blob: 3f13a66bebbdaf42775956042ff01ba05683f94d [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file opt_algebraic.cpp
*
* Takes advantage of association, commutivity, and other algebraic
* properties to simplify expressions.
*/
#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"
#include "ir_builder.h"
#include "compiler/glsl_types.h"
#include "main/consts_exts.h"
using namespace ir_builder;
namespace {
/**
* Visitor class for replacing expressions with ir_constant values.
*/
class ir_algebraic_visitor : public ir_rvalue_visitor {
public:
ir_algebraic_visitor(bool native_integers,
const struct gl_shader_compiler_options *options)
: options(options)
{
this->progress = false;
this->mem_ctx = NULL;
this->native_integers = native_integers;
}
virtual ~ir_algebraic_visitor()
{
}
virtual ir_visitor_status visit_enter(ir_assignment *ir);
ir_rvalue *handle_expression(ir_expression *ir);
void handle_rvalue(ir_rvalue **rvalue);
bool reassociate_constant(ir_expression *ir1,
int const_index,
ir_constant *constant,
ir_expression *ir2);
void reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2);
ir_rvalue *swizzle_if_required(ir_expression *expr,
ir_rvalue *operand);
const struct gl_shader_compiler_options *options;
void *mem_ctx;
bool native_integers;
bool progress;
};
} /* unnamed namespace */
ir_visitor_status
ir_algebraic_visitor::visit_enter(ir_assignment *ir)
{
ir_variable *var = ir->lhs->variable_referenced();
if (var->data.invariant || var->data.precise) {
/* If we're assigning to an invariant or precise variable, just bail.
* Most of the algebraic optimizations aren't precision-safe.
*
* FINISHME: Find out which optimizations are precision-safe and enable
* then only for invariant or precise trees.
*/
return visit_continue_with_parent;
} else {
return visit_continue;
}
}
static inline bool
is_valid_vec_const(ir_constant *ir)
{
if (ir == NULL)
return false;
if (!glsl_type_is_scalar(ir->type) && !glsl_type_is_vector(ir->type))
return false;
return true;
}
static inline bool
is_less_than_one(ir_constant *ir)
{
assert(glsl_type_is_float(ir->type));
if (!is_valid_vec_const(ir))
return false;
unsigned component = 0;
for (int c = 0; c < ir->type->vector_elements; c++) {
if (ir->get_float_component(c) < 1.0f)
component++;
}
return (component == ir->type->vector_elements);
}
static inline bool
is_greater_than_zero(ir_constant *ir)
{
assert(glsl_type_is_float(ir->type));
if (!is_valid_vec_const(ir))
return false;
unsigned component = 0;
for (int c = 0; c < ir->type->vector_elements; c++) {
if (ir->get_float_component(c) > 0.0f)
component++;
}
return (component == ir->type->vector_elements);
}
static void
update_type(ir_expression *ir)
{
if (glsl_type_is_vector(ir->operands[0]->type))
ir->type = ir->operands[0]->type;
else
ir->type = ir->operands[1]->type;
}
void
ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2)
{
ir_rvalue *temp = ir2->operands[op2];
ir2->operands[op2] = ir1->operands[op1];
ir1->operands[op1] = temp;
/* Update the type of ir2. The type of ir1 won't have changed --
* base types matched, and at least one of the operands of the 2
* binops is still a vector if any of them were.
*/
update_type(ir2);
this->progress = true;
}
/**
* Reassociates a constant down a tree of adds or multiplies.
*
* Consider (2 * (a * (b * 0.5))). We want to end up with a * b.
*/
bool
ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
ir_constant *constant,
ir_expression *ir2)
{
if (!ir2 || ir1->operation != ir2->operation)
return false;
/* Don't want to even think about matrices. */
if (glsl_type_is_matrix(ir1->operands[0]->type) ||
glsl_type_is_matrix(ir1->operands[1]->type) ||
glsl_type_is_matrix(ir2->operands[0]->type) ||
glsl_type_is_matrix(ir2->operands[1]->type))
return false;
void *mem_ctx = ralloc_parent(ir2);
ir_constant *ir2_const[2];
ir2_const[0] = ir2->operands[0]->constant_expression_value(mem_ctx);
ir2_const[1] = ir2->operands[1]->constant_expression_value(mem_ctx);
if (ir2_const[0] && ir2_const[1])
return false;
if (ir2_const[0]) {
reassociate_operands(ir1, const_index, ir2, 1);
return true;
} else if (ir2_const[1]) {
reassociate_operands(ir1, const_index, ir2, 0);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[0]->as_expression())) {
update_type(ir2);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[1]->as_expression())) {
update_type(ir2);
return true;
}
return false;
}
/* When eliminating an expression and just returning one of its operands,
* we may need to swizzle that operand out to a vector if the expression was
* vector type.
*/
ir_rvalue *
ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
ir_rvalue *operand)
{
if (glsl_type_is_vector(expr->type) && glsl_type_is_scalar(operand->type)) {
return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
expr->type->vector_elements);
} else
return operand;
}
ir_rvalue *
ir_algebraic_visitor::handle_expression(ir_expression *ir)
{
ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
if (ir->operation == ir_binop_mul &&
glsl_type_is_matrix(ir->operands[0]->type) &&
glsl_type_is_vector(ir->operands[1]->type)) {
ir_expression *matrix_mul = ir->operands[0]->as_expression();
if (matrix_mul && matrix_mul->operation == ir_binop_mul &&
glsl_type_is_matrix(matrix_mul->operands[0]->type) &&
glsl_type_is_matrix(matrix_mul->operands[1]->type)) {
return mul(matrix_mul->operands[0],
mul(matrix_mul->operands[1], ir->operands[1]));
}
}
assert(ir->num_operands <= 4);
for (unsigned i = 0; i < ir->num_operands; i++) {
if (glsl_type_is_matrix(ir->operands[i]->type))
return ir;
op_const[i] =
ir->operands[i]->constant_expression_value(ralloc_parent(ir));
op_expr[i] = ir->operands[i]->as_expression();
}
if (this->mem_ctx == NULL)
this->mem_ctx = ralloc_parent(ir);
switch (ir->operation) {
case ir_binop_add:
/* Reassociate addition of constants so that we can do constant
* folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0], op_expr[1]);
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1], op_expr[0]);
break;
case ir_binop_mul:
/* Reassociate multiplication of constants so that we can do
* constant folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0], op_expr[1]);
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1], op_expr[0]);
break;
case ir_binop_min:
case ir_binop_max:
if (!glsl_type_is_float(ir->type))
break;
/* Replace min(max) operations and its commutative combinations with
* a saturate operation
*/
for (int op = 0; op < 2; op++) {
ir_expression *inner_expr = op_expr[op];
ir_constant *outer_const = op_const[1 - op];
ir_expression_operation op_cond = (ir->operation == ir_binop_max) ?
ir_binop_min : ir_binop_max;
if (!inner_expr || !outer_const || (inner_expr->operation != op_cond))
continue;
/* One of these has to be a constant */
if (!inner_expr->operands[0]->as_constant() &&
!inner_expr->operands[1]->as_constant())
break;
/* Found a min(max) combination. Now try to see if its operands
* meet our conditions that we can do just a single saturate operation
*/
for (int minmax_op = 0; minmax_op < 2; minmax_op++) {
ir_rvalue *x = inner_expr->operands[minmax_op];
ir_rvalue *y = inner_expr->operands[1 - minmax_op];
ir_constant *inner_const = y->as_constant();
if (!inner_const)
continue;
/* min(max(x, 0.0), 1.0) is sat(x) */
if (ir->operation == ir_binop_min &&
inner_const->is_zero() &&
outer_const->is_one())
return saturate(x);
/* max(min(x, 1.0), 0.0) is sat(x) */
if (ir->operation == ir_binop_max &&
inner_const->is_one() &&
outer_const->is_zero())
return saturate(x);
/* min(max(x, 0.0), b) where b < 1.0 is sat(min(x, b)) */
if (ir->operation == ir_binop_min &&
inner_const->is_zero() &&
is_less_than_one(outer_const))
return saturate(expr(ir_binop_min, x, outer_const));
/* max(min(x, b), 0.0) where b < 1.0 is sat(min(x, b)) */
if (ir->operation == ir_binop_max &&
is_less_than_one(inner_const) &&
outer_const->is_zero())
return saturate(expr(ir_binop_min, x, inner_const));
/* max(min(x, 1.0), b) where b > 0.0 is sat(max(x, b)) */
if (ir->operation == ir_binop_max &&
inner_const->is_one() &&
is_greater_than_zero(outer_const))
return saturate(expr(ir_binop_max, x, outer_const));
/* min(max(x, b), 1.0) where b > 0.0 is sat(max(x, b)) */
if (ir->operation == ir_binop_min &&
is_greater_than_zero(inner_const) &&
outer_const->is_one())
return saturate(expr(ir_binop_max, x, inner_const));
}
}
break;
/* Remove interpolateAt* instructions for demoted inputs. They are
* assigned a constant expression to facilitate this.
*/
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample:
if (op_const[0])
return ir->operands[0];
break;
default:
break;
}
return ir;
}
void
ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (!*rvalue)
return;
ir_expression *expr = (*rvalue)->as_expression();
if (!expr || expr->operation == ir_quadop_vector)
return;
ir_rvalue *new_rvalue = handle_expression(expr);
if (new_rvalue == *rvalue)
return;
/* If the expr used to be some vec OP scalar returning a vector, and the
* optimization gave us back a scalar, we still need to turn it into a
* vector.
*/
*rvalue = swizzle_if_required(expr, new_rvalue);
this->progress = true;
}
bool
do_algebraic(exec_list *instructions, bool native_integers,
const struct gl_shader_compiler_options *options)
{
ir_algebraic_visitor v(native_integers, options);
visit_list_elements(&v, instructions);
return v.progress;
}