blob: ec00cc5ab417ea56a920fc50f224b1088e9bf73f [file] [log] [blame]
#version 320 es
precision highp float;
precision highp int;
precision highp usamplerBuffer;
precision highp usampler2D;
precision highp image2D;
precision highp uimage2D;
/* Copyright (c) 2020-2022 Hans-Kristian Arntzen
* Copyright (c) 2022 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef VULKAN
precision highp utextureBuffer;
precision highp utexture2DArray;
precision highp uimage2DArray;
precision highp uimage3D;
precision highp utexture3D;
#extension GL_EXT_samplerless_texture_functions : require
layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z = 4) in;
layout(set = 0, binding = 0) writeonly uniform uimage2DArray OutputImage2Darray;
layout(set = 0, binding = 0) writeonly uniform uimage3D OutputImage3D;
layout(set = 0, binding = 1) uniform utexture2DArray PayloadInput2Darray;
layout(set = 0, binding = 1) uniform utexture3D PayloadInput3D;
layout(set = 0, binding = 2) uniform utextureBuffer LUTRemainingBitsToEndpointQuantizer;
layout(set = 0, binding = 3) uniform utextureBuffer LUTEndpointUnquantize;
layout(set = 0, binding = 4) uniform utextureBuffer LUTWeightQuantizer;
layout(set = 0, binding = 5) uniform utextureBuffer LUTWeightUnquantize;
layout(set = 0, binding = 6) uniform utextureBuffer LUTTritQuintDecode;
layout(set = 0, binding = 7) uniform utextureBuffer LUTPartitionTable;
layout(constant_id = 2) const bool DECODE_8BIT = false;
layout(push_constant, std430) uniform pc {
ivec2 texel_blk_start;
ivec2 texel_end;
bool is_3Dimage;
};
#else /* VULKAN */
layout(local_size_x = %u, local_size_y = %u, local_size_z = 4) in;
#define utextureBuffer usamplerBuffer
#define utexture2D usampler2D
layout(binding = 0) uniform utextureBuffer LUTRemainingBitsToEndpointQuantizer;
layout(binding = 1) uniform utextureBuffer LUTEndpointUnquantize;
layout(binding = 2) uniform utextureBuffer LUTWeightQuantizer;
layout(binding = 3) uniform utextureBuffer LUTWeightUnquantize;
layout(binding = 4) uniform utextureBuffer LUTTritQuintDecode;
layout(binding = 5) uniform utexture2D LUTPartitionTable;
layout(binding = 6) uniform utexture2D PayloadInput;
layout(rgba8ui, binding = 7) writeonly uniform uimage2D OutputImage;
const bool DECODE_8BIT = true;
#endif /* VULKAN */
const int MODE_LDR = 0;
const int MODE_HDR = 1;
const int MODE_HDR_LDR_ALPHA = 2;
const uvec4 error_color = uvec4(255, 0, 255, 255);
/* bitextract.h */
int extract_bits(uvec4 payload, int offset, int bits)
{
int last_offset = offset + bits - 1;
int result;
if (bits <= 0)
result = 0;
else if ((last_offset >> 5) == (offset >> 5))
result = int(bitfieldExtract(payload[offset >> 5], offset & 31, bits));
else
{
int first_bits = 32 - (offset & 31);
int result_first = int(bitfieldExtract(payload[offset >> 5], offset & 31, first_bits));
int result_second = int(bitfieldExtract(payload[(offset >> 5) + 1], 0, bits - first_bits));
result = result_first | (result_second << first_bits);
}
return result;
}
/* bitextract.h */
int extract_bits_sign(uvec4 payload, int offset, int bits)
{
int last_offset = offset + bits - 1;
int result;
if (bits <= 0)
result = 0;
else if ((last_offset >> 5) == (offset >> 5))
result = bitfieldExtract(int(payload[offset >> 5]), offset & 31, bits);
else
{
int first_bits = 32 - (offset & 31);
int result_first = int(bitfieldExtract(payload[offset >> 5], offset & 31, first_bits));
int result_second = bitfieldExtract(int(payload[(offset >> 5) + 1]), 0, bits - first_bits);
result = result_first | (result_second << first_bits);
}
return result;
}
/* bitextract.h */
int extract_bits_reverse(uvec4 payload, int offset, int bits)
{
int last_offset = offset + bits - 1;
int result;
if (bits <= 0)
result = 0;
else if ((last_offset >> 5) == (offset >> 5))
result = int(bitfieldReverse(bitfieldExtract(payload[offset >> 5], offset & 31, bits)) >> (32 - bits));
else
{
int first_bits = 32 - (offset & 31);
uint result_first = bitfieldExtract(payload[offset >> 5], offset & 31, first_bits);
uint result_second = bitfieldExtract(payload[(offset >> 5) + 1], 0, bits - first_bits);
result = int(bitfieldReverse(result_first | (result_second << first_bits)) >> (32 - bits));
}
return result;
}
void swap(inout int a, inout int b)
{
int tmp = a;
a = b;
b = tmp;
}
ivec4 build_coord()
{
ivec2 payload_coord = ivec2(gl_WorkGroupID.xy) * 2;
payload_coord.x += int(gl_LocalInvocationID.z) & 1;
payload_coord.y += (int(gl_LocalInvocationID.z) >> 1) & 1;
#ifdef VULKAN
payload_coord += texel_blk_start;
#endif /* VULKAN */
ivec2 coord = payload_coord * ivec2(gl_WorkGroupSize.xy);
coord += ivec2(gl_LocalInvocationID.xy);
return ivec4(coord, payload_coord);
}
ivec4 interpolate_endpoint(ivec4 ep0, ivec4 ep1, ivec4 weight, int decode_mode)
{
if (decode_mode == MODE_HDR)
{
ep0 <<= 4;
ep1 <<= 4;
}
else if (decode_mode == MODE_HDR_LDR_ALPHA)
{
ep0.rgb <<= 4;
ep1.rgb <<= 4;
ep0.a *= 0x101;
ep1.a *= 0x101;
}
else if (DECODE_8BIT)
{
// This isn't quite right in all cases.
// In normal ASTC with sRGB, the alpha channel is supposed to
// be decoded as FP16,
// even when color components are SRGB 8-bit (?!?!?!?!).
// This is correct if decode_unorm8 mode is used though,
// for sanity, we're going to assume unorm8 decoding mode
// is implied when using sRGB.
ep0 = (ep0 << 8) | ivec4(0x80);
ep1 = (ep1 << 8) | ivec4(0x80);
}
else
{
ep0 *= 0x101;
ep1 *= 0x101;
}
ivec4 color = (ep0 * (64 - weight) + ep1 * weight + 32) >> 6;
return color;
}
bvec4 bvec_or(bvec4 a, bvec4 b)
{
return bvec4(ivec4(a) | ivec4(b));
}
uint round_down_quantize_fp16(int color)
{
// ASTC has a very peculiar way of converting the decoded result to FP16.
// 0xffff -> 1.0, and for everything else we get roundDownQuantizeFP16(vec4(c) / vec4(0x10000)).
int msb = findMSB(color);
int shamt = msb;
int m = ((color << 10) >> shamt) & 0x3ff;
int e = msb - 1;
uint decoded = color == 0xffff ? 0x3c00u : uint(e < 1 ? (color << 8) : (m | (e << 10)));
return decoded;
}
uvec4 round_down_quantize_fp16(ivec4 color)
{
// ASTC has a very peculiar way of converting the decoded result to FP16.
// 0xffff -> 1.0, and for everything else we get roundDownQuantizeFP16(vec4(c) / vec4(0x10000)).
ivec4 msb = findMSB(color);
ivec4 shamt = msb;
ivec4 m = ((color << 10) >> shamt) & 0x3ff;
ivec4 e = msb - 1;
uvec4 decoded = uvec4(m | (e << 10));
uvec4 denorm_decode = uvec4(color << 8);
decoded = mix(decoded, uvec4(denorm_decode), lessThan(e, ivec4(1)));
decoded = mix(decoded, uvec4(0x3c00), equal(color, ivec4(0xffff)));
return decoded;
}
uvec4 decode_fp16(ivec4 color, int decode_mode)
{
if (decode_mode != MODE_LDR)
{
// Interpret the value as FP16, but with some extra fixups along the way to make the interpolation more
// logarithmic (apparently). From spec:
ivec4 e = color >> 11;
ivec4 m = color & 0x7ff;
ivec4 mt = 4 * m - 512;
mt = mix(mt, ivec4(3 * m), lessThan(m, ivec4(512)));
mt = mix(mt, ivec4(5 * m - 2048), greaterThanEqual(m, ivec4(1536)));
ivec4 decoded = (e << 10) + (mt >> 3);
// +Inf or NaN are decoded to 0x7bff (max finite value).
decoded = mix(decoded, ivec4(0x7bff), bvec_or(greaterThan(decoded & 0x7fff, ivec4(0x7c00)), equal(decoded, ivec4(0x7c00))));
if (decode_mode == MODE_HDR_LDR_ALPHA)
decoded.a = int(round_down_quantize_fp16(color.a));
return uvec4(decoded);
}
else
{
return round_down_quantize_fp16(color);
}
}
struct BlockMode
{
ivec2 weight_grid_size;
int weight_mode_index;
int num_partitions;
int seed;
int cem;
int config_bits;
int primary_config_bits;
bool dual_plane;
bool void_extent;
};
bool decode_error = false;
BlockMode decode_block_mode(uvec4 payload)
{
BlockMode mode;
mode.void_extent = (payload.x & 0x1ffu) == 0x1fcu;
if (mode.void_extent)
return mode;
mode.dual_plane = (payload.x & (1u << 10u)) != 0u;
uint higher = (payload.x >> 2u) & 3u;
uint lower = payload.x & 3u;
if (lower != 0u)
{
mode.weight_mode_index = int((payload.x >> 4u) & 1u);
mode.weight_mode_index |= int((payload.x << 1u) & 6u);
mode.weight_mode_index |= int((payload.x >> 6u) & 8u);
if (higher < 2u)
{
mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 7, 2) + 4u + 4u * higher);
mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 5, 2) + 2u);
}
else if (higher == 2u)
{
mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 5, 2) + 2u);
mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 7, 2) + 8u);
}
else
{
if ((payload.x & (1u << 8u)) != 0u)
{
mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 7, 1) + 2u);
mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 5, 2) + 2u);
}
else
{
mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 5, 2) + 2u);
mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 7, 1) + 6u);
}
}
}
else
{
int p3 = int(bitfieldExtract(payload.x, 9, 1));
int hi = int(bitfieldExtract(payload.x, 7, 2));
int lo = int(bitfieldExtract(payload.x, 5, 2));
if (hi == 0)
{
mode.weight_grid_size.x = 12;
mode.weight_grid_size.y = lo + 2;
}
else if (hi == 1)
{
mode.weight_grid_size.x = lo + 2;
mode.weight_grid_size.y = 12;
}
else if (hi == 2)
{
mode.dual_plane = false;
p3 = 0;
mode.weight_grid_size.x = lo + 6;
mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 9, 2) + 6u);
}
else
{
if (lo == 0)
mode.weight_grid_size = ivec2(6, 10);
else if (lo == 1)
mode.weight_grid_size = ivec2(10, 6);
else
decode_error = true;
}
int p0 = int(bitfieldExtract(payload.x, 4, 1));
int p1 = int(bitfieldExtract(payload.x, 2, 1));
int p2 = int(bitfieldExtract(payload.x, 3, 1));
mode.weight_mode_index = p0 + (p1 << 1) + (p2 << 2) + (p3 << 3);
}
// 11 bits for block mode.
// 2 bits for partition select
// If partitions > 1:
// 4 bits CEM selector
// If dual_plane:
// 2 bits of CCS
// else:
// 10 for partition seed
// 2 bits for CEM main selector
// If CEM[1:0] = 00:
// 4 bits for CEM extra selector if all same type.
// else:
// (1 + 2) * num_partitions if different types.
// First 4 bits are encoded next to CEM[1:0], otherwise, packed before weights.
// If dual_plane:
// 2 bits of CCS before extra CEM bits.
const int CONFIG_BITS_BLOCK = 11;
const int CONFIG_BITS_PARTITION_MODE = 2;
const int CONFIG_BITS_SEED = 10;
const int CONFIG_BITS_PRIMARY_MULTI_CEM = 2;
const int CONFIG_BITS_CEM = 4;
const int CONFIG_BITS_EXTRA_CEM_PER_PARTITION = 3;
const int CONFIG_BITS_CCS = 2;
mode.num_partitions = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK, CONFIG_BITS_PARTITION_MODE)) + 1;
if (mode.num_partitions > 1)
{
mode.seed = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE, CONFIG_BITS_SEED));
mode.cem = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED,
CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM));
}
else
mode.cem = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE, CONFIG_BITS_CEM));
int config_bits;
if (mode.num_partitions > 1)
{
bool single_cem = (mode.cem & 3) == 0;
if (single_cem)
{
config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE +
CONFIG_BITS_SEED + CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM;
}
else
{
config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE +
CONFIG_BITS_SEED + CONFIG_BITS_PRIMARY_MULTI_CEM +
CONFIG_BITS_EXTRA_CEM_PER_PARTITION * mode.num_partitions;
}
}
else
{
config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_CEM;
}
// Other config bits are packed before the weights.
int primary_config_bits;
if (mode.num_partitions > 1)
{
primary_config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED +
CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM;
}
else
primary_config_bits = config_bits;
if (mode.dual_plane)
config_bits += CONFIG_BITS_CCS;
// This is not allowed.
if (any(greaterThan(mode.weight_grid_size, ivec2(gl_WorkGroupSize.xy))))
decode_error = true;
if (mode.dual_plane && mode.num_partitions > 3)
decode_error = true;
mode.config_bits = config_bits;
mode.primary_config_bits = primary_config_bits;
return mode;
}
int idiv3_floor(int v)
{
return (v * 0x5556) >> 16;
}
int idiv3_ceil(int v)
{
return idiv3_floor(v + 2);
}
int idiv5_floor(int v)
{
return (v * 0x3334) >> 16;
}
int idiv5_ceil(int v)
{
return idiv5_floor(v + 4);
}
uvec4 build_bitmask(int bits)
{
ivec4 num_bits = ivec4(bits, bits - 32, bits - 64, bits - 96);
uvec4 mask = uvec4(1) << clamp(num_bits, ivec4(0), ivec4(31));
mask--;
mask = mix(mask, uvec4(0xffffffffu), greaterThanEqual(uvec4(bits), uvec4(32, 64, 96, 128)));
return mask;
}
int decode_integer_sequence(uvec4 payload, int start_bit, int index, ivec3 quant)
{
int ret;
if (quant.y != 0)
{
// Trit-decoding.
int block = idiv5_floor(index);
int offset = index - block * 5;
start_bit += block * (5 * quant.x + 8);
int t0_t1_offset = start_bit + (quant.x * 1 + 0);
int t2_t3_offset = start_bit + (quant.x * 2 + 2);
int t4_offset = start_bit + (quant.x * 3 + 4);
int t5_t6_offset = start_bit + (quant.x * 4 + 5);
int t7_offset = start_bit + (quant.x * 5 + 7);
int t = (extract_bits(payload, t0_t1_offset, 2) << 0) |
(extract_bits(payload, t2_t3_offset, 2) << 2) |
(extract_bits(payload, t4_offset, 1) << 4) |
(extract_bits(payload, t5_t6_offset, 2) << 5) |
(extract_bits(payload, t7_offset, 1) << 7);
t = int(texelFetch(LUTTritQuintDecode, t).x);
t = (t >> (3 * offset)) & 7;
int m_offset = offset * quant.x;
m_offset += idiv5_ceil(offset * 8);
if (quant.x != 0)
{
int m = extract_bits(payload, m_offset + start_bit, quant.x);
ret = (t << quant.x) | m;
}
else
ret = t;
}
else if (quant.z != 0)
{
// Quint-decoding
int block = idiv3_floor(index);
int offset = index - block * 3;
start_bit += block * (3 * quant.x + 7);
int q0_q1_q2_offset = start_bit + (quant.x * 1 + 0);
int q3_q4_offset = start_bit + (quant.x * 2 + 3);
int q5_q6_offset = start_bit + (quant.x * 3 + 5);
int q = (extract_bits(payload, q0_q1_q2_offset, 3) << 0) |
(extract_bits(payload, q3_q4_offset, 2) << 3) |
(extract_bits(payload, q5_q6_offset, 2) << 5);
q = int(texelFetch(LUTTritQuintDecode, 256 + q).x);
q = (q >> (3 * offset)) & 7;
int m_offset = offset * quant.x;
m_offset += idiv3_ceil(offset * 7);
if (quant.x != 0)
{
int m = extract_bits(payload, m_offset + start_bit, quant.x);
ret = (q << quant.x) | m;
}
else
ret = q;
}
else
{
int bit = index * quant.x;
ret = extract_bits(payload, start_bit + bit, quant.x);
}
return ret;
}
ivec2 normalize_coord(ivec2 pixel_coord)
{
ivec2 D = ivec2((vec2((1024 + ivec2(gl_WorkGroupSize.xy >> 1u))) + 0.5) / vec2(gl_WorkGroupSize.xy - 1u));
ivec2 c = D * pixel_coord;
return c;
}
int decode_weight(uvec4 payload, int weight_index, ivec4 quant)
{
int primary_weight = decode_integer_sequence(payload, 0, weight_index, quant.xyz);
primary_weight = int(texelFetch(LUTWeightUnquantize, primary_weight + quant.w).x);
return primary_weight;
}
int decode_weight_bilinear(uvec4 payload, ivec2 coord, int weight_resolution,
int stride, int offset, ivec2 fractional, ivec4 quant)
{
int index = coord.y * weight_resolution + coord.x;
int p00 = decode_weight(payload, stride * index + offset, quant);
int p10, p01, p11;
if (fractional.x != 0)
p10 = decode_weight(payload, stride * (index + 1) + offset, quant);
else
p10 = p00;
if (fractional.y != 0)
{
p01 = decode_weight(payload, stride * (index + weight_resolution) + offset, quant);
if (fractional.x != 0)
p11 = decode_weight(payload, stride * (index + weight_resolution + 1) + offset, quant);
else
p11 = p01;
}
else
{
p01 = p00;
p11 = p10;
}
int w11 = (fractional.x * fractional.y + 8) >> 4;
int w10 = fractional.x - w11;
int w01 = fractional.y - w11;
int w00 = 16 - fractional.x - fractional.y + w11;
return (p00 * w00 + p10 * w10 + p01 * w01 + p11 * w11 + 8) >> 4;
}
ivec4 decode_weights(uvec4 payload, BlockMode mode, ivec2 normalized_pixel, out int weight_cost_bits)
{
ivec4 quant = ivec4(texelFetch(LUTWeightQuantizer, mode.weight_mode_index));
int num_weights = mode.weight_grid_size.x * mode.weight_grid_size.y;
num_weights <<= int(mode.dual_plane);
weight_cost_bits =
quant.x * num_weights +
idiv5_ceil(num_weights * 8 * quant.y) +
idiv3_ceil(num_weights * 7 * quant.z);
// Decoders must deal with error conditions and return the correct error color.
if (weight_cost_bits < 24 || weight_cost_bits > 96 || num_weights > 64)
{
decode_error = true;
return ivec4(0);
}
int ccs;
if (mode.dual_plane)
{
int extra_cem_bits = 0;
if ((mode.cem & 3) != 0)
extra_cem_bits = max(mode.num_partitions * 3 - 4, 0);
ccs = extract_bits(payload, 126 - weight_cost_bits - extra_cem_bits, 2);
}
payload = bitfieldReverse(payload);
payload = payload.wzyx;
payload &= build_bitmask(weight_cost_bits);
// Scale the normalized coordinate to weight grid.
ivec2 weight_pixel_fixed_point = (normalized_pixel * (mode.weight_grid_size - 1) + 32) >> 6;
ivec2 weight_pixel = weight_pixel_fixed_point >> 4;
ivec2 weight_pixel_fractional = weight_pixel_fixed_point & 0xf;
ivec4 ret;
int primary_weight = decode_weight_bilinear(payload, weight_pixel, mode.weight_grid_size.x,
1 << int(mode.dual_plane), 0,
weight_pixel_fractional, quant);
if (mode.dual_plane)
{
int secondary_weight = decode_weight_bilinear(payload, weight_pixel, mode.weight_grid_size.x,
2, 1,
weight_pixel_fractional, quant);
ret = mix(ivec4(primary_weight), ivec4(secondary_weight), equal(ivec4(ccs), ivec4(0, 1, 2, 3)));
}
else
ret = ivec4(primary_weight);
return ret;
}
void decode_endpoint_ldr_luma_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1)
{
ep0 = ivec4(ivec3(v0), 0xff);
ep1 = ivec4(ivec3(v1), 0xff);
}
void decode_endpoint_hdr_luma_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1)
{
int y0, y1;
if (v1 >= v0)
{
y0 = v0 << 4;
y1 = v1 << 4;
}
else
{
y0 = (v1 << 4) + 8;
y1 = (v0 << 4) - 8;
}
ep0 = ivec4(ivec3(y0), 0x780);
ep1 = ivec4(ivec3(y1), 0x780);
}
void decode_endpoint_hdr_luma_direct_small_range(out ivec4 ep0, out ivec4 ep1,
int v0, int v1)
{
int y0, y1, d;
if ((v0 & 0x80) != 0)
{
y0 = ((v1 & 0xe0) << 4) | ((v0 & 0x7f) << 2);
d = (v1 & 0x1f) << 2;
}
else
{
y0 = ((v1 & 0xf0) << 4) | ((v0 & 0x7f) << 1);
d = (v1 & 0x0f) << 1;
}
y1 = min(y0 + d, 0xfff);
ep0 = ivec4(ivec3(y0), 0x780);
ep1 = ivec4(ivec3(y1), 0x780);
}
void decode_endpoint_ldr_luma_base_offset(out ivec4 ep0, out ivec4 ep1,
int v0, int v1)
{
int l0 = (v0 >> 2) | (v1 & 0xc0);
int l1 = l0 + (v1 & 0x3f);
l1 = min(l1, 0xff);
ep0 = ivec4(ivec3(l0), 0xff);
ep1 = ivec4(ivec3(l1), 0xff);
}
void decode_endpoint_ldr_luma_alpha_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3)
{
ep0 = ivec4(ivec3(v0), v2);
ep1 = ivec4(ivec3(v1), v3);
}
ivec4 blue_contract(int r, int g, int b, int a)
{
ivec4 ret;
ret.r = (r + b) >> 1;
ret.g = (g + b) >> 1;
ret.b = b;
ret.a = a;
return ret;
}
void bit_transfer_signed(inout int a, inout int b)
{
b >>= 1;
b |= a & 0x80;
a >>= 1;
a &= 0x3f;
a = bitfieldExtract(a, 0, 6);
}
void decode_endpoint_ldr_luma_alpha_base_offset(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3)
{
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
int v0_v1 = clamp(v0 + v1, 0, 0xff);
int v2_v3 = clamp(v2 + v3, 0, 0xff);
v0 = clamp(v0, 0, 0xff);
v2 = clamp(v2, 0, 0xff);
ep0 = ivec4(ivec3(v0), v2);
ep1 = ivec4(ivec3(v0_v1), v2_v3);
}
void decode_endpoint_ldr_rgb_base_scale(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3)
{
ep0 = ivec4((ivec3(v0, v1, v2) * v3) >> 8, 0xff);
ep1 = ivec4(v0, v1, v2, 0xff);
}
void decode_endpoint_ldr_rgb_base_scale_two_a(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3, int v4, int v5)
{
ep0 = ivec4((ivec3(v0, v1, v2) * v3) >> 8, v4);
ep1 = ivec4(v0, v1, v2, v5);
}
void decode_endpoint_ldr_rgb_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3, int v4, int v5)
{
int s0 = v0 + v2 + v4;
int s1 = v1 + v3 + v5;
if (s1 >= s0)
{
ep0 = ivec4(v0, v2, v4, 0xff);
ep1 = ivec4(v1, v3, v5, 0xff);
}
else
{
ep0 = blue_contract(v1, v3, v5, 0xff);
ep1 = blue_contract(v0, v2, v4, 0xff);
}
}
void decode_endpoint_hdr_rgb_scale(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3)
{
// Mind-numbing weird format, just copy from spec ...
int mode_value = ((v0 & 0xc0) >> 6) | ((v1 & 0x80) >> 5) | ((v2 & 0x80) >> 4);
int major_component;
int mode;
if ((mode_value & 0xc) != 0xc)
{
major_component = mode_value >> 2;
mode = mode_value & 3;
}
else if (mode_value != 0xf)
{
major_component = mode_value & 3;
mode = 4;
}
else
{
major_component = 0;
mode = 5;
}
int red = v0 & 0x3f;
int green = v1 & 0x1f;
int blue = v2 & 0x1f;
int scale = v3 & 0x1f;
int x0 = (v1 >> 6) & 1;
int x1 = (v1 >> 5) & 1;
int x2 = (v2 >> 6) & 1;
int x3 = (v2 >> 5) & 1;
int x4 = (v3 >> 7) & 1;
int x5 = (v3 >> 6) & 1;
int x6 = (v3 >> 5) & 1;
int ohm = 1 << mode;
if ((ohm & 0x30) != 0) green |= x0 << 6;
if ((ohm & 0x3a) != 0) green |= x1 << 5;
if ((ohm & 0x30) != 0) blue |= x2 << 6;
if ((ohm & 0x3a) != 0) blue |= x3 << 5;
if ((ohm & 0x3d) != 0) scale |= x6 << 5;
if ((ohm & 0x2d) != 0) scale |= x5 << 6;
if ((ohm & 0x04) != 0) scale |= x4 << 7;
if ((ohm & 0x3b) != 0) red |= x4 << 6;
if ((ohm & 0x04) != 0) red |= x3 << 6;
if ((ohm & 0x10) != 0) red |= x5 << 7;
if ((ohm & 0x0f) != 0) red |= x2 << 7;
if ((ohm & 0x05) != 0) red |= x1 << 8;
if ((ohm & 0x0a) != 0) red |= x0 << 8;
if ((ohm & 0x05) != 0) red |= x0 << 9;
if ((ohm & 0x02) != 0) red |= x6 << 9;
if ((ohm & 0x01) != 0) red |= x3 << 10;
if ((ohm & 0x02) != 0) red |= x5 << 10;
int shamt = max(mode, 1);
red <<= shamt;
green <<= shamt;
blue <<= shamt;
scale <<= shamt;
if (mode != 5)
{
green = red - green;
blue = red - blue;
}
if (major_component == 1)
swap(red, green);
else if (major_component == 2)
swap(red, blue);
ep1 = ivec4(clamp(ivec3(red, green, blue), ivec3(0), ivec3(0xfff)), 0x780);
ep0 = ivec4(clamp(ivec3(red, green, blue) - scale, ivec3(0), ivec3(0xfff)), 0x780);
}
void decode_endpoint_hdr_rgb_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3, int v4, int v5)
{
int major_component = ((v4 & 0x80) >> 7) | ((v5 & 0x80) >> 6);
if (major_component == 3)
{
ep0 = ivec4(v0 << 4, v2 << 4, (v4 & 0x7f) << 5, 0x780);
ep1 = ivec4(v1 << 4, v3 << 4, (v5 & 0x7f) << 5, 0x780);
return;
}
int mode = ((v1 & 0x80) >> 7) | ((v2 & 0x80) >> 6) | ((v3 & 0x80) >> 5);
int va = v0 | ((v1 & 0x40) << 2);
int vb0 = v2 & 0x3f;
int vb1 = v3 & 0x3f;
int vc = v1 & 0x3f;
int vd0 = v4 & 0x7f;
int vd1 = v5 & 0x7f;
int d_bits = 7 - (mode & 1);
if ((mode & 5) == 4)
d_bits -= 2;
vd0 = bitfieldExtract(vd0, 0, d_bits);
vd1 = bitfieldExtract(vd1, 0, d_bits);
int x0 = (v2 >> 6) & 1;
int x1 = (v3 >> 6) & 1;
int x2 = (v4 >> 6) & 1;
int x3 = (v5 >> 6) & 1;
int x4 = (v4 >> 5) & 1;
int x5 = (v5 >> 5) & 1;
int ohm = 1 << mode;
if ((ohm & 0xa4) != 0) va |= x0 << 9;
if ((ohm & 0x08) != 0) va |= x2 << 9;
if ((ohm & 0x50) != 0) va |= x4 << 9;
if ((ohm & 0x50) != 0) va |= x5 << 10;
if ((ohm & 0xa0) != 0) va |= x1 << 10;
if ((ohm & 0xc0) != 0) va |= x2 << 11;
if ((ohm & 0x04) != 0) vc |= x1 << 6;
if ((ohm & 0xe8) != 0) vc |= x3 << 6;
if ((ohm & 0x20) != 0) vc |= x2 << 7;
if ((ohm & 0x5b) != 0) vb0 |= x0 << 6;
if ((ohm & 0x5b) != 0) vb1 |= x1 << 6;
if ((ohm & 0x12) != 0) vb0 |= x2 << 7;
if ((ohm & 0x12) != 0) vb1 |= x3 << 7;
int shamt = (mode >> 1) ^ 3;
va <<= shamt;
vb0 <<= shamt;
vb1 <<= shamt;
vc <<= shamt;
vd0 <<= shamt;
vd1 <<= shamt;
ep1 = ivec4(clamp(ivec3(va, va - vb0, va - vb1), ivec3(0), ivec3(0xfff)), 0x780);
ep0 = ivec4(clamp(ivec3(va - vc, va - vb0 - vc - vd0, va - vb1 - vc - vd1), ivec3(0), ivec3(0xfff)), 0x780);
if (major_component == 1)
{
swap(ep0.r, ep0.g);
swap(ep1.r, ep1.g);
}
else if (major_component == 2)
{
swap(ep0.r, ep0.b);
swap(ep1.r, ep1.b);
}
}
void decode_endpoint_ldr_rgb_base_offset(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3, int v4, int v5)
{
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
if (v1 + v3 + v5 >= 0)
{
ep0 = ivec4(v0, v2, v4, 0xff);
ep1 = ivec4(v0 + v1, v2 + v3, v4 + v5, 0xff);
}
else
{
ep0 = blue_contract(v0 + v1, v2 + v3, v4 + v5, 0xff);
ep1 = blue_contract(v0, v2, v4, 0xff);
}
ep0.rgb = clamp(ep0.rgb, ivec3(0), ivec3(0xff));
ep1.rgb = clamp(ep1.rgb, ivec3(0), ivec3(0xff));
}
void decode_endpoint_ldr_rgba_direct(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3,
int v4, int v5, int v6, int v7)
{
int s0 = v0 + v2 + v4;
int s1 = v1 + v3 + v5;
if (s1 >= s0)
{
ep0 = ivec4(v0, v2, v4, v6);
ep1 = ivec4(v1, v3, v5, v7);
}
else
{
ep0 = blue_contract(v1, v3, v5, v7);
ep1 = blue_contract(v0, v2, v4, v6);
}
}
void decode_endpoint_ldr_rgba_base_offset(out ivec4 ep0, out ivec4 ep1,
int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7)
{
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
bit_transfer_signed(v7, v6);
if (v1 + v3 + v5 >= 0)
{
ep0 = ivec4(v0, v2, v4, v6);
ep1 = ivec4(v0 + v1, v2 + v3, v4 + v5, v6 + v7);
}
else
{
ep0 = blue_contract(v0 + v1, v2 + v3, v4 + v5, v6 + v7);
ep1 = blue_contract(v0, v2, v4, v6);
}
ep0 = clamp(ep0, ivec4(0), ivec4(0xff));
ep1 = clamp(ep1, ivec4(0), ivec4(0xff));
}
void decode_endpoint_hdr_alpha(out int ep0, out int ep1, int v6, int v7)
{
int mode = ((v6 >> 7) & 1) | ((v7 >> 6) & 2);
v6 &= 0x7f;
v7 &= 0x7f;
if (mode == 3)
{
ep0 = v6 << 5;
ep1 = v7 << 5;
}
else
{
v6 |= (v7 << (mode + 1)) & 0x780;
v7 &= 0x3f >> mode;
v7 ^= 0x20 >> mode;
v7 -= 0x20 >> mode;
v6 <<= 4 - mode;
v7 <<= 4 - mode;
v7 += v6;
v7 = clamp(v7, 0, 0xfff);
ep0 = v6;
ep1 = v7;
}
}
void decode_endpoint(out ivec4 ep0, out ivec4 ep1, out int decode_mode,
uvec4 payload, int bit_offset, ivec4 quant, int ep_mode,
int base_endpoint_index, int num_endpoint_bits)
{
num_endpoint_bits += bit_offset;
payload &= build_bitmask(num_endpoint_bits);
// Could of course use an array, but that doesn't lower nicely to indexed registers on all GPUs.
int v0, v1, v2, v3, v4, v5, v6, v7;
int num_values = 2 * ((ep_mode >> 2) + 1);
#define DECODE_EP(i) \
int(texelFetch(LUTEndpointUnquantize, quant.w + decode_integer_sequence(payload, bit_offset, i + base_endpoint_index, quant.xyz)).x)
int hi_bits = ep_mode >> 2;
v0 = DECODE_EP(0);
v1 = DECODE_EP(1);
if (hi_bits >= 1)
{
v2 = DECODE_EP(2);
v3 = DECODE_EP(3);
}
if (hi_bits >= 2)
{
v4 = DECODE_EP(4);
v5 = DECODE_EP(5);
}
if (hi_bits >= 3)
{
v6 = DECODE_EP(6);
v7 = DECODE_EP(7);
}
switch (ep_mode)
{
case 0:
decode_endpoint_ldr_luma_direct(ep0, ep1,
v0, v1);
decode_mode = MODE_LDR;
break;
case 1:
decode_endpoint_ldr_luma_base_offset(ep0, ep1,
v0, v1);
decode_mode = MODE_LDR;
break;
case 2:
decode_endpoint_hdr_luma_direct(ep0, ep1,
v0, v1);
decode_mode = MODE_HDR;
break;
case 3:
decode_endpoint_hdr_luma_direct_small_range(ep0, ep1,
v0, v1);
decode_mode = MODE_HDR;
break;
case 4:
decode_endpoint_ldr_luma_alpha_direct(ep0, ep1,
v0, v1, v2, v3);
decode_mode = MODE_LDR;
break;
case 5:
decode_endpoint_ldr_luma_alpha_base_offset(ep0, ep1,
v0, v1, v2, v3);
decode_mode = MODE_LDR;
break;
case 6:
decode_endpoint_ldr_rgb_base_scale(ep0, ep1,
v0, v1, v2, v3);
decode_mode = MODE_LDR;
break;
case 7:
decode_endpoint_hdr_rgb_scale(ep0, ep1,
v0, v1, v2, v3);
decode_mode = MODE_HDR;
break;
case 8:
decode_endpoint_ldr_rgb_direct(ep0, ep1,
v0, v1, v2, v3, v4, v5);
decode_mode = MODE_LDR;
break;
case 9:
decode_endpoint_ldr_rgb_base_offset(ep0, ep1,
v0, v1, v2, v3, v4, v5);
decode_mode = MODE_LDR;
break;
case 10:
decode_endpoint_ldr_rgb_base_scale_two_a(ep0, ep1,
v0, v1, v2, v3, v4, v5);
decode_mode = MODE_LDR;
break;
case 11:
case 14:
case 15:
decode_endpoint_hdr_rgb_direct(ep0, ep1,
v0, v1, v2, v3, v4, v5);
if (ep_mode == 14)
{
ep0.a = v6;
ep1.a = v7;
decode_mode = MODE_HDR_LDR_ALPHA;
}
else if (ep_mode == 15)
{
decode_endpoint_hdr_alpha(ep0.a, ep1.a, v6, v7);
decode_mode = MODE_HDR;
}
else
decode_mode = MODE_HDR;
break;
case 12:
decode_endpoint_ldr_rgba_direct(ep0, ep1,
v0, v1, v2, v3, v4, v5, v6, v7);
decode_mode = MODE_LDR;
break;
case 13:
decode_endpoint_ldr_rgba_base_offset(ep0, ep1,
v0, v1, v2, v3, v4, v5, v6, v7);
decode_mode = MODE_LDR;
break;
}
if (DECODE_8BIT && decode_mode != MODE_LDR)
decode_error = true;
}
#define CHECK_DECODE_ERROR() do { \
if (decode_error) \
{ \
emit_decode_error(coord.xy); \
return; \
} \
} while(false)
void emit_decode_error(ivec2 coord)
{
#ifdef VULKAN
if (is_3Dimage)
imageStore(OutputImage3D, ivec3(coord, gl_WorkGroupID.z), error_color);
else
imageStore(OutputImage2Darray, ivec3(coord, gl_WorkGroupID.z), error_color);
#else /* VULKAN */
imageStore(OutputImage, coord, error_color);
#endif /* VULKAN */
}
int compute_num_endpoint_pairs(int num_partitions, int cem)
{
int ret;
if (num_partitions > 1)
{
bool single_cem = (cem & 3) == 0;
if (single_cem)
ret = ((cem >> 4) + 1) * num_partitions;
else
ret = (cem & 3) * num_partitions + bitCount(bitfieldExtract(uint(cem), 2, num_partitions));
}
else
{
ret = (cem >> 2) + 1;
}
return ret;
}
void decode_cem_base_endpoint(uvec4 payload, int weight_cost_bits, inout int cem, out int base_endpoint_index,
int num_partitions, int partition_index)
{
if (num_partitions > 1)
{
bool single_cem = (cem & 3) == 0;
if (single_cem)
{
cem >>= 2;
base_endpoint_index = ((cem >> 2) + 1) * partition_index;
}
else
{
if (partition_index != 0)
base_endpoint_index = (cem & 3) * partition_index + bitCount(bitfieldExtract(uint(cem), 2, partition_index));
else
base_endpoint_index = 0;
int base_class = (cem & 3) - 1;
int extra_cem_bits = num_partitions * 3 - 4;
int extra_bits = extract_bits(payload, 128 - weight_cost_bits - extra_cem_bits, extra_cem_bits);
cem = (extra_bits << 4) | (cem >> 2);
int class_offset_bit = (cem >> partition_index) & 1;
int ep_bits = (cem >> (num_partitions + 2 * partition_index)) & 3;
cem = 4 * (base_class + class_offset_bit) + ep_bits;
}
base_endpoint_index *= 2;
}
else
{
base_endpoint_index = 0;
}
}
ivec4 void_extent_color(uvec4 payload, out int decode_mode)
{
int min_s = extract_bits(payload, 12, 13);
int max_s = extract_bits(payload, 12 + 13, 13);
int min_t = extract_bits(payload, 12 + 2 * 13, 13);
int max_t = extract_bits(payload, 12 + 3 * 13, 13);
int reserved = extract_bits(payload, 10, 2);
if (reserved != 3)
{
decode_error = true;
return ivec4(0);
}
if (!all(equal(ivec4(min_s, max_s, min_t, max_t), ivec4((1 << 13) - 1))))
{
if (any(greaterThanEqual(ivec2(min_s, min_t), ivec2(max_s, max_t))))
{
decode_error = true;
return ivec4(0);
}
}
decode_mode = (payload.x & (1u << 9)) != 0u ? MODE_HDR : MODE_LDR;
int r = extract_bits(payload, 64, 16);
int g = extract_bits(payload, 64 + 16, 16);
int b = extract_bits(payload, 64 + 32, 16);
int a = extract_bits(payload, 64 + 48, 16);
return ivec4(r, g, b, a);
}
void main()
{
ivec4 coord = build_coord();
#ifdef VULKAN
if (any(greaterThanEqual(coord.xy, texel_end.xy)))
return;
#else /* VULKAN */
if (any(greaterThanEqual(coord.xy, imageSize(OutputImage))))
return;
#endif /* VULKAN */
ivec2 pixel_coord = ivec2(gl_LocalInvocationID.xy);
int linear_pixel = int(gl_WorkGroupSize.x) * pixel_coord.y + pixel_coord.x;
uvec4 payload;
#ifdef VULKAN
if (is_3Dimage)
payload = texelFetch(PayloadInput3D, ivec3(coord.zw, gl_WorkGroupID.z), 0);
else
payload = texelFetch(PayloadInput2Darray,ivec3(coord.zw, gl_WorkGroupID.z), 0);
#else /* VULKAN */
payload = texelFetch(PayloadInput, coord.zw, 0);
#endif /* VULKAN */
BlockMode block_mode = decode_block_mode(payload);
CHECK_DECODE_ERROR();
ivec4 final_color;
int decode_mode;
if (block_mode.void_extent)
{
final_color = void_extent_color(payload, decode_mode);
CHECK_DECODE_ERROR();
}
else
{
int weight_cost_bits;
ivec4 weights = decode_weights(payload, block_mode, normalize_coord(pixel_coord), weight_cost_bits);
int partition_index = 0;
if (block_mode.num_partitions > 1)
{
int lut_x = pixel_coord.x + int(gl_WorkGroupSize.x) * (block_mode.seed & 31);
int lut_y = pixel_coord.y + int(gl_WorkGroupSize.y) * (block_mode.seed >> 5);
#ifdef VULKAN
int lut_width = int(gl_WorkGroupSize.x) * 32;
partition_index = int(texelFetch(LUTPartitionTable, lut_y * lut_width + lut_x).x);
#else /* VULKAN */
partition_index = int(texelFetch(LUTPartitionTable, ivec2(lut_x, lut_y), 0).x);
#endif /* VULKAN */
partition_index = (partition_index >> (2 * block_mode.num_partitions - 4)) & 3;
}
int available_endpoint_bits = max(128 - block_mode.config_bits - weight_cost_bits, 0);
// In multi-partition mode, the 6-bit CEM field is encoded as
// First two bits tell if all CEM field are the same, if not we specify a class offset, and N bits
// after that will offset the class by 1.
int num_endpoint_pairs = compute_num_endpoint_pairs(block_mode.num_partitions, block_mode.cem);
// Error color must be emitted if we need more than 18 integer sequence encoded values of color.
if (num_endpoint_pairs > 9)
{
decode_error = true;
emit_decode_error(coord.xy);
return;
}
ivec4 endpoint_quant = ivec4(texelFetch(LUTRemainingBitsToEndpointQuantizer,
128 * (num_endpoint_pairs - 1) + available_endpoint_bits));
// Only read the bits we need for endpoints.
int num_endpoint_values = num_endpoint_pairs * 2;
available_endpoint_bits =
endpoint_quant.x * num_endpoint_values +
idiv5_ceil(endpoint_quant.y * 8 * num_endpoint_values) +
idiv3_ceil(endpoint_quant.z * 7 * num_endpoint_values);
// No space left for color endpoints.
if (all(equal(endpoint_quant.xyz, ivec3(0))))
{
decode_error = true;
emit_decode_error(coord.xy);
return;
}
int endpoint_bit_offset = block_mode.primary_config_bits;
ivec4 ep0, ep1;
// Decode CEM for multi-partition schemes.
int cem = block_mode.cem;
int base_endpoint_index;
decode_cem_base_endpoint(payload, weight_cost_bits, cem, base_endpoint_index,
block_mode.num_partitions, partition_index);
decode_endpoint(ep0, ep1, decode_mode, payload, endpoint_bit_offset, endpoint_quant,
cem, base_endpoint_index, available_endpoint_bits);
CHECK_DECODE_ERROR();
final_color = interpolate_endpoint(ep0, ep1, weights, decode_mode);
}
if (DECODE_8BIT)
{
#ifdef VULKAN
if (is_3Dimage)
imageStore(OutputImage3D, ivec3(coord.xy, gl_WorkGroupID.z), uvec4(final_color >> 8));
else
imageStore(OutputImage2Darray, ivec3(coord.xy, gl_WorkGroupID.z), uvec4(final_color >> 8));
#else /* VULKAN */
imageStore(OutputImage, coord.xy, uvec4(final_color >> 8));
#endif /* VULKAN */
}
else
{
uvec4 encoded;
if (block_mode.void_extent && decode_mode == MODE_HDR)
encoded = uvec4(final_color);
else
encoded = decode_fp16(final_color, decode_mode);
#ifdef VULKAN
if (is_3Dimage)
imageStore(OutputImage3D, ivec3(coord.xy, gl_WorkGroupID.z), encoded);
else
imageStore(OutputImage2Darray, ivec3(coord.xy, gl_WorkGroupID.z), encoded);
#else /* VULKAN */
imageStore(OutputImage, coord.xy, encoded);
#endif /* VULKAN */
}
}