_usage_mask; |
| break; |
| case MESA_SHADER_FRAGMENT: |
| if (location >= FRAG_RESULT_DATA0) { |
| const unsigned fs_semantic = location + io_sem.dual_source_blend_index; |
| info->ps.colors_written |= 0xfu << (4 * (fs_semantic - FRAG_RESULT_DATA0)); |
| |
| if (fs_semantic == FRAG_RESULT_DATA0) |
| info->ps.color0_written = write_mask; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (output_usage_mask) { |
| for (unsigned i = 0; i < num_slots; i++) { |
| output_usage_mask[location + i] |= ((write_mask >> (i * 4)) & 0xf) << component; |
| } |
| } |
| |
| if (consider_force_vrs && location == VARYING_SLOT_POS) { |
| unsigned pos_w_chan = 3 - component; |
| |
| if (write_mask & BITFIELD_BIT(pos_w_chan)) { |
| nir_scalar pos_w = nir_scalar_resolved(instr->src[0].ssa, pos_w_chan); |
| /* Use coarse shading if the value of Pos.W can't be determined or if its value is != 1 |
| * (typical for non-GUI elements). |
| */ |
| if (!nir_scalar_is_const(pos_w) || nir_scalar_as_uint(pos_w) != 0x3f800000u) |
| info->force_vrs_per_vertex = true; |
| } |
| } |
| |
| if (nir->info.stage == MESA_SHADER_GEOMETRY) { |
| const uint8_t gs_streams = nir_intrinsic_io_semantics(instr).gs_streams; |
| info->gs.output_streams[location] |= gs_streams << (component * 2); |
| } |
| |
| if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && !io_sem.no_sysval_output) { |
| unsigned base = (location == VARYING_SLOT_CLIP_DIST1 ? 4 : 0) + component; |
| unsigned clip_array_mask = BITFIELD_MASK(nir->info.clip_distance_array_size); |
| info->outinfo.clip_dist_mask |= (write_mask << base) & clip_array_mask; |
| info->outinfo.cull_dist_mask |= (write_mask << base) & ~clip_array_mask; |
| } |
| } |
| |
| static void |
| gather_push_constant_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info) |
| { |
| info->loads_push_constants = true; |
| |
| if (nir_src_is_const(instr->src[0]) && instr->def.bit_size >= 32) { |
| uint32_t start = (nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0])) / 4u; |
| uint32_t size = instr->num_components * (instr->def.bit_size / 32u); |
| |
| if (start + size <= (MAX_PUSH_CONSTANTS_SIZE / 4u)) { |
| info->inline_push_constant_mask |= u_bit_consecutive64(start, size); |
| return; |
| } |
| } |
| |
| info->can_inline_all_push_constants = false; |
| } |
| |
| static void |
| gather_intrinsic_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info, |
| const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key, |
| bool consider_force_vrs) |
| { |
| switch (instr->intrinsic) { |
| case nir_intrinsic_load_barycentric_sample: |
| case nir_intrinsic_load_barycentric_pixel: |
| case nir_intrinsic_load_barycentric_centroid: |
| case nir_intrinsic_load_barycentric_at_sample: |
| case nir_intrinsic_load_barycentric_at_offset: { |
| enum glsl_interp_mode mode = nir_intrinsic_interp_mode(instr); |
| switch (mode) { |
| case INTERP_MODE_SMOOTH: |
| case INTERP_MODE_NONE: |
| if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel || |
| instr->intrinsic == nir_intrinsic_load_barycentric_at_sample || |
| instr->intrinsic == nir_intrinsic_load_barycentric_at_offset) |
| info->ps.reads_persp_center = true; |
| else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid) |
| info->ps.reads_persp_centroid = true; |
| else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample) |
| info->ps.reads_persp_sample = true; |
| break; |
| case INTERP_MODE_NOPERSPECTIVE: |
| if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel || |
| instr->intrinsic == nir_intrinsic_load_barycentric_at_sample || |
| instr->intrinsic == nir_intrinsic_load_barycentric_at_offset) |
| info->ps.reads_linear_center = true; |
| else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid) |
| info->ps.reads_linear_centroid = true; |
| else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample) |
| info->ps.reads_linear_sample = true; |
| break; |
| default: |
| break; |
| } |
| if (instr->intrinsic == nir_intrinsic_load_barycentric_at_sample) |
| info->ps.needs_sample_positions = true; |
| break; |
| } |
| case nir_intrinsic_load_provoking_vtx_amd: |
| info->ps.load_provoking_vtx = true; |
| break; |
| case nir_intrinsic_load_sample_positions_amd: |
| info->ps.needs_sample_positions = true; |
| break; |
| case nir_intrinsic_load_rasterization_primitive_amd: |
| info->ps.load_rasterization_prim = true; |
| break; |
| case nir_intrinsic_load_local_invocation_id: |
| case nir_intrinsic_load_workgroup_id: { |
| unsigned mask = nir_def_components_read(&instr->def); |
| while (mask) { |
| unsigned i = u_bit_scan(&mask); |
| |
| if (instr->intrinsic == nir_intrinsic_load_workgroup_id) |
| info->cs.uses_block_id[i] = true; |
| else |
| info->cs.uses_thread_id[i] = true; |
| } |
| break; |
| } |
| case nir_intrinsic_load_pixel_coord: |
| info->ps.reads_pixel_coord = true; |
| break; |
| case nir_intrinsic_load_frag_coord: |
| info->ps.reads_frag_coord_mask |= nir_def_components_read(&instr->def); |
| break; |
| case nir_intrinsic_load_sample_pos: |
| info->ps.reads_sample_pos_mask |= nir_def_components_read(&instr->def); |
| break; |
| case nir_intrinsic_load_push_constant: |
| gather_push_constant_info(nir, instr, info); |
| break; |
| case nir_intrinsic_vulkan_resource_index: |
| info->desc_set_used_mask |= (1u << nir_intrinsic_desc_set(instr)); |
| break; |
| case nir_intrinsic_image_deref_load: |
| case nir_intrinsic_image_deref_sparse_load: |
| case nir_intrinsic_image_deref_store: |
| case nir_intrinsic_image_deref_atomic: |
| case nir_intrinsic_image_deref_atomic_swap: |
| case nir_intrinsic_image_deref_size: |
| case nir_intrinsic_image_deref_samples: { |
| nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); |
| mark_sampler_desc(var, info); |
| break; |
| } |
| case nir_intrinsic_load_input: |
| case nir_intrinsic_load_per_primitive_input: |
| case nir_intrinsic_load_interpolated_input: |
| case nir_intrinsic_load_input_vertex: |
| gather_intrinsic_load_input_info(nir, instr, info, gfx_state, stage_key); |
| break; |
| case nir_intrinsic_store_output: |
| case nir_intrinsic_store_per_vertex_output: |
| gather_intrinsic_store_output_info(nir, instr, info, consider_force_vrs); |
| break; |
| case nir_intrinsic_bvh64_intersect_ray_amd: |
| info->cs.uses_rt = true; |
| break; |
| case nir_intrinsic_load_poly_line_smooth_enabled: |
| info->ps.needs_poly_line_smooth = true; |
| break; |
| case nir_intrinsic_begin_invocation_interlock: |
| info->ps.pops = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void |
| gather_tex_info(const nir_shader *nir, const nir_tex_instr *instr, struct radv_shader_info *info) |
| { |
| for (unsigned i = 0; i < instr->num_srcs; i++) { |
| switch (instr->src[i].src_type) { |
| case nir_tex_src_texture_deref: |
| mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info); |
| break; |
| case nir_tex_src_sampler_deref: |
| mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void |
| gather_info_block(const nir_shader *nir, const nir_block *block, struct radv_shader_info *info, |
| const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key, |
| bool consider_force_vrs) |
| { |
| nir_foreach_instr (instr, block) { |
| switch (instr->type) { |
| case nir_instr_type_intrinsic: |
| gather_intrinsic_info(nir, nir_instr_as_intrinsic(instr), info, gfx_state, stage_key, consider_force_vrs); |
| break; |
| case nir_instr_type_tex: |
| gather_tex_info(nir, nir_instr_as_tex(instr), info); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void |
| gather_xfb_info(const nir_shader *nir, struct radv_shader_info *info) |
| { |
| struct radv_streamout_info *so = &info->so; |
| |
| if (!nir->xfb_info) |
| return; |
| |
| const nir_xfb_info *xfb = nir->xfb_info; |
| assert(xfb->output_count <= MAX_SO_OUTPUTS); |
| so->num_outputs = xfb->output_count; |
| |
| for (unsigned i = 0; i < xfb->output_count; i++) { |
| unsigned output_buffer = xfb->outputs[i].buffer; |
| unsigned stream = xfb->buffer_to_stream[xfb->outputs[i].buffer]; |
| so->enabled_stream_buffers_mask |= (1 << output_buffer) << (stream * 4); |
| } |
| |
| for (unsigned i = 0; i < NIR_MAX_XFB_BUFFERS; i++) { |
| so->strides[i] = xfb->buffers[i].stride / 4; |
| } |
| } |
| |
| static void |
| assign_outinfo_param(struct radv_vs_output_info *outinfo, gl_varying_slot idx, unsigned *total_param_exports, |
| unsigned extra_offset) |
| { |
| if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED) |
| outinfo->vs_output_param_offset[idx] = extra_offset + (*total_param_exports)++; |
| } |
| |
| static void |
| assign_outinfo_params(struct radv_vs_output_info *outinfo, uint64_t mask, unsigned *total_param_exports, |
| unsigned extra_offset) |
| { |
| u_foreach_bit64 (idx, mask) { |
| if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID || |
| idx == VARYING_SLOT_VIEWPORT) |
| assign_outinfo_param(outinfo, idx, total_param_exports, extra_offset); |
| } |
| } |
| |
| static void |
| radv_get_output_masks(const struct nir_shader *nir, const struct radv_graphics_state_key *gfx_state, |
| uint64_t *per_vtx_mask, uint64_t *per_prim_mask) |
| { |
| /* These are not compiled into neither output param nor position exports. */ |
| const uint64_t special_mask = BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) | |
| BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) | |
| BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE); |
| |
| *per_prim_mask = nir->info.outputs_written & nir->info.per_primitive_outputs & ~special_mask; |
| *per_vtx_mask = nir->info.outputs_written & ~nir->info.per_primitive_outputs & ~special_mask; |
| |
| /* Mesh multiview is only lowered in ac_nir_lower_ngg, so we have to fake it here. */ |
| if (nir->info.stage == MESA_SHADER_MESH && gfx_state->has_multiview_view_index) |
| *per_prim_mask |= VARYING_BIT_LAYER; |
| } |
| |
| static void |
| radv_set_vs_output_param(struct radv_device *device, const struct nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info, |
| bool export_prim_id, bool export_clip_cull_dists) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_vs_output_info *outinfo = &info->outinfo; |
| uint64_t per_vtx_mask, per_prim_mask; |
| |
| radv_get_output_masks(nir, gfx_state, &per_vtx_mask, &per_prim_mask); |
| |
| memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED, sizeof(outinfo->vs_output_param_offset)); |
| |
| /* Implicit primitive ID for VS and TES is added by ac_nir_lower_legacy_vs / ac_nir_lower_ngg, |
| * it can be configured as either a per-vertex or per-primitive output depending on the GPU. |
| */ |
| const bool implicit_prim_id_per_prim = |
| export_prim_id && info->is_ngg && pdev->info.gfx_level >= GFX10_3 && nir->info.stage == MESA_SHADER_VERTEX; |
| const bool implicit_prim_id_per_vertex = |
| export_prim_id && !implicit_prim_id_per_prim && |
| (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| unsigned total_param_exports = 0; |
| |
| /* Per-vertex outputs */ |
| assign_outinfo_params(outinfo, per_vtx_mask, &total_param_exports, 0); |
| |
| if (implicit_prim_id_per_vertex) { |
| /* Mark the primitive ID as output when it's implicitly exported by VS or TES. */ |
| if (outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED) |
| outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = total_param_exports++; |
| |
| outinfo->export_prim_id = true; |
| } |
| |
| if (export_clip_cull_dists) { |
| if (nir->info.outputs_written & VARYING_BIT_CLIP_DIST0) |
| outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = total_param_exports++; |
| if (nir->info.outputs_written & VARYING_BIT_CLIP_DIST1) |
| outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = total_param_exports++; |
| } |
| |
| outinfo->param_exports = total_param_exports; |
| |
| /* The HW always assumes that there is at least 1 per-vertex param. |
| * so if there aren't any, we have to offset per-primitive params by 1. |
| */ |
| const unsigned extra_offset = !!(total_param_exports == 0 && pdev->info.gfx_level >= GFX11); |
| |
| if (implicit_prim_id_per_prim) { |
| /* Mark the primitive ID as output when it's implicitly exported by VS. */ |
| if (outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED) |
| outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = extra_offset + total_param_exports++; |
| |
| outinfo->export_prim_id_per_primitive = true; |
| } |
| |
| /* Per-primitive outputs: the HW needs these to be last. */ |
| assign_outinfo_params(outinfo, per_prim_mask, &total_param_exports, extra_offset); |
| |
| outinfo->prim_param_exports = total_param_exports - outinfo->param_exports; |
| } |
| |
| static uint8_t |
| radv_get_wave_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info, |
| const struct radv_shader_stage_key *stage_key) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| if (stage_key->subgroup_required_size) |
| return stage_key->subgroup_required_size * 32; |
| |
| if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg) |
| return 64; |
| else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK) |
| return info->wave_size; |
| else if (stage == MESA_SHADER_FRAGMENT) |
| return pdev->ps_wave_size; |
| else if (gl_shader_stage_is_rt(stage)) |
| return pdev->rt_wave_size; |
| else |
| return pdev->ge_wave_size; |
| } |
| |
| static uint8_t |
| radv_get_ballot_bit_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info, |
| const struct radv_shader_stage_key *stage_key) |
| { |
| if (stage_key->subgroup_required_size) |
| return stage_key->subgroup_required_size * 32; |
| |
| return 64; |
| } |
| |
| static uint32_t |
| radv_compute_esgs_itemsize(const struct radv_device *device, uint32_t num_varyings) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t esgs_itemsize; |
| |
| esgs_itemsize = num_varyings * 16; |
| |
| /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank |
| * conflicts, i.e. each vertex will start on a different bank. |
| */ |
| if (pdev->info.gfx_level >= GFX9 && esgs_itemsize) |
| esgs_itemsize += 4; |
| |
| return esgs_itemsize; |
| } |
| |
| static void |
| gather_shader_info_ngg_query(struct radv_device *device, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| info->gs.has_pipeline_stat_query = pdev->emulate_ngg_gs_query_pipeline_stat && info->stage == MESA_SHADER_GEOMETRY; |
| info->has_xfb_query = info->so.num_outputs > 0; |
| info->has_prim_query = device->cache_key.primitives_generated_query || info->has_xfb_query; |
| } |
| |
| uint64_t |
| radv_gather_unlinked_io_mask(const uint64_t nir_io_mask) |
| { |
| /* Create a mask of driver locations mapped from NIR semantics. */ |
| uint64_t radv_io_mask = 0; |
| u_foreach_bit64 (semantic, nir_io_mask) { |
| /* These outputs are not used when fixed output slots are needed. */ |
| if (semantic == VARYING_SLOT_LAYER || semantic == VARYING_SLOT_VIEWPORT || |
| semantic == VARYING_SLOT_PRIMITIVE_ID || semantic == VARYING_SLOT_PRIMITIVE_SHADING_RATE) |
| continue; |
| |
| radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(semantic)); |
| } |
| |
| return radv_io_mask; |
| } |
| |
| uint64_t |
| radv_gather_unlinked_patch_io_mask(const uint64_t nir_io_mask, const uint32_t nir_patch_io_mask) |
| { |
| uint64_t radv_io_mask = 0; |
| u_foreach_bit64 (semantic, nir_patch_io_mask) { |
| radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(semantic + VARYING_SLOT_PATCH0)); |
| } |
| |
| /* Tess levels need to be handled separately because they are not part of patch_outputs_written. */ |
| if (nir_io_mask & VARYING_BIT_TESS_LEVEL_OUTER) |
| radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(VARYING_SLOT_TESS_LEVEL_OUTER)); |
| if (nir_io_mask & VARYING_BIT_TESS_LEVEL_INNER) |
| radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(VARYING_SLOT_TESS_LEVEL_INNER)); |
| |
| return radv_io_mask; |
| } |
| |
| static void |
| gather_shader_info_vs(struct radv_device *device, const nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key, |
| struct radv_shader_info *info) |
| { |
| if (radv_use_vs_prolog(nir, gfx_state)) { |
| info->vs.has_prolog = true; |
| info->vs.dynamic_inputs = true; |
| } |
| |
| info->gs_inputs_read = ~0ULL; |
| info->vs.tcs_inputs_via_lds = ~0ULL; |
| |
| /* Use per-attribute vertex descriptors to prevent faults and for correct bounds checking. */ |
| info->vs.use_per_attribute_vb_descs = radv_use_per_attribute_vb_descs(nir, gfx_state, stage_key); |
| |
| /* We have to ensure consistent input register assignments between the main shader and the |
| * prolog. |
| */ |
| info->vs.needs_instance_id |= info->vs.has_prolog; |
| info->vs.needs_base_instance |= info->vs.has_prolog; |
| info->vs.needs_draw_id |= info->vs.has_prolog; |
| |
| if (info->vs.dynamic_inputs) |
| info->vs.vb_desc_usage_mask = BITFIELD_MASK(util_last_bit(info->vs.vb_desc_usage_mask)); |
| |
| /* When the topology is unknown (with GPL), the number of vertices per primitive needs be passed |
| * through a user SGPR for NGG streamout with VS. Otherwise, the XFB offset is incorrectly |
| * computed because using the maximum number of vertices can't work. |
| */ |
| info->vs.dynamic_num_verts_per_prim = gfx_state->ia.topology == V_008958_DI_PT_NONE && info->is_ngg && nir->xfb_info; |
| |
| if (!info->outputs_linked) |
| info->vs.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.outputs_written)); |
| |
| if (info->next_stage == MESA_SHADER_TESS_CTRL) { |
| info->vs.as_ls = true; |
| } else if (info->next_stage == MESA_SHADER_GEOMETRY) { |
| info->vs.as_es = true; |
| info->esgs_itemsize = radv_compute_esgs_itemsize(device, info->vs.num_linked_outputs); |
| } |
| |
| if (info->is_ngg) { |
| info->vs.num_outputs = nir->num_outputs; |
| |
| if (info->next_stage == MESA_SHADER_FRAGMENT || info->next_stage == MESA_SHADER_NONE) { |
| gather_shader_info_ngg_query(device, info); |
| } |
| } |
| } |
| |
| static void |
| gather_shader_info_tcs(struct radv_device *device, const nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| nir_gather_tcs_info(nir, &info->tcs.info, nir->info.tess._primitive_mode, nir->info.tess.spacing); |
| |
| info->tcs.tcs_outputs_read = nir->info.outputs_read; |
| info->tcs.tcs_outputs_written = nir->info.outputs_written; |
| info->tcs.tcs_patch_outputs_read = nir->info.patch_inputs_read; |
| info->tcs.tcs_patch_outputs_written = nir->info.patch_outputs_written; |
| info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out; |
| info->tcs.tes_inputs_read = ~0ULL; |
| info->tcs.tes_patch_inputs_read = ~0ULL; |
| |
| if (!info->inputs_linked) |
| info->tcs.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.inputs_read)); |
| if (!info->outputs_linked) { |
| info->tcs.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask( |
| nir->info.outputs_written & ~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER))); |
| info->tcs.num_linked_patch_outputs = util_last_bit64( |
| radv_gather_unlinked_patch_io_mask(nir->info.outputs_written, nir->info.patch_outputs_written)); |
| } |
| |
| if (gfx_state->ts.patch_control_points) { |
| |
| radv_get_tess_wg_info(pdev, &nir->info, gfx_state->ts.patch_control_points, |
| /* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */ |
| info->tcs.num_linked_inputs, info->tcs.num_linked_outputs, |
| info->tcs.num_linked_patch_outputs, info->tcs.info.all_invocations_define_tess_levels, |
| &info->num_tess_patches, &info->tcs.num_lds_blocks); |
| } |
| } |
| |
| static void |
| gather_shader_info_tes(struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info) |
| { |
| info->gs_inputs_read = ~0ULL; |
| info->tes._primitive_mode = nir->info.tess._primitive_mode; |
| info->tes.spacing = nir->info.tess.spacing; |
| info->tes.ccw = nir->info.tess.ccw; |
| info->tes.point_mode = nir->info.tess.point_mode; |
| info->tes.tcs_vertices_out = nir->info.tess.tcs_vertices_out; |
| info->tes.reads_tess_factors = |
| !!(nir->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); |
| |
| if (!info->inputs_linked) { |
| info->tes.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask( |
| nir->info.inputs_read & ~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER))); |
| info->tes.num_linked_patch_inputs = util_last_bit64( |
| radv_gather_unlinked_patch_io_mask(nir->info.inputs_read, nir->info.patch_inputs_read)); |
| } |
| if (!info->outputs_linked) |
| info->tes.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.outputs_written)); |
| |
| if (info->next_stage == MESA_SHADER_GEOMETRY) { |
| info->tes.as_es = true; |
| info->esgs_itemsize = radv_compute_esgs_itemsize(device, info->tes.num_linked_outputs); |
| } |
| |
| if (info->is_ngg) { |
| info->tes.num_outputs = nir->num_outputs; |
| |
| if (info->next_stage == MESA_SHADER_FRAGMENT || info->next_stage == MESA_SHADER_NONE) { |
| gather_shader_info_ngg_query(device, info); |
| } |
| } |
| } |
| |
| static void |
| radv_init_legacy_gs_ring_info(const struct radv_device *device, struct radv_shader_info *gs_info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_legacy_gs_info *gs_ring_info = &gs_info->gs_ring_info; |
| unsigned num_se = pdev->info.max_se; |
| unsigned wave_size = 64; |
| unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ |
| /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. |
| * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). |
| */ |
| unsigned gs_vertex_reuse = (pdev->info.gfx_level >= GFX8 ? 32 : 16) * num_se; |
| unsigned alignment = 256 * num_se; |
| /* The maximum size is 63.999 MB per SE. */ |
| unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; |
| |
| /* Calculate the minimum size. */ |
| unsigned min_esgs_ring_size = align(gs_ring_info->esgs_itemsize * 4 * gs_vertex_reuse * wave_size, alignment); |
| /* These are recommended sizes, not minimum sizes. */ |
| unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * gs_ring_info->esgs_itemsize * 4 * gs_info->gs.vertices_in; |
| unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size; |
| |
| min_esgs_ring_size = align(min_esgs_ring_size, alignment); |
| esgs_ring_size = align(esgs_ring_size, alignment); |
| gsvs_ring_size = align(gsvs_ring_size, alignment); |
| |
| if (pdev->info.gfx_level <= GFX8) |
| gs_ring_info->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); |
| |
| gs_ring_info->gsvs_ring_size = MIN2(gsvs_ring_size, max_size); |
| } |
| |
| static void |
| radv_get_legacy_gs_info(const struct radv_device *device, struct radv_shader_info *gs_info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct radv_legacy_gs_info *out = &gs_info->gs_ring_info; |
| const unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); |
| const bool uses_adjacency = |
| gs_info->gs.input_prim == MESA_PRIM_LINES_ADJACENCY || gs_info->gs.input_prim == MESA_PRIM_TRIANGLES_ADJACENCY; |
| |
| /* All these are in dwords: */ |
| /* We can't allow using the whole LDS, because GS waves compete with |
| * other shader stages for LDS space. */ |
| const unsigned max_lds_size = 8 * 1024; |
| const unsigned esgs_itemsize = radv_compute_esgs_itemsize(device, gs_info->gs.num_linked_inputs) / 4; |
| unsigned esgs_lds_size; |
| |
| /* All these are per subgroup: */ |
| const unsigned max_out_prims = 32 * 1024; |
| const unsigned max_es_verts = 255; |
| const unsigned ideal_gs_prims = 64; |
| unsigned max_gs_prims, gs_prims; |
| unsigned min_es_verts, es_verts, worst_case_es_verts; |
| |
| if (uses_adjacency || gs_num_invocations > 1) |
| max_gs_prims = 127 / gs_num_invocations; |
| else |
| max_gs_prims = 255; |
| |
| /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. |
| * Make sure we don't go over the maximum value. |
| */ |
| if (gs_info->gs.vertices_out > 0) { |
| max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations)); |
| } |
| assert(max_gs_prims > 0); |
| |
| /* If the primitive has adjacency, halve the number of vertices |
| * that will be reused in multiple primitives. |
| */ |
| min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); |
| |
| gs_prims = MIN2(ideal_gs_prims, max_gs_prims); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); |
| |
| /* Compute ESGS LDS size based on the worst case number of ES vertices |
| * needed to create the target number of GS prims per subgroup. |
| */ |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| |
| /* If total LDS usage is too big, refactor partitions based on ratio |
| * of ESGS item sizes. |
| */ |
| if (esgs_lds_size > max_lds_size) { |
| /* Our target GS Prims Per Subgroup was too large. Calculate |
| * the maximum number of GS Prims Per Subgroup that will fit |
| * into LDS, capped by the maximum that the hardware can support. |
| */ |
| gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); |
| assert(gs_prims > 0); |
| worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); |
| |
| esgs_lds_size = esgs_itemsize * worst_case_es_verts; |
| assert(esgs_lds_size <= max_lds_size); |
| } |
| |
| /* Now calculate remaining ESGS information. */ |
| if (esgs_lds_size) |
| es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); |
| else |
| es_verts = max_es_verts; |
| |
| /* Vertices for adjacency primitives are not always reused, so restore |
| * it for ES_VERTS_PER_SUBGRP. |
| */ |
| min_es_verts = gs_info->gs.vertices_in; |
| |
| /* For normal primitives, the VGT only checks if they are past the ES |
| * verts per subgroup after allocating a full GS primitive and if they |
| * are, kick off a new subgroup. But if those additional ES verts are |
| * unique (e.g. not reused) we need to make sure there is enough LDS |
| * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. |
| */ |
| es_verts -= min_es_verts - 1; |
| |
| const uint32_t es_verts_per_subgroup = es_verts; |
| const uint32_t gs_prims_per_subgroup = gs_prims; |
| const uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; |
| const uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; |
| const uint32_t lds_granularity = pdev->info.lds_encode_granularity; |
| const uint32_t total_lds_bytes = align(esgs_lds_size * 4, lds_granularity); |
| |
| out->gs_inst_prims_in_subgroup = gs_inst_prims_in_subgroup; |
| out->es_verts_per_subgroup = es_verts_per_subgroup; |
| out->gs_prims_per_subgroup = gs_prims_per_subgroup; |
| out->esgs_itemsize = esgs_itemsize; |
| out->lds_size = total_lds_bytes / lds_granularity; |
| assert(max_prims_per_subgroup <= max_out_prims); |
| |
| radv_init_legacy_gs_ring_info(device, gs_info); |
| } |
| |
| static void |
| gather_shader_info_gs(struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info) |
| { |
| unsigned add_clip = nir->info.clip_distance_array_size + nir->info.cull_distance_array_size > 4; |
| info->gs.gsvs_vertex_size = (util_bitcount64(nir->info.outputs_written) + add_clip) * 16; |
| info->gs.max_gsvs_emit_size = info->gs.gsvs_vertex_size * nir->info.gs.vertices_out; |
| |
| info->gs.vertices_in = nir->info.gs.vertices_in; |
| info->gs.vertices_out = nir->info.gs.vertices_out; |
| info->gs.input_prim = nir->info.gs.input_primitive; |
| info->gs.output_prim = nir->info.gs.output_primitive; |
| info->gs.invocations = nir->info.gs.invocations; |
| info->gs.max_stream = nir->info.gs.active_stream_mask ? util_last_bit(nir->info.gs.active_stream_mask) - 1 : 0; |
| |
| for (unsigned slot = 0; slot < VARYING_SLOT_MAX; ++slot) { |
| const uint8_t usage_mask = info->gs.output_usage_mask[slot]; |
| const uint8_t gs_streams = info->gs.output_streams[slot]; |
| |
| for (unsigned component = 0; component < 4; ++component) { |
| if (!(usage_mask & BITFIELD_BIT(component))) |
| continue; |
| |
| const uint8_t stream = (gs_streams >> (component * 2)) & 0x3; |
| info->gs.num_stream_output_components[stream]++; |
| } |
| } |
| |
| if (!info->inputs_linked) |
| info->gs.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.inputs_read)); |
| |
| if (info->is_ngg) { |
| gather_shader_info_ngg_query(device, info); |
| } else { |
| radv_get_legacy_gs_info(device, info); |
| } |
| } |
| |
| static void |
| gather_shader_info_mesh(struct radv_device *device, const nir_shader *nir, |
| const struct radv_shader_stage_key *stage_key, struct radv_shader_info *info) |
| { |
| struct gfx10_ngg_info *ngg_info = &info->ngg_info; |
| |
| info->ms.output_prim = nir->info.mesh.primitive_type; |
| |
| /* Special case for mesh shader workgroups. |
| * |
| * Mesh shaders don't have any real vertex input, but they can produce |
| * an arbitrary number of vertices and primitives (up to 256). |
| * We need to precisely control the number of mesh shader workgroups |
| * that are launched from draw calls. |
| * |
| * To achieve that, we set: |
| * - input primitive topology to point list |
| * - input vertex and primitive count to 1 |
| * - max output vertex count and primitive amplification factor |
| * to the boundaries of the shader |
| * |
| * With that, in the draw call: |
| * - drawing 1 input vertex ~ launching 1 mesh shader workgroup |
| * |
| * In the shader: |
| * - input vertex id ~ workgroup id (in 1D - shader needs to calculate in 3D) |
| * |
| * Notes: |
| * - without GS_EN=1 PRIM_AMP_FACTOR and MAX_VERTS_PER_SUBGROUP don't seem to work |
| * - with GS_EN=1 we must also set VGT_GS_MAX_VERT_OUT (otherwise the GPU hangs) |
| * - with GS_FAST_LAUNCH=1 every lane's VGPRs are initialized to the same input vertex index |
| * |
| */ |
| ngg_info->esgs_ring_size = 1; |
| ngg_info->hw_max_esverts = 1; |
| ngg_info->max_gsprims = 1; |
| ngg_info->max_out_verts = nir->info.mesh.max_vertices_out; |
| ngg_info->max_vert_out_per_gs_instance = false; |
| ngg_info->ngg_emit_size = 0; |
| ngg_info->prim_amp_factor = nir->info.mesh.max_primitives_out; |
| ngg_info->vgt_esgs_ring_itemsize = 1; |
| |
| info->ms.has_query = device->cache_key.mesh_shader_queries; |
| info->ms.has_task = stage_key->has_task_shader; |
| } |
| |
| static void |
| calc_mesh_workgroup_size(const struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned api_workgroup_size = ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX); |
| |
| if (pdev->mesh_fast_launch_2) { |
| /* Use multi-row export. It is also necessary to use the API workgroup size for non-emulated queries. */ |
| info->workgroup_size = api_workgroup_size; |
| } else { |
| struct gfx10_ngg_info *ngg_info = &info->ngg_info; |
| unsigned min_ngg_workgroup_size = ac_compute_ngg_workgroup_size( |
| ngg_info->hw_max_esverts, ngg_info->max_gsprims, ngg_info->max_out_verts, ngg_info->prim_amp_factor); |
| |
| info->workgroup_size = MAX2(min_ngg_workgroup_size, api_workgroup_size); |
| } |
| } |
| |
| static void |
| gather_shader_info_fs(const struct radv_device *device, const nir_shader *nir, |
| const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| info->ps.num_inputs = util_bitcount64(nir->info.inputs_read); |
| info->ps.can_discard = nir->info.fs.uses_discard; |
| info->ps.early_fragment_test = |
| nir->info.fs.early_fragment_tests || |
| (nir->info.fs.early_and_late_fragment_tests && nir->info.fs.depth_layout == FRAG_DEPTH_LAYOUT_NONE && |
| nir->info.fs.stencil_front_layout == FRAG_STENCIL_LAYOUT_NONE && |
| nir->info.fs.stencil_back_layout == FRAG_STENCIL_LAYOUT_NONE); |
| info->ps.post_depth_coverage = nir->info.fs.post_depth_coverage; |
| info->ps.depth_layout = nir->info.fs.depth_layout; |
| info->ps.uses_sample_shading = nir->info.fs.uses_sample_shading; |
| info->ps.uses_fbfetch_output = nir->info.fs.uses_fbfetch_output; |
| info->ps.writes_memory = nir->info.writes_memory; |
| info->ps.has_pcoord = nir->info.inputs_read & VARYING_BIT_PNTC; |
| info->ps.prim_id_input = nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID; |
| info->ps.reads_layer = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_LAYER_ID); |
| info->ps.viewport_index_input = nir->info.inputs_read & VARYING_BIT_VIEWPORT; |
| info->ps.writes_z = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH); |
| info->ps.writes_stencil = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL); |
| info->ps.writes_sample_mask = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK); |
| info->ps.reads_sample_mask_in = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN); |
| info->ps.reads_sample_id = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID); |
| info->ps.reads_frag_shading_rate = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_SHADING_RATE); |
| info->ps.reads_front_face = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRONT_FACE) | |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRONT_FACE_FSIGN); |
| info->ps.reads_barycentric_model = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL); |
| info->ps.reads_fully_covered = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FULLY_COVERED); |
| |
| bool uses_persp_or_linear_interp = info->ps.reads_persp_center || info->ps.reads_persp_centroid || |
| info->ps.reads_persp_sample || info->ps.reads_linear_center || |
| info->ps.reads_linear_centroid || info->ps.reads_linear_sample; |
| |
| info->ps.allow_flat_shading = |
| !(uses_persp_or_linear_interp || info->ps.needs_sample_positions || info->ps.reads_frag_shading_rate || |
| info->ps.writes_memory || nir->info.fs.needs_quad_helper_invocations || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PIXEL_COORD) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_POINT_COORD) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN) || |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_HELPER_INVOCATION)); |
| |
| info->ps.pops_is_per_sample = |
| info->ps.pops && (nir->info.fs.sample_interlock_ordered || nir->info.fs.sample_interlock_unordered); |
| |
| info->ps.spi_ps_input_ena = radv_compute_spi_ps_input(pdev, gfx_state, info); |
| info->ps.spi_ps_input_addr = info->ps.spi_ps_input_ena; |
| if (pdev->info.gfx_level >= GFX12) { |
| /* Only SPI_PS_INPUT_ENA has this bit on GFX12. */ |
| info->ps.spi_ps_input_addr &= C_02865C_COVERAGE_TO_SHADER_SELECT; |
| } |
| |
| info->ps.has_epilog = gfx_state->ps.has_epilog && info->ps.colors_written; |
| |
| const bool export_alpha = !!(info->ps.color0_written & 0x8); |
| |
| if (info->ps.has_epilog) { |
| info->ps.exports_mrtz_via_epilog = gfx_state->ps.exports_mrtz_via_epilog && export_alpha; |
| } else { |
| info->ps.mrt0_is_dual_src = gfx_state->ps.epilog.mrt0_is_dual_src; |
| info->ps.spi_shader_col_format = gfx_state->ps.epilog.spi_shader_col_format; |
| |
| /* Clear color attachments that aren't exported by the FS to match IO shader arguments. */ |
| info->ps.spi_shader_col_format &= info->ps.colors_written; |
| |
| info->ps.cb_shader_mask = ac_get_cb_shader_mask(info->ps.spi_shader_col_format); |
| } |
| |
| if (!info->ps.exports_mrtz_via_epilog) { |
| info->ps.writes_mrt0_alpha = gfx_state->ms.alpha_to_coverage_via_mrtz && export_alpha; |
| } |
| |
| /* Disable VRS and use the rates from PS_ITER_SAMPLES if: |
| * |
| * - The fragment shader reads gl_SampleMaskIn because the 16-bit sample coverage mask isn't enough for MSAA8x and |
| * 2x2 coarse shading. |
| * - On GFX10.3, if the fragment shader requests a fragment interlock execution mode even if the ordered section was |
| * optimized out, to consistently implement fragmentShadingRateWithFragmentShaderInterlock = VK_FALSE. |
| */ |
| info->ps.force_sample_iter_shading_rate = |
| (info->ps.reads_sample_mask_in && !info->ps.needs_poly_line_smooth) || |
| (pdev->info.gfx_level == GFX10_3 && |
| (nir->info.fs.sample_interlock_ordered || nir->info.fs.sample_interlock_unordered || |
| nir->info.fs.pixel_interlock_ordered || nir->info.fs.pixel_interlock_unordered)); |
| } |
| |
| static void |
| gather_shader_info_rt(const nir_shader *nir, struct radv_shader_info *info) |
| { |
| // TODO: inline push_constants again |
| info->loads_dynamic_offsets = true; |
| info->loads_push_constants = true; |
| info->can_inline_all_push_constants = false; |
| info->inline_push_constant_mask = 0; |
| info->desc_set_used_mask = -1u; |
| } |
| |
| static void |
| gather_shader_info_cs(struct radv_device *device, const nir_shader *nir, const struct radv_shader_stage_key *stage_key, |
| struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| unsigned default_wave_size = pdev->cs_wave_size; |
| if (info->cs.uses_rt) |
| default_wave_size = pdev->rt_wave_size; |
| |
| unsigned local_size = nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2]; |
| |
| /* Games don't always request full subgroups when they should, which can cause bugs if cswave32 |
| * is enabled. Furthermore, if cooperative matrices or subgroup info are used, we can't transparently change |
| * the subgroup size. |
| */ |
| const bool require_full_subgroups = |
| stage_key->subgroup_require_full || nir->info.cs.has_cooperative_matrix || |
| (default_wave_size == 32 && nir->info.uses_wide_subgroup_intrinsics && local_size % RADV_SUBGROUP_SIZE == 0); |
| |
| const unsigned required_subgroup_size = stage_key->subgroup_required_size * 32; |
| |
| if (required_subgroup_size) { |
| info->wave_size = required_subgroup_size; |
| } else if (require_full_subgroups) { |
| info->wave_size = RADV_SUBGROUP_SIZE; |
| } else if (pdev->info.gfx_level >= GFX10 && local_size <= 32) { |
| /* Use wave32 for small workgroups. */ |
| info->wave_size = 32; |
| } else { |
| info->wave_size = default_wave_size; |
| } |
| |
| if (pdev->info.has_cs_regalloc_hang_bug) { |
| info->cs.regalloc_hang_bug = info->cs.block_size[0] * info->cs.block_size[1] * info->cs.block_size[2] > 256; |
| } |
| } |
| |
| static void |
| gather_shader_info_task(struct radv_device *device, const nir_shader *nir, |
| const struct radv_shader_stage_key *stage_key, struct radv_shader_info *info) |
| { |
| gather_shader_info_cs(device, nir, stage_key, info); |
| |
| /* Task shaders always need these for the I/O lowering even if the API shader doesn't actually |
| * use them. |
| */ |
| |
| /* Needed to address the task draw/payload rings. */ |
| info->cs.uses_block_id[0] = true; |
| info->cs.uses_block_id[1] = true; |
| info->cs.uses_block_id[2] = true; |
| info->cs.uses_grid_size = true; |
| |
| /* Needed for storing draw ready only on the 1st thread. */ |
| info->cs.uses_local_invocation_idx = true; |
| |
| /* Task->Mesh dispatch is linear when Y = Z = 1. |
| * GFX11 CP can optimize this case with a field in its draw packets. |
| */ |
| info->cs.linear_taskmesh_dispatch = |
| nir->info.mesh.ts_mesh_dispatch_dimensions[1] == 1 && nir->info.mesh.ts_mesh_dispatch_dimensions[2] == 1; |
| |
| info->cs.has_query = device->cache_key.mesh_shader_queries; |
| } |
| |
| static uint32_t |
| radv_get_user_data_0(const struct radv_device *device, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| switch (info->stage) { |
| case MESA_SHADER_VERTEX: |
| case MESA_SHADER_TESS_EVAL: |
| case MESA_SHADER_MESH: |
| if (info->next_stage == MESA_SHADER_TESS_CTRL) { |
| assert(info->stage == MESA_SHADER_VERTEX); |
| |
| if (gfx_level >= GFX10) { |
| return R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| } else if (gfx_level == GFX9) { |
| return R_00B430_SPI_SHADER_USER_DATA_LS_0; |
| } else { |
| return R_00B530_SPI_SHADER_USER_DATA_LS_0; |
| } |
| } |
| |
| if (info->next_stage == MESA_SHADER_GEOMETRY) { |
| assert(info->stage == MESA_SHADER_VERTEX || info->stage == MESA_SHADER_TESS_EVAL); |
| |
| if (gfx_level >= GFX10) { |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| } else { |
| return R_00B330_SPI_SHADER_USER_DATA_ES_0; |
| } |
| } |
| |
| if (info->is_ngg) |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| |
| assert(info->stage != MESA_SHADER_MESH); |
| return R_00B130_SPI_SHADER_USER_DATA_VS_0; |
| case MESA_SHADER_TESS_CTRL: |
| return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| case MESA_SHADER_GEOMETRY: |
| return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| case MESA_SHADER_FRAGMENT: |
| return R_00B030_SPI_SHADER_USER_DATA_PS_0; |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_TASK: |
| case MESA_SHADER_RAYGEN: |
| case MESA_SHADER_CALLABLE: |
| case MESA_SHADER_CLOSEST_HIT: |
| case MESA_SHADER_MISS: |
| case MESA_SHADER_INTERSECTION: |
| case MESA_SHADER_ANY_HIT: |
| return R_00B900_COMPUTE_USER_DATA_0; |
| default: |
| unreachable("invalid shader stage"); |
| } |
| } |
| |
| static bool |
| radv_is_merged_shader_compiled_separately(const struct radv_device *device, const struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| |
| if (gfx_level >= GFX9) { |
| switch (info->stage) { |
| case MESA_SHADER_VERTEX: |
| if (info->next_stage == MESA_SHADER_TESS_CTRL || info->next_stage == MESA_SHADER_GEOMETRY) |
| return !info->outputs_linked; |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| if (info->next_stage == MESA_SHADER_GEOMETRY) |
| return !info->outputs_linked; |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| case MESA_SHADER_GEOMETRY: |
| return !info->inputs_linked; |
| default: |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| void |
| radv_nir_shader_info_init(gl_shader_stage stage, gl_shader_stage next_stage, struct radv_shader_info *info) |
| { |
| memset(info, 0, sizeof(*info)); |
| |
| /* Assume that shaders can inline all push constants by default. */ |
| info->can_inline_all_push_constants = true; |
| |
| info->stage = stage; |
| info->next_stage = next_stage; |
| } |
| |
| void |
| radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir, |
| const struct radv_shader_layout *layout, const struct radv_shader_stage_key *stage_key, |
| const struct radv_graphics_state_key *gfx_state, const enum radv_pipeline_type pipeline_type, |
| bool consider_force_vrs, struct radv_shader_info *info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| struct nir_function *func = (struct nir_function *)exec_list_get_head_const(&nir->functions); |
| |
| if (layout->use_dynamic_descriptors) { |
| info->loads_push_constants = true; |
| info->loads_dynamic_offsets = true; |
| } |
| |
| nir_foreach_block (block, func->impl) { |
| gather_info_block(nir, block, info, gfx_state, stage_key, consider_force_vrs); |
| } |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL || |
| nir->info.stage == MESA_SHADER_GEOMETRY) |
| gather_xfb_info(nir, info); |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL || |
| nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH) { |
| struct radv_vs_output_info *outinfo = &info->outinfo; |
| uint64_t per_vtx_mask, per_prim_mask; |
| |
| radv_get_output_masks(nir, gfx_state, &per_vtx_mask, &per_prim_mask); |
| |
| /* Mesh multiview is only lowered in ac_nir_lower_ngg, so we have to fake it here. */ |
| if (nir->info.stage == MESA_SHADER_MESH && gfx_state->has_multiview_view_index) |
| info->uses_view_index = true; |
| |
| /* Per vertex outputs. */ |
| outinfo->writes_pointsize = per_vtx_mask & VARYING_BIT_PSIZ; |
| outinfo->writes_viewport_index = per_vtx_mask & VARYING_BIT_VIEWPORT; |
| outinfo->writes_layer = per_vtx_mask & VARYING_BIT_LAYER; |
| outinfo->writes_primitive_shading_rate = |
| (per_vtx_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE) || info->force_vrs_per_vertex; |
| |
| /* Per primitive outputs. */ |
| outinfo->writes_viewport_index_per_primitive = per_prim_mask & VARYING_BIT_VIEWPORT; |
| outinfo->writes_layer_per_primitive = per_prim_mask & VARYING_BIT_LAYER; |
| outinfo->writes_primitive_shading_rate_per_primitive = per_prim_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE; |
| outinfo->export_prim_id_per_primitive = per_prim_mask & VARYING_BIT_PRIMITIVE_ID; |
| |
| outinfo->pos_exports = 1; |
| |
| if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer || |
| outinfo->writes_primitive_shading_rate) |
| outinfo->pos_exports++; |
| |
| unsigned clip_cull_mask = outinfo->clip_dist_mask | outinfo->cull_dist_mask; |
| |
| if (clip_cull_mask & 0x0f) |
| outinfo->pos_exports++; |
| if (clip_cull_mask & 0xf0) |
| outinfo->pos_exports++; |
| } |
| |
| info->vs.needs_draw_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID); |
| info->vs.needs_base_instance |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE); |
| info->vs.needs_instance_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID); |
| info->uses_view_index |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VIEW_INDEX); |
| info->uses_invocation_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INVOCATION_ID); |
| info->uses_prim_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID); |
| |
| /* Used by compute and mesh shaders. Mesh shaders must always declare this before GFX11. */ |
| info->cs.uses_grid_size = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_WORKGROUPS) || |
| (nir->info.stage == MESA_SHADER_MESH && pdev->info.gfx_level < GFX11); |
| info->cs.uses_local_invocation_idx = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_LOCAL_INVOCATION_INDEX) | |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_ID) | |
| BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_SUBGROUPS) | |
| radv_shader_should_clear_lds(device, nir); |
| |
| if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK || |
| nir->info.stage == MESA_SHADER_MESH) { |
| for (int i = 0; i < 3; ++i) |
| info->cs.block_size[i] = nir->info.workgroup_size[i]; |
| } |
| |
| info->user_data_0 = radv_get_user_data_0(device, info); |
| info->merged_shader_compiled_separately = radv_is_merged_shader_compiled_separately(device, info); |
| info->force_indirect_desc_sets = info->merged_shader_compiled_separately || stage_key->indirect_bindable; |
| |
| switch (nir->info.stage) { |
| case MESA_SHADER_COMPUTE: |
| gather_shader_info_cs(device, nir, stage_key, info); |
| break; |
| case MESA_SHADER_TASK: |
| gather_shader_info_task(device, nir, stage_key, info); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| gather_shader_info_fs(device, nir, gfx_state, info); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| gather_shader_info_gs(device, nir, info); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| gather_shader_info_tes(device, nir, info); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| gather_shader_info_tcs(device, nir, gfx_state, info); |
| break; |
| case MESA_SHADER_VERTEX: |
| gather_shader_info_vs(device, nir, gfx_state, stage_key, info); |
| break; |
| case MESA_SHADER_MESH: |
| gather_shader_info_mesh(device, nir, stage_key, info); |
| break; |
| default: |
| if (gl_shader_stage_is_rt(nir->info.stage)) |
| gather_shader_info_rt(nir, info); |
| break; |
| } |
| |
| info->wave_size = radv_get_wave_size(device, nir->info.stage, info, stage_key); |
| info->ballot_bit_size = radv_get_ballot_bit_size(device, nir->info.stage, info, stage_key); |
| |
| switch (nir->info.stage) { |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_TASK: |
| info->workgroup_size = ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX); |
| |
| /* Allow the compiler to assume that the shader always has full subgroups, |
| * meaning that the initial EXEC mask is -1 in all waves (all lanes enabled). |
| * This assumption is incorrect for ray tracing and internal (meta) shaders |
| * because they can use unaligned dispatch. |
| */ |
| info->cs.uses_full_subgroups = pipeline_type != RADV_PIPELINE_RAY_TRACING && !nir->info.internal && |
| (info->workgroup_size % info->wave_size) == 0; |
| break; |
| case MESA_SHADER_VERTEX: |
| if (info->vs.as_ls || info->vs.as_es) { |
| /* Set the maximum possible value by default, this will be optimized during linking if |
| * possible. |
| */ |
| info->workgroup_size = 256; |
| } else { |
| info->workgroup_size = info->wave_size; |
| } |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| if (gfx_state->ts.patch_control_points) { |
| info->workgroup_size = |
| ac_compute_lshs_workgroup_size(pdev->info.gfx_level, MESA_SHADER_TESS_CTRL, info->num_tess_patches, |
| gfx_state->ts.patch_control_points, info->tcs.tcs_vertices_out); |
| } else { |
| /* Set the maximum possible value when the workgroup size can't be determined. */ |
| info->workgroup_size = 256; |
| } |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| if (info->tes.as_es) { |
| /* Set the maximum possible value by default, this will be optimized during linking if |
| * possible. |
| */ |
| info->workgroup_size = 256; |
| } else { |
| info->workgroup_size = info->wave_size; |
| } |
| break; |
| case MESA_SHADER_GEOMETRY: |
| if (!info->is_ngg) { |
| unsigned es_verts_per_subgroup = info->gs_ring_info.es_verts_per_subgroup; |
| unsigned gs_inst_prims_in_subgroup = info->gs_ring_info.gs_inst_prims_in_subgroup; |
| |
| info->workgroup_size = ac_compute_esgs_workgroup_size(pdev->info.gfx_level, info->wave_size, |
| es_verts_per_subgroup, gs_inst_prims_in_subgroup); |
| } else { |
| /* Set the maximum possible value by default, this will be optimized during linking if |
| * possible. |
| */ |
| info->workgroup_size = 256; |
| } |
| break; |
| case MESA_SHADER_MESH: |
| calc_mesh_workgroup_size(device, nir, info); |
| break; |
| default: |
| /* FS always operates without workgroups. Other stages are computed during linking but assume |
| * no workgroups by default. |
| */ |
| info->workgroup_size = info->wave_size; |
| break; |
| } |
| } |
| |
| static void |
| clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim, bool use_adjacency) |
| { |
| unsigned max_reuse = max_esverts - min_verts_per_prim; |
| if (use_adjacency) |
| max_reuse /= 2; |
| *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); |
| } |
| |
| static unsigned |
| radv_get_num_input_vertices(const struct radv_shader_info *es_info, const struct radv_shader_info *gs_info) |
| { |
| if (gs_info) { |
| return gs_info->gs.vertices_in; |
| } |
| |
| if (es_info->stage == MESA_SHADER_TESS_EVAL) { |
| if (es_info->tes.point_mode) |
| return 1; |
| if (es_info->tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) |
| return 2; |
| return 3; |
| } |
| |
| return 3; |
| } |
| |
| static unsigned |
| radv_get_pre_rast_input_topology(const struct radv_shader_info *es_info, const struct radv_shader_info *gs_info) |
| { |
| if (gs_info) { |
| return gs_info->gs.input_prim; |
| } |
| |
| if (es_info->stage == MESA_SHADER_TESS_EVAL) { |
| if (es_info->tes.point_mode) |
| return MESA_PRIM_POINTS; |
| if (es_info->tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) |
| return MESA_PRIM_LINES; |
| return MESA_PRIM_TRIANGLES; |
| } |
| |
| return MESA_PRIM_TRIANGLES; |
| } |
| |
| static unsigned |
| gfx10_get_ngg_scratch_lds_base(const struct radv_device *device, const struct radv_shader_info *es_info, |
| const struct radv_shader_info *gs_info, const struct gfx10_ngg_info *ngg_info) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint32_t scratch_lds_base; |
| |
| if (gs_info) { |
| const unsigned esgs_ring_lds_bytes = ngg_info->esgs_ring_size; |
| const unsigned gs_total_out_vtx_bytes = ngg_info->ngg_emit_size * 4u; |
| |
| scratch_lds_base = ALIGN(esgs_ring_lds_bytes + gs_total_out_vtx_bytes, 8u /* for the repacking code */); |
| } else { |
| const bool uses_instanceid = es_info->vs.needs_instance_id; |
| const bool uses_primitive_id = es_info->uses_prim_id; |
| const bool streamout_enabled = es_info->so.num_outputs && pdev->use_ngg_streamout; |
| const uint32_t num_outputs = |
| es_info->stage == MESA_SHADER_VERTEX ? es_info->vs.num_outputs : es_info->tes.num_outputs; |
| unsigned pervertex_lds_bytes = ac_ngg_nogs_get_pervertex_lds_size( |
| es_info->stage, num_outputs, streamout_enabled, es_info->outinfo.export_prim_id, false, /* user edge flag */ |
| es_info->has_ngg_culling, uses_instanceid, uses_primitive_id); |
| |
| assert(ngg_info->hw_max_esverts <= 256); |
| unsigned total_es_lds_bytes = pervertex_lds_bytes * ngg_info->hw_max_esverts; |
| |
| scratch_lds_base = ALIGN(total_es_lds_bytes, 8u); |
| } |
| |
| return scratch_lds_base; |
| } |
| |
| void |
| gfx10_get_ngg_info(const struct radv_device *device, struct radv_shader_info *es_info, struct radv_shader_info *gs_info, |
| struct gfx10_ngg_info *out) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| const enum amd_gfx_level gfx_level = pdev->info.gfx_level; |
| const unsigned max_verts_per_prim = radv_get_num_input_vertices(es_info, gs_info); |
| const unsigned min_verts_per_prim = gs_info ? max_verts_per_prim : 1; |
| |
| const unsigned gs_num_invocations = gs_info ? MAX2(gs_info->gs.invocations, 1) : 1; |
| |
| const unsigned input_prim = radv_get_pre_rast_input_topology(es_info, gs_info); |
| const bool uses_adjacency = input_prim == MESA_PRIM_LINES_ADJACENCY || input_prim == MESA_PRIM_TRIANGLES_ADJACENCY; |
| |
| /* All these are in dwords: */ |
| /* We can't allow using the whole LDS, because GS waves compete with |
| * other shader stages for LDS space. |
| * |
| * TODO: We should really take the shader's internal LDS use into |
| * account. The linker will fail if the size is greater than |
| * 8K dwords. |
| */ |
| const unsigned max_lds_size = 8 * 1024 - 768; |
| const unsigned target_lds_size = max_lds_size; |
| unsigned esvert_lds_size = 0; |
| unsigned gsprim_lds_size = 0; |
| |
| /* All these are per subgroup: */ |
| const unsigned min_esverts = gfx_level >= GFX11 ? max_verts_per_prim /* gfx11 requires at least 1 primitive per TG */ |
| : gfx_level >= GFX10_3 ? 29 |
| : (24 - 1 + max_verts_per_prim); |
| bool max_vert_out_per_gs_instance = false; |
| unsigned max_esverts_base = 128; |
| unsigned max_gsprims_base = 128; /* default prim group size clamp */ |
| |
| /* Hardware has the following non-natural restrictions on the value |
| * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of |
| * the draw: |
| * - at most 252 for any line input primitive type |
| * - at most 251 for any quad input primitive type |
| * - at most 251 for triangle strips with adjacency (this happens to |
| * be the natural limit for triangle *lists* with adjacency) |
| */ |
| max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); |
| |
| if (gs_info) { |
| unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations; |
| |
| if (max_out_verts_per_gsprim <= 256) { |
| if (max_out_verts_per_gsprim) { |
| max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim); |
| } |
| } else { |
| /* Use special multi-cycling mode in which each GS |
| * instance gets its own subgroup. Does not work with |
| * tessellation. */ |
| max_vert_out_per_gs_instance = true; |
| max_gsprims_base = 1; |
| max_out_verts_per_gsprim = gs_info->gs.vertices_out; |
| } |
| |
| esvert_lds_size = es_info->esgs_itemsize / 4; |
| gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; |
| } else { |
| /* VS and TES. */ |
| /* LDS size for passing data from GS to ES. */ |
| struct radv_streamout_info *so_info = &es_info->so; |
| |
| if (so_info->num_outputs) { |
| /* Compute the same pervertex LDS size as the NGG streamout lowering pass which allocates |
| * space for all outputs. |
| * TODO: only alloc space for outputs that really need streamout. |
| */ |
| const uint32_t num_outputs = |
| es_info->stage == MESA_SHADER_VERTEX ? es_info->vs.num_outputs : es_info->tes.num_outputs; |
| esvert_lds_size = 4 * num_outputs + 1; |
| } |
| |
| /* GS stores Primitive IDs (one DWORD) into LDS at the address |
| * corresponding to the ES thread of the provoking vertex. All |
| * ES threads load and export PrimitiveID for their thread. |
| */ |
| if (es_info->stage == MESA_SHADER_VERTEX && es_info->outinfo.export_prim_id) |
| esvert_lds_size = MAX2(esvert_lds_size, 1); |
| } |
| |
| unsigned max_gsprims = max_gsprims_base; |
| unsigned max_esverts = max_esverts_base; |
| |
| if (esvert_lds_size) |
| max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); |
| if (gsprim_lds_size) |
| max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); |
| |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| |
| if (esvert_lds_size || gsprim_lds_size) { |
| /* Now that we have a rough proportionality between esverts |
| * and gsprims based on the primitive type, scale both of them |
| * down simultaneously based on required LDS space. |
| * |
| * We could be smarter about this if we knew how much vertex |
| * reuse to expect. |
| */ |
| unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size; |
| if (lds_total > target_lds_size) { |
| max_esverts = max_esverts * target_lds_size / lds_total; |
| max_gsprims = max_gsprims * target_lds_size / lds_total; |
| |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| } |
| } |
| |
| /* Round up towards full wave sizes for better ALU utilization. */ |
| if (!max_vert_out_per_gs_instance) { |
| unsigned orig_max_esverts; |
| unsigned orig_max_gsprims; |
| unsigned wavesize; |
| |
| if (gs_info) { |
| wavesize = gs_info->wave_size; |
| } else { |
| wavesize = es_info->wave_size; |
| } |
| |
| do { |
| orig_max_esverts = max_esverts; |
| orig_max_gsprims = max_gsprims; |
| |
| max_esverts = align(max_esverts, wavesize); |
| max_esverts = MIN2(max_esverts, max_esverts_base); |
| if (esvert_lds_size) |
| max_esverts = MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size); |
| max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| |
| /* Hardware restriction: minimum value of max_esverts */ |
| if (gfx_level == GFX10) |
| max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); |
| else |
| max_esverts = MAX2(max_esverts, min_esverts); |
| |
| max_gsprims = align(max_gsprims, wavesize); |
| max_gsprims = MIN2(max_gsprims, max_gsprims_base); |
| if (gsprim_lds_size) { |
| /* Don't count unusable vertices to the LDS |
| * size. Those are vertices above the maximum |
| * number of vertices that can occur in the |
| * workgroup, which is e.g. max_gsprims * 3 |
| * for triangles. |
| */ |
| unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); |
| max_gsprims = MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size); |
| } |
| clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); |
| assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); |
| } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); |
| |
| /* Verify the restriction. */ |
| if (gfx_level == GFX10) |
| assert(max_esverts >= min_esverts - 1 + max_verts_per_prim); |
| else |
| assert(max_esverts >= min_esverts); |
| } else { |
| /* Hardware restriction: minimum value of max_esverts */ |
| if (gfx_level == GFX10) |
| max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); |
| else |
| max_esverts = MAX2(max_esverts, min_esverts); |
| } |
| |
| unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out |
| : gs_info ? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out |
| : max_esverts; |
| assert(max_out_vertices <= 256); |
| |
| unsigned prim_amp_factor = 1; |
| if (gs_info) { |
| /* Number of output primitives per GS input primitive after |
| * GS instancing. */ |
| prim_amp_factor = gs_info->gs.vertices_out; |
| } |
| |
| /* On Gfx10, the GE only checks against the maximum number of ES verts |
| * after allocating a full GS primitive. So we need to ensure that |
| * whenever this check passes, there is enough space for a full |
| * primitive without vertex reuse. |
| */ |
| if (gfx_level == GFX10) |
| out->hw_max_esverts = max_esverts - max_verts_per_prim + 1; |
| else |
| out->hw_max_esverts = max_esverts; |
| |
| out->max_gsprims = max_gsprims; |
| out->max_out_verts = max_out_vertices; |
| out->prim_amp_factor = prim_amp_factor; |
| out->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; |
| out->ngg_emit_size = max_gsprims * gsprim_lds_size; |
| |
| /* Don't count unusable vertices. */ |
| out->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4; |
| |
| if (gs_info) { |
| out->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4; |
| } else { |
| out->vgt_esgs_ring_itemsize = 1; |
| } |
| |
| assert(out->hw_max_esverts >= min_esverts); /* HW limitation */ |
| |
| out->scratch_lds_base = gfx10_get_ngg_scratch_lds_base(device, es_info, gs_info, out); |
| |
| /* Get scratch LDS usage. */ |
| const struct radv_shader_info *info = gs_info ? gs_info : es_info; |
| const unsigned scratch_lds_size = ac_ngg_get_scratch_lds_size(info->stage, info->workgroup_size, info->wave_size, |
| pdev->use_ngg_streamout, info->has_ngg_culling, false); |
| out->lds_size = out->scratch_lds_base + scratch_lds_size; |
| |
| unsigned workgroup_size = |
| ac_compute_ngg_workgroup_size(max_esverts, max_gsprims * gs_num_invocations, max_out_vertices, prim_amp_factor); |
| if (gs_info) { |
| gs_info->workgroup_size = workgroup_size; |
| } |
| es_info->workgroup_size = workgroup_size; |
| } |
| |
| static void |
| radv_determine_ngg_settings(struct radv_device *device, struct radv_shader_stage *es_stage, |
| struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| uint64_t ps_inputs_read; |
| |
| assert(es_stage->stage == MESA_SHADER_VERTEX || es_stage->stage == MESA_SHADER_TESS_EVAL); |
| assert(!fs_stage || fs_stage->stage == MESA_SHADER_FRAGMENT); |
| |
| if (fs_stage) { |
| ps_inputs_read = fs_stage->nir->info.inputs_read; |
| } else { |
| /* Rely on the number of VS/TES outputs when the FS is unknown (for fast-link or unlinked ESO) |
| * because this should be a good approximation of the number of FS inputs. |
| */ |
| ps_inputs_read = es_stage->nir->info.outputs_written; |
| |
| /* Clear varyings that can't be PS inputs. */ |
| ps_inputs_read &= ~(VARYING_BIT_POS | VARYING_BIT_PSIZ); |
| } |
| |
| unsigned num_vertices_per_prim = 0; |
| if (es_stage->stage == MESA_SHADER_VERTEX) { |
| num_vertices_per_prim = radv_get_num_vertices_per_prim(gfx_state); |
| } else if (es_stage->stage == MESA_SHADER_TESS_EVAL) { |
| num_vertices_per_prim = es_stage->nir->info.tess.point_mode ? 1 |
| : es_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES ? 2 |
| : 3; |
| } |
| |
| es_stage->info.has_ngg_culling = |
| radv_consider_culling(pdev, es_stage->nir, ps_inputs_read, num_vertices_per_prim, &es_stage->info); |
| |
| nir_function_impl *impl = nir_shader_get_entrypoint(es_stage->nir); |
| es_stage->info.has_ngg_early_prim_export = exec_list_is_singular(&impl->body); |
| |
| /* NGG passthrough mode should be disabled when culling and when the vertex shader |
| * exports the primitive ID. |
| */ |
| es_stage->info.is_ngg_passthrough = !es_stage->info.has_ngg_culling && !(es_stage->stage == MESA_SHADER_VERTEX && |
| es_stage->info.outinfo.export_prim_id); |
| } |
| |
| static void |
| radv_link_shaders_info(struct radv_device *device, struct radv_shader_stage *producer, |
| struct radv_shader_stage *consumer, const struct radv_graphics_state_key *gfx_state) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| /* Export primitive ID and clip/cull distances if read by the FS, or export unconditionally when |
| * the next stage is unknown (with graphics pipeline library). |
| */ |
| if (producer->info.next_stage == MESA_SHADER_FRAGMENT || |
| !(gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) { |
| const bool ps_prim_id_in = !consumer || consumer->info.ps.prim_id_input; |
| const bool ps_clip_dists_in = !consumer || !!consumer->info.ps.input_clips_culls_mask; |
| |
| radv_set_vs_output_param(device, producer->nir, gfx_state, &producer->info, ps_prim_id_in, ps_clip_dists_in); |
| } |
| |
| if (producer->stage == MESA_SHADER_VERTEX || producer->stage == MESA_SHADER_TESS_EVAL) { |
| /* Compute NGG info (GFX10+) or GS info. */ |
| if (producer->info.is_ngg) { |
| struct radv_shader_stage *gs_stage = consumer && consumer->stage == MESA_SHADER_GEOMETRY ? consumer : NULL; |
| struct gfx10_ngg_info *out = gs_stage ? &gs_stage->info.ngg_info : &producer->info.ngg_info; |
| |
| /* Determine other NGG settings like culling for VS or TES without GS. */ |
| if (!gs_stage) { |
| radv_determine_ngg_settings(device, producer, consumer, gfx_state); |
| } |
| |
| gfx10_get_ngg_info(device, &producer->info, gs_stage ? &gs_stage->info : NULL, out); |
| } else if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) { |
| struct radv_shader_info *gs_info = &consumer->info; |
| struct radv_shader_info *es_info = &producer->info; |
| |
| es_info->workgroup_size = gs_info->workgroup_size; |
| } |
| |
| if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) { |
| producer->info.gs_inputs_read = consumer->nir->info.inputs_read; |
| } |
| } |
| |
| if (producer->stage == MESA_SHADER_VERTEX && consumer && consumer->stage == MESA_SHADER_TESS_CTRL) { |
| struct radv_shader_stage *vs_stage = producer; |
| struct radv_shader_stage *tcs_stage = consumer; |
| |
| vs_stage->info.vs.tcs_inputs_via_lds = tcs_stage->nir->info.inputs_read; |
| |
| if (gfx_state->ts.patch_control_points) { |
| vs_stage->info.workgroup_size = |
| ac_compute_lshs_workgroup_size(pdev->info.gfx_level, MESA_SHADER_VERTEX, tcs_stage->info.num_tess_patches, |
| gfx_state->ts.patch_control_points, tcs_stage->info.tcs.tcs_vertices_out); |
| |
| if (!radv_use_llvm_for_stage(pdev, MESA_SHADER_VERTEX)) { |
| /* When the number of TCS input and output vertices are the same (typically 3): |
| * - There is an equal amount of LS and HS invocations |
| * - In case of merged LSHS shaders, the LS and HS halves of the shader always process |
| * the exact same vertex. We can use this knowledge to optimize them. |
| * |
| * We don't set tcs_in_out_eq if the float controls differ because that might involve |
| * different float modes for the same block and our optimizer doesn't handle a |
| * instruction dominating another with a different mode. |
| */ |
| vs_stage->info.vs.tcs_in_out_eq = |
| pdev->info.gfx_level >= GFX9 && |
| gfx_state->ts.patch_control_points == tcs_stage->info.tcs.tcs_vertices_out && |
| vs_stage->nir->info.float_controls_execution_mode == tcs_stage->nir->info.float_controls_execution_mode; |
| |
| if (vs_stage->info.vs.tcs_in_out_eq) { |
| vs_stage->info.vs.tcs_inputs_via_temp = vs_stage->nir->info.outputs_written & |
| ~vs_stage->nir->info.outputs_accessed_indirectly & |
| tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read; |
| vs_stage->info.vs.tcs_inputs_via_lds = tcs_stage->nir->info.tess.tcs_cross_invocation_inputs_read | |
| (tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read & |
| tcs_stage->nir->info.inputs_read_indirectly) | |
| (tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read & |
| vs_stage->nir->info.outputs_accessed_indirectly); |
| } |
| } |
| } |
| } |
| |
| /* Copy shader info between TCS<->TES. */ |
| if (producer->stage == MESA_SHADER_TESS_CTRL && consumer && consumer->stage == MESA_SHADER_TESS_EVAL) { |
| struct radv_shader_stage *tcs_stage = producer; |
| struct radv_shader_stage *tes_stage = consumer; |
| |
| tcs_stage->info.tcs.tes_reads_tess_factors = tes_stage->info.tes.reads_tess_factors; |
| tcs_stage->info.tcs.tes_inputs_read = tes_stage->nir->info.inputs_read; |
| tcs_stage->info.tcs.tes_patch_inputs_read = tes_stage->nir->info.patch_inputs_read; |
| tcs_stage->info.tes._primitive_mode = tes_stage->nir->info.tess._primitive_mode; |
| |
| if (gfx_state->ts.patch_control_points) |
| tes_stage->info.num_tess_patches = tcs_stage->info.num_tess_patches; |
| } |
| } |
| |
| static void |
| radv_nir_shader_info_merge(const struct radv_shader_stage *src, struct radv_shader_stage *dst) |
| { |
| const struct radv_shader_info *src_info = &src->info; |
| struct radv_shader_info *dst_info = &dst->info; |
| |
| assert((src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_TESS_CTRL) || |
| (src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_GEOMETRY) || |
| (src->stage == MESA_SHADER_TESS_EVAL && dst->stage == MESA_SHADER_GEOMETRY)); |
| |
| dst_info->loads_push_constants |= src_info->loads_push_constants; |
| dst_info->loads_dynamic_offsets |= src_info->loads_dynamic_offsets; |
| dst_info->desc_set_used_mask |= src_info->desc_set_used_mask; |
| dst_info->uses_view_index |= src_info->uses_view_index; |
| dst_info->uses_prim_id |= src_info->uses_prim_id; |
| dst_info->inline_push_constant_mask |= src_info->inline_push_constant_mask; |
| |
| /* Only inline all push constants if both allows it. */ |
| dst_info->can_inline_all_push_constants &= src_info->can_inline_all_push_constants; |
| |
| if (src->stage == MESA_SHADER_VERTEX) { |
| dst_info->vs = src_info->vs; |
| } else { |
| dst_info->tes = src_info->tes; |
| } |
| |
| if (dst->stage == MESA_SHADER_GEOMETRY) |
| dst_info->gs.es_type = src->stage; |
| } |
| |
| static const gl_shader_stage graphics_shader_order[] = { |
| MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY, |
| |
| MESA_SHADER_TASK, MESA_SHADER_MESH, |
| }; |
| |
| void |
| radv_nir_shader_info_link(struct radv_device *device, const struct radv_graphics_state_key *gfx_state, |
| struct radv_shader_stage *stages) |
| { |
| const struct radv_physical_device *pdev = radv_device_physical(device); |
| |
| /* Walk backwards to link */ |
| struct radv_shader_stage *next_stage = stages[MESA_SHADER_FRAGMENT].nir ? &stages[MESA_SHADER_FRAGMENT] : NULL; |
| |
| for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) { |
| gl_shader_stage s = graphics_shader_order[i]; |
| if (!stages[s].nir) |
| continue; |
| |
| radv_link_shaders_info(device, &stages[s], next_stage, gfx_state); |
| next_stage = &stages[s]; |
| } |
| |
| if (pdev->info.gfx_level >= GFX9) { |
| /* Merge shader info for VS+TCS. */ |
| if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_TESS_CTRL].nir) { |
| radv_nir_shader_info_merge(&stages[MESA_SHADER_VERTEX], &stages[MESA_SHADER_TESS_CTRL]); |
| } |
| |
| /* Merge shader info for VS+GS or TES+GS. */ |
| if ((stages[MESA_SHADER_VERTEX].nir || stages[MESA_SHADER_TESS_EVAL].nir) && stages[MESA_SHADER_GEOMETRY].nir) { |
| gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| |
| radv_nir_shader_info_merge(&stages[pre_stage], &stages[MESA_SHADER_GEOMETRY]); |
| } |
| } |
| } |
| |
| enum ac_hw_stage |
| radv_select_hw_stage(const struct radv_shader_info *const info, const enum amd_gfx_level gfx_level) |
| { |
| switch (info->stage) { |
| case MESA_SHADER_VERTEX: |
| if (info->is_ngg) |
| return AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| else if (info->vs.as_es) |
| return gfx_level >= GFX9 ? AC_HW_LEGACY_GEOMETRY_SHADER : AC_HW_EXPORT_SHADER; |
| else if (info->vs.as_ls) |
| return gfx_level >= GFX9 ? AC_HW_HULL_SHADER : AC_HW_LOCAL_SHADER; |
| else |
| return AC_HW_VERTEX_SHADER; |
| case MESA_SHADER_TESS_EVAL: |
| if (info->is_ngg) |
| return AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| else if (info->tes.as_es) |
| return gfx_level >= GFX9 ? AC_HW_LEGACY_GEOMETRY_SHADER : AC_HW_EXPORT_SHADER; |
| else |
| return AC_HW_VERTEX_SHADER; |
| case MESA_SHADER_TESS_CTRL: |
| return AC_HW_HULL_SHADER; |
| case MESA_SHADER_GEOMETRY: |
| if (info->is_ngg) |
| return AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| else |
| return AC_HW_LEGACY_GEOMETRY_SHADER; |
| case MESA_SHADER_MESH: |
| return AC_HW_NEXT_GEN_GEOMETRY_SHADER; |
| case MESA_SHADER_FRAGMENT: |
| return AC_HW_PIXEL_SHADER; |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_KERNEL: |
| case MESA_SHADER_TASK: |
| case MESA_SHADER_RAYGEN: |
| case MESA_SHADER_ANY_HIT: |
| case MESA_SHADER_CLOSEST_HIT: |
| case MESA_SHADER_MISS: |
| case MESA_SHADER_INTERSECTION: |
| case MESA_SHADER_CALLABLE: |
| return AC_HW_COMPUTE_SHADER; |
| default: |
| unreachable("Unsupported HW stage"); |
| } |
| } |