blob: c4ad4d65d2cd9c091b04130c110ca2648c2167cc [file] [log] [blame]
/*
* Copyright © 2017 Red Hat
*
* SPDX-License-Identifier: MIT
*/
#include "radv_shader_info.h"
#include "nir/nir.h"
#include "nir/nir_xfb_info.h"
#include "nir/radv_nir.h"
#include "radv_device.h"
#include "radv_physical_device.h"
#include "radv_pipeline_graphics.h"
#include "radv_shader.h"
#include "ac_nir.h"
static void
mark_sampler_desc(const nir_variable *var, struct radv_shader_info *info)
{
info->desc_set_used_mask |= (1u << var->data.descriptor_set);
}
static bool
radv_use_vs_prolog(const nir_shader *nir,
const struct radv_graphics_state_key *gfx_state)
{
return gfx_state->vs.has_prolog && nir->info.inputs_read;
}
static bool
radv_use_per_attribute_vb_descs(const nir_shader *nir,
const struct radv_graphics_state_key *gfx_state,
const struct radv_shader_stage_key *stage_key)
{
return stage_key->vertex_robustness1 || radv_use_vs_prolog(nir, gfx_state);
}
static void
gather_load_vs_input_info(const nir_shader *nir, const nir_intrinsic_instr *intrin, struct radv_shader_info *info,
const struct radv_graphics_state_key *gfx_state,
const struct radv_shader_stage_key *stage_key)
{
const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
const unsigned location = io_sem.location;
const unsigned component = nir_intrinsic_component(intrin);
unsigned mask = nir_def_components_read(&intrin->def);
mask = (intrin->def.bit_size == 64 ? util_widen_mask(mask, 2) : mask) << component;
if (location >= VERT_ATTRIB_GENERIC0) {
const unsigned generic_loc = location - VERT_ATTRIB_GENERIC0;
if (gfx_state->vi.instance_rate_inputs & BITFIELD_BIT(generic_loc)) {
info->vs.needs_instance_id = true;
info->vs.needs_base_instance = true;
}
if (radv_use_per_attribute_vb_descs(nir, gfx_state, stage_key))
info->vs.vb_desc_usage_mask |= BITFIELD_BIT(generic_loc);
else
info->vs.vb_desc_usage_mask |= BITFIELD_BIT(gfx_state->vi.vertex_attribute_bindings[generic_loc]);
info->vs.input_slot_usage_mask |= BITFIELD_RANGE(generic_loc, io_sem.num_slots);
}
}
static void
gather_load_fs_input_info(const nir_shader *nir, const nir_intrinsic_instr *intrin, struct radv_shader_info *info,
const struct radv_graphics_state_key *gfx_state)
{
const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
const unsigned location = io_sem.location;
const unsigned mapped_location = nir_intrinsic_base(intrin);
const unsigned attrib_count = io_sem.num_slots;
const unsigned component = nir_intrinsic_component(intrin);
switch (location) {
case VARYING_SLOT_CLIP_DIST0:
info->ps.input_clips_culls_mask |= BITFIELD_RANGE(component, intrin->num_components);
break;
case VARYING_SLOT_CLIP_DIST1:
info->ps.input_clips_culls_mask |= BITFIELD_RANGE(component, intrin->num_components) << 4;
break;
default:
break;
}
const uint32_t mapped_mask = BITFIELD_RANGE(mapped_location, attrib_count);
const bool per_primitive = nir->info.per_primitive_inputs & BITFIELD64_BIT(location);
if (!per_primitive) {
if (intrin->intrinsic == nir_intrinsic_load_input_vertex) {
if (io_sem.interp_explicit_strict)
info->ps.explicit_strict_shaded_mask |= mapped_mask;
else
info->ps.explicit_shaded_mask |= mapped_mask;
} else if (intrin->intrinsic == nir_intrinsic_load_interpolated_input && intrin->def.bit_size == 16) {
if (io_sem.high_16bits)
info->ps.float16_hi_shaded_mask |= mapped_mask;
else
info->ps.float16_shaded_mask |= mapped_mask;
} else if (intrin->intrinsic == nir_intrinsic_load_interpolated_input) {
info->ps.float32_shaded_mask |= mapped_mask;
}
}
if (location >= VARYING_SLOT_VAR0) {
const uint32_t var_mask = BITFIELD_RANGE(location - VARYING_SLOT_VAR0, attrib_count);
if (per_primitive)
info->ps.input_per_primitive_mask |= var_mask;
else
info->ps.input_mask |= var_mask;
}
}
static void
gather_intrinsic_load_input_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info,
const struct radv_graphics_state_key *gfx_state,
const struct radv_shader_stage_key *stage_key)
{
switch (nir->info.stage) {
case MESA_SHADER_VERTEX:
gather_load_vs_input_info(nir, instr, info, gfx_state, stage_key);
break;
case MESA_SHADER_FRAGMENT:
gather_load_fs_input_info(nir, instr, info, gfx_state);
break;
default:
break;
}
}
static void
gather_intrinsic_store_output_info(const nir_shader *nir, const nir_intrinsic_instr *instr,
struct radv_shader_info *info, bool consider_force_vrs)
{
const nir_io_semantics io_sem = nir_intrinsic_io_semantics(instr);
const unsigned location = io_sem.location;
const unsigned num_slots = io_sem.num_slots;
const unsigned component = nir_intrinsic_component(instr);
const unsigned write_mask = nir_intrinsic_write_mask(instr);
uint8_t *output_usage_mask = NULL;
switch (nir->info.stage) {
case MESA_SHADER_VERTEX:
output_usage_mask = info->vs.output_usage_mask;
break;
case MESA_SHADER_TESS_EVAL:
output_usage_mask = info->tes.output_usage_mask;
break;
case MESA_SHADER_GEOMETRY:
output_usage_mask = info->gs.output_usage_mask;
break;
case MESA_SHADER_FRAGMENT:
if (location >= FRAG_RESULT_DATA0) {
const unsigned fs_semantic = location + io_sem.dual_source_blend_index;
info->ps.colors_written |= 0xfu << (4 * (fs_semantic - FRAG_RESULT_DATA0));
if (fs_semantic == FRAG_RESULT_DATA0)
info->ps.color0_written = write_mask;
}
break;
default:
break;
}
if (output_usage_mask) {
for (unsigned i = 0; i < num_slots; i++) {
output_usage_mask[location + i] |= ((write_mask >> (i * 4)) & 0xf) << component;
}
}
if (consider_force_vrs && location == VARYING_SLOT_POS) {
unsigned pos_w_chan = 3 - component;
if (write_mask & BITFIELD_BIT(pos_w_chan)) {
nir_scalar pos_w = nir_scalar_resolved(instr->src[0].ssa, pos_w_chan);
/* Use coarse shading if the value of Pos.W can't be determined or if its value is != 1
* (typical for non-GUI elements).
*/
if (!nir_scalar_is_const(pos_w) || nir_scalar_as_uint(pos_w) != 0x3f800000u)
info->force_vrs_per_vertex = true;
}
}
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
const uint8_t gs_streams = nir_intrinsic_io_semantics(instr).gs_streams;
info->gs.output_streams[location] |= gs_streams << (component * 2);
}
if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && !io_sem.no_sysval_output) {
unsigned base = (location == VARYING_SLOT_CLIP_DIST1 ? 4 : 0) + component;
unsigned clip_array_mask = BITFIELD_MASK(nir->info.clip_distance_array_size);
info->outinfo.clip_dist_mask |= (write_mask << base) & clip_array_mask;
info->outinfo.cull_dist_mask |= (write_mask << base) & ~clip_array_mask;
}
}
static void
gather_push_constant_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info)
{
info->loads_push_constants = true;
if (nir_src_is_const(instr->src[0]) && instr->def.bit_size >= 32) {
uint32_t start = (nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0])) / 4u;
uint32_t size = instr->num_components * (instr->def.bit_size / 32u);
if (start + size <= (MAX_PUSH_CONSTANTS_SIZE / 4u)) {
info->inline_push_constant_mask |= u_bit_consecutive64(start, size);
return;
}
}
info->can_inline_all_push_constants = false;
}
static void
gather_intrinsic_info(const nir_shader *nir, const nir_intrinsic_instr *instr, struct radv_shader_info *info,
const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key,
bool consider_force_vrs)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset: {
enum glsl_interp_mode mode = nir_intrinsic_interp_mode(instr);
switch (mode) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel ||
instr->intrinsic == nir_intrinsic_load_barycentric_at_sample ||
instr->intrinsic == nir_intrinsic_load_barycentric_at_offset)
info->ps.reads_persp_center = true;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
info->ps.reads_persp_centroid = true;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
info->ps.reads_persp_sample = true;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel ||
instr->intrinsic == nir_intrinsic_load_barycentric_at_sample ||
instr->intrinsic == nir_intrinsic_load_barycentric_at_offset)
info->ps.reads_linear_center = true;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
info->ps.reads_linear_centroid = true;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
info->ps.reads_linear_sample = true;
break;
default:
break;
}
if (instr->intrinsic == nir_intrinsic_load_barycentric_at_sample)
info->ps.needs_sample_positions = true;
break;
}
case nir_intrinsic_load_provoking_vtx_amd:
info->ps.load_provoking_vtx = true;
break;
case nir_intrinsic_load_sample_positions_amd:
info->ps.needs_sample_positions = true;
break;
case nir_intrinsic_load_rasterization_primitive_amd:
info->ps.load_rasterization_prim = true;
break;
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_workgroup_id: {
unsigned mask = nir_def_components_read(&instr->def);
while (mask) {
unsigned i = u_bit_scan(&mask);
if (instr->intrinsic == nir_intrinsic_load_workgroup_id)
info->cs.uses_block_id[i] = true;
else
info->cs.uses_thread_id[i] = true;
}
break;
}
case nir_intrinsic_load_pixel_coord:
info->ps.reads_pixel_coord = true;
break;
case nir_intrinsic_load_frag_coord:
info->ps.reads_frag_coord_mask |= nir_def_components_read(&instr->def);
break;
case nir_intrinsic_load_sample_pos:
info->ps.reads_sample_pos_mask |= nir_def_components_read(&instr->def);
break;
case nir_intrinsic_load_push_constant:
gather_push_constant_info(nir, instr, info);
break;
case nir_intrinsic_vulkan_resource_index:
info->desc_set_used_mask |= (1u << nir_intrinsic_desc_set(instr));
break;
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_sparse_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic:
case nir_intrinsic_image_deref_atomic_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples: {
nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
mark_sampler_desc(var, info);
break;
}
case nir_intrinsic_load_input:
case nir_intrinsic_load_per_primitive_input:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_input_vertex:
gather_intrinsic_load_input_info(nir, instr, info, gfx_state, stage_key);
break;
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output:
gather_intrinsic_store_output_info(nir, instr, info, consider_force_vrs);
break;
case nir_intrinsic_bvh64_intersect_ray_amd:
info->cs.uses_rt = true;
break;
case nir_intrinsic_load_poly_line_smooth_enabled:
info->ps.needs_poly_line_smooth = true;
break;
case nir_intrinsic_begin_invocation_interlock:
info->ps.pops = true;
break;
default:
break;
}
}
static void
gather_tex_info(const nir_shader *nir, const nir_tex_instr *instr, struct radv_shader_info *info)
{
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info);
break;
case nir_tex_src_sampler_deref:
mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info);
break;
default:
break;
}
}
}
static void
gather_info_block(const nir_shader *nir, const nir_block *block, struct radv_shader_info *info,
const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key,
bool consider_force_vrs)
{
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_intrinsic:
gather_intrinsic_info(nir, nir_instr_as_intrinsic(instr), info, gfx_state, stage_key, consider_force_vrs);
break;
case nir_instr_type_tex:
gather_tex_info(nir, nir_instr_as_tex(instr), info);
break;
default:
break;
}
}
}
static void
gather_xfb_info(const nir_shader *nir, struct radv_shader_info *info)
{
struct radv_streamout_info *so = &info->so;
if (!nir->xfb_info)
return;
const nir_xfb_info *xfb = nir->xfb_info;
assert(xfb->output_count <= MAX_SO_OUTPUTS);
so->num_outputs = xfb->output_count;
for (unsigned i = 0; i < xfb->output_count; i++) {
unsigned output_buffer = xfb->outputs[i].buffer;
unsigned stream = xfb->buffer_to_stream[xfb->outputs[i].buffer];
so->enabled_stream_buffers_mask |= (1 << output_buffer) << (stream * 4);
}
for (unsigned i = 0; i < NIR_MAX_XFB_BUFFERS; i++) {
so->strides[i] = xfb->buffers[i].stride / 4;
}
}
static void
assign_outinfo_param(struct radv_vs_output_info *outinfo, gl_varying_slot idx, unsigned *total_param_exports,
unsigned extra_offset)
{
if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
outinfo->vs_output_param_offset[idx] = extra_offset + (*total_param_exports)++;
}
static void
assign_outinfo_params(struct radv_vs_output_info *outinfo, uint64_t mask, unsigned *total_param_exports,
unsigned extra_offset)
{
u_foreach_bit64 (idx, mask) {
if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
idx == VARYING_SLOT_VIEWPORT)
assign_outinfo_param(outinfo, idx, total_param_exports, extra_offset);
}
}
static void
radv_get_output_masks(const struct nir_shader *nir, const struct radv_graphics_state_key *gfx_state,
uint64_t *per_vtx_mask, uint64_t *per_prim_mask)
{
/* These are not compiled into neither output param nor position exports. */
const uint64_t special_mask = BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) |
BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) |
BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
*per_prim_mask = nir->info.outputs_written & nir->info.per_primitive_outputs & ~special_mask;
*per_vtx_mask = nir->info.outputs_written & ~nir->info.per_primitive_outputs & ~special_mask;
/* Mesh multiview is only lowered in ac_nir_lower_ngg, so we have to fake it here. */
if (nir->info.stage == MESA_SHADER_MESH && gfx_state->has_multiview_view_index)
*per_prim_mask |= VARYING_BIT_LAYER;
}
static void
radv_set_vs_output_param(struct radv_device *device, const struct nir_shader *nir,
const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info,
bool export_prim_id, bool export_clip_cull_dists)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_vs_output_info *outinfo = &info->outinfo;
uint64_t per_vtx_mask, per_prim_mask;
radv_get_output_masks(nir, gfx_state, &per_vtx_mask, &per_prim_mask);
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED, sizeof(outinfo->vs_output_param_offset));
/* Implicit primitive ID for VS and TES is added by ac_nir_lower_legacy_vs / ac_nir_lower_ngg,
* it can be configured as either a per-vertex or per-primitive output depending on the GPU.
*/
const bool implicit_prim_id_per_prim =
export_prim_id && info->is_ngg && pdev->info.gfx_level >= GFX10_3 && nir->info.stage == MESA_SHADER_VERTEX;
const bool implicit_prim_id_per_vertex =
export_prim_id && !implicit_prim_id_per_prim &&
(nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL);
unsigned total_param_exports = 0;
/* Per-vertex outputs */
assign_outinfo_params(outinfo, per_vtx_mask, &total_param_exports, 0);
if (implicit_prim_id_per_vertex) {
/* Mark the primitive ID as output when it's implicitly exported by VS or TES. */
if (outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED)
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = total_param_exports++;
outinfo->export_prim_id = true;
}
if (export_clip_cull_dists) {
if (nir->info.outputs_written & VARYING_BIT_CLIP_DIST0)
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = total_param_exports++;
if (nir->info.outputs_written & VARYING_BIT_CLIP_DIST1)
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = total_param_exports++;
}
outinfo->param_exports = total_param_exports;
/* The HW always assumes that there is at least 1 per-vertex param.
* so if there aren't any, we have to offset per-primitive params by 1.
*/
const unsigned extra_offset = !!(total_param_exports == 0 && pdev->info.gfx_level >= GFX11);
if (implicit_prim_id_per_prim) {
/* Mark the primitive ID as output when it's implicitly exported by VS. */
if (outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED)
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = extra_offset + total_param_exports++;
outinfo->export_prim_id_per_primitive = true;
}
/* Per-primitive outputs: the HW needs these to be last. */
assign_outinfo_params(outinfo, per_prim_mask, &total_param_exports, extra_offset);
outinfo->prim_param_exports = total_param_exports - outinfo->param_exports;
}
static uint8_t
radv_get_wave_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info,
const struct radv_shader_stage_key *stage_key)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
if (stage_key->subgroup_required_size)
return stage_key->subgroup_required_size * 32;
if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg)
return 64;
else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK)
return info->wave_size;
else if (stage == MESA_SHADER_FRAGMENT)
return pdev->ps_wave_size;
else if (gl_shader_stage_is_rt(stage))
return pdev->rt_wave_size;
else
return pdev->ge_wave_size;
}
static uint8_t
radv_get_ballot_bit_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info,
const struct radv_shader_stage_key *stage_key)
{
if (stage_key->subgroup_required_size)
return stage_key->subgroup_required_size * 32;
return 64;
}
static uint32_t
radv_compute_esgs_itemsize(const struct radv_device *device, uint32_t num_varyings)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint32_t esgs_itemsize;
esgs_itemsize = num_varyings * 16;
/* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
* conflicts, i.e. each vertex will start on a different bank.
*/
if (pdev->info.gfx_level >= GFX9 && esgs_itemsize)
esgs_itemsize += 4;
return esgs_itemsize;
}
static void
gather_shader_info_ngg_query(struct radv_device *device, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
info->gs.has_pipeline_stat_query = pdev->emulate_ngg_gs_query_pipeline_stat && info->stage == MESA_SHADER_GEOMETRY;
info->has_xfb_query = info->so.num_outputs > 0;
info->has_prim_query = device->cache_key.primitives_generated_query || info->has_xfb_query;
}
uint64_t
radv_gather_unlinked_io_mask(const uint64_t nir_io_mask)
{
/* Create a mask of driver locations mapped from NIR semantics. */
uint64_t radv_io_mask = 0;
u_foreach_bit64 (semantic, nir_io_mask) {
/* These outputs are not used when fixed output slots are needed. */
if (semantic == VARYING_SLOT_LAYER || semantic == VARYING_SLOT_VIEWPORT ||
semantic == VARYING_SLOT_PRIMITIVE_ID || semantic == VARYING_SLOT_PRIMITIVE_SHADING_RATE)
continue;
radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(semantic));
}
return radv_io_mask;
}
uint64_t
radv_gather_unlinked_patch_io_mask(const uint64_t nir_io_mask, const uint32_t nir_patch_io_mask)
{
uint64_t radv_io_mask = 0;
u_foreach_bit64 (semantic, nir_patch_io_mask) {
radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(semantic + VARYING_SLOT_PATCH0));
}
/* Tess levels need to be handled separately because they are not part of patch_outputs_written. */
if (nir_io_mask & VARYING_BIT_TESS_LEVEL_OUTER)
radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(VARYING_SLOT_TESS_LEVEL_OUTER));
if (nir_io_mask & VARYING_BIT_TESS_LEVEL_INNER)
radv_io_mask |= BITFIELD64_BIT(radv_map_io_driver_location(VARYING_SLOT_TESS_LEVEL_INNER));
return radv_io_mask;
}
static void
gather_shader_info_vs(struct radv_device *device, const nir_shader *nir,
const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage_key *stage_key,
struct radv_shader_info *info)
{
if (radv_use_vs_prolog(nir, gfx_state)) {
info->vs.has_prolog = true;
info->vs.dynamic_inputs = true;
}
info->gs_inputs_read = ~0ULL;
info->vs.tcs_inputs_via_lds = ~0ULL;
/* Use per-attribute vertex descriptors to prevent faults and for correct bounds checking. */
info->vs.use_per_attribute_vb_descs = radv_use_per_attribute_vb_descs(nir, gfx_state, stage_key);
/* We have to ensure consistent input register assignments between the main shader and the
* prolog.
*/
info->vs.needs_instance_id |= info->vs.has_prolog;
info->vs.needs_base_instance |= info->vs.has_prolog;
info->vs.needs_draw_id |= info->vs.has_prolog;
if (info->vs.dynamic_inputs)
info->vs.vb_desc_usage_mask = BITFIELD_MASK(util_last_bit(info->vs.vb_desc_usage_mask));
/* When the topology is unknown (with GPL), the number of vertices per primitive needs be passed
* through a user SGPR for NGG streamout with VS. Otherwise, the XFB offset is incorrectly
* computed because using the maximum number of vertices can't work.
*/
info->vs.dynamic_num_verts_per_prim = gfx_state->ia.topology == V_008958_DI_PT_NONE && info->is_ngg && nir->xfb_info;
if (!info->outputs_linked)
info->vs.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.outputs_written));
if (info->next_stage == MESA_SHADER_TESS_CTRL) {
info->vs.as_ls = true;
} else if (info->next_stage == MESA_SHADER_GEOMETRY) {
info->vs.as_es = true;
info->esgs_itemsize = radv_compute_esgs_itemsize(device, info->vs.num_linked_outputs);
}
if (info->is_ngg) {
info->vs.num_outputs = nir->num_outputs;
if (info->next_stage == MESA_SHADER_FRAGMENT || info->next_stage == MESA_SHADER_NONE) {
gather_shader_info_ngg_query(device, info);
}
}
}
static void
gather_shader_info_tcs(struct radv_device *device, const nir_shader *nir,
const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
nir_gather_tcs_info(nir, &info->tcs.info, nir->info.tess._primitive_mode, nir->info.tess.spacing);
info->tcs.tcs_outputs_read = nir->info.outputs_read;
info->tcs.tcs_outputs_written = nir->info.outputs_written;
info->tcs.tcs_patch_outputs_read = nir->info.patch_inputs_read;
info->tcs.tcs_patch_outputs_written = nir->info.patch_outputs_written;
info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
info->tcs.tes_inputs_read = ~0ULL;
info->tcs.tes_patch_inputs_read = ~0ULL;
if (!info->inputs_linked)
info->tcs.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.inputs_read));
if (!info->outputs_linked) {
info->tcs.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask(
nir->info.outputs_written & ~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER)));
info->tcs.num_linked_patch_outputs = util_last_bit64(
radv_gather_unlinked_patch_io_mask(nir->info.outputs_written, nir->info.patch_outputs_written));
}
if (gfx_state->ts.patch_control_points) {
radv_get_tess_wg_info(pdev, &nir->info, gfx_state->ts.patch_control_points,
/* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */
info->tcs.num_linked_inputs, info->tcs.num_linked_outputs,
info->tcs.num_linked_patch_outputs, info->tcs.info.all_invocations_define_tess_levels,
&info->num_tess_patches, &info->tcs.num_lds_blocks);
}
}
static void
gather_shader_info_tes(struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info)
{
info->gs_inputs_read = ~0ULL;
info->tes._primitive_mode = nir->info.tess._primitive_mode;
info->tes.spacing = nir->info.tess.spacing;
info->tes.ccw = nir->info.tess.ccw;
info->tes.point_mode = nir->info.tess.point_mode;
info->tes.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
info->tes.reads_tess_factors =
!!(nir->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
if (!info->inputs_linked) {
info->tes.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask(
nir->info.inputs_read & ~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER)));
info->tes.num_linked_patch_inputs = util_last_bit64(
radv_gather_unlinked_patch_io_mask(nir->info.inputs_read, nir->info.patch_inputs_read));
}
if (!info->outputs_linked)
info->tes.num_linked_outputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.outputs_written));
if (info->next_stage == MESA_SHADER_GEOMETRY) {
info->tes.as_es = true;
info->esgs_itemsize = radv_compute_esgs_itemsize(device, info->tes.num_linked_outputs);
}
if (info->is_ngg) {
info->tes.num_outputs = nir->num_outputs;
if (info->next_stage == MESA_SHADER_FRAGMENT || info->next_stage == MESA_SHADER_NONE) {
gather_shader_info_ngg_query(device, info);
}
}
}
static void
radv_init_legacy_gs_ring_info(const struct radv_device *device, struct radv_shader_info *gs_info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_legacy_gs_info *gs_ring_info = &gs_info->gs_ring_info;
unsigned num_se = pdev->info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
/* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
* On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
*/
unsigned gs_vertex_reuse = (pdev->info.gfx_level >= GFX8 ? 32 : 16) * num_se;
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size = align(gs_ring_info->esgs_itemsize * 4 * gs_vertex_reuse * wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * gs_ring_info->esgs_itemsize * 4 * gs_info->gs.vertices_in;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size;
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
if (pdev->info.gfx_level <= GFX8)
gs_ring_info->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
gs_ring_info->gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
}
static void
radv_get_legacy_gs_info(const struct radv_device *device, struct radv_shader_info *gs_info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_legacy_gs_info *out = &gs_info->gs_ring_info;
const unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
const bool uses_adjacency =
gs_info->gs.input_prim == MESA_PRIM_LINES_ADJACENCY || gs_info->gs.input_prim == MESA_PRIM_TRIANGLES_ADJACENCY;
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space. */
const unsigned max_lds_size = 8 * 1024;
const unsigned esgs_itemsize = radv_compute_esgs_itemsize(device, gs_info->gs.num_linked_inputs) / 4;
unsigned esgs_lds_size;
/* All these are per subgroup: */
const unsigned max_out_prims = 32 * 1024;
const unsigned max_es_verts = 255;
const unsigned ideal_gs_prims = 64;
unsigned max_gs_prims, gs_prims;
unsigned min_es_verts, es_verts, worst_case_es_verts;
if (uses_adjacency || gs_num_invocations > 1)
max_gs_prims = 127 / gs_num_invocations;
else
max_gs_prims = 255;
/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
* Make sure we don't go over the maximum value.
*/
if (gs_info->gs.vertices_out > 0) {
max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations));
}
assert(max_gs_prims > 0);
/* If the primitive has adjacency, halve the number of vertices
* that will be reused in multiple primitives.
*/
min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
/* Compute ESGS LDS size based on the worst case number of ES vertices
* needed to create the target number of GS prims per subgroup.
*/
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
/* If total LDS usage is too big, refactor partitions based on ratio
* of ESGS item sizes.
*/
if (esgs_lds_size > max_lds_size) {
/* Our target GS Prims Per Subgroup was too large. Calculate
* the maximum number of GS Prims Per Subgroup that will fit
* into LDS, capped by the maximum that the hardware can support.
*/
gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
assert(gs_prims > 0);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
assert(esgs_lds_size <= max_lds_size);
}
/* Now calculate remaining ESGS information. */
if (esgs_lds_size)
es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
else
es_verts = max_es_verts;
/* Vertices for adjacency primitives are not always reused, so restore
* it for ES_VERTS_PER_SUBGRP.
*/
min_es_verts = gs_info->gs.vertices_in;
/* For normal primitives, the VGT only checks if they are past the ES
* verts per subgroup after allocating a full GS primitive and if they
* are, kick off a new subgroup. But if those additional ES verts are
* unique (e.g. not reused) we need to make sure there is enough LDS
* space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
*/
es_verts -= min_es_verts - 1;
const uint32_t es_verts_per_subgroup = es_verts;
const uint32_t gs_prims_per_subgroup = gs_prims;
const uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
const uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
const uint32_t lds_granularity = pdev->info.lds_encode_granularity;
const uint32_t total_lds_bytes = align(esgs_lds_size * 4, lds_granularity);
out->gs_inst_prims_in_subgroup = gs_inst_prims_in_subgroup;
out->es_verts_per_subgroup = es_verts_per_subgroup;
out->gs_prims_per_subgroup = gs_prims_per_subgroup;
out->esgs_itemsize = esgs_itemsize;
out->lds_size = total_lds_bytes / lds_granularity;
assert(max_prims_per_subgroup <= max_out_prims);
radv_init_legacy_gs_ring_info(device, gs_info);
}
static void
gather_shader_info_gs(struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info)
{
unsigned add_clip = nir->info.clip_distance_array_size + nir->info.cull_distance_array_size > 4;
info->gs.gsvs_vertex_size = (util_bitcount64(nir->info.outputs_written) + add_clip) * 16;
info->gs.max_gsvs_emit_size = info->gs.gsvs_vertex_size * nir->info.gs.vertices_out;
info->gs.vertices_in = nir->info.gs.vertices_in;
info->gs.vertices_out = nir->info.gs.vertices_out;
info->gs.input_prim = nir->info.gs.input_primitive;
info->gs.output_prim = nir->info.gs.output_primitive;
info->gs.invocations = nir->info.gs.invocations;
info->gs.max_stream = nir->info.gs.active_stream_mask ? util_last_bit(nir->info.gs.active_stream_mask) - 1 : 0;
for (unsigned slot = 0; slot < VARYING_SLOT_MAX; ++slot) {
const uint8_t usage_mask = info->gs.output_usage_mask[slot];
const uint8_t gs_streams = info->gs.output_streams[slot];
for (unsigned component = 0; component < 4; ++component) {
if (!(usage_mask & BITFIELD_BIT(component)))
continue;
const uint8_t stream = (gs_streams >> (component * 2)) & 0x3;
info->gs.num_stream_output_components[stream]++;
}
}
if (!info->inputs_linked)
info->gs.num_linked_inputs = util_last_bit64(radv_gather_unlinked_io_mask(nir->info.inputs_read));
if (info->is_ngg) {
gather_shader_info_ngg_query(device, info);
} else {
radv_get_legacy_gs_info(device, info);
}
}
static void
gather_shader_info_mesh(struct radv_device *device, const nir_shader *nir,
const struct radv_shader_stage_key *stage_key, struct radv_shader_info *info)
{
struct gfx10_ngg_info *ngg_info = &info->ngg_info;
info->ms.output_prim = nir->info.mesh.primitive_type;
/* Special case for mesh shader workgroups.
*
* Mesh shaders don't have any real vertex input, but they can produce
* an arbitrary number of vertices and primitives (up to 256).
* We need to precisely control the number of mesh shader workgroups
* that are launched from draw calls.
*
* To achieve that, we set:
* - input primitive topology to point list
* - input vertex and primitive count to 1
* - max output vertex count and primitive amplification factor
* to the boundaries of the shader
*
* With that, in the draw call:
* - drawing 1 input vertex ~ launching 1 mesh shader workgroup
*
* In the shader:
* - input vertex id ~ workgroup id (in 1D - shader needs to calculate in 3D)
*
* Notes:
* - without GS_EN=1 PRIM_AMP_FACTOR and MAX_VERTS_PER_SUBGROUP don't seem to work
* - with GS_EN=1 we must also set VGT_GS_MAX_VERT_OUT (otherwise the GPU hangs)
* - with GS_FAST_LAUNCH=1 every lane's VGPRs are initialized to the same input vertex index
*
*/
ngg_info->esgs_ring_size = 1;
ngg_info->hw_max_esverts = 1;
ngg_info->max_gsprims = 1;
ngg_info->max_out_verts = nir->info.mesh.max_vertices_out;
ngg_info->max_vert_out_per_gs_instance = false;
ngg_info->ngg_emit_size = 0;
ngg_info->prim_amp_factor = nir->info.mesh.max_primitives_out;
ngg_info->vgt_esgs_ring_itemsize = 1;
info->ms.has_query = device->cache_key.mesh_shader_queries;
info->ms.has_task = stage_key->has_task_shader;
}
static void
calc_mesh_workgroup_size(const struct radv_device *device, const nir_shader *nir, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
unsigned api_workgroup_size = ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX);
if (pdev->mesh_fast_launch_2) {
/* Use multi-row export. It is also necessary to use the API workgroup size for non-emulated queries. */
info->workgroup_size = api_workgroup_size;
} else {
struct gfx10_ngg_info *ngg_info = &info->ngg_info;
unsigned min_ngg_workgroup_size = ac_compute_ngg_workgroup_size(
ngg_info->hw_max_esverts, ngg_info->max_gsprims, ngg_info->max_out_verts, ngg_info->prim_amp_factor);
info->workgroup_size = MAX2(min_ngg_workgroup_size, api_workgroup_size);
}
}
static void
gather_shader_info_fs(const struct radv_device *device, const nir_shader *nir,
const struct radv_graphics_state_key *gfx_state, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
info->ps.num_inputs = util_bitcount64(nir->info.inputs_read);
info->ps.can_discard = nir->info.fs.uses_discard;
info->ps.early_fragment_test =
nir->info.fs.early_fragment_tests ||
(nir->info.fs.early_and_late_fragment_tests && nir->info.fs.depth_layout == FRAG_DEPTH_LAYOUT_NONE &&
nir->info.fs.stencil_front_layout == FRAG_STENCIL_LAYOUT_NONE &&
nir->info.fs.stencil_back_layout == FRAG_STENCIL_LAYOUT_NONE);
info->ps.post_depth_coverage = nir->info.fs.post_depth_coverage;
info->ps.depth_layout = nir->info.fs.depth_layout;
info->ps.uses_sample_shading = nir->info.fs.uses_sample_shading;
info->ps.uses_fbfetch_output = nir->info.fs.uses_fbfetch_output;
info->ps.writes_memory = nir->info.writes_memory;
info->ps.has_pcoord = nir->info.inputs_read & VARYING_BIT_PNTC;
info->ps.prim_id_input = nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID;
info->ps.reads_layer = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_LAYER_ID);
info->ps.viewport_index_input = nir->info.inputs_read & VARYING_BIT_VIEWPORT;
info->ps.writes_z = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH);
info->ps.writes_stencil = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
info->ps.writes_sample_mask = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
info->ps.reads_sample_mask_in = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
info->ps.reads_sample_id = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID);
info->ps.reads_frag_shading_rate = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_SHADING_RATE);
info->ps.reads_front_face = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRONT_FACE) |
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRONT_FACE_FSIGN);
info->ps.reads_barycentric_model = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL);
info->ps.reads_fully_covered = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FULLY_COVERED);
bool uses_persp_or_linear_interp = info->ps.reads_persp_center || info->ps.reads_persp_centroid ||
info->ps.reads_persp_sample || info->ps.reads_linear_center ||
info->ps.reads_linear_centroid || info->ps.reads_linear_sample;
info->ps.allow_flat_shading =
!(uses_persp_or_linear_interp || info->ps.needs_sample_positions || info->ps.reads_frag_shading_rate ||
info->ps.writes_memory || nir->info.fs.needs_quad_helper_invocations ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PIXEL_COORD) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_POINT_COORD) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_HELPER_INVOCATION));
info->ps.pops_is_per_sample =
info->ps.pops && (nir->info.fs.sample_interlock_ordered || nir->info.fs.sample_interlock_unordered);
info->ps.spi_ps_input_ena = radv_compute_spi_ps_input(pdev, gfx_state, info);
info->ps.spi_ps_input_addr = info->ps.spi_ps_input_ena;
if (pdev->info.gfx_level >= GFX12) {
/* Only SPI_PS_INPUT_ENA has this bit on GFX12. */
info->ps.spi_ps_input_addr &= C_02865C_COVERAGE_TO_SHADER_SELECT;
}
info->ps.has_epilog = gfx_state->ps.has_epilog && info->ps.colors_written;
const bool export_alpha = !!(info->ps.color0_written & 0x8);
if (info->ps.has_epilog) {
info->ps.exports_mrtz_via_epilog = gfx_state->ps.exports_mrtz_via_epilog && export_alpha;
} else {
info->ps.mrt0_is_dual_src = gfx_state->ps.epilog.mrt0_is_dual_src;
info->ps.spi_shader_col_format = gfx_state->ps.epilog.spi_shader_col_format;
/* Clear color attachments that aren't exported by the FS to match IO shader arguments. */
info->ps.spi_shader_col_format &= info->ps.colors_written;
info->ps.cb_shader_mask = ac_get_cb_shader_mask(info->ps.spi_shader_col_format);
}
if (!info->ps.exports_mrtz_via_epilog) {
info->ps.writes_mrt0_alpha = gfx_state->ms.alpha_to_coverage_via_mrtz && export_alpha;
}
/* Disable VRS and use the rates from PS_ITER_SAMPLES if:
*
* - The fragment shader reads gl_SampleMaskIn because the 16-bit sample coverage mask isn't enough for MSAA8x and
* 2x2 coarse shading.
* - On GFX10.3, if the fragment shader requests a fragment interlock execution mode even if the ordered section was
* optimized out, to consistently implement fragmentShadingRateWithFragmentShaderInterlock = VK_FALSE.
*/
info->ps.force_sample_iter_shading_rate =
(info->ps.reads_sample_mask_in && !info->ps.needs_poly_line_smooth) ||
(pdev->info.gfx_level == GFX10_3 &&
(nir->info.fs.sample_interlock_ordered || nir->info.fs.sample_interlock_unordered ||
nir->info.fs.pixel_interlock_ordered || nir->info.fs.pixel_interlock_unordered));
}
static void
gather_shader_info_rt(const nir_shader *nir, struct radv_shader_info *info)
{
// TODO: inline push_constants again
info->loads_dynamic_offsets = true;
info->loads_push_constants = true;
info->can_inline_all_push_constants = false;
info->inline_push_constant_mask = 0;
info->desc_set_used_mask = -1u;
}
static void
gather_shader_info_cs(struct radv_device *device, const nir_shader *nir, const struct radv_shader_stage_key *stage_key,
struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
unsigned default_wave_size = pdev->cs_wave_size;
if (info->cs.uses_rt)
default_wave_size = pdev->rt_wave_size;
unsigned local_size = nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2];
/* Games don't always request full subgroups when they should, which can cause bugs if cswave32
* is enabled. Furthermore, if cooperative matrices or subgroup info are used, we can't transparently change
* the subgroup size.
*/
const bool require_full_subgroups =
stage_key->subgroup_require_full || nir->info.cs.has_cooperative_matrix ||
(default_wave_size == 32 && nir->info.uses_wide_subgroup_intrinsics && local_size % RADV_SUBGROUP_SIZE == 0);
const unsigned required_subgroup_size = stage_key->subgroup_required_size * 32;
if (required_subgroup_size) {
info->wave_size = required_subgroup_size;
} else if (require_full_subgroups) {
info->wave_size = RADV_SUBGROUP_SIZE;
} else if (pdev->info.gfx_level >= GFX10 && local_size <= 32) {
/* Use wave32 for small workgroups. */
info->wave_size = 32;
} else {
info->wave_size = default_wave_size;
}
if (pdev->info.has_cs_regalloc_hang_bug) {
info->cs.regalloc_hang_bug = info->cs.block_size[0] * info->cs.block_size[1] * info->cs.block_size[2] > 256;
}
}
static void
gather_shader_info_task(struct radv_device *device, const nir_shader *nir,
const struct radv_shader_stage_key *stage_key, struct radv_shader_info *info)
{
gather_shader_info_cs(device, nir, stage_key, info);
/* Task shaders always need these for the I/O lowering even if the API shader doesn't actually
* use them.
*/
/* Needed to address the task draw/payload rings. */
info->cs.uses_block_id[0] = true;
info->cs.uses_block_id[1] = true;
info->cs.uses_block_id[2] = true;
info->cs.uses_grid_size = true;
/* Needed for storing draw ready only on the 1st thread. */
info->cs.uses_local_invocation_idx = true;
/* Task->Mesh dispatch is linear when Y = Z = 1.
* GFX11 CP can optimize this case with a field in its draw packets.
*/
info->cs.linear_taskmesh_dispatch =
nir->info.mesh.ts_mesh_dispatch_dimensions[1] == 1 && nir->info.mesh.ts_mesh_dispatch_dimensions[2] == 1;
info->cs.has_query = device->cache_key.mesh_shader_queries;
}
static uint32_t
radv_get_user_data_0(const struct radv_device *device, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
switch (info->stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_MESH:
if (info->next_stage == MESA_SHADER_TESS_CTRL) {
assert(info->stage == MESA_SHADER_VERTEX);
if (gfx_level >= GFX10) {
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
} else if (gfx_level == GFX9) {
return R_00B430_SPI_SHADER_USER_DATA_LS_0;
} else {
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
}
}
if (info->next_stage == MESA_SHADER_GEOMETRY) {
assert(info->stage == MESA_SHADER_VERTEX || info->stage == MESA_SHADER_TESS_EVAL);
if (gfx_level >= GFX10) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
}
}
if (info->is_ngg)
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
assert(info->stage != MESA_SHADER_MESH);
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_TESS_CTRL:
return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_GEOMETRY:
return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
case MESA_SHADER_RAYGEN:
case MESA_SHADER_CALLABLE:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_MISS:
case MESA_SHADER_INTERSECTION:
case MESA_SHADER_ANY_HIT:
return R_00B900_COMPUTE_USER_DATA_0;
default:
unreachable("invalid shader stage");
}
}
static bool
radv_is_merged_shader_compiled_separately(const struct radv_device *device, const struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
if (gfx_level >= GFX9) {
switch (info->stage) {
case MESA_SHADER_VERTEX:
if (info->next_stage == MESA_SHADER_TESS_CTRL || info->next_stage == MESA_SHADER_GEOMETRY)
return !info->outputs_linked;
break;
case MESA_SHADER_TESS_EVAL:
if (info->next_stage == MESA_SHADER_GEOMETRY)
return !info->outputs_linked;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_GEOMETRY:
return !info->inputs_linked;
default:
break;
}
}
return false;
}
void
radv_nir_shader_info_init(gl_shader_stage stage, gl_shader_stage next_stage, struct radv_shader_info *info)
{
memset(info, 0, sizeof(*info));
/* Assume that shaders can inline all push constants by default. */
info->can_inline_all_push_constants = true;
info->stage = stage;
info->next_stage = next_stage;
}
void
radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir,
const struct radv_shader_layout *layout, const struct radv_shader_stage_key *stage_key,
const struct radv_graphics_state_key *gfx_state, const enum radv_pipeline_type pipeline_type,
bool consider_force_vrs, struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct nir_function *func = (struct nir_function *)exec_list_get_head_const(&nir->functions);
if (layout->use_dynamic_descriptors) {
info->loads_push_constants = true;
info->loads_dynamic_offsets = true;
}
nir_foreach_block (block, func->impl) {
gather_info_block(nir, block, info, gfx_state, stage_key, consider_force_vrs);
}
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_GEOMETRY)
gather_xfb_info(nir, info);
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH) {
struct radv_vs_output_info *outinfo = &info->outinfo;
uint64_t per_vtx_mask, per_prim_mask;
radv_get_output_masks(nir, gfx_state, &per_vtx_mask, &per_prim_mask);
/* Mesh multiview is only lowered in ac_nir_lower_ngg, so we have to fake it here. */
if (nir->info.stage == MESA_SHADER_MESH && gfx_state->has_multiview_view_index)
info->uses_view_index = true;
/* Per vertex outputs. */
outinfo->writes_pointsize = per_vtx_mask & VARYING_BIT_PSIZ;
outinfo->writes_viewport_index = per_vtx_mask & VARYING_BIT_VIEWPORT;
outinfo->writes_layer = per_vtx_mask & VARYING_BIT_LAYER;
outinfo->writes_primitive_shading_rate =
(per_vtx_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE) || info->force_vrs_per_vertex;
/* Per primitive outputs. */
outinfo->writes_viewport_index_per_primitive = per_prim_mask & VARYING_BIT_VIEWPORT;
outinfo->writes_layer_per_primitive = per_prim_mask & VARYING_BIT_LAYER;
outinfo->writes_primitive_shading_rate_per_primitive = per_prim_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE;
outinfo->export_prim_id_per_primitive = per_prim_mask & VARYING_BIT_PRIMITIVE_ID;
outinfo->pos_exports = 1;
if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer ||
outinfo->writes_primitive_shading_rate)
outinfo->pos_exports++;
unsigned clip_cull_mask = outinfo->clip_dist_mask | outinfo->cull_dist_mask;
if (clip_cull_mask & 0x0f)
outinfo->pos_exports++;
if (clip_cull_mask & 0xf0)
outinfo->pos_exports++;
}
info->vs.needs_draw_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
info->vs.needs_base_instance |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE);
info->vs.needs_instance_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
info->uses_view_index |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VIEW_INDEX);
info->uses_invocation_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INVOCATION_ID);
info->uses_prim_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
/* Used by compute and mesh shaders. Mesh shaders must always declare this before GFX11. */
info->cs.uses_grid_size = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_WORKGROUPS) ||
(nir->info.stage == MESA_SHADER_MESH && pdev->info.gfx_level < GFX11);
info->cs.uses_local_invocation_idx = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_LOCAL_INVOCATION_INDEX) |
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_ID) |
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_SUBGROUPS) |
radv_shader_should_clear_lds(device, nir);
if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK ||
nir->info.stage == MESA_SHADER_MESH) {
for (int i = 0; i < 3; ++i)
info->cs.block_size[i] = nir->info.workgroup_size[i];
}
info->user_data_0 = radv_get_user_data_0(device, info);
info->merged_shader_compiled_separately = radv_is_merged_shader_compiled_separately(device, info);
info->force_indirect_desc_sets = info->merged_shader_compiled_separately || stage_key->indirect_bindable;
switch (nir->info.stage) {
case MESA_SHADER_COMPUTE:
gather_shader_info_cs(device, nir, stage_key, info);
break;
case MESA_SHADER_TASK:
gather_shader_info_task(device, nir, stage_key, info);
break;
case MESA_SHADER_FRAGMENT:
gather_shader_info_fs(device, nir, gfx_state, info);
break;
case MESA_SHADER_GEOMETRY:
gather_shader_info_gs(device, nir, info);
break;
case MESA_SHADER_TESS_EVAL:
gather_shader_info_tes(device, nir, info);
break;
case MESA_SHADER_TESS_CTRL:
gather_shader_info_tcs(device, nir, gfx_state, info);
break;
case MESA_SHADER_VERTEX:
gather_shader_info_vs(device, nir, gfx_state, stage_key, info);
break;
case MESA_SHADER_MESH:
gather_shader_info_mesh(device, nir, stage_key, info);
break;
default:
if (gl_shader_stage_is_rt(nir->info.stage))
gather_shader_info_rt(nir, info);
break;
}
info->wave_size = radv_get_wave_size(device, nir->info.stage, info, stage_key);
info->ballot_bit_size = radv_get_ballot_bit_size(device, nir->info.stage, info, stage_key);
switch (nir->info.stage) {
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
info->workgroup_size = ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX);
/* Allow the compiler to assume that the shader always has full subgroups,
* meaning that the initial EXEC mask is -1 in all waves (all lanes enabled).
* This assumption is incorrect for ray tracing and internal (meta) shaders
* because they can use unaligned dispatch.
*/
info->cs.uses_full_subgroups = pipeline_type != RADV_PIPELINE_RAY_TRACING && !nir->info.internal &&
(info->workgroup_size % info->wave_size) == 0;
break;
case MESA_SHADER_VERTEX:
if (info->vs.as_ls || info->vs.as_es) {
/* Set the maximum possible value by default, this will be optimized during linking if
* possible.
*/
info->workgroup_size = 256;
} else {
info->workgroup_size = info->wave_size;
}
break;
case MESA_SHADER_TESS_CTRL:
if (gfx_state->ts.patch_control_points) {
info->workgroup_size =
ac_compute_lshs_workgroup_size(pdev->info.gfx_level, MESA_SHADER_TESS_CTRL, info->num_tess_patches,
gfx_state->ts.patch_control_points, info->tcs.tcs_vertices_out);
} else {
/* Set the maximum possible value when the workgroup size can't be determined. */
info->workgroup_size = 256;
}
break;
case MESA_SHADER_TESS_EVAL:
if (info->tes.as_es) {
/* Set the maximum possible value by default, this will be optimized during linking if
* possible.
*/
info->workgroup_size = 256;
} else {
info->workgroup_size = info->wave_size;
}
break;
case MESA_SHADER_GEOMETRY:
if (!info->is_ngg) {
unsigned es_verts_per_subgroup = info->gs_ring_info.es_verts_per_subgroup;
unsigned gs_inst_prims_in_subgroup = info->gs_ring_info.gs_inst_prims_in_subgroup;
info->workgroup_size = ac_compute_esgs_workgroup_size(pdev->info.gfx_level, info->wave_size,
es_verts_per_subgroup, gs_inst_prims_in_subgroup);
} else {
/* Set the maximum possible value by default, this will be optimized during linking if
* possible.
*/
info->workgroup_size = 256;
}
break;
case MESA_SHADER_MESH:
calc_mesh_workgroup_size(device, nir, info);
break;
default:
/* FS always operates without workgroups. Other stages are computed during linking but assume
* no workgroups by default.
*/
info->workgroup_size = info->wave_size;
break;
}
}
static void
clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim, bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
static unsigned
radv_get_num_input_vertices(const struct radv_shader_info *es_info, const struct radv_shader_info *gs_info)
{
if (gs_info) {
return gs_info->gs.vertices_in;
}
if (es_info->stage == MESA_SHADER_TESS_EVAL) {
if (es_info->tes.point_mode)
return 1;
if (es_info->tes._primitive_mode == TESS_PRIMITIVE_ISOLINES)
return 2;
return 3;
}
return 3;
}
static unsigned
radv_get_pre_rast_input_topology(const struct radv_shader_info *es_info, const struct radv_shader_info *gs_info)
{
if (gs_info) {
return gs_info->gs.input_prim;
}
if (es_info->stage == MESA_SHADER_TESS_EVAL) {
if (es_info->tes.point_mode)
return MESA_PRIM_POINTS;
if (es_info->tes._primitive_mode == TESS_PRIMITIVE_ISOLINES)
return MESA_PRIM_LINES;
return MESA_PRIM_TRIANGLES;
}
return MESA_PRIM_TRIANGLES;
}
static unsigned
gfx10_get_ngg_scratch_lds_base(const struct radv_device *device, const struct radv_shader_info *es_info,
const struct radv_shader_info *gs_info, const struct gfx10_ngg_info *ngg_info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint32_t scratch_lds_base;
if (gs_info) {
const unsigned esgs_ring_lds_bytes = ngg_info->esgs_ring_size;
const unsigned gs_total_out_vtx_bytes = ngg_info->ngg_emit_size * 4u;
scratch_lds_base = ALIGN(esgs_ring_lds_bytes + gs_total_out_vtx_bytes, 8u /* for the repacking code */);
} else {
const bool uses_instanceid = es_info->vs.needs_instance_id;
const bool uses_primitive_id = es_info->uses_prim_id;
const bool streamout_enabled = es_info->so.num_outputs && pdev->use_ngg_streamout;
const uint32_t num_outputs =
es_info->stage == MESA_SHADER_VERTEX ? es_info->vs.num_outputs : es_info->tes.num_outputs;
unsigned pervertex_lds_bytes = ac_ngg_nogs_get_pervertex_lds_size(
es_info->stage, num_outputs, streamout_enabled, es_info->outinfo.export_prim_id, false, /* user edge flag */
es_info->has_ngg_culling, uses_instanceid, uses_primitive_id);
assert(ngg_info->hw_max_esverts <= 256);
unsigned total_es_lds_bytes = pervertex_lds_bytes * ngg_info->hw_max_esverts;
scratch_lds_base = ALIGN(total_es_lds_bytes, 8u);
}
return scratch_lds_base;
}
void
gfx10_get_ngg_info(const struct radv_device *device, struct radv_shader_info *es_info, struct radv_shader_info *gs_info,
struct gfx10_ngg_info *out)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
const unsigned max_verts_per_prim = radv_get_num_input_vertices(es_info, gs_info);
const unsigned min_verts_per_prim = gs_info ? max_verts_per_prim : 1;
const unsigned gs_num_invocations = gs_info ? MAX2(gs_info->gs.invocations, 1) : 1;
const unsigned input_prim = radv_get_pre_rast_input_topology(es_info, gs_info);
const bool uses_adjacency = input_prim == MESA_PRIM_LINES_ADJACENCY || input_prim == MESA_PRIM_TRIANGLES_ADJACENCY;
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = 8 * 1024 - 768;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
const unsigned min_esverts = gfx_level >= GFX11 ? max_verts_per_prim /* gfx11 requires at least 1 primitive per TG */
: gfx_level >= GFX10_3 ? 29
: (24 - 1 + max_verts_per_prim);
bool max_vert_out_per_gs_instance = false;
unsigned max_esverts_base = 128;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_info) {
unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations;
if (max_out_verts_per_gsprim <= 256) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_info->gs.vertices_out;
}
esvert_lds_size = es_info->esgs_itemsize / 4;
gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
} else {
/* VS and TES. */
/* LDS size for passing data from GS to ES. */
struct radv_streamout_info *so_info = &es_info->so;
if (so_info->num_outputs) {
/* Compute the same pervertex LDS size as the NGG streamout lowering pass which allocates
* space for all outputs.
* TODO: only alloc space for outputs that really need streamout.
*/
const uint32_t num_outputs =
es_info->stage == MESA_SHADER_VERTEX ? es_info->vs.num_outputs : es_info->tes.num_outputs;
esvert_lds_size = 4 * num_outputs + 1;
}
/* GS stores Primitive IDs (one DWORD) into LDS at the address
* corresponding to the ES thread of the provoking vertex. All
* ES threads load and export PrimitiveID for their thread.
*/
if (es_info->stage == MESA_SHADER_VERTEX && es_info->outinfo.export_prim_id)
esvert_lds_size = MAX2(esvert_lds_size, 1);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
unsigned wavesize;
if (gs_info) {
wavesize = gs_info->wave_size;
} else {
wavesize = es_info->wave_size;
}
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
/* Hardware restriction: minimum value of max_esverts */
if (gfx_level == GFX10)
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
else
max_esverts = MAX2(max_esverts, min_esverts);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size) {
/* Don't count unusable vertices to the LDS
* size. Those are vertices above the maximum
* number of vertices that can occur in the
* workgroup, which is e.g. max_gsprims * 3
* for triangles.
*/
unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
}
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
/* Verify the restriction. */
if (gfx_level == GFX10)
assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
else
assert(max_esverts >= min_esverts);
} else {
/* Hardware restriction: minimum value of max_esverts */
if (gfx_level == GFX10)
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
else
max_esverts = MAX2(max_esverts, min_esverts);
}
unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out
: gs_info ? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out
: max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_info) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_info->gs.vertices_out;
}
/* On Gfx10, the GE only checks against the maximum number of ES verts
* after allocating a full GS primitive. So we need to ensure that
* whenever this check passes, there is enough space for a full
* primitive without vertex reuse.
*/
if (gfx_level == GFX10)
out->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
else
out->hw_max_esverts = max_esverts;
out->max_gsprims = max_gsprims;
out->max_out_verts = max_out_vertices;
out->prim_amp_factor = prim_amp_factor;
out->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
out->ngg_emit_size = max_gsprims * gsprim_lds_size;
/* Don't count unusable vertices. */
out->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4;
if (gs_info) {
out->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
} else {
out->vgt_esgs_ring_itemsize = 1;
}
assert(out->hw_max_esverts >= min_esverts); /* HW limitation */
out->scratch_lds_base = gfx10_get_ngg_scratch_lds_base(device, es_info, gs_info, out);
/* Get scratch LDS usage. */
const struct radv_shader_info *info = gs_info ? gs_info : es_info;
const unsigned scratch_lds_size = ac_ngg_get_scratch_lds_size(info->stage, info->workgroup_size, info->wave_size,
pdev->use_ngg_streamout, info->has_ngg_culling, false);
out->lds_size = out->scratch_lds_base + scratch_lds_size;
unsigned workgroup_size =
ac_compute_ngg_workgroup_size(max_esverts, max_gsprims * gs_num_invocations, max_out_vertices, prim_amp_factor);
if (gs_info) {
gs_info->workgroup_size = workgroup_size;
}
es_info->workgroup_size = workgroup_size;
}
static void
radv_determine_ngg_settings(struct radv_device *device, struct radv_shader_stage *es_stage,
struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint64_t ps_inputs_read;
assert(es_stage->stage == MESA_SHADER_VERTEX || es_stage->stage == MESA_SHADER_TESS_EVAL);
assert(!fs_stage || fs_stage->stage == MESA_SHADER_FRAGMENT);
if (fs_stage) {
ps_inputs_read = fs_stage->nir->info.inputs_read;
} else {
/* Rely on the number of VS/TES outputs when the FS is unknown (for fast-link or unlinked ESO)
* because this should be a good approximation of the number of FS inputs.
*/
ps_inputs_read = es_stage->nir->info.outputs_written;
/* Clear varyings that can't be PS inputs. */
ps_inputs_read &= ~(VARYING_BIT_POS | VARYING_BIT_PSIZ);
}
unsigned num_vertices_per_prim = 0;
if (es_stage->stage == MESA_SHADER_VERTEX) {
num_vertices_per_prim = radv_get_num_vertices_per_prim(gfx_state);
} else if (es_stage->stage == MESA_SHADER_TESS_EVAL) {
num_vertices_per_prim = es_stage->nir->info.tess.point_mode ? 1
: es_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES ? 2
: 3;
}
es_stage->info.has_ngg_culling =
radv_consider_culling(pdev, es_stage->nir, ps_inputs_read, num_vertices_per_prim, &es_stage->info);
nir_function_impl *impl = nir_shader_get_entrypoint(es_stage->nir);
es_stage->info.has_ngg_early_prim_export = exec_list_is_singular(&impl->body);
/* NGG passthrough mode should be disabled when culling and when the vertex shader
* exports the primitive ID.
*/
es_stage->info.is_ngg_passthrough = !es_stage->info.has_ngg_culling && !(es_stage->stage == MESA_SHADER_VERTEX &&
es_stage->info.outinfo.export_prim_id);
}
static void
radv_link_shaders_info(struct radv_device *device, struct radv_shader_stage *producer,
struct radv_shader_stage *consumer, const struct radv_graphics_state_key *gfx_state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
/* Export primitive ID and clip/cull distances if read by the FS, or export unconditionally when
* the next stage is unknown (with graphics pipeline library).
*/
if (producer->info.next_stage == MESA_SHADER_FRAGMENT ||
!(gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) {
const bool ps_prim_id_in = !consumer || consumer->info.ps.prim_id_input;
const bool ps_clip_dists_in = !consumer || !!consumer->info.ps.input_clips_culls_mask;
radv_set_vs_output_param(device, producer->nir, gfx_state, &producer->info, ps_prim_id_in, ps_clip_dists_in);
}
if (producer->stage == MESA_SHADER_VERTEX || producer->stage == MESA_SHADER_TESS_EVAL) {
/* Compute NGG info (GFX10+) or GS info. */
if (producer->info.is_ngg) {
struct radv_shader_stage *gs_stage = consumer && consumer->stage == MESA_SHADER_GEOMETRY ? consumer : NULL;
struct gfx10_ngg_info *out = gs_stage ? &gs_stage->info.ngg_info : &producer->info.ngg_info;
/* Determine other NGG settings like culling for VS or TES without GS. */
if (!gs_stage) {
radv_determine_ngg_settings(device, producer, consumer, gfx_state);
}
gfx10_get_ngg_info(device, &producer->info, gs_stage ? &gs_stage->info : NULL, out);
} else if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) {
struct radv_shader_info *gs_info = &consumer->info;
struct radv_shader_info *es_info = &producer->info;
es_info->workgroup_size = gs_info->workgroup_size;
}
if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) {
producer->info.gs_inputs_read = consumer->nir->info.inputs_read;
}
}
if (producer->stage == MESA_SHADER_VERTEX && consumer && consumer->stage == MESA_SHADER_TESS_CTRL) {
struct radv_shader_stage *vs_stage = producer;
struct radv_shader_stage *tcs_stage = consumer;
vs_stage->info.vs.tcs_inputs_via_lds = tcs_stage->nir->info.inputs_read;
if (gfx_state->ts.patch_control_points) {
vs_stage->info.workgroup_size =
ac_compute_lshs_workgroup_size(pdev->info.gfx_level, MESA_SHADER_VERTEX, tcs_stage->info.num_tess_patches,
gfx_state->ts.patch_control_points, tcs_stage->info.tcs.tcs_vertices_out);
if (!radv_use_llvm_for_stage(pdev, MESA_SHADER_VERTEX)) {
/* When the number of TCS input and output vertices are the same (typically 3):
* - There is an equal amount of LS and HS invocations
* - In case of merged LSHS shaders, the LS and HS halves of the shader always process
* the exact same vertex. We can use this knowledge to optimize them.
*
* We don't set tcs_in_out_eq if the float controls differ because that might involve
* different float modes for the same block and our optimizer doesn't handle a
* instruction dominating another with a different mode.
*/
vs_stage->info.vs.tcs_in_out_eq =
pdev->info.gfx_level >= GFX9 &&
gfx_state->ts.patch_control_points == tcs_stage->info.tcs.tcs_vertices_out &&
vs_stage->nir->info.float_controls_execution_mode == tcs_stage->nir->info.float_controls_execution_mode;
if (vs_stage->info.vs.tcs_in_out_eq) {
vs_stage->info.vs.tcs_inputs_via_temp = vs_stage->nir->info.outputs_written &
~vs_stage->nir->info.outputs_accessed_indirectly &
tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read;
vs_stage->info.vs.tcs_inputs_via_lds = tcs_stage->nir->info.tess.tcs_cross_invocation_inputs_read |
(tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read &
tcs_stage->nir->info.inputs_read_indirectly) |
(tcs_stage->nir->info.tess.tcs_same_invocation_inputs_read &
vs_stage->nir->info.outputs_accessed_indirectly);
}
}
}
}
/* Copy shader info between TCS<->TES. */
if (producer->stage == MESA_SHADER_TESS_CTRL && consumer && consumer->stage == MESA_SHADER_TESS_EVAL) {
struct radv_shader_stage *tcs_stage = producer;
struct radv_shader_stage *tes_stage = consumer;
tcs_stage->info.tcs.tes_reads_tess_factors = tes_stage->info.tes.reads_tess_factors;
tcs_stage->info.tcs.tes_inputs_read = tes_stage->nir->info.inputs_read;
tcs_stage->info.tcs.tes_patch_inputs_read = tes_stage->nir->info.patch_inputs_read;
tcs_stage->info.tes._primitive_mode = tes_stage->nir->info.tess._primitive_mode;
if (gfx_state->ts.patch_control_points)
tes_stage->info.num_tess_patches = tcs_stage->info.num_tess_patches;
}
}
static void
radv_nir_shader_info_merge(const struct radv_shader_stage *src, struct radv_shader_stage *dst)
{
const struct radv_shader_info *src_info = &src->info;
struct radv_shader_info *dst_info = &dst->info;
assert((src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_TESS_CTRL) ||
(src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_GEOMETRY) ||
(src->stage == MESA_SHADER_TESS_EVAL && dst->stage == MESA_SHADER_GEOMETRY));
dst_info->loads_push_constants |= src_info->loads_push_constants;
dst_info->loads_dynamic_offsets |= src_info->loads_dynamic_offsets;
dst_info->desc_set_used_mask |= src_info->desc_set_used_mask;
dst_info->uses_view_index |= src_info->uses_view_index;
dst_info->uses_prim_id |= src_info->uses_prim_id;
dst_info->inline_push_constant_mask |= src_info->inline_push_constant_mask;
/* Only inline all push constants if both allows it. */
dst_info->can_inline_all_push_constants &= src_info->can_inline_all_push_constants;
if (src->stage == MESA_SHADER_VERTEX) {
dst_info->vs = src_info->vs;
} else {
dst_info->tes = src_info->tes;
}
if (dst->stage == MESA_SHADER_GEOMETRY)
dst_info->gs.es_type = src->stage;
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK, MESA_SHADER_MESH,
};
void
radv_nir_shader_info_link(struct radv_device *device, const struct radv_graphics_state_key *gfx_state,
struct radv_shader_stage *stages)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
/* Walk backwards to link */
struct radv_shader_stage *next_stage = stages[MESA_SHADER_FRAGMENT].nir ? &stages[MESA_SHADER_FRAGMENT] : NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].nir)
continue;
radv_link_shaders_info(device, &stages[s], next_stage, gfx_state);
next_stage = &stages[s];
}
if (pdev->info.gfx_level >= GFX9) {
/* Merge shader info for VS+TCS. */
if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_TESS_CTRL].nir) {
radv_nir_shader_info_merge(&stages[MESA_SHADER_VERTEX], &stages[MESA_SHADER_TESS_CTRL]);
}
/* Merge shader info for VS+GS or TES+GS. */
if ((stages[MESA_SHADER_VERTEX].nir || stages[MESA_SHADER_TESS_EVAL].nir) && stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
radv_nir_shader_info_merge(&stages[pre_stage], &stages[MESA_SHADER_GEOMETRY]);
}
}
}
enum ac_hw_stage
radv_select_hw_stage(const struct radv_shader_info *const info, const enum amd_gfx_level gfx_level)
{
switch (info->stage) {
case MESA_SHADER_VERTEX:
if (info->is_ngg)
return AC_HW_NEXT_GEN_GEOMETRY_SHADER;
else if (info->vs.as_es)
return gfx_level >= GFX9 ? AC_HW_LEGACY_GEOMETRY_SHADER : AC_HW_EXPORT_SHADER;
else if (info->vs.as_ls)
return gfx_level >= GFX9 ? AC_HW_HULL_SHADER : AC_HW_LOCAL_SHADER;
else
return AC_HW_VERTEX_SHADER;
case MESA_SHADER_TESS_EVAL:
if (info->is_ngg)
return AC_HW_NEXT_GEN_GEOMETRY_SHADER;
else if (info->tes.as_es)
return gfx_level >= GFX9 ? AC_HW_LEGACY_GEOMETRY_SHADER : AC_HW_EXPORT_SHADER;
else
return AC_HW_VERTEX_SHADER;
case MESA_SHADER_TESS_CTRL:
return AC_HW_HULL_SHADER;
case MESA_SHADER_GEOMETRY:
if (info->is_ngg)
return AC_HW_NEXT_GEN_GEOMETRY_SHADER;
else
return AC_HW_LEGACY_GEOMETRY_SHADER;
case MESA_SHADER_MESH:
return AC_HW_NEXT_GEN_GEOMETRY_SHADER;
case MESA_SHADER_FRAGMENT:
return AC_HW_PIXEL_SHADER;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
case MESA_SHADER_TASK:
case MESA_SHADER_RAYGEN:
case MESA_SHADER_ANY_HIT:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_MISS:
case MESA_SHADER_INTERSECTION:
case MESA_SHADER_CALLABLE:
return AC_HW_COMPUTE_SHADER;
default:
unreachable("Unsupported HW stage");
}
}