blob: 42d70e96d43a3f529019f116b6d0c2c60a4703de [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
* Copyright © 2021 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* Linker functions related specifically to linking varyings between shader
* stages.
*/
#include "main/errors.h"
#include "main/macros.h"
#include "main/menums.h"
#include "main/mtypes.h"
#include "program/symbol_table.h"
#include "util/hash_table.h"
#include "util/u_math.h"
#include "util/perf/cpu_trace.h"
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "gl_nir.h"
#include "gl_nir_link_varyings.h"
#include "gl_nir_linker.h"
#include "linker_util.h"
#include "string_to_uint_map.h"
#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
/* Temporary storage for the set of attributes that need locations assigned. */
struct temp_attr {
unsigned slots;
unsigned original_idx;
nir_variable *var;
};
/* Used below in the call to qsort. */
static int
compare_attr(const void *a, const void *b)
{
const struct temp_attr *const l = (const struct temp_attr *) a;
const struct temp_attr *const r = (const struct temp_attr *) b;
/* Reversed because we want a descending order sort below. */
if (r->slots != l->slots)
return r->slots - l->slots;
return l->original_idx - r->original_idx;
}
/**
* Get the varying type stripped of the outermost array if we're processing
* a stage whose varyings are arrays indexed by a vertex number (such as
* geometry shader inputs).
*/
static const struct glsl_type *
get_varying_type(const nir_variable *var, gl_shader_stage stage)
{
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
return type;
}
/**
* Find a contiguous set of available bits in a bitmask.
*
* \param used_mask Bits representing used (1) and unused (0) locations
* \param needed_count Number of contiguous bits needed.
*
* \return
* Base location of the available bits on success or -1 on failure.
*/
static int
find_available_slots(unsigned used_mask, unsigned needed_count)
{
unsigned needed_mask = (1 << needed_count) - 1;
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
/* The comparison to 32 is redundant, but without it GCC emits "warning:
* cannot optimize possibly infinite loops" for the loop below.
*/
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
return -1;
for (int i = 0; i <= max_bit_to_test; i++) {
if ((needed_mask & ~used_mask) == needed_mask)
return i;
needed_mask <<= 1;
}
return -1;
}
/* Find deref based on variable name.
* Note: This function does not support arrays.
*/
static bool
find_deref(nir_shader *shader, const char *name)
{
nir_foreach_function(func, shader) {
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (deref->deref_type == nir_deref_type_var &&
strcmp(deref->var->name, name) == 0)
return true;
}
}
}
}
return false;
}
/**
* Validate the types and qualifiers of an output from one stage against the
* matching input to another stage.
*/
static void
cross_validate_types_and_qualifiers(const struct gl_constants *consts,
struct gl_shader_program *prog,
const nir_variable *input,
const nir_variable *output,
gl_shader_stage consumer_stage,
gl_shader_stage producer_stage)
{
/* Check that the types match between stages.
*/
const struct glsl_type *type_to_match = input->type;
/* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
consumer_stage != MESA_SHADER_FRAGMENT) ||
consumer_stage == MESA_SHADER_GEOMETRY;
if (extra_array_level) {
assert(glsl_type_is_array(type_to_match));
type_to_match = glsl_get_array_element(type_to_match);
}
if (type_to_match != output->type) {
if (glsl_type_is_struct(output->type)) {
/* Structures across shader stages can have different name
* and considered to match in type if and only if structure
* members match in name, type, qualification, and declaration
* order. The precision doesn’t need to match.
*/
if (!glsl_record_compare(output->type, type_to_match,
false, /* match_name */
true, /* match_locations */
false /* match_precision */)) {
linker_error(prog,
"%s shader output `%s' declared as struct `%s', "
"doesn't match in type with %s shader input "
"declared as struct `%s'\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
glsl_get_type_name(output->type),
_mesa_shader_stage_to_string(consumer_stage),
glsl_get_type_name(input->type));
}
} else if (!glsl_type_is_array(output->type) ||
!is_gl_identifier(output->name)) {
/* There is a bit of a special case for gl_TexCoord. This
* built-in is unsized by default. Applications that variable
* access it must redeclare it with a size. There is some
* language in the GLSL spec that implies the fragment shader
* and vertex shader do not have to agree on this size. Other
* driver behave this way, and one or two applications seem to
* rely on it.
*
* Neither declaration needs to be modified here because the array
* sizes are fixed later when update_array_sizes is called.
*
* From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
*
* "Unlike user-defined varying variables, the built-in
* varying variables don't have a strict one-to-one
* correspondence between the vertex language and the
* fragment language."
*/
linker_error(prog,
"%s shader output `%s' declared as type `%s', "
"but %s shader input declared as type `%s'\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
glsl_get_type_name(output->type),
_mesa_shader_stage_to_string(consumer_stage),
glsl_get_type_name(input->type));
return;
}
}
/* Check that all of the qualifiers match between stages.
*/
/* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
* should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
* conformance test suite does not verify that the qualifiers must match.
* The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
* OpenGLES 3.0 drivers, so we relax the checking in all cases.
*/
if (false /* always skip the centroid check */ &&
prog->GLSL_Version < (prog->IsES ? 310 : 430) &&
input->data.centroid != output->data.centroid) {
linker_error(prog,
"%s shader output `%s' %s centroid qualifier, "
"but %s shader input %s centroid qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
(output->data.centroid) ? "has" : "lacks",
_mesa_shader_stage_to_string(consumer_stage),
(input->data.centroid) ? "has" : "lacks");
return;
}
if (input->data.sample != output->data.sample) {
linker_error(prog,
"%s shader output `%s' %s sample qualifier, "
"but %s shader input %s sample qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
(output->data.sample) ? "has" : "lacks",
_mesa_shader_stage_to_string(consumer_stage),
(input->data.sample) ? "has" : "lacks");
return;
}
if (input->data.patch != output->data.patch) {
linker_error(prog,
"%s shader output `%s' %s patch qualifier, "
"but %s shader input %s patch qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
(output->data.patch) ? "has" : "lacks",
_mesa_shader_stage_to_string(consumer_stage),
(input->data.patch) ? "has" : "lacks");
return;
}
/* The GLSL 4.20 and GLSL ES 3.00 specifications say:
*
* "As only outputs need be declared with invariant, an output from
* one shader stage will still match an input of a subsequent stage
* without the input being declared as invariant."
*
* while GLSL 4.10 says:
*
* "For variables leaving one shader and coming into another shader,
* the invariant keyword has to be used in both shaders, or a link
* error will result."
*
* and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
*
* "The invariance of varyings that are declared in both the vertex
* and fragment shaders must match."
*/
if (input->data.explicit_invariant != output->data.explicit_invariant &&
prog->GLSL_Version < (prog->IsES ? 300 : 420)) {
linker_error(prog,
"%s shader output `%s' %s invariant qualifier, "
"but %s shader input %s invariant qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
(output->data.explicit_invariant) ? "has" : "lacks",
_mesa_shader_stage_to_string(consumer_stage),
(input->data.explicit_invariant) ? "has" : "lacks");
return;
}
/* GLSL >= 4.40 removes text requiring interpolation qualifiers
* to match cross stage, they must only match within the same stage.
*
* From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
*
* "It is a link-time error if, within the same stage, the interpolation
* qualifiers of variables of the same name do not match.
*
* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
*
* "When no interpolation qualifier is present, smooth interpolation
* is used."
*
* So we match variables where one is smooth and the other has no explicit
* qualifier.
*/
unsigned input_interpolation = input->data.interpolation;
unsigned output_interpolation = output->data.interpolation;
if (prog->IsES) {
if (input_interpolation == INTERP_MODE_NONE)
input_interpolation = INTERP_MODE_SMOOTH;
if (output_interpolation == INTERP_MODE_NONE)
output_interpolation = INTERP_MODE_SMOOTH;
}
if (input_interpolation != output_interpolation &&
prog->GLSL_Version < 440) {
if (!consts->AllowGLSLCrossStageInterpolationMismatch) {
linker_error(prog,
"%s shader output `%s' specifies %s "
"interpolation qualifier, "
"but %s shader input specifies %s "
"interpolation qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
interpolation_string(output->data.interpolation),
_mesa_shader_stage_to_string(consumer_stage),
interpolation_string(input->data.interpolation));
return;
} else {
linker_warning(prog,
"%s shader output `%s' specifies %s "
"interpolation qualifier, "
"but %s shader input specifies %s "
"interpolation qualifier\n",
_mesa_shader_stage_to_string(producer_stage),
output->name,
interpolation_string(output->data.interpolation),
_mesa_shader_stage_to_string(consumer_stage),
interpolation_string(input->data.interpolation));
}
}
}
/**
* Validate front and back color outputs against single color input
*/
static void
cross_validate_front_and_back_color(const struct gl_constants *consts,
struct gl_shader_program *prog,
const nir_variable *input,
const nir_variable *front_color,
const nir_variable *back_color,
gl_shader_stage consumer_stage,
gl_shader_stage producer_stage)
{
if (front_color != NULL && front_color->data.assigned)
cross_validate_types_and_qualifiers(consts, prog, input, front_color,
consumer_stage, producer_stage);
if (back_color != NULL && back_color->data.assigned)
cross_validate_types_and_qualifiers(consts, prog, input, back_color,
consumer_stage, producer_stage);
}
static unsigned
compute_variable_location_slot(nir_variable *var, gl_shader_stage stage)
{
unsigned location_start = VARYING_SLOT_VAR0;
switch (stage) {
case MESA_SHADER_VERTEX:
if (var->data.mode == nir_var_shader_in)
location_start = VERT_ATTRIB_GENERIC0;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
if (var->data.patch)
location_start = VARYING_SLOT_PATCH0;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.mode == nir_var_shader_out)
location_start = FRAG_RESULT_DATA0;
break;
default:
break;
}
return var->data.location - location_start;
}
struct explicit_location_info {
nir_variable *var;
bool base_type_is_integer;
unsigned base_type_bit_size;
unsigned interpolation;
bool centroid;
bool sample;
bool patch;
};
static bool
check_location_aliasing(struct explicit_location_info explicit_locations[][4],
nir_variable *var,
unsigned location,
unsigned component,
unsigned location_limit,
const struct glsl_type *type,
unsigned interpolation,
bool centroid,
bool sample,
bool patch,
struct gl_shader_program *prog,
gl_shader_stage stage)
{
unsigned last_comp;
unsigned base_type_bit_size;
const struct glsl_type *type_without_array = glsl_without_array(type);
const bool base_type_is_integer =
glsl_base_type_is_integer(glsl_get_base_type(type_without_array));
const bool is_struct = glsl_type_is_struct(type_without_array);
if (is_struct) {
/* structs don't have a defined underlying base type so just treat all
* component slots as used and set the bit size to 0. If there is
* location aliasing, we'll fail anyway later.
*/
last_comp = 4;
base_type_bit_size = 0;
} else {
unsigned dmul = glsl_type_is_64bit(type_without_array) ? 2 : 1;
last_comp = component + glsl_get_vector_elements(type_without_array) * dmul;
base_type_bit_size =
glsl_base_type_get_bit_size(glsl_get_base_type(type_without_array));
}
while (location < location_limit) {
unsigned comp = 0;
while (comp < 4) {
struct explicit_location_info *info =
&explicit_locations[location][comp];
if (info->var) {
if (glsl_type_is_struct(glsl_without_array(info->var->type)) ||
is_struct) {
/* Structs cannot share location since they are incompatible
* with any other underlying numerical type.
*/
linker_error(prog,
"%s shader has multiple %sputs sharing the "
"same location that don't have the same "
"underlying numerical type. Struct variable '%s', "
"location %u\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ? "in" : "out",
is_struct ? var->name : info->var->name,
location);
return false;
} else if (comp >= component && comp < last_comp) {
/* Component aliasing is not allowed */
linker_error(prog,
"%s shader has multiple %sputs explicitly "
"assigned to location %d and component %d\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ? "in" : "out",
location, comp);
return false;
} else {
/* From the OpenGL 4.60.5 spec, section 4.4.1 Input Layout
* Qualifiers, Page 67, (Location aliasing):
*
* " Further, when location aliasing, the aliases sharing the
* location must have the same underlying numerical type
* and bit width (floating-point or integer, 32-bit versus
* 64-bit, etc.) and the same auxiliary storage and
* interpolation qualification."
*/
/* If the underlying numerical type isn't integer, implicitly
* it will be float or else we would have failed by now.
*/
if (info->base_type_is_integer != base_type_is_integer) {
linker_error(prog,
"%s shader has multiple %sputs sharing the "
"same location that don't have the same "
"underlying numerical type. Location %u "
"component %u.\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ?
"in" : "out", location, comp);
return false;
}
if (info->base_type_bit_size != base_type_bit_size) {
linker_error(prog,
"%s shader has multiple %sputs sharing the "
"same location that don't have the same "
"underlying numerical bit size. Location %u "
"component %u.\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ?
"in" : "out", location, comp);
return false;
}
if (info->interpolation != interpolation) {
linker_error(prog,
"%s shader has multiple %sputs sharing the "
"same location that don't have the same "
"interpolation qualification. Location %u "
"component %u.\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ?
"in" : "out", location, comp);
return false;
}
if (info->centroid != centroid ||
info->sample != sample ||
info->patch != patch) {
linker_error(prog,
"%s shader has multiple %sputs sharing the "
"same location that don't have the same "
"auxiliary storage qualification. Location %u "
"component %u.\n",
_mesa_shader_stage_to_string(stage),
var->data.mode == nir_var_shader_in ?
"in" : "out", location, comp);
return false;
}
}
} else if (comp >= component && comp < last_comp) {
info->var = var;
info->base_type_is_integer = base_type_is_integer;
info->base_type_bit_size = base_type_bit_size;
info->interpolation = interpolation;
info->centroid = centroid;
info->sample = sample;
info->patch = patch;
}
comp++;
/* We need to do some special handling for doubles as dvec3 and
* dvec4 consume two consecutive locations. We don't need to
* worry about components beginning at anything other than 0 as
* the spec does not allow this for dvec3 and dvec4.
*/
if (comp == 4 && last_comp > 4) {
last_comp = last_comp - 4;
/* Bump location index and reset the component index */
location++;
comp = 0;
component = 0;
}
}
location++;
}
return true;
}
static void
resize_input_array(nir_shader *shader, struct gl_shader_program *prog,
unsigned stage, unsigned num_vertices)
{
nir_foreach_shader_in_variable(var, shader) {
if (!glsl_type_is_array(var->type) || var->data.patch)
continue;
unsigned size = glsl_array_size(var->type);
if (stage == MESA_SHADER_GEOMETRY) {
/* Generate a link error if the shader has declared this array with
* an incorrect size.
*/
if (!var->data.implicit_sized_array &&
size != -1 && size != num_vertices) {
linker_error(prog, "size of array %s declared as %u, "
"but number of input vertices is %u\n",
var->name, size, num_vertices);
break;
}
/* Generate a link error if the shader attempts to access an input
* array using an index too large for its actual size assigned at
* link time.
*/
if (var->data.max_array_access >= (int)num_vertices) {
linker_error(prog, "%s shader accesses element %i of "
"%s, but only %i input vertices\n",
_mesa_shader_stage_to_string(stage),
var->data.max_array_access, var->name, num_vertices);
break;
}
}
var->type = glsl_array_type(var->type->fields.array, num_vertices, 0);
var->data.max_array_access = num_vertices - 1;
}
nir_fixup_deref_types(shader);
}
/**
* Resize tessellation evaluation per-vertex inputs to the size of
* tessellation control per-vertex outputs.
*/
void
resize_tes_inputs(const struct gl_constants *consts,
struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
return;
struct gl_linked_shader *tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
struct gl_linked_shader *tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
/* If no control shader is present, then the TES inputs are statically
* sized to MaxPatchVertices; the actual size of the arrays won't be
* known until draw time.
*/
const int num_vertices = tcs
? tcs->Program->nir->info.tess.tcs_vertices_out
: consts->MaxPatchVertices;
resize_input_array(tes->Program->nir, prog, MESA_SHADER_TESS_EVAL,
num_vertices);
if (tcs) {
/* Convert the gl_PatchVerticesIn system value into a constant, since
* the value is known at this point.
*/
nir_variable *var =
nir_find_variable_with_location(tes->Program->nir,
nir_var_system_value,
SYSTEM_VALUE_VERTICES_IN);
if (var) {
var->data.location = 0;
var->data.explicit_location = false;
var->data.mode = nir_var_mem_constant;
nir_constant *val = rzalloc(var, nir_constant);
val->values[0].i32 = num_vertices;
var->constant_initializer = val;
nir_fixup_deref_modes(tes->Program->nir);
}
}
}
void
set_geom_shader_input_array_size(struct gl_shader_program *prog)
{
if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] == NULL)
return;
/* Set the size of geometry shader input arrays */
nir_shader *nir = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program->nir;
unsigned num_vertices =
mesa_vertices_per_prim(nir->info.gs.input_primitive);
resize_input_array(nir, prog, MESA_SHADER_GEOMETRY, num_vertices);
}
static bool
validate_explicit_variable_location(const struct gl_constants *consts,
struct explicit_location_info explicit_locations[][4],
nir_variable *var,
struct gl_shader_program *prog,
struct gl_linked_shader *sh)
{
const struct glsl_type *type = get_varying_type(var, sh->Stage);
unsigned num_elements = glsl_count_attribute_slots(type, false);
unsigned idx = compute_variable_location_slot(var, sh->Stage);
unsigned slot_limit = idx + num_elements;
/* Vertex shader inputs and fragment shader outputs are validated in
* assign_attribute_or_color_locations() so we should not attempt to
* validate them again here.
*/
unsigned slot_max;
if (var->data.mode == nir_var_shader_out) {
assert(sh->Stage != MESA_SHADER_FRAGMENT);
slot_max = consts->Program[sh->Stage].MaxOutputComponents / 4;
} else {
assert(var->data.mode == nir_var_shader_in);
assert(sh->Stage != MESA_SHADER_VERTEX);
slot_max = consts->Program[sh->Stage].MaxInputComponents / 4;
}
if (slot_limit > slot_max) {
linker_error(prog,
"Invalid location %u in %s shader\n",
idx, _mesa_shader_stage_to_string(sh->Stage));
return false;
}
const struct glsl_type *type_without_array = glsl_without_array(type);
if (glsl_type_is_interface(type_without_array)) {
for (unsigned i = 0; i < glsl_get_length(type_without_array); i++) {
const struct glsl_struct_field *field =
glsl_get_struct_field_data(type_without_array, i);
unsigned field_location = field->location -
(field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
unsigned field_slots = glsl_count_attribute_slots(field->type, false);
if (!check_location_aliasing(explicit_locations, var,
field_location,
0,
field_location + field_slots,
field->type,
field->interpolation,
field->centroid,
field->sample,
field->patch,
prog, sh->Stage)) {
return false;
}
}
} else if (!check_location_aliasing(explicit_locations, var,
idx, var->data.location_frac,
slot_limit, type,
var->data.interpolation,
var->data.centroid,
var->data.sample,
var->data.patch,
prog, sh->Stage)) {
return false;
}
return true;
}
/**
* Validate explicit locations for the inputs to the first stage and the
* outputs of the last stage in a program, if those are not the VS and FS
* shaders.
*/
void
gl_nir_validate_first_and_last_interface_explicit_locations(const struct gl_constants *consts,
struct gl_shader_program *prog,
gl_shader_stage first_stage,
gl_shader_stage last_stage)
{
/* VS inputs and FS outputs are validated in
* assign_attribute_or_color_locations()
*/
bool validate_first_stage = first_stage != MESA_SHADER_VERTEX;
bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT;
if (!validate_first_stage && !validate_last_stage)
return;
struct explicit_location_info explicit_locations[MAX_VARYING][4];
gl_shader_stage stages[2] = { first_stage, last_stage };
bool validate_stage[2] = { validate_first_stage, validate_last_stage };
nir_variable_mode var_mode[2] = { nir_var_shader_in, nir_var_shader_out };
for (unsigned i = 0; i < 2; i++) {
if (!validate_stage[i])
continue;
gl_shader_stage stage = stages[i];
struct gl_linked_shader *sh = prog->_LinkedShaders[stage];
assert(sh);
memset(explicit_locations, 0, sizeof(explicit_locations));
nir_foreach_variable_with_modes(var, sh->Program->nir, var_mode[i]) {
if (!var->data.explicit_location ||
var->data.location < VARYING_SLOT_VAR0)
continue;
if (!validate_explicit_variable_location(consts, explicit_locations,
var, prog, sh)) {
return;
}
}
}
}
/**
* Check if we should force input / output matching between shader
* interfaces.
*
* Section 4.3.4 (Inputs) of the GLSL 4.10 specifications say:
*
* "Only the input variables that are actually read need to be
* written by the previous stage; it is allowed to have
* superfluous declarations of input variables."
*
* However it's not defined anywhere as to how we should handle
* inputs that are not written in the previous stage and it's not
* clear what "actually read" means.
*
* The GLSL 4.20 spec however is much clearer:
*
* "Only the input variables that are statically read need to
* be written by the previous stage; it is allowed to have
* superfluous declarations of input variables."
*
* It also has a table that states it is an error to statically
* read an input that is not defined in the previous stage. While
* it is not an error to not statically write to the output (it
* just needs to be defined to not be an error).
*
* The text in the GLSL 4.20 spec was an attempt to clarify the
* previous spec iterations. However given the difference in spec
* and that some applications seem to depend on not erroring when
* the input is not actually read in control flow we only apply
* this rule to GLSL 4.20 and higher. GLSL 4.10 shaders have been
* seen in the wild that depend on the less strict interpretation.
*/
static bool
static_input_output_matching(struct gl_shader_program *prog)
{
return prog->GLSL_Version >= (prog->IsES ? 0 : 420);
}
/**
* Validate that outputs from one stage match inputs of another
*/
void
gl_nir_cross_validate_outputs_to_inputs(const struct gl_constants *consts,
struct gl_shader_program *prog,
struct gl_linked_shader *producer,
struct gl_linked_shader *consumer)
{
struct _mesa_symbol_table *table = _mesa_symbol_table_ctor();
struct explicit_location_info output_explicit_locations[MAX_VARYING][4] = {0};
struct explicit_location_info input_explicit_locations[MAX_VARYING][4] = {0};
/* Find all shader outputs in the "producer" stage.
*/
nir_foreach_variable_with_modes(var, producer->Program->nir, nir_var_shader_out) {
if (!var->data.explicit_location
|| var->data.location < VARYING_SLOT_VAR0) {
/* Interface block validation is handled elsewhere */
if (!var->interface_type || is_gl_identifier(var->name))
_mesa_symbol_table_add_symbol(table, var->name, var);
} else {
/* User-defined varyings with explicit locations are handled
* differently because they do not need to have matching names.
*/
if (!validate_explicit_variable_location(consts,
output_explicit_locations,
var, prog, producer)) {
goto out;
}
}
}
/* Find all shader inputs in the "consumer" stage. Any variables that have
* matching outputs already in the symbol table must have the same type and
* qualifiers.
*
* Exception: if the consumer is the geometry shader, then the inputs
* should be arrays and the type of the array element should match the type
* of the corresponding producer output.
*/
nir_foreach_variable_with_modes(input, consumer->Program->nir, nir_var_shader_in) {
if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
const nir_variable *front_color =
(nir_variable *) _mesa_symbol_table_find_symbol(table, "gl_FrontColor");
const nir_variable *back_color =
(nir_variable *) _mesa_symbol_table_find_symbol(table, "gl_BackColor");
cross_validate_front_and_back_color(consts, prog, input,
front_color, back_color,
consumer->Stage, producer->Stage);
} else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
const nir_variable *front_color =
(nir_variable *) _mesa_symbol_table_find_symbol(table, "gl_FrontSecondaryColor");
const nir_variable *back_color =
(nir_variable *) _mesa_symbol_table_find_symbol(table, "gl_BackSecondaryColor");
cross_validate_front_and_back_color(consts, prog, input,
front_color, back_color,
consumer->Stage, producer->Stage);
} else {
/* The rules for connecting inputs and outputs change in the presence
* of explicit locations. In this case, we no longer care about the
* names of the variables. Instead, we care only about the
* explicitly assigned location.
*/
nir_variable *output = NULL;
if (input->data.explicit_location
&& input->data.location >= VARYING_SLOT_VAR0) {
const struct glsl_type *type =
get_varying_type(input, consumer->Stage);
unsigned num_elements = glsl_count_attribute_slots(type, false);
unsigned idx =
compute_variable_location_slot(input, consumer->Stage);
unsigned slot_limit = idx + num_elements;
if (!validate_explicit_variable_location(consts,
input_explicit_locations,
input, prog, consumer)) {
goto out;
}
while (idx < slot_limit) {
if (idx >= MAX_VARYING) {
linker_error(prog,
"Invalid location %u in %s shader\n", idx,
_mesa_shader_stage_to_string(consumer->Stage));
goto out;
}
output = output_explicit_locations[idx][input->data.location_frac].var;
if (output == NULL) {
/* A linker failure should only happen when there is no
* output declaration and there is Static Use of the
* declared input.
*/
if (input->data.used && static_input_output_matching(prog)) {
linker_error(prog,
"%s shader input `%s' with explicit location "
"has no matching output\n",
_mesa_shader_stage_to_string(consumer->Stage),
input->name);
break;
}
} else if (input->data.location != output->data.location) {
linker_error(prog,
"%s shader input `%s' with explicit location "
"has no matching output\n",
_mesa_shader_stage_to_string(consumer->Stage),
input->name);
break;
}
idx++;
}
} else {
/* Interface block validation is handled elsewhere */
if (input->interface_type)
continue;
output = (nir_variable *)
_mesa_symbol_table_find_symbol(table, input->name);
}
if (output != NULL) {
/* Interface blocks have their own validation elsewhere so don't
* try validating them here.
*/
if (!(input->interface_type && output->interface_type))
cross_validate_types_and_qualifiers(consts, prog, input, output,
consumer->Stage,
producer->Stage);
} else {
/* Check for input vars with unmatched output vars in prev stage
* taking into account that interface blocks could have a matching
* output but with different name, so we ignore them.
*/
assert(!input->data.assigned);
if (input->data.used && !input->interface_type &&
!input->data.explicit_location &&
static_input_output_matching(prog))
linker_error(prog,
"%s shader input `%s' "
"has no matching output in the previous stage\n",
_mesa_shader_stage_to_string(consumer->Stage),
input->name);
}
}
}
out:
_mesa_symbol_table_dtor(table);
}
/**
* Assign locations for either VS inputs or FS outputs.
*
* \param mem_ctx Temporary ralloc context used for linking.
* \param prog Shader program whose variables need locations
* assigned.
* \param constants Driver specific constant values for the program.
* \param target_index Selector for the program target to receive location
* assignmnets. Must be either \c MESA_SHADER_VERTEX or
* \c MESA_SHADER_FRAGMENT.
* \param do_assignment Whether we are actually marking the assignment or we
* are just doing a dry-run checking.
*
* \return
* If locations are (or can be, in case of dry-running) successfully assigned,
* true is returned. Otherwise an error is emitted to the shader link log and
* false is returned.
*/
static bool
assign_attribute_or_color_locations(void *mem_ctx,
struct gl_shader_program *prog,
const struct gl_constants *constants,
unsigned target_index,
bool do_assignment)
{
/* Maximum number of generic locations. This corresponds to either the
* maximum number of draw buffers or the maximum number of generic
* attributes.
*/
unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
constants->Program[target_index].MaxAttribs :
MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
assert(max_index <= 32);
struct temp_attr to_assign[32];
/* Mark invalid locations as being used.
*/
unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
unsigned double_storage_locations = 0;
assert((target_index == MESA_SHADER_VERTEX)
|| (target_index == MESA_SHADER_FRAGMENT));
if (prog->_LinkedShaders[target_index] == NULL)
return true;
/* Operate in a total of four passes.
*
* 1. Invalidate the location assignments for all vertex shader inputs.
*
* 2. Assign locations for inputs that have user-defined (via
* glBindVertexAttribLocation) locations and outputs that have
* user-defined locations (via glBindFragDataLocation).
*
* 3. Sort the attributes without assigned locations by number of slots
* required in decreasing order. Fragmentation caused by attribute
* locations assigned by the application may prevent large attributes
* from having enough contiguous space.
*
* 4. Assign locations to any inputs without assigned locations.
*/
const int generic_base = (target_index == MESA_SHADER_VERTEX)
? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
nir_variable_mode io_mode =
(target_index == MESA_SHADER_VERTEX)
? nir_var_shader_in : nir_var_shader_out;
/* Temporary array for the set of attributes that have locations assigned,
* for the purpose of checking overlapping slots/components of (non-ES)
* fragment shader outputs.
*/
nir_variable *assigned[FRAG_RESULT_MAX * 4]; /* (max # of FS outputs) * # components */
unsigned assigned_attr = 0;
unsigned num_attr = 0;
nir_shader *shader = prog->_LinkedShaders[target_index]->Program->nir;
nir_foreach_variable_with_modes(var, shader, io_mode) {
if (var->data.explicit_location) {
if ((var->data.location >= (int)(max_index + generic_base))
|| (var->data.location < 0)) {
linker_error(prog,
"invalid explicit location %d specified for `%s'\n",
(var->data.location < 0)
? var->data.location
: var->data.location - generic_base,
var->name);
return false;
}
} else if (target_index == MESA_SHADER_VERTEX) {
unsigned binding;
if (string_to_uint_map_get(prog->AttributeBindings, &binding, var->name)) {
assert(binding >= VERT_ATTRIB_GENERIC0);
var->data.location = binding;
}
} else if (target_index == MESA_SHADER_FRAGMENT) {
unsigned binding;
unsigned index;
const char *name = var->name;
const struct glsl_type *type = var->type;
while (type) {
/* Check if there's a binding for the variable name */
if (string_to_uint_map_get(prog->FragDataBindings, &binding, name)) {
assert(binding >= FRAG_RESULT_DATA0);
var->data.location = binding;
if (string_to_uint_map_get(prog->FragDataIndexBindings, &index, name)) {
var->data.index = index;
}
break;
}
/* If not, but it's an array type, look for name[0] */
if (glsl_type_is_array(type)) {
name = ralloc_asprintf(mem_ctx, "%s[0]", name);
type = glsl_get_array_element(type);
continue;
}
break;
}
}
if (strcmp(var->name, "gl_LastFragData") == 0)
continue;
/* From GL4.5 core spec, section 15.2 (Shader Execution):
*
* "Output binding assignments will cause LinkProgram to fail:
* ...
* If the program has an active output assigned to a location greater
* than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
* an active output assigned an index greater than or equal to one;"
*/
if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
var->data.location - generic_base >=
(int) constants->MaxDualSourceDrawBuffers) {
linker_error(prog,
"output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
"with index %u for %s\n",
var->data.location - generic_base, var->data.index,
var->name);
return false;
}
const unsigned slots =
glsl_count_attribute_slots(var->type,
target_index == MESA_SHADER_VERTEX);
/* If the variable is not a built-in and has a location statically
* assigned in the shader (presumably via a layout qualifier), make sure
* that it doesn't collide with other assigned locations. Otherwise,
* add it to the list of variables that need linker-assigned locations.
*/
if (var->data.location != -1) {
if (var->data.location >= generic_base && var->data.index < 1) {
/* From page 61 of the OpenGL 4.0 spec:
*
* "LinkProgram will fail if the attribute bindings assigned
* by BindAttribLocation do not leave not enough space to
* assign a location for an active matrix attribute or an
* active attribute array, both of which require multiple
* contiguous generic attributes."
*
* I think above text prohibits the aliasing of explicit and
* automatic assignments. But, aliasing is allowed in manual
* assignments of attribute locations. See below comments for
* the details.
*
* From OpenGL 4.0 spec, page 61:
*
* "It is possible for an application to bind more than one
* attribute name to the same location. This is referred to as
* aliasing. This will only work if only one of the aliased
* attributes is active in the executable program, or if no
* path through the shader consumes more than one attribute of
* a set of attributes aliased to the same location. A link
* error can occur if the linker determines that every path
* through the shader consumes multiple aliased attributes,
* but implementations are not required to generate an error
* in this case."
*
* From GLSL 4.30 spec, page 54:
*
* "A program will fail to link if any two non-vertex shader
* input variables are assigned to the same location. For
* vertex shaders, multiple input variables may be assigned
* to the same location using either layout qualifiers or via
* the OpenGL API. However, such aliasing is intended only to
* support vertex shaders where each execution path accesses
* at most one input per each location. Implementations are
* permitted, but not required, to generate link-time errors
* if they detect that every path through the vertex shader
* executable accesses multiple inputs assigned to any single
* location. For all shader types, a program will fail to link
* if explicit location assignments leave the linker unable
* to find space for other variables without explicit
* assignments."
*
* From OpenGL ES 3.0 spec, page 56:
*
* "Binding more than one attribute name to the same location
* is referred to as aliasing, and is not permitted in OpenGL
* ES Shading Language 3.00 vertex shaders. LinkProgram will
* fail when this condition exists. However, aliasing is
* possible in OpenGL ES Shading Language 1.00 vertex shaders.
* This will only work if only one of the aliased attributes
* is active in the executable program, or if no path through
* the shader consumes more than one attribute of a set of
* attributes aliased to the same location. A link error can
* occur if the linker determines that every path through the
* shader consumes multiple aliased attributes, but implemen-
* tations are not required to generate an error in this case."
*
* After looking at above references from OpenGL, OpenGL ES and
* GLSL specifications, we allow aliasing of vertex input variables
* in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
*
* NOTE: This is not required by the spec but its worth mentioning
* here that we're not doing anything to make sure that no path
* through the vertex shader executable accesses multiple inputs
* assigned to any single location.
*/
/* Mask representing the contiguous slots that will be used by
* this attribute.
*/
const unsigned attr = var->data.location - generic_base;
const unsigned use_mask = (1 << slots) - 1;
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
/* Generate a link error if the requested locations for this
* attribute exceed the maximum allowed attribute location.
*/
if (attr + slots > max_index) {
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s' %d %d %d\n", string,
var->name, used_locations, use_mask, attr);
return false;
}
/* Generate a link error if the set of bits requested for this
* attribute overlaps any previously allocated bits.
*/
if ((~(use_mask << attr) & used_locations) != used_locations) {
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
/* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
* 4.40 spec:
*
* "Additionally, for fragment shader outputs, if two
* variables are placed within the same location, they
* must have the same underlying type (floating-point or
* integer). No component aliasing of output variables or
* members is allowed.
*/
for (unsigned i = 0; i < assigned_attr; i++) {
unsigned assigned_slots =
glsl_count_attribute_slots(assigned[i]->type, false);
unsigned assig_attr =
assigned[i]->data.location - generic_base;
unsigned assigned_use_mask = (1 << assigned_slots) - 1;
if ((assigned_use_mask << assig_attr) &
(use_mask << attr)) {
const struct glsl_type *assigned_type =
glsl_without_array(assigned[i]->type);
const struct glsl_type *type =
glsl_without_array(var->type);
if (glsl_get_base_type(assigned_type) !=
glsl_get_base_type(type)) {
linker_error(prog, "types do not match for aliased"
" %ss %s and %s\n", string,
assigned[i]->name, var->name);
return false;
}
unsigned assigned_component_mask =
((1 << glsl_get_vector_elements(assigned_type)) - 1) <<
assigned[i]->data.location_frac;
unsigned component_mask =
((1 << glsl_get_vector_elements(type)) - 1) <<
var->data.location_frac;
if (assigned_component_mask & component_mask) {
linker_error(prog, "overlapping component is "
"assigned to %ss %s and %s "
"(component=%d)\n",
string, assigned[i]->name, var->name,
var->data.location_frac);
return false;
}
}
}
} else if (target_index == MESA_SHADER_FRAGMENT ||
(prog->IsES && prog->GLSL_Version >= 300)) {
linker_error(prog, "overlapping location is assigned "
"to %s `%s' %d %d %d\n", string, var->name,
used_locations, use_mask, attr);
return false;
} else {
linker_warning(prog, "overlapping location is assigned "
"to %s `%s' %d %d %d\n", string, var->name,
used_locations, use_mask, attr);
}
}
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
/* Only track assigned variables for non-ES fragment shaders
* to avoid overflowing the array.
*
* At most one variable per fragment output component should
* reach this.
*/
assert(assigned_attr < ARRAY_SIZE(assigned));
assigned[assigned_attr] = var;
assigned_attr++;
}
used_locations |= (use_mask << attr);
/* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
*
* "A program with more than the value of MAX_VERTEX_ATTRIBS
* active attribute variables may fail to link, unless
* device-dependent optimizations are able to make the program
* fit within available hardware resources. For the purposes
* of this test, attribute variables of the type dvec3, dvec4,
* dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
* count as consuming twice as many attributes as equivalent
* single-precision types. While these types use the same number
* of generic attributes as their single-precision equivalents,
* implementations are permitted to consume two single-precision
* vectors of internal storage for each three- or four-component
* double-precision vector."
*
* Mark this attribute slot as taking up twice as much space
* so we can count it properly against limits. According to
* issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
* is optional behavior, but it seems preferable.
*/
if (glsl_type_is_dual_slot(glsl_without_array(var->type)))
double_storage_locations |= (use_mask << attr);
}
continue;
}
if (num_attr >= max_index) {
linker_error(prog, "too many %s (max %u)",
target_index == MESA_SHADER_VERTEX ?
"vertex shader inputs" : "fragment shader outputs",
max_index);
return false;
}
to_assign[num_attr].slots = slots;
to_assign[num_attr].var = var;
to_assign[num_attr].original_idx = num_attr;
num_attr++;
}
if (!do_assignment)
return true;
if (target_index == MESA_SHADER_VERTEX) {
unsigned total_attribs_size =
util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
util_bitcount(double_storage_locations);
if (total_attribs_size > max_index) {
linker_error(prog,
"attempt to use %d vertex attribute slots only %d available ",
total_attribs_size, max_index);
return false;
}
}
/* If all of the attributes were assigned locations by the application (or
* are built-in attributes with fixed locations), return early. This should
* be the common case.
*/
if (num_attr == 0)
return true;
qsort(to_assign, num_attr, sizeof(to_assign[0]), &compare_attr);
if (target_index == MESA_SHADER_VERTEX) {
/* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
* only be explicitly assigned by via glBindAttribLocation. Mark it as
* reserved to prevent it from being automatically allocated below.
*/
if (find_deref(shader, "gl_Vertex"))
used_locations |= (1 << 0);
}
for (unsigned i = 0; i < num_attr; i++) {
/* Mask representing the contiguous slots that will be used by this
* attribute.
*/
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
int location = find_available_slots(used_locations, to_assign[i].slots);
if (location < 0) {
const char *const string = (target_index == MESA_SHADER_VERTEX)
? "vertex shader input" : "fragment shader output";
linker_error(prog,
"insufficient contiguous locations "
"available for %s `%s'\n",
string, to_assign[i].var->name);
return false;
}
to_assign[i].var->data.location = generic_base + location;
used_locations |= (use_mask << location);
if (glsl_type_is_dual_slot(glsl_without_array(to_assign[i].var->type)))
double_storage_locations |= (use_mask << location);
}
/* Now that we have all the locations, from the GL 4.5 core spec, section
* 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
* dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
* as equivalent single-precision types.
*/
if (target_index == MESA_SHADER_VERTEX) {
unsigned total_attribs_size =
util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
util_bitcount(double_storage_locations);
if (total_attribs_size > max_index) {
linker_error(prog,
"attempt to use %d vertex attribute slots only %d available ",
total_attribs_size, max_index);
return false;
}
}
return true;
}
static bool
varying_has_user_specified_location(const nir_variable *var)
{
return var->data.explicit_location &&
var->data.location >= VARYING_SLOT_VAR0;
}
static void
create_xfb_varying_names(void *mem_ctx, const struct glsl_type *t, char **name,
size_t name_length, unsigned *count,
const char *ifc_member_name,
const struct glsl_type *ifc_member_t,
char ***varying_names)
{
if (glsl_type_is_interface(t)) {
size_t new_length = name_length;
assert(ifc_member_name && ifc_member_t);
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
NULL, NULL, varying_names);
} else if (glsl_type_is_struct(t)) {
for (unsigned i = 0; i < glsl_get_length(t); i++) {
const char *field = glsl_get_struct_elem_name(t, i);
size_t new_length = name_length;
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
create_xfb_varying_names(mem_ctx, glsl_get_struct_field(t, i), name,
new_length, count, NULL, NULL,
varying_names);
}
} else if (glsl_type_is_struct(glsl_without_array(t)) ||
glsl_type_is_interface(glsl_without_array(t)) ||
(glsl_type_is_array(t) && glsl_type_is_array(glsl_get_array_element(t)))) {
for (unsigned i = 0; i < glsl_get_length(t); i++) {
size_t new_length = name_length;
/* Append the subscript to the current variable name */
ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
create_xfb_varying_names(mem_ctx, glsl_get_array_element(t), name,
new_length, count, ifc_member_name,
ifc_member_t, varying_names);
}
} else {
(*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
}
}
static bool
process_xfb_layout_qualifiers(void *mem_ctx, const struct gl_linked_shader *sh,
struct gl_shader_program *prog,
unsigned *num_xfb_decls,
char ***varying_names,
bool *compact_arrays)
{
bool has_xfb_qualifiers = false;
/* We still need to enable transform feedback mode even if xfb_stride is
* only applied to a global out. Also we don't bother to propagate
* xfb_stride to interface block members so this will catch that case also.
*/
for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
if (prog->TransformFeedback.BufferStride[j]) {
has_xfb_qualifiers = true;
break;
}
}
*compact_arrays = sh->Program->nir->options->compact_arrays;
nir_foreach_shader_out_variable(var, sh->Program->nir) {
/* From the ARB_enhanced_layouts spec:
*
* "Any shader making any static use (after preprocessing) of any of
* these *xfb_* qualifiers will cause the shader to be in a
* transform feedback capturing mode and hence responsible for
* describing the transform feedback setup. This mode will capture
* any output selected by *xfb_offset*, directly or indirectly, to
* a transform feedback buffer."
*/
if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
has_xfb_qualifiers = true;
}
if (var->data.explicit_offset) {
*num_xfb_decls += glsl_varying_count(var->type);
has_xfb_qualifiers = true;
}
}
if (*num_xfb_decls == 0)
return has_xfb_qualifiers;
unsigned i = 0;
*varying_names = ralloc_array(mem_ctx, char *, *num_xfb_decls);
nir_foreach_shader_out_variable(var, sh->Program->nir) {
if (var->data.explicit_offset) {
char *name;
const struct glsl_type *type, *member_type;
if (var->data.from_named_ifc_block) {
type = var->interface_type;
/* Find the member type before it was altered by lowering */
const struct glsl_type *type_wa = glsl_without_array(type);
member_type =
glsl_get_struct_field(type_wa, glsl_get_field_index(type_wa, var->name));
name = ralloc_strdup(NULL, glsl_get_type_name(type_wa));
} else {
type = var->type;
member_type = NULL;
name = ralloc_strdup(NULL, var->name);
}
create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
var->name, member_type, varying_names);
ralloc_free(name);
}
}
assert(i == *num_xfb_decls);
return has_xfb_qualifiers;
}
/**
* Initialize this struct based on a string that was passed to
* glTransformFeedbackVaryings.
*
* If the input is mal-formed, this call still succeeds, but it sets
* this->var_name to a mal-formed input, so xfb_decl_find_output_var()
* will fail to find any matching variable.
*/
static void
xfb_decl_init(struct xfb_decl *xfb_decl, const struct gl_constants *consts,
const struct gl_extensions *exts, const void *mem_ctx,
const char *input, bool compact_arrays)
{
/* We don't have to be pedantic about what is a valid GLSL variable name,
* because any variable with an invalid name can't exist in the IR anyway.
*/
xfb_decl->location = -1;
xfb_decl->orig_name = input;
xfb_decl->lowered_builtin_array_variable = none;
xfb_decl->skip_components = 0;
xfb_decl->next_buffer_separator = false;
xfb_decl->matched_candidate = NULL;
xfb_decl->stream_id = 0;
xfb_decl->buffer = 0;
xfb_decl->offset = 0;
if (exts->ARB_transform_feedback3) {
/* Parse gl_NextBuffer. */
if (strcmp(input, "gl_NextBuffer") == 0) {
xfb_decl->next_buffer_separator = true;
return;
}
/* Parse gl_SkipComponents. */
if (strcmp(input, "gl_SkipComponents1") == 0)
xfb_decl->skip_components = 1;
else if (strcmp(input, "gl_SkipComponents2") == 0)
xfb_decl->skip_components = 2;
else if (strcmp(input, "gl_SkipComponents3") == 0)
xfb_decl->skip_components = 3;
else if (strcmp(input, "gl_SkipComponents4") == 0)
xfb_decl->skip_components = 4;
if (xfb_decl->skip_components)
return;
}
/* Parse a declaration. */
const char *base_name_end;
long subscript = link_util_parse_program_resource_name(input, strlen(input),
&base_name_end);
xfb_decl->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
if (xfb_decl->var_name == NULL) {
_mesa_error_no_memory(__func__);
return;
}
if (subscript >= 0) {
xfb_decl->array_subscript = subscript;
xfb_decl->is_subscripted = true;
} else {
xfb_decl->is_subscripted = false;
}
/* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
* class must behave specially to account for the fact that gl_ClipDistance
* is converted from a float[8] to a vec4[2].
*/
if (!compact_arrays &&
strcmp(xfb_decl->var_name, "gl_ClipDistance") == 0) {
xfb_decl->lowered_builtin_array_variable = clip_distance;
}
if (!compact_arrays &&
strcmp(xfb_decl->var_name, "gl_CullDistance") == 0) {
xfb_decl->lowered_builtin_array_variable = cull_distance;
}
}
/**
* Determine whether two xfb_decl structs refer to the same variable and
* array index (if applicable).
*/
static bool
xfb_decl_is_same(const struct xfb_decl *x, const struct xfb_decl *y)
{
assert(xfb_decl_is_varying(x) && xfb_decl_is_varying(y));
if (strcmp(x->var_name, y->var_name) != 0)
return false;
if (x->is_subscripted != y->is_subscripted)
return false;
if (x->is_subscripted && x->array_subscript != y->array_subscript)
return false;
return true;
}
/**
* The total number of varying components taken up by this variable. Only
* valid if assign_location() has been called.
*/
static unsigned
xfb_decl_num_components(struct xfb_decl *xfb_decl)
{
if (xfb_decl->lowered_builtin_array_variable)
return xfb_decl->size;
else
return xfb_decl->vector_elements * xfb_decl->matrix_columns *
xfb_decl->size * (_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
}
/**
* Assign a location and stream ID for this xfb_decl object based on the
* transform feedback candidate found by find_candidate.
*
* If an error occurs, the error is reported through linker_error() and false
* is returned.
*/
static bool
xfb_decl_assign_location(struct xfb_decl *xfb_decl,
const struct gl_constants *consts,
struct gl_shader_program *prog,
bool disable_varying_packing, bool xfb_enabled)
{
assert(xfb_decl_is_varying(xfb_decl));
unsigned fine_location
= xfb_decl->matched_candidate->toplevel_var->data.location * 4
+ xfb_decl->matched_candidate->toplevel_var->data.location_frac
+ xfb_decl->matched_candidate->struct_offset_floats;
const unsigned dmul =
glsl_type_is_64bit(glsl_without_array(xfb_decl->matched_candidate->type)) ? 2 : 1;
if (glsl_type_is_array(xfb_decl->matched_candidate->type)) {
/* Array variable */
const struct glsl_type *element_type =
glsl_get_array_element(xfb_decl->matched_candidate->type);
const unsigned matrix_cols = glsl_get_matrix_columns(element_type);
const unsigned vector_elements = glsl_get_vector_elements(element_type);
unsigned actual_array_size;
switch (xfb_decl->lowered_builtin_array_variable) {
case clip_distance:
actual_array_size = prog->last_vert_prog ?
prog->last_vert_prog->nir->info.clip_distance_array_size : 0;
break;
case cull_distance:
actual_array_size = prog->last_vert_prog ?
prog->last_vert_prog->nir->info.cull_distance_array_size : 0;
break;
case none:
default:
actual_array_size = glsl_array_size(xfb_decl->matched_candidate->type);
break;
}
if (xfb_decl->is_subscripted) {
/* Check array bounds. */
if (xfb_decl->array_subscript >= actual_array_size) {
linker_error(prog, "Transform feedback varying %s has index "
"%i, but the array size is %u.",
xfb_decl->orig_name, xfb_decl->array_subscript,
actual_array_size);
return false;
}
bool array_will_be_lowered =
lower_packed_varying_needs_lowering(prog->last_vert_prog->nir,
xfb_decl->matched_candidate->toplevel_var,
nir_var_shader_out,
disable_varying_packing,
xfb_enabled) ||
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_ClipDistance") == 0 ||
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_CullDistance") == 0 ||
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_TessLevelInner") == 0 ||
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_TessLevelOuter") == 0;
unsigned array_elem_size = xfb_decl->lowered_builtin_array_variable ?
1 : (array_will_be_lowered ? vector_elements : 4) * matrix_cols * dmul;
fine_location += array_elem_size * xfb_decl->array_subscript;
xfb_decl->size = 1;
} else {
xfb_decl->size = actual_array_size;
}
xfb_decl->vector_elements = vector_elements;
xfb_decl->matrix_columns = matrix_cols;
if (xfb_decl->lowered_builtin_array_variable)
xfb_decl->type = GL_FLOAT;
else
xfb_decl->type = glsl_get_gl_type(element_type);
} else {
/* Regular variable (scalar, vector, or matrix) */
if (xfb_decl->is_subscripted) {
linker_error(prog, "Transform feedback varying %s requested, "
"but %s is not an array.",
xfb_decl->orig_name, xfb_decl->var_name);
return false;
}
xfb_decl->size = 1;
xfb_decl->vector_elements = glsl_get_vector_elements(xfb_decl->matched_candidate->type);
xfb_decl->matrix_columns = glsl_get_matrix_columns(xfb_decl->matched_candidate->type);
xfb_decl->type = glsl_get_gl_type(xfb_decl->matched_candidate->type);
}
xfb_decl->location = fine_location / 4;
xfb_decl->location_frac = fine_location % 4;
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * the total number of components to capture in any varying
* variable in <varyings> is greater than the constant
* MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
* buffer mode is SEPARATE_ATTRIBS_EXT;
*/
if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
xfb_decl_num_components(xfb_decl) >
consts->MaxTransformFeedbackSeparateComponents) {
linker_error(prog, "Transform feedback varying %s exceeds "
"MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
xfb_decl->orig_name);
return false;
}
/* Only transform feedback varyings can be assigned to non-zero streams,
* so assign the stream id here.
*/
xfb_decl->stream_id = xfb_decl->matched_candidate->toplevel_var->data.stream;
unsigned array_offset = xfb_decl->array_subscript * 4 * dmul;
unsigned struct_offset = xfb_decl->matched_candidate->xfb_offset_floats * 4;
xfb_decl->buffer = xfb_decl->matched_candidate->toplevel_var->data.xfb.buffer;
xfb_decl->offset = xfb_decl->matched_candidate->toplevel_var->data.offset +
array_offset + struct_offset;
return true;
}
static unsigned
xfb_decl_get_num_outputs(struct xfb_decl *xfb_decl)
{
if (!xfb_decl_is_varying(xfb_decl)) {
return 0;
}
if (varying_has_user_specified_location(xfb_decl->matched_candidate->toplevel_var)) {
unsigned dmul = _mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1;
unsigned rows_per_element = DIV_ROUND_UP(xfb_decl->vector_elements * dmul, 4);
return xfb_decl->size * xfb_decl->matrix_columns * rows_per_element;
} else {
return (xfb_decl_num_components(xfb_decl) + xfb_decl->location_frac + 3) / 4;
}
}
static bool
xfb_decl_is_varying_written(struct xfb_decl *xfb_decl)
{
if (xfb_decl->next_buffer_separator || xfb_decl->skip_components)
return false;
return xfb_decl->matched_candidate->toplevel_var->data.assigned;
}
/**
* Update gl_transform_feedback_info to reflect this xfb_decl.
*
* If an error occurs, the error is reported through linker_error() and false
* is returned.
*/
static bool
xfb_decl_store(struct xfb_decl *xfb_decl, const struct gl_constants *consts,
struct gl_shader_program *prog,
struct gl_transform_feedback_info *info,
unsigned buffer, unsigned buffer_index,
const unsigned max_outputs,
BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS],
bool *explicit_stride, unsigned *max_member_alignment,
bool has_xfb_qualifiers, const void* mem_ctx)
{
unsigned xfb_offset = 0;
unsigned size = xfb_decl->size;
/* Handle gl_SkipComponents. */
if (xfb_decl->skip_components) {
info->Buffers[buffer].Stride += xfb_decl->skip_components;
size = xfb_decl->skip_components;
goto store_varying;
}
if (xfb_decl->next_buffer_separator) {
size = 0;
goto store_varying;
}
if (has_xfb_qualifiers) {
xfb_offset = xfb_decl->offset / 4;
} else {
xfb_offset = info->Buffers[buffer].Stride;
}
info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
{
unsigned location = xfb_decl->location;
unsigned location_frac = xfb_decl->location_frac;
unsigned num_components = xfb_decl_num_components(xfb_decl);
/* From GL_EXT_transform_feedback:
*
* " A program will fail to link if:
*
* * the total number of components to capture is greater than the
* constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
* and the buffer mode is INTERLEAVED_ATTRIBS_EXT."
*
* From GL_ARB_enhanced_layouts:
*
* " The resulting stride (implicit or explicit) must be less than or
* equal to the implementation-dependent constant
* gl_MaxTransformFeedbackInterleavedComponents."
*/
if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
has_xfb_qualifiers) &&
xfb_offset + num_components >
consts->MaxTransformFeedbackInterleavedComponents) {
linker_error(prog,
"The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
"limit has been exceeded.");
return false;
}
/* From the OpenGL 4.60.5 spec, section 4.4.2. Output Layout Qualifiers,
* Page 76, (Transform Feedback Layout Qualifiers):
*
* " No aliasing in output buffers is allowed: It is a compile-time or
* link-time error to specify variables with overlapping transform
* feedback offsets."
*/
const unsigned max_components =
consts->MaxTransformFeedbackInterleavedComponents;
const unsigned first_component = xfb_offset;
const unsigned last_component = xfb_offset + num_components - 1;
const unsigned start_word = BITSET_BITWORD(first_component);
const unsigned end_word = BITSET_BITWORD(last_component);
BITSET_WORD *used;
assert(last_component < max_components);
if (!used_components[buffer]) {
used_components[buffer] =
rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_components));
}
used = used_components[buffer];
for (unsigned word = start_word; word <= end_word; word++) {
unsigned start_range = 0;
unsigned end_range = BITSET_WORDBITS - 1;
if (word == start_word)
start_range = first_component % BITSET_WORDBITS;
if (word == end_word)
end_range = last_component % BITSET_WORDBITS;
if (used[word] & BITSET_RANGE(start_range, end_range)) {
linker_error(prog,
"variable '%s', xfb_offset (%d) is causing aliasing.",
xfb_decl->orig_name, xfb_offset * 4);
return false;
}
used[word] |= BITSET_RANGE(start_range, end_range);
}
const unsigned type_num_components =
xfb_decl->vector_elements *
(_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
unsigned current_type_components_left = type_num_components;
while (num_components > 0) {
unsigned output_size = 0;
/* From GL_ARB_enhanced_layouts:
*
* "When an attribute variable declared using an array type is bound to
* generic attribute index <i>, the active array elements are assigned to
* consecutive generic attributes beginning with generic attribute <i>. The
* number of attributes and components assigned to each element are
* determined according to the data type of array elements and "component"
* layout qualifier (if any) specified in the declaration of the array."
*
* "When an attribute variable declared using a matrix type is bound to a
* generic attribute index <i>, its values are taken from consecutive generic
* attributes beginning with generic attribute <i>. Such matrices are
* treated as an array of column vectors with values taken from the generic
* attributes.
* This means there may be gaps in the varyings we are taking values from."
*
* Examples:
*
* | layout(location=0) dvec3[2] a; | layout(location=4) vec2[4] b; |
* | | |
* | 32b 32b 32b 32b | 32b 32b 32b 32b |
* | 0 X X Y Y | 4 X Y 0 0 |
* | 1 Z Z 0 0 | 5 X Y 0 0 |
* | 2 X X Y Y | 6 X Y 0 0 |
* | 3 Z Z 0 0 | 7 X Y 0 0 |
*
*/
if (varying_has_user_specified_location(xfb_decl->matched_candidate->toplevel_var)) {
output_size = MIN3(num_components, current_type_components_left, 4);
current_type_components_left -= output_size;
if (current_type_components_left == 0) {
current_type_components_left = type_num_components;
}
} else {
output_size = MIN2(num_components, 4 - location_frac);
}
assert((info->NumOutputs == 0 && max_outputs == 0) ||
info->NumOutputs < max_outputs);
/* From the ARB_enhanced_layouts spec:
*
* "If such a block member or variable is not written during a shader
* invocation, the buffer contents at the assigned offset will be
* undefined. Even if there are no static writes to a variable or
* member that is assigned a transform feedback offset, the space is
* still allocated in the buffer and still affects the stride."
*/
if (xfb_decl_is_varying_written(xfb_decl)) {
info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
info->Outputs[info->NumOutputs].OutputRegister = location;
info->Outputs[info->NumOutputs].NumComponents = output_size;
info->Outputs[info->NumOutputs].StreamId = xfb_decl->stream_id;
info->Outputs[info->NumOutputs].OutputBuffer = buffer;
info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
++info->NumOutputs;
}
info->Buffers[buffer].Stream = xfb_decl->stream_id;
xfb_offset += output_size;
num_components -= output_size;
location++;
location_frac = 0;
}
}
if (explicit_stride && explicit_stride[buffer]) {
if (_mesa_gl_datatype_is_64bit(xfb_decl->type) &&
info->Buffers[buffer].Stride % 2) {
linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
"multiple of 8 as its applied to a type that is or "
"contains a double.",
info->Buffers[buffer].Stride * 4);
return false;
}
if (xfb_offset > info->Buffers[buffer].Stride) {
linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
"buffer (%d)", xfb_offset * 4,
info->Buffers[buffer].Stride * 4, buffer);
return false;
}
} else {
if (max_member_alignment && has_xfb_qualifiers) {
max_member_alignment[buffer] = MAX2(max_member_alignment[buffer],
_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
info->Buffers[buffer].Stride = ALIGN(xfb_offset,
max_member_alignment[buffer]);
} else {
info->Buffers[buffer].Stride = xfb_offset;
}
}
store_varying:
info->Varyings[info->NumVarying].name.string =
ralloc_strdup(prog, xfb_decl->orig_name);
resource_name_updated(&info->Varyings[info->NumVarying].name);
info->Varyings[info->NumVarying].Type = xfb_decl->type;
info->Varyings[info->NumVarying].Size = size;
info->Varyings[info->NumVarying].BufferIndex = buffer_index;
info->NumVarying++;
info->Buffers[buffer].NumVaryings++;
return true;
}
static const struct tfeedback_candidate *
xfb_decl_find_candidate(struct xfb_decl *xfb_decl,
struct gl_shader_program *prog,
struct hash_table *tfeedback_candidates)
{
const char *name = xfb_decl->var_name;
switch (xfb_decl->lowered_builtin_array_variable) {
case none:
name = xfb_decl->var_name;
break;
case clip_distance:
case cull_distance:
name = "gl_ClipDistanceMESA";
break;
}
struct hash_entry *entry =
_mesa_hash_table_search(tfeedback_candidates, name);
xfb_decl->matched_candidate = entry ?
(struct tfeedback_candidate *) entry->data : NULL;
if (!xfb_decl->matched_candidate) {
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * any variable name specified in the <varyings> array is not
* declared as an output in the geometry shader (if present) or
* the vertex shader (if no geometry shader is present);
*/
linker_error(prog, "Transform feedback varying %s undeclared.",
xfb_decl->orig_name);
}
return xfb_decl->matched_candidate;
}
/**
* Force a candidate over the previously matched one. It happens when a new
* varying needs to be created to match the xfb declaration, for example,
* to fullfil an alignment criteria.
*/
static void
xfb_decl_set_lowered_candidate(struct xfb_decl *xfb_decl,
struct tfeedback_candidate *candidate)
{
xfb_decl->matched_candidate = candidate;
/* The subscript part is no longer relevant */
xfb_decl->is_subscripted = false;
xfb_decl->array_subscript = 0;
}
/**
* Parse all the transform feedback declarations that were passed to
* glTransformFeedbackVaryings() and store them in xfb_decl objects.
*
* If an error occurs, the error is reported through linker_error() and false
* is returned.
*/
static bool
parse_xfb_decls(const struct gl_constants *consts,
const struct gl_extensions *exts,
struct gl_shader_program *prog,
const void *mem_ctx, unsigned num_names,
char **varying_names, struct xfb_decl *decls, bool compact_arrays)
{
for (unsigned i = 0; i < num_names; ++i) {
xfb_decl_init(&decls[i], consts, exts, mem_ctx, varying_names[i], compact_arrays);
if (!xfb_decl_is_varying(&decls[i]))
continue;
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * any two entries in the <varyings> array specify the same varying
* variable;
*
* We interpret this to mean "any two entries in the <varyings> array
* specify the same varying variable and array index", since transform
* feedback of arrays would be useless otherwise.
*/
for (unsigned j = 0; j < i; ++j) {
if (xfb_decl_is_varying(&decls[j])) {
if (xfb_decl_is_same(&decls[i], &decls[j])) {
linker_error(prog, "Transform feedback varying %s specified "
"more than once.", varying_names[i]);
return false;
}
}
}
}
return true;
}
static int
cmp_xfb_offset(const void * x_generic, const void * y_generic)
{
struct xfb_decl *x = (struct xfb_decl *) x_generic;
struct xfb_decl *y = (struct xfb_decl *) y_generic;
if (x->buffer != y->buffer)
return x->buffer - y->buffer;
return x->offset - y->offset;
}
/**
* Store transform feedback location assignments into
* prog->sh.LinkedTransformFeedback based on the data stored in
* xfb_decls.
*
* If an error occurs, the error is reported through linker_error() and false
* is returned.
*/
static bool
store_tfeedback_info(const struct gl_constants *consts,
struct gl_shader_program *prog, unsigned num_xfb_decls,
struct xfb_decl *xfb_decls, bool has_xfb_qualifiers,
const void *mem_ctx)
{
if (!prog->last_vert_prog)
return true;
/* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
* tracking the number of buffers doesn't overflow.
*/
assert(consts->MaxTransformFeedbackBuffers < 32);
bool separate_attribs_mode =
prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
struct gl_program *xfb_prog = prog->last_vert_prog;
xfb_prog->sh.LinkedTransformFeedback =
rzalloc(xfb_prog, struct gl_transform_feedback_info);
/* The xfb_offset qualifier does not have to be used in increasing order
* however some drivers expect to receive the list of transform feedback
* declarations in order so sort it now for convenience.
*/
if (has_xfb_qualifiers) {
qsort(xfb_decls, num_xfb_decls, sizeof(*xfb_decls),
cmp_xfb_offset);
}
xfb_prog->sh.LinkedTransformFeedback->Varyings =
rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
num_xfb_decls);
unsigned num_outputs = 0;
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (xfb_decl_is_varying_written(&xfb_decls[i]))
num_outputs += xfb_decl_get_num_outputs(&xfb_decls[i]);
}
xfb_prog->sh.LinkedTransformFeedback->Outputs =
rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
num_outputs);
unsigned num_buffers = 0;
unsigned buffers = 0;
BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS] = {0};
if (!has_xfb_qualifiers && separate_attribs_mode) {
/* GL_SEPARATE_ATTRIBS */
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
xfb_prog->sh.LinkedTransformFeedback,
num_buffers, num_buffers, num_outputs,
used_components, NULL, NULL, has_xfb_qualifiers,
mem_ctx))
return false;
buffers |= 1 << num_buffers;
num_buffers++;
}
}
else {
/* GL_INVERLEAVED_ATTRIBS */
int buffer_stream_id = -1;
unsigned buffer =
num_xfb_decls ? xfb_decls[0].buffer : 0;
bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
unsigned max_member_alignment[MAX_FEEDBACK_BUFFERS] = { 1, 1, 1, 1 };
/* Apply any xfb_stride global qualifiers */
if (has_xfb_qualifiers) {
for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
if (prog->TransformFeedback.BufferStride[j]) {
explicit_stride[j] = true;
xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
prog->TransformFeedback.BufferStride[j] / 4;
}
}
}
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (has_xfb_qualifiers &&
buffer != xfb_decls[i].buffer) {
/* we have moved to the next buffer so reset stream id */
buffer_stream_id = -1;
num_buffers++;
}
if (xfb_decls[i].next_buffer_separator) {
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
xfb_prog->sh.LinkedTransformFeedback,
buffer, num_buffers, num_outputs,
used_components, explicit_stride,
max_member_alignment, has_xfb_qualifiers,
mem_ctx))
return false;
num_buffers++;
buffer_stream_id = -1;
continue;
}
if (has_xfb_qualifiers) {
buffer = xfb_decls[i].buffer;
} else {
buffer = num_buffers;
}
if (xfb_decl_is_varying(&xfb_decls[i])) {
if (buffer_stream_id == -1) {
/* First varying writing to this buffer: remember its stream */
buffer_stream_id = (int) xfb_decls[i].stream_id;
/* Only mark a buffer as active when there is a varying
* attached to it. This behaviour is based on a revised version
* of section 13.2.2 of the GL 4.6 spec.
*/
buffers |= 1 << buffer;
} else if (buffer_stream_id !=
(int) xfb_decls[i].stream_id) {
/* Varying writes to the same buffer from a different stream */
linker_error(prog,
"Transform feedback can't capture varyings belonging "
"to different vertex streams in a single buffer. "
"Varying %s writes to buffer from stream %u, other "
"varyings in the same buffer write from stream %u.",
xfb_decls[i].orig_name,
xfb_decls[i].stream_id,
buffer_stream_id);
return false;
}
}
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
xfb_prog->sh.LinkedTransformFeedback,
buffer, num_buffers, num_outputs, used_components,
explicit_stride, max_member_alignment,
has_xfb_qualifiers, mem_ctx))
return false;
}
}
assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
return true;
}
/**
* Enum representing the order in which varyings are packed within a
* packing class.
*
* Currently we pack vec4's first, then vec2's, then scalar values, then
* vec3's. This order ensures that the only vectors that are at risk of
* having to be "double parked" (split between two adjacent varying slots)
* are the vec3's.
*/
enum packing_order_enum {
PACKING_ORDER_VEC4,
PACKING_ORDER_VEC2,
PACKING_ORDER_SCALAR,
PACKING_ORDER_VEC3,
};
/**
* Structure recording the relationship between a single producer output
* and a single consumer input.
*/
struct match {
/**
* Packing class for this varying, computed by compute_packing_class().
*/
unsigned packing_class;
/**
* Packing order for this varying, computed by compute_packing_order().
*/
enum packing_order_enum packing_order;
/**
* The output variable in the producer stage.
*/
nir_variable *producer_var;
/**
* The input variable in the consumer stage.
*/
nir_variable *consumer_var;
/**
* The location which has been assigned for this varying. This is
* expressed in multiples of a float, with the first generic varying
* (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
* value 0.
*/
unsigned generic_location;
/**
* Original index, used as a fallback sorting key to ensure
* a stable sort
*/
unsigned original_index;
};
/**
* Data structure recording the relationship between outputs of one shader
* stage (the "producer") and inputs of another (the "consumer").
*/
struct varying_matches
{
/**
* If true, this driver disables varying packing, so all varyings need to
* be aligned on slot boundaries, and take up a number of slots equal to
* their number of matrix columns times their array size.
*
* Packing may also be disabled because our current packing method is not
* safe in SSO or versions of OpenGL where interpolation qualifiers are not
* guaranteed to match across stages.
*/
bool disable_varying_packing;
/**
* If true, this driver disables packing for varyings used by transform
* feedback.
*/
bool disable_xfb_packing;
/**
* If true, this driver has transform feedback enabled. The transform
* feedback code usually requires at least some packing be done even
* when varying packing is disabled, fortunately where transform feedback
* requires packing it's safe to override the disabled setting. See
* is_varying_packing_safe().
*/
bool xfb_enabled;
bool enhanced_layouts_enabled;
/**
* If true, this driver prefers varyings to be aligned to power of two
* in a slot.
*/
bool prefer_pot_aligned_varyings;
struct match *matches;
/**
* The number of elements in the \c matches array that are currently in
* use.
*/
unsigned num_matches;
/**
* The number of elements that were set aside for the \c matches array when
* it was allocated.
*/
unsigned matches_capacity;
gl_shader_stage producer_stage;
gl_shader_stage consumer_stage;
};
/**
* Comparison function passed to qsort() to sort varyings by packing_class and
* then by packing_order.
*/
static int
varying_matches_match_comparator(const void *x_generic, const void *y_generic)
{
const struct match *x = (const struct match *) x_generic;
const struct match *y = (const struct match *) y_generic;
if (x->packing_class != y->packing_class)
return x->packing_class - y->packing_class;
if (x->packing_order != y->packing_order)
return x->packing_order - y->packing_order;
return x->original_index - y->original_index;
}
/**
* Comparison function passed to qsort() to sort varyings used only by
* transform feedback when packing of other varyings is disabled.
*/
static int
varying_matches_xfb_comparator(const void *x_generic, const void *y_generic)
{
const struct match *x = (const struct match *) x_generic;
const struct match *y = (const struct match *) y_generic;
/* if both varying are used by transform feedback, sort them */
if (x->producer_var != NULL && x->producer_var->data.is_xfb_only) {
if (y->producer_var != NULL && y->producer_var->data.is_xfb_only)
return 0;
/* if x is varying and y is not, put y first */
return +1;
} else if (y->producer_var != NULL && y->producer_var->data.is_xfb_only) {
/* if y is varying and x is not, leave x first */
return -1;
}
/* otherwise leave the order alone */
return x->original_index - y->original_index;
}
/**
* Comparison function passed to qsort() to sort varyings NOT used by
* transform feedback when packing of xfb varyings is disabled.
*/
static int
varying_matches_not_xfb_comparator(const void *x_generic, const void *y_generic)
{
const struct match *x = (const struct match *) x_generic;
const struct match *y = (const struct match *) y_generic;
if ( (x->producer_var != NULL && !x->producer_var->data.is_xfb)
&& (y->producer_var != NULL && !y->producer_var->data.is_xfb) )
/* if both are non-xfb, then sort them */
return varying_matches_match_comparator(x_generic, y_generic);
/* otherwise, leave the order alone */
return x->original_index - y->original_index;
}
static bool
is_unpackable_tess(gl_shader_stage producer_stage,
gl_shader_stage consumer_stage)
{
if (consumer_stage == MESA_SHADER_TESS_EVAL ||
consumer_stage == MESA_SHADER_TESS_CTRL ||
producer_stage == MESA_SHADER_TESS_CTRL)
return true;
return false;
}
static void
init_varying_matches(void *mem_ctx, struct varying_matches *vm,
const struct gl_constants *consts,
const struct gl_extensions *exts,
gl_shader_stage producer_stage,
gl_shader_stage consumer_stage,
bool sso)
{
/* Tessellation shaders treat inputs and outputs as shared memory and can
* access inputs and outputs of other invocations.
* Therefore, they can't be lowered to temps easily (and definitely not
* efficiently).
*/
bool unpackable_tess =
is_unpackable_tess(producer_stage, consumer_stage);
/* Transform feedback code assumes varying arrays are packed, so if the
* driver has disabled varying packing, make sure to at least enable
* packing required by transform feedback. See below for exception.
*/
bool xfb_enabled = exts->EXT_transform_feedback && !unpackable_tess;
/* Some drivers actually requires packing to be explicitly disabled
* for varyings used by transform feedback.
*/
bool disable_xfb_packing = consts->DisableTransformFeedbackPacking;
/* Disable packing on outward facing interfaces for SSO because in ES we
* need to retain the unpacked varying information for draw time
* validation.
*
* Packing is still enabled on individual arrays, structs, and matrices as
* these are required by the transform feedback code and it is still safe
* to do so. We also enable packing when a varying is only used for
* transform feedback and its not a SSO.
*/
bool disable_varying_packing =
consts->DisableVaryingPacking || unpackable_tess;
if (sso && (producer_stage == MESA_SHADER_NONE || consumer_stage == MESA_SHADER_NONE))
disable_varying_packing = true;
/* Note: this initial capacity is rather arbitrarily chosen to be large
* enough for many cases without wasting an unreasonable amount of space.
* varying_matches_record() will resize the array if there are more than
* this number of varyings.
*/
vm->matches_capacity = 8;
vm->matches = (struct match *)
ralloc_array(mem_ctx, struct match, vm->matches_capacity);
vm->num_matches = 0;
vm->disable_varying_packing = disable_varying_packing;
vm->disable_xfb_packing = disable_xfb_packing;
vm->xfb_enabled = xfb_enabled;
vm->enhanced_layouts_enabled = exts->ARB_enhanced_layouts;
vm->prefer_pot_aligned_varyings = consts->PreferPOTAlignedVaryings;
vm->producer_stage = producer_stage;
vm->consumer_stage = consumer_stage;
}
/**
* Packing is always safe on individual arrays, structures, and matrices. It
* is also safe if the varying is only used for transform feedback.
*/
static bool
is_varying_packing_safe(struct varying_matches *vm,
const struct glsl_type *type, const nir_variable *var)
{
if (is_unpackable_tess(vm->producer_stage, vm->consumer_stage))
return false;
return vm->xfb_enabled && (glsl_type_is_array_or_matrix(type) ||
glsl_type_is_struct(type) ||
var->data.is_xfb_only);
}
static bool
is_packing_disabled(struct varying_matches *vm, const struct glsl_type *type,
const nir_variable *var)
{
return (vm->disable_varying_packing && !is_varying_packing_safe(vm, type, var)) ||
(vm->disable_xfb_packing && var->data.is_xfb &&
!(glsl_type_is_array(type) || glsl_type_is_struct(type) ||
glsl_type_is_matrix(type))) || var->data.must_be_shader_input;
}
/**
* Compute the "packing class" of the given varying. This is an unsigned
* integer with the property that two variables in the same packing class can
* be safely backed into the same vec4.
*/
static unsigned
varying_matches_compute_packing_class(const nir_variable *var)
{
/* Without help from the back-end, there is no way to pack together
* variables with different interpolation types, because
* lower_packed_varyings must choose exactly one interpolation type for
* each packed varying it creates.
*
* However, we can safely pack together floats, ints, and uints, because:
*
* - varyings of base type "int" and "uint" must use the "flat"
* interpolation type, which can only occur in GLSL 1.30 and above.
*
* - On platforms that support GLSL 1.30 and above, lower_packed_varyings
* can store flat floats as ints without losing any information (using
* the ir_unop_bitcast_* opcodes).
*
* Therefore, the packing class depends only on the interpolation type.
*/
bool is_interpolation_flat = var->data.interpolation == INTERP_MODE_FLAT ||
glsl_contains_integer(var->type) || glsl_contains_double(var->type);
const unsigned interp = is_interpolation_flat
? (unsigned) INTERP_MODE_FLAT : var->data.interpolation;
assert(interp < (1 << 3));
const unsigned packing_class = (interp << 0) |
(var->data.centroid << 3) |
(var->data.sample << 4) |
(var->data.patch << 5) |
(var->data.must_be_shader_input << 6);
return packing_class;
}
/**
* Compute the "packing order" of the given varying. This is a sort key we
* use to determine when to attempt to pack the given varying relative to
* other varyings in the same packing class.
*/
static enum packing_order_enum
varying_matches_compute_packing_order(const nir_variable *var)
{
const struct glsl_type *element_type = glsl_without_array(var->type);
switch (glsl_get_component_slots(element_type) % 4) {
case 1: return PACKING_ORDER_SCALAR;
case 2: return PACKING_ORDER_VEC2;
case 3: return PACKING_ORDER_VEC3;
case 0: return PACKING_ORDER_VEC4;
default:
assert(!"Unexpected value of vector_elements");
return PACKING_ORDER_VEC4;
}
}
/**
* Record the given producer/consumer variable pair in the list of variables
* that should later be assigned locations.
*
* It is permissible for \c consumer_var to be NULL (this happens if a
* variable is output by the producer and consumed by transform feedback, but
* not consumed by the consumer).
*
* If \c producer_var has already been paired up with a consumer_var, or
* producer_var is part of fixed pipeline functionality (and hence already has
* a location assigned), this function has no effect.
*
* Note: as a side effect this function may change the interpolation type of
* \c producer_var, but only when the change couldn't possibly affect
* rendering.
*/
static void
varying_matches_record(void *mem_ctx, struct varying_matches *vm,
nir_variable *producer_var, nir_variable *consumer_var)
{
assert(producer_var != NULL || consumer_var != NULL);
if ((producer_var &&
(producer_var->data.explicit_location || producer_var->data.location != -1)) ||
(consumer_var &&
(consumer_var->data.explicit_location || consumer_var->data.location != -1))) {
/* Either a location already exists for this variable (since it is part
* of fixed functionality), or it has already been assigned explicitly.
*/
return;
}
/* The varyings should not have been matched and assgned previously */
assert((producer_var == NULL || producer_var->data.location == -1) &&
(consumer_var == NULL || consumer_var->data.location == -1));
bool needs_flat_qualifier = consumer_var == NULL &&
(glsl_contains_integer(producer_var->type) ||
glsl_contains_double(producer_var->type));
if (!vm->disable_varying_packing &&
(!vm->disable_xfb_packing || producer_var == NULL || !producer_var->data.is_xfb) &&
(needs_flat_qualifier ||
(vm->consumer_stage != MESA_SHADER_NONE && vm->consumer_stage != MESA_SHADER_FRAGMENT))) {
/* Since this varying is not being consumed by the fragment shader, its
* interpolation type varying cannot possibly affect rendering.
* Also, this variable is non-flat and is (or contains) an integer
* or a double.
* If the consumer stage is unknown, don't modify the interpolation
* type as it could affect rendering later with separate shaders.
*
* lower_packed_varyings requires all integer varyings to flat,
* regardless of where they appear. We can trivially satisfy that
* requirement by changing the interpolation type to flat here.
*/
if (producer_var) {
producer_var->data.centroid = false;
producer_var->data.sample = false;
producer_var->data.interpolation = INTERP_MODE_FLAT;
}
if (consumer_var) {
consumer_var->data.centroid = false;
consumer_var->data.sample = false;
consumer_var->data.interpolation = INTERP_MODE_FLAT;
}
}
if (vm->num_matches == vm->matches_capacity) {
vm->matches_capacity *= 2;
vm->matches = (struct match *)
reralloc(mem_ctx, vm->matches, struct match, vm->matches_capacity);
}
/* We must use the consumer to compute the packing class because in GL4.4+
* there is no guarantee interpolation qualifiers will match across stages.
*
* From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
*
* "The type and presence of interpolation qualifiers of variables with
* the same name declared in all linked shaders for the same cross-stage
* interface must match, otherwise the link command will fail.
*
* When comparing an output from one stage to an input of a subsequent
* stage, the input and output don't match if their interpolation
* qualifiers (or lack thereof) are not the same."
*
* This text was also in at least revison 7 of the 4.40 spec but is no
* longer in revision 9 and not in the 4.50 spec.
*/
const nir_variable *const var = (consumer_var != NULL)
? consumer_var : producer_var;
if (producer_var && consumer_var &&
consumer_var->data.must_be_shader_input) {
producer_var->data.must_be_shader_input = 1;
}
vm->matches[vm->num_matches].packing_class
= varying_matches_compute_packing_class(var);
vm->matches[vm->num_matches].packing_order
= varying_matches_compute_packing_order(var);
vm->matches[vm->num_matches].producer_var = producer_var;
vm->matches[vm->num_matches].consumer_var = consumer_var;
vm->num_matches++;
}
/**
* Choose locations for all of the variable matches that were previously
* passed to varying_matches_record().
* \param components returns array[slot] of number of components used
* per slot (1, 2, 3 or 4)
* \param reserved_slots bitmask indicating which varying slots are already
* allocated
* \return number of slots (4-element vectors) allocated
*/
static unsigned
varying_matches_assign_locations(struct varying_matches *vm,
struct gl_shader_program *prog,
uint8_t components[], uint64_t reserved_slots)
{
/* Establish the original order of the varying_matches array; our
* sorts will use this for sorting when the varyings do not have
* xfb qualifiers
*/
for (unsigned i = 0; i < vm->num_matches; i++)
vm->matches[i].original_index = i;
/* If packing has been disabled then we cannot safely sort the varyings by
* class as it may mean we are using a version of OpenGL where
* interpolation qualifiers are not guaranteed to be matching across
* shaders, sorting in this case could result in mismatching shader
* interfaces. So we sort only the varyings used by transform feedback.
*
* If packing is only disabled for xfb varyings (mutually exclusive with
* disable_varying_packing), we then group varyings depending on if they
* are captured for transform feedback.
*/
if (vm->disable_varying_packing) {
/* Only sort varyings that are only used by transform feedback. */
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
&varying_matches_xfb_comparator);
} else if (vm->disable_xfb_packing) {
/* Only sort varyings that are NOT used by transform feedback. */
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
&varying_matches_not_xfb_comparator);
} else {
/* Sort varying matches into an order that makes them easy to pack. */
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
&varying_matches_match_comparator);
}
unsigned generic_location = 0;
unsigned generic_patch_location = MAX_VARYING*4;
bool previous_var_xfb = false;
bool previous_var_xfb_only = false;
unsigned previous_packing_class = ~0u;
/* For tranform feedback separate mode, we know the number of attributes
* is <= the number of buffers. So packing isn't critical. In fact,
* packing vec3 attributes can cause trouble because splitting a vec3
* effectively creates an additional transform feedback output. The
* extra TFB output may exceed device driver limits.
*
* Also don't pack vec3 if the driver prefers power of two aligned
* varyings. Packing order guarantees that vec4, vec2 and vec1 will be
* pot-aligned, we only need to take care of vec3s
*/
const bool dont_pack_vec3 =
(prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
prog->TransformFeedback.NumVarying > 0) ||
vm->prefer_pot_aligned_varyings;
for (unsigned i = 0; i < vm->num_matches; i++) {
unsigned *location = &generic_location;
const nir_variable *var;
const struct glsl_type *type;
bool is_vertex_input = false;
if (vm->matches[i].consumer_var) {
var = vm->matches[i].consumer_var;
type = get_varying_type(var, vm->consumer_stage);
if (vm->consumer_stage == MESA_SHADER_VERTEX)
is_vertex_input = true;
} else {
if (!vm->matches[i].producer_var)
continue; /* The varying was optimised away */
var = vm->matches[i].producer_var;
type = get_varying_type(var, vm->producer_stage);
}
if (var->data.patch)
location = &generic_patch_location;
/* Advance to the next slot if this varying has a different packing
* class than the previous one, and we're not already on a slot
* boundary.
*
* Also advance if varying packing is disabled for transform feedback,
* and previous or current varying is used for transform feedback.
*
* Also advance to the next slot if packing is disabled. This makes sure
* we don't assign varyings the same locations which is possible
* because we still pack individual arrays, records and matrices even
* when packing is disabled. Note we don't advance to the next slot if
* we can pack varyings together that are only used for transform
* feedback.
*/
if (var->data.must_be_shader_input ||
(vm->disable_xfb_packing &&
(previous_var_xfb || var->data.is_xfb)) ||
(vm->disable_varying_packing &&
!(previous_var_xfb_only && var->data.is_xfb_only)) ||
(previous_packing_class != vm->matches[i].packing_class) ||
(vm->matches[i].packing_order == PACKING_ORDER_VEC3 &&
dont_pack_vec3)) {
*location = ALIGN(*location, 4);
}
previous_var_xfb = var->data.is_xfb;
previous_var_xfb_only = var->data.is_xfb_only;
previous_packing_class = vm->matches[i].packing_class;
/* The number of components taken up by this variable. For vertex shader
* inputs, we use the number of slots * 4, as they have different
* counting rules.
*/
unsigned num_components = 0;
if (is_vertex_input) {
num_components = glsl_count_attribute_slots(type, is_vertex_input) * 4;
} else {
if (is_packing_disabled(vm, type, var)) {
num_components = glsl_count_attribute_slots(type, false) * 4;
} else {
num_components = glsl_get_component_slots_aligned(type, *location);
}
}
/* The last slot for this variable, inclusive. */
unsigned slot_end = *location + num_components - 1;
/* FIXME: We could be smarter in the below code and loop back over
* trying to fill any locations that we skipped because we couldn't pack
* the varying between an explicit location. For now just let the user
* hit the linking error if we run out of room and suggest they use
* explicit locations.
*/
while (slot_end < MAX_VARYING * 4u) {
const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
assert(slots > 0);
if ((reserved_slots & slot_mask) == 0) {
break;
}
*location = ALIGN(*location + 1, 4);
slot_end = *location + num_components - 1;
}
if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
linker_error(prog, "insufficient contiguous locations available for "
"%s it is possible an array or struct could not be "
"packed between varyings with explicit locations. Try "
"using an explicit location for arrays and structs.",
var->name);
}
if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
components[j] = 4;
components[slot_end / 4u] = (slot_end & 3) + 1;
}
vm->matches[i].generic_location = *location;
*location = slot_end + 1;
}
return (generic_location + 3) / 4;
}
static void
varying_matches_assign_temp_locations(struct varying_matches *vm,
struct gl_shader_program *prog,
uint64_t reserved_slots)
{
unsigned tmp_loc = 0;
for (unsigned i = 0; i < vm->num_matches; i++) {
nir_variable *producer_var = vm->matches[i].producer_var;
nir_variable *consumer_var = vm->matches[i].consumer_var;
while (tmp_loc < MAX_VARYINGS_INCL_PATCH) {
if (reserved_slots & (UINT64_C(1) << tmp_loc))
tmp_loc++;
else
break;
}
if (producer_var) {
assert(producer_var->data.location == -1);
producer_var->data.location = VARYING_SLOT_VAR0 + tmp_loc;
}
if (consumer_var) {
assert(consumer_var->data.location == -1);
consumer_var->data.location = VARYING_SLOT_VAR0 + tmp_loc;
}
tmp_loc++;
}
}
/**
* Update the producer and consumer shaders to reflect the locations
* assignments that were made by varying_matches_assign_locations().
*/
static void
varying_matches_store_locations(struct varying_matches *vm)
{
/* Check is location needs to be packed with lower_packed_varyings() or if
* we can just use ARB_enhanced_layouts packing.
*/
bool pack_loc[MAX_VARYINGS_INCL_PATCH] = {0};
const struct glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
for (unsigned i = 0; i < vm->num_matches; i++) {
nir_variable *producer_var = vm->matches[i].producer_var;
nir_variable *consumer_var = vm->matches[i].consumer_var;
unsigned generic_location = vm->matches[i].generic_location;
unsigned slot = generic_location / 4;
unsigned offset = generic_location % 4;
if (producer_var) {
producer_var->data.location = VARYING_SLOT_VAR0 + slot;
producer_var->data.location_frac = offset;
}
if (consumer_var) {
consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
consumer_var->data.location_frac = offset;
}
/* Find locations suitable for native packing via
* ARB_enhanced_layouts.
*/
if (vm->enhanced_layouts_enabled) {
nir_variable *var = producer_var ? producer_var : consumer_var;
unsigned stage = producer_var ? vm->producer_stage : vm->consumer_stage;
const struct glsl_type *type =
get_varying_type(var, stage);
unsigned comp_slots = glsl_get_component_slots(type) + offset;
unsigned slots = comp_slots / 4;
if (comp_slots % 4)
slots += 1;
if (producer_var && consumer_var) {
if (glsl_type_is_array_or_matrix(type) || glsl_type_is_struct(type) ||
glsl_type_is_64bit(type)) {
for (unsigned j = 0; j < slots; j++) {
pack_loc[slot + j] = true;
}
} else if (offset + glsl_get_vector_elements(type) > 4) {
pack_loc[slot] = true;
pack_loc[slot + 1] = true;
} else {
loc_type[slot][offset] = type;
}
} else {
for (unsigned j = 0; j < slots; j++) {
pack_loc[slot + j] = true;
}
}
}
}
/* Attempt to use ARB_enhanced_layouts for more efficient packing if
* suitable.
*/
if (vm->enhanced_layouts_enabled) {
for (unsigned i = 0; i < vm->num_matches; i++) {
nir_variable *producer_var = vm->matches[i].producer_var;
nir_variable *consumer_var = vm->matches[i].consumer_var;
if (!producer_var || !consumer_var)
continue;
unsigned generic_location = vm->matches[i].generic_location;
unsigned slot = generic_location / 4;
if (pack_loc[slot])
continue;
const struct glsl_type *type =
get_varying_type(producer_var, vm->producer_stage);
bool type_match = true;
for (unsigned j = 0; j < 4; j++) {
if (loc_type[slot][j]) {
if (glsl_get_base_type(type) !=
glsl_get_base_type(loc_type[slot][j]))
type_match = false;
}
}
if (type_match) {
producer_var->data.explicit_location = 1;
consumer_var->data.explicit_location = 1;
}
}
}
}
/**
* Is the given variable a varying variable to be counted against the
* limit in ctx->Const.MaxVarying?
* This includes variables such as texcoords, colors and generic
* varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
*/
static bool
var_counts_against_varying_limit(gl_shader_stage stage, const nir_variable *var)
{
/* Only fragment shaders will take a varying variable as an input */
if (stage == MESA_SHADER_FRAGMENT &&
var->data.mode == nir_var_shader_in) {
switch (var->data.location) {
case VARYING_SLOT_POS:
case VARYING_SLOT_FACE:
case VARYING_SLOT_PNTC:
return false;
default:
return true;
}
}
return false;
}
struct tfeedback_candidate_generator_state {
/**
* Memory context used to allocate hash table keys and values.
*/
void *mem_ctx;
/**
* Hash table in which tfeedback_candidate objects should be stored.
*/
struct hash_table *tfeedback_candidates;
gl_shader_stage stage;
/**
* Pointer to the toplevel variable that is being traversed.
*/
nir_variable *toplevel_var;
/**
* Total number of varying floats that have been visited so far. This is
* used to determine the offset to each varying within the toplevel
* variable.
*/
unsigned varying_floats;
/**
* Offset within the xfb. Counted in floats.
*/
unsigned xfb_offset_floats;
};
/**
* Generates tfeedback_candidate structs describing all possible targets of
* transform feedback.
*
* tfeedback_candidate structs are stored in the hash table
* tfeedback_candidates. This hash table maps varying names to instances of the
* tfeedback_candidate struct.
*/
static void
tfeedback_candidate_generator(struct tfeedback_candidate_generator_state *state,
char **name, size_t name_length,
const struct glsl_type *type,
const struct glsl_struct_field *named_ifc_member)
{
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_INTERFACE:
if (named_ifc_member) {
ralloc_asprintf_rewrite_tail(name, &name_length, ".%s",
named_ifc_member->name);
tfeedback_candidate_generator(state, name, name_length,
named_ifc_member->type, NULL);
return;
}
FALLTHROUGH;
case GLSL_TYPE_STRUCT:
for (unsigned i = 0; i < glsl_get_length(type); i++) {
size_t new_length = name_length;
/* Append '.field' to the current variable name. */
if (name) {
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s",
glsl_get_struct_elem_name(type, i));
}
tfeedback_candidate_generator(state, name, new_length,
glsl_get_struct_field(type, i), NULL);
}
return;
case GLSL_TYPE_ARRAY:
if (glsl_type_is_struct(glsl_without_array(type)) ||
glsl_type_is_interface(glsl_without_array(type)) ||
glsl_type_is_array(glsl_get_array_element(type))) {
for (unsigned i = 0; i < glsl_get_length(type); i++) {
size_t new_length = name_length;
/* Append the subscript to the current variable name */
ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
tfeedback_candidate_generator(state, name, new_length,
glsl_get_array_element(type),
named_ifc_member);
}
return;
}
FALLTHROUGH;
default:
assert(!glsl_type_is_struct(glsl_without_array(type)));
assert(!glsl_type_is_interface(glsl_without_array(type)));
struct tfeedback_candidate *candidate
= rzalloc(state->mem_ctx, struct tfeedback_candidate);
candidate->toplevel_var = state->toplevel_var;
candidate->type = type;
if (glsl_type_is_64bit(glsl_without_array(type))) {
/* From ARB_gpu_shader_fp64:
*
* If any variable captured in transform feedback has double-precision
* components, the practical requirements for defined behavior are:
* ...
* (c) each double-precision variable captured must be aligned to a
* multiple of eight bytes relative to the beginning of a vertex.
*/
state->xfb_offset_floats = ALIGN(state->xfb_offset_floats, 2);
/* 64-bit members of structs are also aligned. */
state->varying_floats = ALIGN(state->varying_floats, 2);
}
candidate->xfb_offset_floats = state->xfb_offset_floats;
candidate->struct_offset_floats = state->varying_floats;
_mesa_hash_table_insert(state->tfeedback_candidates,
ralloc_strdup(state->mem_ctx, *name),
candidate);
const unsigned component_slots = glsl_get_component_slots(type);
if (varying_has_user_specified_location(state->toplevel_var)) {
state->varying_floats += glsl_count_attribute_slots(type, false) * 4;
} else {
state->varying_floats += component_slots;
}
state->xfb_offset_floats += component_slots;
}
}
static void
populate_consumer_input_sets(void *mem_ctx, nir_shader *nir,
struct hash_table *consumer_inputs,
struct hash_table *consumer_interface_inputs,
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
{
memset(consumer_inputs_with_locations, 0,
sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
nir_foreach_shader_in_variable(input_var, nir) {
/* All interface blocks should have been lowered by this point */
assert(!glsl_type_is_interface(input_var->type));
if (input_var->data.explicit_location) {
/* assign_varying_locations only cares about finding the
* nir_variable at the start of a contiguous location block.
*
* - For !producer, consumer_inputs_with_locations isn't used.
*
* - For !consumer, consumer_inputs_with_locations is empty.
*
* For consumer && producer, if you were trying to set some
* nir_variable to the middle of a location block on the other side
* of producer/consumer, cross_validate_outputs_to_inputs() should
* be link-erroring due to either type mismatch or location
* overlaps. If the variables do match up, then they've got a
* matching data.location and you only looked at
* consumer_inputs_with_locations[var->data.location], not any
* following entries for the array/structure.
*/
consumer_inputs_with_locations[input_var->data.location] =
input_var;
} else if (input_var->interface_type != NULL) {
char *const iface_field_name =
ralloc_asprintf(mem_ctx, "%s.%s",
glsl_get_type_name(glsl_without_array(input_var->interface_type)),
input_var->name);
_mesa_hash_table_insert(consumer_interface_inputs,
iface_field_name, input_var);
} else {
_mesa_hash_table_insert(consumer_inputs,
ralloc_strdup(mem_ctx, input_var->name),
input_var);
}
}
}
/**
* Find a variable from the consumer that "matches" the specified variable
*
* This function only finds inputs with names that match. There is no
* validation (here) that the types, etc. are compatible.
*/
static nir_variable *
get_matching_input(void *mem_ctx,
const nir_variable *output_var,
struct hash_table *consumer_inputs,
struct hash_table *consumer_interface_inputs,
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
{
nir_variable *input_var;
if (output_var->data.explicit_location) {
input_var = consumer_inputs_with_locations[output_var->data.location];
} else if (output_var->interface_type != NULL) {
char *const iface_field_name =
ralloc_asprintf(mem_ctx, "%s.%s",
glsl_get_type_name(glsl_without_array(output_var->interface_type)),
output_var->name);
struct hash_entry *entry =
_mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
input_var = entry ? (nir_variable *) entry->data : NULL;
} else {
struct hash_entry *entry =
_mesa_hash_table_search(consumer_inputs, output_var->name);
input_var = entry ? (nir_variable *) entry->data : NULL;
}
return (input_var == NULL || input_var->data.mode != nir_var_shader_in)
? NULL : input_var;
}
static int
io_variable_cmp(const void *_a, const void *_b)
{
const nir_variable *const a = *(const nir_variable **) _a;
const nir_variable *const b = *(const nir_variable **) _b;
if (a->data.explicit_location && b->data.explicit_location)
return b->data.location - a->data.location;
if (a->data.explicit_location && !b->data.explicit_location)
return 1;
if (!a->data.explicit_location && b->data.explicit_location)
return -1;
return -strcmp(a->name, b->name);
}
/**
* Sort the shader IO variables into canonical order
*/
static void
canonicalize_shader_io(nir_shader *nir, nir_variable_mode io_mode)
{
nir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
unsigned num_variables = 0;
nir_foreach_variable_with_modes(var, nir, io_mode) {
/* If we have already encountered more I/O variables that could
* successfully link, bail.
*/
if (num_variables == ARRAY_SIZE(var_table))
return;
var_table[num_variables++] = var;
}
if (num_variables == 0)
return;
/* Sort the list in reverse order (io_variable_cmp handles this). Later
* we're going to push the variables on to the IR list as a stack, so we
* want the last variable (in canonical order) to be first in the list.
*/
qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
/* Remove the variable from it's current location in the varible list, and
* put it at the front.
*/
for (unsigned i = 0; i < num_variables; i++) {
exec_node_remove(&var_table[i]->node);
exec_list_push_head(&nir->variables, &var_table[i]->node);
}
}
/**
* Generate a bitfield map of the explicit locations for shader varyings.
*
* Note: For Tessellation shaders we are sitting right on the limits of the
* 64 bit map. Per-vertex and per-patch both have separate location domains
* with a max of MAX_VARYING.
*/
static uint64_t
reserved_varying_slot(struct gl_linked_shader *sh,
nir_variable_mode io_mode)
{
assert(io_mode == nir_var_shader_in || io_mode == nir_var_shader_out);
/* Avoid an overflow of the returned value */
assert(MAX_VARYINGS_INCL_PATCH <= 64);
uint64_t slots = 0;
int var_slot;
if (!sh)
return slots;
nir_foreach_variable_with_modes(var, sh->Program->nir, io_mode) {
if (!var->data.explicit_location ||
var->data.location < VARYING_SLOT_VAR0)
continue;
var_slot = var->data.location - VARYING_SLOT_VAR0;
bool is_gl_vertex_input = io_mode == nir_var_shader_in &&
sh->Stage == MESA_SHADER_VERTEX;
unsigned num_elements =
glsl_count_attribute_slots(get_varying_type(var, sh->Stage),
is_gl_vertex_input);
for (unsigned i = 0; i < num_elements; i++) {
if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
slots |= UINT64_C(1) << var_slot;
var_slot += 1;
}
}
return slots;
}
/**
* Sets the bits in the inputs_read, or outputs_written
* bitfield corresponding to this variable.
*/
static void
set_variable_io_mask(BITSET_WORD *bits, nir_variable *var, gl_shader_stage stage)
{
assert(var->data.mode == nir_var_shader_in ||
var->data.mode == nir_var_shader_out);
assert(var->data.location >= VARYING_SLOT_VAR0);
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned location = var->data.location - VARYING_SLOT_VAR0;
unsigned slots = glsl_count_attribute_slots(type, false);
for (unsigned i = 0; i < slots; i++) {
BITSET_SET(bits, location + i);
}
}
static uint8_t
get_num_components(nir_variable *var)
{
if (glsl_type_is_struct_or_ifc(glsl_without_array(var->type)))
return 4;
return glsl_get_vector_elements(glsl_without_array(var->type));
}
static void
tcs_add_output_reads(nir_shader *shader, BITSET_WORD **read)
{
nir_foreach_function_impl(impl, shader) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_deref)
continue;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is(deref, nir_var_shader_out))
continue;
nir_variable *var = nir_deref_instr_get_variable(deref);
for (unsigned i = 0; i < get_num_components(var); i++) {
if (var->data.location < VARYING_SLOT_VAR0)
continue;
unsigned comp = var->data.location_frac;
set_variable_io_mask(read[comp + i], var, shader->info.stage);
}
}
}
}
}
/* We need to replace any interp intrinsics with undefined (shader_temp) inputs
* as no further NIR pass expects to see this.
*/
static bool
replace_unused_interpolate_at_with_undef(nir_builder *b, nir_instr *instr,
void *data)
{
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_interp_deref_at_centroid ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_sample ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_offset) {
nir_variable *var = nir_intrinsic_get_var(intrin, 0);
if (var->data.mode == nir_var_shader_temp) {
/* Create undef and rewrite the interp uses */
nir_def *undef =
nir_undef(b, intrin->def.num_components,
intrin->def.bit_size);
nir_def_replace(&intrin->def, undef);
return true;
}
}
}
return false;
}
static void
fixup_vars_lowered_to_temp(nir_shader *shader, nir_variable_mode mode)
{
/* Remove all interpolate uses of the unset varying and replace with undef. */
if (mode == nir_var_shader_in && shader->info.stage == MESA_SHADER_FRAGMENT) {
(void) nir_shader_instructions_pass(shader,
replace_unused_interpolate_at_with_undef,
nir_metadata_control_flow,
NULL);
}
nir_lower_global_vars_to_local(shader);
nir_fixup_deref_modes(shader);
}
/**
* Helper for removing unused shader I/O variables, by demoting them to global
* variables (which may then be dead code eliminated).
*
* Example usage is:
*
* progress = nir_remove_unused_io_vars(producer, consumer, nir_var_shader_out,
* read, patches_read) ||
* progress;
*
* The "used" should be an array of 4 BITSET_WORDs representing each
* .location_frac used. Note that for vector variables, only the first channel
* (.location_frac) is examined for deciding if the variable is used!
*/
static bool
remove_unused_io_vars(nir_shader *producer, nir_shader *consumer,
struct gl_shader_program *prog,
nir_variable_mode mode,
BITSET_WORD **used_by_other_stage)
{
assert(mode == nir_var_shader_in || mode == nir_var_shader_out);
bool progress = false;
nir_shader *shader = mode == nir_var_shader_out ? producer : consumer;
BITSET_WORD **used;
nir_foreach_variable_with_modes_safe(var, shader, mode) {
used = used_by_other_stage;
/* Skip builtins dead builtins are removed elsewhere */
if (is_gl_identifier(var->name))
continue;
if (var->data.location < VARYING_SLOT_VAR0 && var->data.location >= 0)
continue;
/* Skip xfb varyings and any other type we cannot remove */
if (var->data.always_active_io)
continue;
if (var->data.explicit_xfb_buffer)
continue;
BITSET_WORD *other_stage = used[var->data.location_frac];
/* if location == -1 lower varying to global as it has no match and is not
* a xfb varying, this must be done after skiping bultins as builtins
* could be assigned a location of -1.
* We also lower unused varyings with explicit locations.
*/
bool use_found = false;
if (var->data.location >= 0) {
unsigned location = var->data.location - VARYING_SLOT_VAR0;
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, shader->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned slots = glsl_count_attribute_slots(type, false);
for (unsigned i = 0; i < slots; i++) {
if (BITSET_TEST(other_stage, location + i)) {
use_found = true;
break;
}
}
}
if (!use_found) {
/* This one is invalid, make it a global variable instead */
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
progress = true;
if (mode == nir_var_shader_in) {
if (!prog->IsES && prog->GLSL_Version <= 120) {
/* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
*
* Only those varying variables used (i.e. read) in
* the fragment shader executable must be written to
* by the vertex shader executable; declaring
* superfluous varying variables in a vertex shader is
* permissible.
*
* We interpret this text as meaning that the VS must
* write the variable for the FS to read it. See
* "glsl1-varying read but not written" in piglit.
*/
linker_error(prog, "%s shader varying %s not written "
"by %s shader\n.",
_mesa_shader_stage_to_string(consumer->info.stage),
var->name,
_mesa_shader_stage_to_string(producer->info.stage));
} else {
linker_warning(prog, "%s shader varying %s not written "
"by %s shader\n.",
_mesa_shader_stage_to_string(consumer->info.stage),
var->name,
_mesa_shader_stage_to_string(producer->info.stage));
}
}
}
}
if (progress)
fixup_vars_lowered_to_temp(shader, mode);
return progress;
}
static bool
remove_unused_varyings(nir_shader *producer, nir_shader *consumer,
struct gl_shader_program *prog, void *mem_ctx)
{
assert(producer->info.stage != MESA_SHADER_FRAGMENT);
assert(consumer->info.stage != MESA_SHADER_VERTEX);
int max_loc_out = 0;
nir_foreach_shader_out_variable(var, producer) {
if (var->data.location < VARYING_SLOT_VAR0)
continue;
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, producer->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned slots = glsl_count_attribute_slots(type, false);
max_loc_out = max_loc_out < (var->data.location - VARYING_SLOT_VAR0) + slots ?
(var->data.location - VARYING_SLOT_VAR0) + slots : max_loc_out;
}
int max_loc_in = 0;
nir_foreach_shader_in_variable(var, consumer) {
if (var->data.location < VARYING_SLOT_VAR0)
continue;
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, consumer->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned slots = glsl_count_attribute_slots(type, false);
max_loc_in = max_loc_in < (var->data.location - VARYING_SLOT_VAR0) + slots ?
(var->data.location - VARYING_SLOT_VAR0) + slots : max_loc_in;
}
/* Old glsl shaders that don't use explicit locations can contain greater
* than 64 varyings before unused varyings are removed so we must count them
* and make use of the BITSET macros to keep track of used slots. Once we
* have removed these excess varyings we can make use of further nir varying
* linking optimimisation passes.
*/
BITSET_WORD *read[4];
BITSET_WORD *written[4];
int max_loc = MAX2(max_loc_in, max_loc_out);
for (unsigned i = 0; i < 4; i++) {
read[i] = rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_loc));
written[i] = rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_loc));
}
nir_foreach_shader_out_variable(var, producer) {
if (var->data.location < VARYING_SLOT_VAR0)
continue;
for (unsigned i = 0; i < get_num_components(var); i++) {
unsigned comp = var->data.location_frac;
set_variable_io_mask(written[comp + i], var, producer->info.stage);
}
}
nir_foreach_shader_in_variable(var, consumer) {
if (var->data.location < VARYING_SLOT_VAR0)
continue;
for (unsigned i = 0; i < get_num_components(var); i++) {
unsigned comp = var->data.location_frac;
set_variable_io_mask(read[comp + i], var, consumer->info.stage);
}
}
/* Each TCS invocation can read data written by other TCS invocations,
* so even if the outputs are not used by the TES we must also make
* sure they are not read by the TCS before demoting them to globals.
*/
if (producer->info.stage == MESA_SHADER_TESS_CTRL)
tcs_add_output_reads(producer, read);
bool progress = false;
progress =
remove_unused_io_vars(producer, consumer, prog, nir_var_shader_out, read);
progress =
remove_unused_io_vars(producer, consumer, prog, nir_var_shader_in, written) || progress;
return progress;
}
static bool
should_add_varying_match_record(nir_variable *const input_var,
struct gl_shader_program *prog,
struct gl_linked_shader *producer,
struct gl_linked_shader *consumer) {
/* If a matching input variable was found, add this output (and the input) to
* the set. If this is a separable program and there is no consumer stage,
* add the output.
*
* Always add TCS outputs. They are shared by all invocations
* within a patch and can be used as shared memory.
*/
return input_var || (prog->SeparateShader && consumer == NULL) ||
producer->Stage == MESA_SHADER_TESS_CTRL;
}
/* This assigns some initial unoptimised varying locations so that our nir
* optimisations can perform some initial optimisations and also does initial
* processing of
*/
static bool
assign_initial_varying_locations(const struct gl_constants *consts,
const struct gl_extensions *exts,
void *mem_ctx,
struct gl_shader_program *prog,
struct gl_linked_shader *producer,
struct gl_linked_shader *consumer,
unsigned num_xfb_decls,
struct xfb_decl *xfb_decls,
struct varying_matches *vm)
{
init_varying_matches(mem_ctx, vm, consts, exts,
producer ? producer->Stage : MESA_SHADER_NONE,
consumer ? consumer->Stage : MESA_SHADER_NONE,
prog->SeparateShader);
struct hash_table *tfeedback_candidates =
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
_mesa_key_string_equal);
struct hash_table *consumer_inputs =
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
_mesa_key_string_equal);
struct hash_table *consumer_interface_inputs =
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
_mesa_key_string_equal);
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
NULL,
};
if (consumer)
populate_consumer_input_sets(mem_ctx, consumer->Program->nir,
consumer_inputs, consumer_interface_inputs,
consumer_inputs_with_locations);
if (producer) {
nir_foreach_shader_out_variable(output_var, producer->Program->nir) {
/* Only geometry shaders can use non-zero streams */
assert(output_var->data.stream == 0 ||
(output_var->data.stream < MAX_VERTEX_STREAMS &&
producer->Stage == MESA_SHADER_GEOMETRY));
if (num_xfb_decls > 0) {
/* From OpenGL 4.6 (Core Profile) spec, section 11.1.2.1
* ("Vertex Shader Variables / Output Variables")
*
* "Each program object can specify a set of output variables from
* one shader to be recorded in transform feedback mode (see
* section 13.3). The variables that can be recorded are those
* emitted by the first active shader, in order, from the
* following list:
*
* * geometry shader
* * tessellation evaluation shader
* * tessellation control shader
* * vertex shader"
*
* But on OpenGL ES 3.2, section 11.1.2.1 ("Vertex Shader
* Variables / Output Variables") tessellation control shader is
* not included in the stages list.
*/
if (!prog->IsES || producer->Stage != MESA_SHADER_TESS_CTRL) {
const struct glsl_type *type = output_var->data.from_named_ifc_block ?
output_var->interface_type : output_var->type;
if (!output_var->data.patch && producer->Stage == MESA_SHADER_TESS_CTRL) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
const struct glsl_struct_field *ifc_member = NULL;
if (output_var->data.from_named_ifc_block) {
ifc_member =
glsl_get_struct_field_data(glsl_without_array(type),
glsl_get_field_index(glsl_without_array(type), output_var->name));
}
char *name;
if (glsl_type_is_struct(glsl_without_array(type)) ||
(glsl_type_is_array(type) && glsl_type_is_array(glsl_get_array_element(type)))) {
type = output_var->type;
name = ralloc_strdup(NULL, output_var->name);
} else if (glsl_type_is_interface(glsl_without_array(type))) {
name = ralloc_strdup(NULL, glsl_get_type_name(glsl_without_array(type)));
} else {
name = ralloc_strdup(NULL, output_var->name);
}
struct tfeedback_candidate_generator_state state;
state.mem_ctx = mem_ctx;
state.tfeedback_candidates = tfeedback_candidates;
state.stage = producer->Stage;
state.toplevel_var = output_var;
state.varying_floats = 0;
state.xfb_offset_floats = 0;
tfeedback_candidate_generator(&state, &name, strlen(name), type,
ifc_member);
ralloc_free(name);
}
}
nir_variable *const input_var =
get_matching_input(mem_ctx, output_var, consumer_inputs,
consumer_interface_inputs,
consumer_inputs_with_locations);
if (should_add_varying_match_record(input_var, prog, producer,
consumer)) {
varying_matches_record(mem_ctx, vm, output_var, input_var);
}
/* Only stream 0 outputs can be consumed in the next stage */
if (input_var && output_var->data.stream != 0) {
linker_error(prog, "output %s is assigned to stream=%d but "
"is linked to an input, which requires stream=0",
output_var->name, output_var->data.stream);
return false;
}
}
} else {
/* If there's no producer stage, then this must be a separable program.
* For example, we may have a program that has just a fragment shader.
* Later this program will be used with some arbitrary vertex (or
* geometry) shader program. This means that locations must be assigned
* for all the inputs.
*/
nir_foreach_shader_in_variable(input_var, consumer->Program->nir) {
varying_matches_record(mem_ctx, vm, NULL, input_var);
}
}
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (!xfb_decl_is_varying(&xfb_decls[i]))
continue;
const struct tfeedback_candidate *matched_candidate
= xfb_decl_find_candidate(&xfb_decls[i], prog, tfeedback_candidates);
if (matched_candidate == NULL)
return false;
/* There are two situations where a new output varying is needed:
*
* - If varying packing is disabled for xfb and the current declaration
* is subscripting an array, whether the subscript is aligned or not.
* to preserve the rest of the array for the consumer.
*
* - If a builtin variable needs to be copied to a new variable
* before its content is modified by another lowering pass (e.g.
* \c gl_Position is transformed by \c nir_lower_viewport_transform).
*/
const bool lowered =
(vm->disable_xfb_packing && xfb_decls[i].is_subscripted) ||
(matched_candidate->toplevel_var->data.explicit_location &&
matched_candidate->toplevel_var->data.location < VARYING_SLOT_VAR0 &&
(!consumer || consumer->Stage == MESA_SHADER_FRAGMENT) &&
(consts->ShaderCompilerOptions[producer->Stage].LowerBuiltinVariablesXfb &
BITFIELD_BIT(matched_candidate->toplevel_var->data.location)));
if (lowered) {
nir_variable *new_var;
struct tfeedback_candidate *new_candidate = NULL;
new_var = gl_nir_lower_xfb_varying(producer->Program->nir,
xfb_decls[i].orig_name,
matched_candidate->toplevel_var);
if (new_var == NULL)
return false;
/* Create new candidate and replace matched_candidate */
new_candidate = rzalloc(mem_ctx, struct tfeedback_candidate);
new_candidate->toplevel_var = new_var;
new_candidate->type = new_var->type;
new_candidate->struct_offset_floats = 0;
new_candidate->xfb_offset_floats = 0;
_mesa_hash_table_insert(tfeedback_candidates,
ralloc_strdup(mem_ctx, new_var->name),
new_candidate);
xfb_decl_set_lowered_candidate(&xfb_decls[i], new_candidate);
matched_candidate = new_candidate;
}
/* Mark as xfb varying */
matched_candidate->toplevel_var->data.is_xfb = 1;
/* Mark xfb varyings as always active */
matched_candidate->toplevel_var->data.always_active_io = 1;
/* Mark any corresponding inputs as always active also. We must do this
* because we have a NIR pass that lowers vectors to scalars and another
* that removes unused varyings.
* We don't split varyings marked as always active because there is no
* point in doing so. This means we need to mark both sides of the
* interface as always active otherwise we will have a mismatch and
* start removing things we shouldn't.
*/
nir_variable *const input_var =
get_matching_input(mem_ctx, matched_candidate->toplevel_var,
consumer_inputs, consumer_interface_inputs,
consumer_inputs_with_locations);
if (input_var) {
input_var->data.is_xfb = 1;
input_var->data.always_active_io = 1;
}
/* Add the xfb varying to varying matches if it wasn't already added */
if ((!should_add_varying_match_record(input_var, prog, producer,
consumer) &&
!matched_candidate->toplevel_var->data.is_xfb_only) || lowered) {
matched_candidate->toplevel_var->data.is_xfb_only = 1;
varying_matches_record(mem_ctx, vm, matched_candidate->toplevel_var,
NULL);
}
}
uint64_t reserved_out_slots = 0;
if (producer)
reserved_out_slots = reserved_varying_slot(producer, nir_var_shader_out);
uint64_t reserved_in_slots = 0;
if (consumer)
reserved_in_slots = reserved_varying_slot(consumer, nir_var_shader_in);
/* Assign temporary user varying locations. This is required for our NIR
* varying optimisations to do their matching.
*/
const uint64_t reserved_slots = reserved_out_slots | reserved_in_slots;
varying_matches_assign_temp_locations(vm, prog, reserved_slots);
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (!xfb_decl_is_varying(&xfb_decls[i]))
continue;
xfb_decls[i].matched_candidate->initial_location =
xfb_decls[i].matched_candidate->toplevel_var->data.location;
xfb_decls[i].matched_candidate->initial_location_frac =
xfb_decls[i].matched_candidate->toplevel_var->data.location_frac;
}
return true;
}
static void
link_shader_opts(struct varying_matches *vm,
nir_shader *producer, nir_shader *consumer,
struct gl_shader_program *prog, void *mem_ctx)
{
/* If we can't pack the stage using this pass then we can't lower io to
* scalar just yet. Instead we leave it to a later NIR linking pass that uses
* ARB_enhanced_layout style packing to pack things further.
*
* Otherwise we might end up causing linking errors and perf regressions
* because the new scalars will be assigned individual slots and can overflow
* the available slots.
*/
if (producer->options->lower_to_scalar && !vm->disable_varying_packing &&
!vm->disable_xfb_packing) {
NIR_PASS(_, producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
NIR_PASS(_, consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
}
gl_nir_opts(producer);
gl_nir_opts(consumer);
if (nir_link_opt_varyings(producer, consumer))
gl_nir_opts(consumer);
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
if (remove_unused_varyings(producer, consumer, prog, mem_ctx)) {
NIR_PASS(_, producer, nir_lower_global_vars_to_local);
NIR_PASS(_, consumer, nir_lower_global_vars_to_local);
gl_nir_opts(producer);
gl_nir_opts(consumer);
/* Optimizations can cause varyings to become unused.
* nir_compact_varyings() depends on all dead varyings being removed so
* we need to call nir_remove_dead_variables() again here.
*/
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out,
NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in,
NULL);
}
nir_link_varying_precision(producer, consumer);
}
/**
* Assign locations for all variables that are produced in one pipeline stage
* (the "producer") and consumed in the next stage (the "consumer").
*
* Variables produced by the producer may also be consumed by transform
* feedback.
*
* \param num_xfb_decls is the number of declarations indicating
* variables that may be consumed by transform feedback.
*
* \param xfb_decls is a pointer to an array of xfb_decl objects
* representing the result of parsing the strings passed to
* glTransformFeedbackVaryings(). assign_location() will be called for
* each of these objects that matches one of the outputs of the
* producer.
*
* When num_xfb_decls is nonzero, it is permissible for the consumer to
* be NULL. In this case, varying locations are assigned solely based on the
* requirements of transform feedback.
*/
static bool
assign_final_varying_locations(const struct gl_constants *consts,
const struct gl_extensions *exts,
void *mem_ctx,
struct gl_shader_program *prog,
struct gl_linked_shader *producer,
struct gl_linked_shader *consumer,
unsigned num_xfb_decls,
struct xfb_decl *xfb_decls,
const uint64_t reserved_slots,
struct varying_matches *vm)
{
init_varying_matches(mem_ctx, vm, consts, exts,
producer ? producer->Stage : MESA_SHADER_NONE,
consumer ? consumer->Stage : MESA_SHADER_NONE,
prog->SeparateShader);
/* Regather varying matches as we ran optimisations and the previous pointers
* are no longer valid.
*/
if (producer) {
nir_foreach_shader_out_variable(var_out, producer->Program->nir) {
if (var_out->data.location < VARYING_SLOT_VAR0 ||
var_out->data.explicit_location)
continue;
if (vm->num_matches == vm->matches_capacity) {
vm->matches_capacity *= 2;
vm->matches = (struct match *)
reralloc(mem_ctx, vm->matches, struct match,
vm->matches_capacity);
}
vm->matches[vm->num_matches].packing_class
= varying_matches_compute_packing_class(var_out);
vm->matches[vm->num_matches].packing_order
= varying_matches_compute_packing_order(var_out);
vm->matches[vm->num_matches].producer_var = var_out;
vm->matches[vm->num_matches].consumer_var = NULL;
vm->num_matches++;
}
/* Regather xfb varyings too */
for (unsigned i = 0; i < num_xfb_decls; i++) {
if (!xfb_decl_is_varying(&xfb_decls[i]))
continue;
/* Varying pointer was already reset */
if (xfb_decls[i].matched_candidate->initial_location == -1)
continue;
bool UNUSED is_reset = false;
bool UNUSED no_outputs = true;
nir_foreach_shader_out_variable(var_out, producer->Program->nir) {
no_outputs = false;
assert(var_out->data.location != -1);
if (var_out->data.location ==
xfb_decls[i].matched_candidate->initial_location &&
var_out->data.location_frac ==
xfb_decls[i].matched_candidate->initial_location_frac) {
xfb_decls[i].matched_candidate->toplevel_var = var_out;
xfb_decls[i].matched_candidate->initial_location = -1;
is_reset = true;
break;
}
}
assert(is_reset || no_outputs);
}
}
bool found_match = false;
if (consumer) {
nir_foreach_shader_in_variable(var_in, consumer->Program->nir) {
if (var_in->data.location < VARYING_SLOT_VAR0 ||
var_in->data.explicit_location)
continue;
found_match = false;
for (unsigned i = 0; i < vm->num_matches; i++) {
if (vm->matches[i].producer_var &&
(vm->matches[i].producer_var->data.location == var_in->data.location &&
vm->matches[i].producer_var->data.location_frac == var_in->data.location_frac)) {
vm->matches[i].consumer_var = var_in;
found_match = true;
break;
}
}
if (!found_match) {
if (vm->num_matches == vm->matches_capacity) {
vm->matches_capacity *= 2;
vm->matches = (struct match *)
reralloc(mem_ctx, vm->matches, struct match,
vm->matches_capacity);
}
vm->matches[vm->num_matches].packing_class
= varying_matches_compute_packing_class(var_in);
vm->matches[vm->num_matches].packing_order
= varying_matches_compute_packing_order(var_in);
vm->matches[vm->num_matches].producer_var = NULL;
vm->matches[vm->num_matches].consumer_var = var_in;
vm->num_matches++;
}
}
}
uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
const unsigned slots_used =
varying_matches_assign_locations(vm, prog, components, reserved_slots);
varying_matches_store_locations(vm);
for (unsigned i = 0; i < num_xfb_decls; ++i) {
if (xfb_decl_is_varying(&xfb_decls[i])) {
if (!xfb_decl_assign_location(&xfb_decls[i], consts, prog,
vm->disable_varying_packing, vm->xfb_enabled))
return false;
}
}
if (producer) {
gl_nir_lower_packed_varyings(consts, prog, mem_ctx, slots_used, components,
nir_var_shader_out, 0, producer,
vm->disable_varying_packing,
vm->disable_xfb_packing, vm->xfb_enabled);
nir_lower_pack(producer->Program->nir);
}
if (consumer) {
unsigned consumer_vertices = 0;
if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
consumer_vertices = consumer->Program->nir->info.gs.vertices_in;
gl_nir_lower_packed_varyings(consts, prog, mem_ctx, slots_used, components,
nir_var_shader_in, consumer_vertices,
consumer, vm->disable_varying_packing,
vm->disable_xfb_packing, vm->xfb_enabled);
nir_lower_pack(consumer->Program->nir);
}
return true;
}
static bool
check_against_output_limit(const struct gl_constants *consts, gl_api api,
struct gl_shader_program *prog,
struct gl_linked_shader *producer,
unsigned num_explicit_locations)
{
unsigned output_vectors = num_explicit_locations;
nir_foreach_shader_out_variable(var, producer->Program->nir) {
if (!var->data.explicit_location &&
var_counts_against_varying_limit(producer->Stage, var)) {
/* outputs for fragment shader can't be doubles */
output_vectors += glsl_count_attribute_slots(var->type, false);
}
}
assert(producer->Stage != MESA_SHADER_FRAGMENT);
unsigned max_output_components =
consts->Program[producer->Stage].MaxOutputComponents;
const unsigned output_components = output_vectors * 4;
if (output_components > max_output_components) {
if (api == API_OPENGLES2 || prog->IsES)
linker_error(prog, "%s shader uses too many output vectors "
"(%u > %u)\n",
_mesa_shader_stage_to_string(producer->Stage),
output_vectors,
max_output_components / 4);
else
linker_error(prog, "%s shader uses too many output components "
"(%u > %u)\n",
_mesa_shader_stage_to_string(producer->Stage),
output_components,
max_output_components);
return false;
}
return true;
}
static bool
check_against_input_limit(const struct gl_constants *consts, gl_api api,
struct gl_shader_program *prog,
struct gl_linked_shader *consumer,
unsigned num_explicit_locations)
{
unsigned input_vectors = num_explicit_locations;
nir_foreach_shader_in_variable(var, consumer->Program->nir) {
if (!var->data.explicit_location &&
var_counts_against_varying_limit(consumer->Stage, var)) {
/* vertex inputs aren't varying counted */
input_vectors += glsl_count_attribute_slots(var->type, false);
}
}
assert(consumer->Stage != MESA_SHADER_VERTEX);
unsigned max_input_components =
consts->Program[consumer->Stage].MaxInputComponents;
const unsigned input_components = input_vectors * 4;
if (input_components > max_input_components) {
if (api == API_OPENGLES2 || prog->IsES)
linker_error(prog, "%s shader uses too many input vectors "
"(%u > %u)\n",
_mesa_shader_stage_to_string(consumer->Stage),
input_vectors,
max_input_components / 4);
else
linker_error(prog, "%s shader uses too many input components "
"(%u > %u)\n",
_mesa_shader_stage_to_string(consumer->Stage),
input_components,
max_input_components);
return false;
}
return true;
}
/* Lower unset/unused inputs/outputs */
static void
remove_unused_shader_inputs_and_outputs(struct gl_shader_program *prog,
unsigned stage, nir_variable_mode mode)
{
bool progress = false;
nir_shader *shader = prog->_LinkedShaders[stage]->Program->nir;
nir_foreach_variable_with_modes_safe(var, shader, mode) {
if (!var->data.is_xfb_only && var->data.location == -1) {
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
progress = true;
}
}
if (progress)
fixup_vars_lowered_to_temp(shader, mode);
}
static bool
link_varyings(struct gl_shader_program *prog, unsigned first,
unsigned last, const struct gl_constants *consts,
const struct gl_extensions *exts, gl_api api, void *mem_ctx)
{
bool has_xfb_qualifiers = false;
unsigned num_xfb_decls = 0;
char **varying_names = NULL;
bool compact_arrays = false;
struct xfb_decl *xfb_decls = NULL;
if (last > MESA_SHADER_FRAGMENT)
return true;
/* From the ARB_enhanced_layouts spec:
*
* "If the shader used to record output variables for transform feedback
* varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
* qualifiers, the values specified by TransformFeedbackVaryings are
* ignored, and the set of variables captured for transform feedback is
* instead derived from the specified layout qualifiers."
*/
for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
/* Find last stage before fragment shader */
if (prog->_LinkedShaders[i]) {
has_xfb_qualifiers =
process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
prog, &num_xfb_decls,
&varying_names,
&compact_arrays);
break;
}
}
if (!has_xfb_qualifiers) {
num_xfb_decls = prog->TransformFeedback.NumVarying;
varying_names = prog->TransformFeedback.VaryingNames;
}
if (num_xfb_decls != 0) {
/* From GL_EXT_transform_feedback:
* A program will fail to link if:
*
* * the <count> specified by TransformFeedbackVaryingsEXT is
* non-zero, but the program object has no vertex or geometry
* shader;
*/
if (first >= MESA_SHADER_FRAGMENT) {
linker_error(prog, "Transform feedback varyings specified, but "
"no vertex, tessellation, or geometry shader is "
"present.\n");
return false;
}
xfb_decls = rzalloc_array(mem_ctx, struct xfb_decl,
num_xfb_decls);
if (!parse_xfb_decls(consts, exts, prog, mem_ctx, num_xfb_decls,
varying_names, xfb_decls, compact_arrays))
return false;
}
struct gl_linked_shader *linked_shader[MESA_SHADER_STAGES];
unsigned num_shaders = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i])
linked_shader[num_shaders++] = prog->_LinkedShaders[i];
}
struct varying_matches vm;
if (last < MESA_SHADER_FRAGMENT &&
(num_xfb_decls != 0 || prog->SeparateShader)) {
struct gl_linked_shader *producer = prog->_LinkedShaders[last];
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog,
producer, NULL, num_xfb_decls,
xfb_decls, &vm))
return false;
}
if (last <= MESA_SHADER_FRAGMENT && !prog->SeparateShader) {
remove_unused_shader_inputs_and_outputs(prog, first, nir_var_shader_in);
remove_unused_shader_inputs_and_outputs(prog, last, nir_var_shader_out);
}
if (prog->SeparateShader) {
struct gl_linked_shader *consumer = linked_shader[0];
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog, NULL,
consumer, 0, NULL, &vm))
return false;
}
if (num_shaders == 1) {
/* Linking shaders also optimizes them. Separate shaders, compute shaders
* and shaders with a fixed-func VS or FS that don't need linking are
* optimized here.
*/
gl_nir_opts(linked_shader[0]->Program->nir);
} else {
/* Linking the stages in the opposite order (from fragment to vertex)
* ensures that inter-shader outputs written to in an earlier stage
* are eliminated if they are (transitively) not used in a later
* stage.
*/
for (int i = num_shaders - 2; i >= 0; i--) {
unsigned stage_num_xfb_decls =
linked_shader[i + 1]->Stage == MESA_SHADER_FRAGMENT ?
num_xfb_decls : 0;
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog,
linked_shader[i],
linked_shader[i + 1],
stage_num_xfb_decls, xfb_decls,
&vm))
return false;
/* Now that validation is done its safe to remove unused varyings. As
* we have both a producer and consumer its safe to remove unused
* varyings even if the program is a SSO because the stages are being
* linked together i.e. we have a multi-stage SSO.
*/
link_shader_opts(&vm, linked_shader[i]->Program->nir,
linked_shader[i + 1]->Program->nir,
prog, mem_ctx);
remove_unused_shader_inputs_and_outputs(prog, linked_shader[i]->Stage,
nir_var_shader_out);
remove_unused_shader_inputs_and_outputs(prog,
linked_shader[i + 1]->Stage,
nir_var_shader_in);
}
}
if (!prog->SeparateShader) {
/* If not SSO remove unused varyings from the first/last stage */
NIR_PASS(_, prog->_LinkedShaders[first]->Program->nir,
nir_remove_dead_variables, nir_var_shader_in, NULL);
NIR_PASS(_, prog->_LinkedShaders[last]->Program->nir,
nir_remove_dead_variables, nir_var_shader_out, NULL);
} else {
/* Sort inputs / outputs into a canonical order. This is necessary so
* that inputs / outputs of separable shaders will be assigned
* predictable locations regardless of the order in which declarations
* appeared in the shader source.
*/
if (first != MESA_SHADER_VERTEX) {
canonicalize_shader_io(prog->_LinkedShaders[first]->Program->nir,
nir_var_shader_in);
}
if (last != MESA_SHADER_FRAGMENT) {
canonicalize_shader_io(prog->_LinkedShaders[last]->Program->nir,
nir_var_shader_out);
}
}
/* If there is no fragment shader we need to set transform feedback.
*
* For SSO we also need to assign output locations. We assign them here
* because we need to do it for both single stage programs and multi stage
* programs.
*/
if (last < MESA_SHADER_FRAGMENT &&
(num_xfb_decls != 0 || prog->SeparateShader)) {
const uint64_t reserved_out_slots =
reserved_varying_slot(prog->_LinkedShaders[last], nir_var_shader_out);
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog,
prog->_LinkedShaders[last], NULL,
num_xfb_decls, xfb_decls,
reserved_out_slots, &vm))
return false;
}
if (prog->SeparateShader) {
struct gl_linked_shader *const sh = prog->_LinkedShaders[first];
const uint64_t reserved_slots =
reserved_varying_slot(sh, nir_var_shader_in);
/* Assign input locations for SSO, output locations are already
* assigned.
*/
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog,
NULL /* producer */,
sh /* consumer */,
0 /* num_xfb_decls */,
NULL /* xfb_decls */,
reserved_slots, &vm))
return false;
}
if (num_shaders == 1) {
gl_nir_opt_dead_builtin_varyings(consts, api, prog, NULL, linked_shader[0],
0, NULL);
gl_nir_opt_dead_builtin_varyings(consts, api, prog, linked_shader[0], NULL,
num_xfb_decls, xfb_decls);
} else {
/* Linking the stages in the opposite order (from fragment to vertex)
* ensures that inter-shader outputs written to in an earlier stage
* are eliminated if they are (transitively) not used in a later
* stage.
*/
int next = last;
for (int i = next - 1; i >= 0; i--) {
if (prog->_LinkedShaders[i] == NULL && i != 0)
continue;
struct gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
struct gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
gl_nir_opt_dead_builtin_varyings(consts, api, prog, sh_i, sh_next,
next == MESA_SHADER_FRAGMENT ? num_xfb_decls : 0,
xfb_decls);
const uint64_t reserved_out_slots =
reserved_varying_slot(sh_i, nir_var_shader_out);
const uint64_t reserved_in_slots =
reserved_varying_slot(sh_next, nir_var_shader_in);
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog, sh_i,
sh_next, next == MESA_SHADER_FRAGMENT ? num_xfb_decls : 0,
xfb_decls, reserved_out_slots | reserved_in_slots, &vm))
return false;
/* This must be done after all dead varyings are eliminated. */
if (sh_i != NULL) {
unsigned slots_used = util_bitcount64(reserved_out_slots);
if (!check_against_output_limit(consts, api, prog, sh_i, slots_used))
return false;
}
unsigned slots_used = util_bitcount64(reserved_in_slots);
if (!check_against_input_limit(consts, api, prog, sh_next, slots_used))
return false;
next = i;
}
}
if (!store_tfeedback_info(consts, prog, num_xfb_decls, xfb_decls,
has_xfb_qualifiers, mem_ctx))
return false;
return prog->data->LinkStatus != LINKING_FAILURE;
}
bool
gl_assign_attribute_or_color_locations(const struct gl_constants *consts,
struct gl_shader_program *prog)
{
void *mem_ctx = ralloc_context(NULL);
if (!assign_attribute_or_color_locations(mem_ctx, prog, consts,
MESA_SHADER_VERTEX, true)) {
ralloc_free(mem_ctx);
return false;
}
if (!assign_attribute_or_color_locations(mem_ctx, prog, consts,
MESA_SHADER_FRAGMENT, true)) {
ralloc_free(mem_ctx);
return false;
}
ralloc_free(mem_ctx);
return true;
}
bool
gl_nir_link_varyings(const struct gl_constants *consts,
const struct gl_extensions *exts,
gl_api api, struct gl_shader_program *prog)
{
void *mem_ctx = ralloc_context(NULL);
unsigned first, last;
MESA_TRACE_FUNC();
first = MESA_SHADER_STAGES;
last = 0;
/* We need to initialise the program resource list because the varying
* packing pass my start inserting varyings onto the list.
*/
init_program_resource_list(prog);
/* Determine first and last stage. */
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!prog->_LinkedShaders[i])
continue;
if (first == MESA_SHADER_STAGES)
first = i;
last = i;
}
bool r = link_varyings(prog, first, last, consts, exts, api, mem_ctx);
if (r) {
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!prog->_LinkedShaders[i])
continue;
/* Check for transform feedback varyings specified via the API */
prog->_LinkedShaders[i]->Program->nir->info.has_transform_feedback_varyings =
prog->TransformFeedback.NumVarying > 0;
/* Check for transform feedback varyings specified in the Shader */
if (prog->last_vert_prog) {
prog->_LinkedShaders[i]->Program->nir->info.has_transform_feedback_varyings |=
prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying > 0;
}
}
/* Assign NIR XFB info to the last stage before the fragment shader */
for (int stage = MESA_SHADER_FRAGMENT - 1; stage >= 0; stage--) {
struct gl_linked_shader *sh = prog->_LinkedShaders[stage];
if (sh && stage != MESA_SHADER_TESS_CTRL) {
sh->Program->nir->xfb_info =
gl_to_nir_xfb_info(sh->Program->sh.LinkedTransformFeedback,
sh->Program->nir);
break;
}
}
/* Lower IO and thoroughly optimize and compact varyings. */
gl_nir_lower_optimize_varyings(consts, prog, false);
}
ralloc_free(mem_ctx);
return r;
}