blob: eed9964d3ab09267df90afd87a1043384b92d3f4 [file] [log] [blame]
/*
* Copyright © 2014-2015 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef NIR_BUILDER_H
#define NIR_BUILDER_H
#include "util/bitscan.h"
#include "util/half_float.h"
#include "nir_control_flow.h"
#ifdef __cplusplus
extern "C" {
#endif
struct exec_list;
typedef struct nir_builder {
nir_cursor cursor;
/* Whether new ALU instructions will be marked "exact" */
bool exact;
/* Float_controls2 bits. See nir_alu_instr for details. */
uint32_t fp_fast_math;
nir_shader *shader;
nir_function_impl *impl;
} nir_builder;
static inline nir_builder
nir_builder_create(nir_function_impl *impl)
{
nir_builder b;
memset(&b, 0, sizeof(b));
b.exact = false;
b.impl = impl;
b.shader = impl->function->shader;
return b;
}
/* Requires the cursor to be inside a nir_function_impl. */
static inline nir_builder
nir_builder_at(nir_cursor cursor)
{
nir_cf_node *current_block = &nir_cursor_current_block(cursor)->cf_node;
nir_builder b = nir_builder_create(nir_cf_node_get_function(current_block));
b.cursor = cursor;
return b;
}
nir_builder MUST_CHECK PRINTFLIKE(3, 4)
nir_builder_init_simple_shader(gl_shader_stage stage,
const nir_shader_compiler_options *options,
const char *name, ...);
typedef bool (*nir_instr_pass_cb)(struct nir_builder *, nir_instr *, void *);
typedef bool (*nir_intrinsic_pass_cb)(struct nir_builder *,
nir_intrinsic_instr *, void *);
typedef bool (*nir_alu_pass_cb)(struct nir_builder *,
nir_alu_instr *, void *);
/**
* Iterates over all the instructions in a NIR function and calls the given pass
* on them.
*
* The pass should return true if it modified the function. In that case, only
* the preserved metadata flags will be preserved in the function impl.
*
* The builder will be initialized to point at the function impl, but its
* cursor is unset.
*/
static inline bool
nir_function_instructions_pass(nir_function_impl *impl,
nir_instr_pass_cb pass,
nir_metadata preserved,
void *cb_data)
{
bool progress = false;
nir_builder b = nir_builder_create(impl);
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
progress |= pass(&b, instr, cb_data);
}
}
if (progress) {
nir_metadata_preserve(impl, preserved);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
/**
* Iterates over all the instructions in a NIR shader and calls the given pass
* on them.
*
* The pass should return true if it modified the shader. In that case, only
* the preserved metadata flags will be preserved in the function impl.
*
* The builder will be initialized to point at the function impl, but its
* cursor is unset.
*/
static inline bool
nir_shader_instructions_pass(nir_shader *shader,
nir_instr_pass_cb pass,
nir_metadata preserved,
void *cb_data)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
progress |= nir_function_instructions_pass(impl, pass,
preserved, cb_data);
}
return progress;
}
/**
* Iterates over all the intrinsics in a NIR shader and calls the given pass on
* them.
*
* The pass should return true if it modified the shader. In that case, only
* the preserved metadata flags will be preserved in the function impl.
*
* The builder will be initialized to point at the function impl, but its
* cursor is unset.
*/
static inline bool
nir_shader_intrinsics_pass(nir_shader *shader,
nir_intrinsic_pass_cb pass,
nir_metadata preserved,
void *cb_data)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
bool func_progress = false;
nir_builder b = nir_builder_create(impl);
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
func_progress |= pass(&b, intr, cb_data);
}
}
}
if (func_progress) {
nir_metadata_preserve(impl, preserved);
progress = true;
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
}
return progress;
}
/* As above, but for ALU */
static inline bool
nir_shader_alu_pass(nir_shader *shader,
nir_alu_pass_cb pass,
nir_metadata preserved,
void *cb_data)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
bool func_progress = false;
nir_builder b = nir_builder_create(impl);
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *intr = nir_instr_as_alu(instr);
func_progress |= pass(&b, intr, cb_data);
}
}
}
if (func_progress) {
nir_metadata_preserve(impl, preserved);
progress = true;
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
}
return progress;
}
void nir_builder_instr_insert(nir_builder *build, nir_instr *instr);
void nir_builder_instr_insert_at_top(nir_builder *build, nir_instr *instr);
static inline nir_instr *
nir_builder_last_instr(nir_builder *build)
{
assert(build->cursor.option == nir_cursor_after_instr);
return build->cursor.instr;
}
/* General nir_build_alu() taking a variable arg count with NULLs for the rest. */
nir_def *
nir_build_alu(nir_builder *build, nir_op op, nir_def *src0,
nir_def *src1, nir_def *src2, nir_def *src3);
/* Fixed-arg-count variants to reduce size of codegen. */
nir_def *
nir_build_alu1(nir_builder *build, nir_op op, nir_def *src0);
nir_def *
nir_build_alu2(nir_builder *build, nir_op op, nir_def *src0,
nir_def *src1);
nir_def *
nir_build_alu3(nir_builder *build, nir_op op, nir_def *src0,
nir_def *src1, nir_def *src2);
nir_def *
nir_build_alu4(nir_builder *build, nir_op op, nir_def *src0,
nir_def *src1, nir_def *src2, nir_def *src3);
nir_def *nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_def **srcs);
nir_def *
nir_build_tex_deref_instr(nir_builder *build, nir_texop op,
nir_deref_instr *texture,
nir_deref_instr *sampler,
unsigned num_extra_srcs,
const nir_tex_src *extra_srcs);
nir_instr *nir_builder_last_instr(nir_builder *build);
void nir_builder_cf_insert(nir_builder *build, nir_cf_node *cf);
bool nir_builder_is_inside_cf(nir_builder *build, nir_cf_node *cf_node);
nir_if *
nir_push_if(nir_builder *build, nir_def *condition);
nir_if *
nir_push_else(nir_builder *build, nir_if *nif);
void nir_pop_if(nir_builder *build, nir_if *nif);
nir_def *
nir_if_phi(nir_builder *build, nir_def *then_def, nir_def *else_def);
nir_loop *
nir_push_loop(nir_builder *build);
nir_loop *
nir_push_continue(nir_builder *build, nir_loop *loop);
void nir_pop_loop(nir_builder *build, nir_loop *loop);
static inline nir_def *
nir_undef(nir_builder *build, unsigned num_components, unsigned bit_size)
{
nir_undef_instr *undef =
nir_undef_instr_create(build->shader, num_components, bit_size);
if (!undef)
return NULL;
nir_builder_instr_insert_at_top(build, &undef->instr);
return &undef->def;
}
static inline nir_def *
nir_build_imm(nir_builder *build, unsigned num_components,
unsigned bit_size, const nir_const_value *value)
{
nir_load_const_instr *load_const =
nir_load_const_instr_create(build->shader, num_components, bit_size);
if (!load_const)
return NULL;
memcpy(load_const->value, value, sizeof(nir_const_value) * num_components);
nir_builder_instr_insert(build, &load_const->instr);
return &load_const->def;
}
static inline nir_def *
nir_imm_zero(nir_builder *build, unsigned num_components, unsigned bit_size)
{
nir_load_const_instr *load_const =
nir_load_const_instr_create(build->shader, num_components, bit_size);
/* nir_load_const_instr_create uses rzalloc so it's already zero */
nir_builder_instr_insert(build, &load_const->instr);
return &load_const->def;
}
static inline nir_def *
nir_imm_boolN_t(nir_builder *build, bool x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_bool(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_def *
nir_imm_bool(nir_builder *build, bool x)
{
return nir_imm_boolN_t(build, x, 1);
}
static inline nir_def *
nir_imm_true(nir_builder *build)
{
return nir_imm_bool(build, true);
}
static inline nir_def *
nir_imm_false(nir_builder *build)
{
return nir_imm_bool(build, false);
}
static inline nir_def *
nir_imm_floatN_t(nir_builder *build, double x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_float(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_def *
nir_imm_float16(nir_builder *build, float x)
{
return nir_imm_floatN_t(build, x, 16);
}
static inline nir_def *
nir_imm_float(nir_builder *build, float x)
{
return nir_imm_floatN_t(build, x, 32);
}
static inline nir_def *
nir_imm_double(nir_builder *build, double x)
{
return nir_imm_floatN_t(build, x, 64);
}
static inline nir_def *
nir_imm_vec2(nir_builder *build, float x, float y)
{
nir_const_value v[2] = {
nir_const_value_for_float(x, 32),
nir_const_value_for_float(y, 32),
};
return nir_build_imm(build, 2, 32, v);
}
static inline nir_def *
nir_imm_vec3(nir_builder *build, float x, float y, float z)
{
nir_const_value v[3] = {
nir_const_value_for_float(x, 32),
nir_const_value_for_float(y, 32),
nir_const_value_for_float(z, 32),
};
return nir_build_imm(build, 3, 32, v);
}
static inline nir_def *
nir_imm_vec4(nir_builder *build, float x, float y, float z, float w)
{
nir_const_value v[4] = {
nir_const_value_for_float(x, 32),
nir_const_value_for_float(y, 32),
nir_const_value_for_float(z, 32),
nir_const_value_for_float(w, 32),
};
return nir_build_imm(build, 4, 32, v);
}
static inline nir_def *
nir_imm_vec4_16(nir_builder *build, float x, float y, float z, float w)
{
nir_const_value v[4] = {
nir_const_value_for_float(x, 16),
nir_const_value_for_float(y, 16),
nir_const_value_for_float(z, 16),
nir_const_value_for_float(w, 16),
};
return nir_build_imm(build, 4, 16, v);
}
static inline nir_def *
nir_imm_intN_t(nir_builder *build, uint64_t x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_raw_uint(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_def *
nir_imm_int(nir_builder *build, int x)
{
return nir_imm_intN_t(build, x, 32);
}
static inline nir_def *
nir_imm_int64(nir_builder *build, int64_t x)
{
return nir_imm_intN_t(build, x, 64);
}
static inline nir_def *
nir_imm_ivec2(nir_builder *build, int x, int y)
{
nir_const_value v[2] = {
nir_const_value_for_int(x, 32),
nir_const_value_for_int(y, 32),
};
return nir_build_imm(build, 2, 32, v);
}
static inline nir_def *
nir_imm_ivec3_intN(nir_builder *build, int x, int y, int z, unsigned bit_size)
{
nir_const_value v[3] = {
nir_const_value_for_int(x, bit_size),
nir_const_value_for_int(y, bit_size),
nir_const_value_for_int(z, bit_size),
};
return nir_build_imm(build, 3, bit_size, v);
}
static inline nir_def *
nir_imm_uvec2_intN(nir_builder *build, unsigned x, unsigned y,
unsigned bit_size)
{
nir_const_value v[2] = {
nir_const_value_for_uint(x, bit_size),
nir_const_value_for_uint(y, bit_size),
};
return nir_build_imm(build, 2, bit_size, v);
}
static inline nir_def *
nir_imm_uvec3_intN(nir_builder *build, unsigned x, unsigned y, unsigned z,
unsigned bit_size)
{
nir_const_value v[3] = {
nir_const_value_for_uint(x, bit_size),
nir_const_value_for_uint(y, bit_size),
nir_const_value_for_uint(z, bit_size),
};
return nir_build_imm(build, 3, bit_size, v);
}
static inline nir_def *
nir_imm_ivec3(nir_builder *build, int x, int y, int z)
{
return nir_imm_ivec3_intN(build, x, y, z, 32);
}
static inline nir_def *
nir_imm_ivec4_intN(nir_builder *build, int x, int y, int z, int w,
unsigned bit_size)
{
nir_const_value v[4] = {
nir_const_value_for_int(x, bit_size),
nir_const_value_for_int(y, bit_size),
nir_const_value_for_int(z, bit_size),
nir_const_value_for_int(w, bit_size),
};
return nir_build_imm(build, 4, bit_size, v);
}
static inline nir_def *
nir_imm_ivec4(nir_builder *build, int x, int y, int z, int w)
{
return nir_imm_ivec4_intN(build, x, y, z, w, 32);
}
nir_def *
nir_builder_alu_instr_finish_and_insert(nir_builder *build, nir_alu_instr *instr);
/* for the couple special cases with more than 4 src args: */
nir_def *
nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_def **srcs);
/* Generic builder for system values. */
nir_def *
nir_load_system_value(nir_builder *build, nir_intrinsic_op op, int index,
unsigned num_components, unsigned bit_size);
#include "nir_builder_opcodes.h"
#undef nir_deref_mode_is
nir_def *
nir_type_convert(nir_builder *b,
nir_def *src,
nir_alu_type src_type,
nir_alu_type dest_type,
nir_rounding_mode rnd);
static inline nir_def *
nir_convert_to_bit_size(nir_builder *b,
nir_def *src,
nir_alu_type type,
unsigned bit_size)
{
return nir_type_convert(b, src, type, (nir_alu_type)(type | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_i2iN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_int, bit_size);
}
static inline nir_def *
nir_u2uN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_uint, bit_size);
}
static inline nir_def *
nir_b2bN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_bool, bit_size);
}
static inline nir_def *
nir_f2fN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_float, bit_size);
}
static inline nir_def *
nir_i2b(nir_builder *b, nir_def *src)
{
return nir_ine_imm(b, src, 0);
}
static inline nir_def *
nir_b2iN(nir_builder *b, nir_def *src, uint32_t bit_size)
{
return nir_type_convert(b, src, nir_type_bool,
(nir_alu_type)(nir_type_int | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_b2fN(nir_builder *b, nir_def *src, uint32_t bit_size)
{
return nir_type_convert(b, src, nir_type_bool,
(nir_alu_type)(nir_type_float | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_i2fN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_type_convert(b, src, nir_type_int,
(nir_alu_type)(nir_type_float | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_u2fN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_type_convert(b, src, nir_type_uint,
(nir_alu_type)(nir_type_float | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_f2uN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_type_convert(b, src, nir_type_float,
(nir_alu_type)(nir_type_uint | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_f2iN(nir_builder *b, nir_def *src, unsigned bit_size)
{
return nir_type_convert(b, src, nir_type_float,
(nir_alu_type)(nir_type_int | bit_size),
nir_rounding_mode_undef);
}
static inline nir_def *
nir_vec(nir_builder *build, nir_def **comp, unsigned num_components)
{
return nir_build_alu_src_arr(build, nir_op_vec(num_components), comp);
}
nir_def *
nir_vec_scalars(nir_builder *build, nir_scalar *comp, unsigned num_components);
static inline nir_def *
nir_mov_alu(nir_builder *build, nir_alu_src src, unsigned num_components)
{
if (src.src.ssa->num_components == num_components) {
bool any_swizzles = false;
for (unsigned i = 0; i < num_components; i++) {
if (src.swizzle[i] != i)
any_swizzles = true;
}
if (!any_swizzles)
return src.src.ssa;
}
nir_alu_instr *mov = nir_alu_instr_create(build->shader, nir_op_mov);
nir_def_init(&mov->instr, &mov->def, num_components,
nir_src_bit_size(src.src));
mov->exact = build->exact;
mov->fp_fast_math = build->fp_fast_math;
mov->src[0] = src;
nir_builder_instr_insert(build, &mov->instr);
return &mov->def;
}
/**
* Construct a mov that reswizzles the source's components.
*/
static inline nir_def *
nir_swizzle(nir_builder *build, nir_def *src, const unsigned *swiz,
unsigned num_components)
{
assert(num_components <= NIR_MAX_VEC_COMPONENTS);
nir_alu_src alu_src = { NIR_SRC_INIT };
alu_src.src = nir_src_for_ssa(src);
bool is_identity_swizzle = true;
for (unsigned i = 0; i < num_components && i < NIR_MAX_VEC_COMPONENTS; i++) {
if (swiz[i] != i)
is_identity_swizzle = false;
alu_src.swizzle[i] = (uint8_t)swiz[i];
}
if (num_components == src->num_components && is_identity_swizzle)
return src;
return nir_mov_alu(build, alu_src, num_components);
}
/* Selects the right fdot given the number of components in each source. */
static inline nir_def *
nir_fdot(nir_builder *build, nir_def *src0, nir_def *src1)
{
assert(src0->num_components == src1->num_components);
switch (src0->num_components) {
case 1:
return nir_fmul(build, src0, src1);
case 2:
return nir_fdot2(build, src0, src1);
case 3:
return nir_fdot3(build, src0, src1);
case 4:
return nir_fdot4(build, src0, src1);
case 5:
return nir_fdot5(build, src0, src1);
case 8:
return nir_fdot8(build, src0, src1);
case 16:
return nir_fdot16(build, src0, src1);
default:
unreachable("bad component size");
}
return NULL;
}
static inline nir_def *
nir_ball_iequal(nir_builder *b, nir_def *src0, nir_def *src1)
{
switch (src0->num_components) {
case 1:
return nir_ieq(b, src0, src1);
case 2:
return nir_ball_iequal2(b, src0, src1);
case 3:
return nir_ball_iequal3(b, src0, src1);
case 4:
return nir_ball_iequal4(b, src0, src1);
case 5:
return nir_ball_iequal5(b, src0, src1);
case 8:
return nir_ball_iequal8(b, src0, src1);
case 16:
return nir_ball_iequal16(b, src0, src1);
default:
unreachable("bad component size");
}
}
static inline nir_def *
nir_ball(nir_builder *b, nir_def *src)
{
return nir_ball_iequal(b, src, nir_imm_true(b));
}
static inline nir_def *
nir_bany_inequal(nir_builder *b, nir_def *src0, nir_def *src1)
{
switch (src0->num_components) {
case 1:
return nir_ine(b, src0, src1);
case 2:
return nir_bany_inequal2(b, src0, src1);
case 3:
return nir_bany_inequal3(b, src0, src1);
case 4:
return nir_bany_inequal4(b, src0, src1);
case 5:
return nir_bany_inequal5(b, src0, src1);
case 8:
return nir_bany_inequal8(b, src0, src1);
case 16:
return nir_bany_inequal16(b, src0, src1);
default:
unreachable("bad component size");
}
}
static inline nir_def *
nir_bany(nir_builder *b, nir_def *src)
{
return nir_bany_inequal(b, src, nir_imm_false(b));
}
static inline nir_def *
nir_channel(nir_builder *b, nir_def *def, unsigned c)
{
return nir_swizzle(b, def, &c, 1);
}
static inline nir_def *
nir_channel_or_undef(nir_builder *b, nir_def *def, signed int channel)
{
if (channel >= 0 && channel < def->num_components)
return nir_channel(b, def, channel);
else
return nir_undef(b, 1, def->bit_size);
}
static inline nir_def *
nir_channels(nir_builder *b, nir_def *def, nir_component_mask_t mask)
{
unsigned num_channels = 0, swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if ((mask & (1 << i)) == 0)
continue;
swizzle[num_channels++] = i;
}
return nir_swizzle(b, def, swizzle, num_channels);
}
static inline nir_def *
_nir_select_from_array_helper(nir_builder *b, nir_def **arr,
nir_def *idx,
unsigned start, unsigned end)
{
if (start == end - 1) {
return arr[start];
} else {
unsigned mid = start + (end - start) / 2;
return nir_bcsel(b, nir_ilt_imm(b, idx, mid),
_nir_select_from_array_helper(b, arr, idx, start, mid),
_nir_select_from_array_helper(b, arr, idx, mid, end));
}
}
static inline nir_def *
nir_select_from_ssa_def_array(nir_builder *b, nir_def **arr,
unsigned arr_len, nir_def *idx)
{
return _nir_select_from_array_helper(b, arr, idx, 0, arr_len);
}
static inline nir_def *
nir_vector_extract(nir_builder *b, nir_def *vec, nir_def *c)
{
nir_src c_src = nir_src_for_ssa(c);
if (nir_src_is_const(c_src)) {
uint64_t c_const = nir_src_as_uint(c_src);
if (c_const < vec->num_components)
return nir_channel(b, vec, (unsigned)c_const);
else
return nir_undef(b, 1, vec->bit_size);
} else {
nir_def *comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < vec->num_components; i++)
comps[i] = nir_channel(b, vec, i);
return nir_select_from_ssa_def_array(b, comps, vec->num_components, c);
}
}
/** Replaces the component of `vec` specified by `c` with `scalar` */
static inline nir_def *
nir_vector_insert_imm(nir_builder *b, nir_def *vec,
nir_def *scalar, unsigned c)
{
assert(scalar->num_components == 1);
assert(c < vec->num_components);
nir_op vec_op = nir_op_vec(vec->num_components);
nir_alu_instr *vec_instr = nir_alu_instr_create(b->shader, vec_op);
for (unsigned i = 0; i < vec->num_components; i++) {
if (i == c) {
vec_instr->src[i].src = nir_src_for_ssa(scalar);
vec_instr->src[i].swizzle[0] = 0;
} else {
vec_instr->src[i].src = nir_src_for_ssa(vec);
vec_instr->src[i].swizzle[0] = (uint8_t)i;
}
}
return nir_builder_alu_instr_finish_and_insert(b, vec_instr);
}
/** Replaces the component of `vec` specified by `c` with `scalar` */
static inline nir_def *
nir_vector_insert(nir_builder *b, nir_def *vec, nir_def *scalar,
nir_def *c)
{
assert(scalar->num_components == 1);
assert(c->num_components == 1);
nir_src c_src = nir_src_for_ssa(c);
if (nir_src_is_const(c_src)) {
uint64_t c_const = nir_src_as_uint(c_src);
if (c_const < vec->num_components)
return nir_vector_insert_imm(b, vec, scalar, (unsigned )c_const);
else
return vec;
} else {
nir_const_value per_comp_idx_const[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
per_comp_idx_const[i] = nir_const_value_for_int(i, c->bit_size);
nir_def *per_comp_idx =
nir_build_imm(b, vec->num_components,
c->bit_size, per_comp_idx_const);
/* nir_builder will automatically splat out scalars to vectors so an
* insert is as simple as "if I'm the channel, replace me with the
* scalar."
*/
return nir_bcsel(b, nir_ieq(b, c, per_comp_idx), scalar, vec);
}
}
static inline nir_def *
nir_replicate(nir_builder *b, nir_def *scalar, unsigned num_components)
{
assert(scalar->num_components == 1);
assert(num_components <= NIR_MAX_VEC_COMPONENTS);
nir_def *copies[NIR_MAX_VEC_COMPONENTS] = { NULL };
for (unsigned i = 0; i < num_components; ++i)
copies[i] = scalar;
return nir_vec(b, copies, num_components);
}
static inline nir_def *
nir_iadd_imm(nir_builder *build, nir_def *x, uint64_t y)
{
assert(x->bit_size <= 64);
y &= BITFIELD64_MASK(x->bit_size);
if (y == 0) {
return x;
} else {
return nir_iadd(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_def *
nir_iadd_imm_nuw(nir_builder *b, nir_def *x, uint64_t y)
{
nir_def *d = nir_iadd_imm(b, x, y);
if (d != x && d->parent_instr->type == nir_instr_type_alu)
nir_instr_as_alu(d->parent_instr)->no_unsigned_wrap = true;
return d;
}
static inline nir_def *
nir_iadd_nuw(nir_builder *b, nir_def *x, nir_def *y)
{
nir_def *d = nir_iadd(b, x, y);
nir_instr_as_alu(d->parent_instr)->no_unsigned_wrap = true;
return d;
}
static inline nir_def *
nir_fgt_imm(nir_builder *build, nir_def *src1, double src2)
{
return nir_flt(build, nir_imm_floatN_t(build, src2, src1->bit_size), src1);
}
static inline nir_def *
nir_fle_imm(nir_builder *build, nir_def *src1, double src2)
{
return nir_fge(build, nir_imm_floatN_t(build, src2, src1->bit_size), src1);
}
/* Use nir_iadd(x, -y) for reversing parameter ordering */
static inline nir_def *
nir_isub_imm(nir_builder *build, uint64_t y, nir_def *x)
{
return nir_isub(build, nir_imm_intN_t(build, y, x->bit_size), x);
}
static inline nir_def *
nir_imax_imm(nir_builder *build, nir_def *x, int64_t y)
{
return nir_imax(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_imin_imm(nir_builder *build, nir_def *x, int64_t y)
{
return nir_imin(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_umax_imm(nir_builder *build, nir_def *x, uint64_t y)
{
return nir_umax(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_umin_imm(nir_builder *build, nir_def *x, uint64_t y)
{
return nir_umin(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
_nir_mul_imm(nir_builder *build, nir_def *x, uint64_t y, bool amul)
{
assert(x->bit_size <= 64);
y &= BITFIELD64_MASK(x->bit_size);
if (y == 0) {
return nir_imm_intN_t(build, 0, x->bit_size);
} else if (y == 1) {
return x;
} else if ((!build->shader->options ||
!build->shader->options->lower_bitops) &&
!(amul && (!build->shader->options ||
build->shader->options->has_amul)) &&
util_is_power_of_two_or_zero64(y)) {
return nir_ishl(build, x, nir_imm_int(build, ffsll(y) - 1));
} else if (amul) {
return nir_amul(build, x, nir_imm_intN_t(build, y, x->bit_size));
} else {
return nir_imul(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_def *
nir_imul_imm(nir_builder *build, nir_def *x, uint64_t y)
{
return _nir_mul_imm(build, x, y, false);
}
static inline nir_def *
nir_amul_imm(nir_builder *build, nir_def *x, uint64_t y)
{
return _nir_mul_imm(build, x, y, true);
}
static inline nir_def *
nir_fadd_imm(nir_builder *build, nir_def *x, double y)
{
return nir_fadd(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_fsub_imm(nir_builder *build, double x, nir_def *y)
{
return nir_fsub(build, nir_imm_floatN_t(build, x, y->bit_size), y);
}
static inline nir_def *
nir_fmul_imm(nir_builder *build, nir_def *x, double y)
{
return nir_fmul(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_fdiv_imm(nir_builder *build, nir_def *x, double y)
{
return nir_fdiv(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_fpow_imm(nir_builder *build, nir_def *x, double y)
{
return nir_fpow(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_iand_imm(nir_builder *build, nir_def *x, uint64_t y)
{
assert(x->bit_size <= 64);
y &= BITFIELD64_MASK(x->bit_size);
if (y == 0) {
return nir_imm_intN_t(build, 0, x->bit_size);
} else if (y == BITFIELD64_MASK(x->bit_size)) {
return x;
} else {
return nir_iand(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_def *
nir_test_mask(nir_builder *build, nir_def *x, uint64_t mask)
{
assert(mask <= BITFIELD64_MASK(x->bit_size));
return nir_ine_imm(build, nir_iand_imm(build, x, mask), 0);
}
static inline nir_def *
nir_ior_imm(nir_builder *build, nir_def *x, uint64_t y)
{
assert(x->bit_size <= 64);
y &= BITFIELD64_MASK(x->bit_size);
if (y == 0) {
return x;
} else if (y == BITFIELD64_MASK(x->bit_size)) {
return nir_imm_intN_t(build, y, x->bit_size);
} else
return nir_ior(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_ishl_imm(nir_builder *build, nir_def *x, uint32_t y)
{
if (y == 0) {
return x;
} else {
assert(y < x->bit_size);
return nir_ishl(build, x, nir_imm_int(build, y));
}
}
static inline nir_def *
nir_ishr_imm(nir_builder *build, nir_def *x, uint32_t y)
{
if (y == 0) {
return x;
} else {
return nir_ishr(build, x, nir_imm_int(build, y));
}
}
static inline nir_def *
nir_ushr_imm(nir_builder *build, nir_def *x, uint32_t y)
{
if (y == 0) {
return x;
} else {
return nir_ushr(build, x, nir_imm_int(build, y));
}
}
static inline nir_def *
nir_imod_imm(nir_builder *build, nir_def *x, uint64_t y)
{
return nir_imod(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
static inline nir_def *
nir_udiv_imm(nir_builder *build, nir_def *x, uint64_t y)
{
assert(x->bit_size <= 64);
y &= BITFIELD64_MASK(x->bit_size);
if (y == 1) {
return x;
} else if (util_is_power_of_two_nonzero64(y)) {
return nir_ushr_imm(build, x, ffsll(y) - 1);
} else {
return nir_udiv(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_def *
nir_umod_imm(nir_builder *build, nir_def *x, uint64_t y)
{
assert(y > 0 && y <= u_uintN_max(x->bit_size));
if (util_is_power_of_two_nonzero64(y)) {
return nir_iand_imm(build, x, y - 1);
} else {
return nir_umod(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_def *
nir_ibfe_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size)
{
return nir_ibfe(build, x, nir_imm_int(build, offset), nir_imm_int(build, size));
}
static inline nir_def *
nir_ubfe_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size)
{
return nir_ubfe(build, x, nir_imm_int(build, offset), nir_imm_int(build, size));
}
static inline nir_def *
nir_ubitfield_extract_imm(nir_builder *build, nir_def *x, uint32_t offset, uint32_t size)
{
return nir_ubitfield_extract(build, x, nir_imm_int(build, offset), nir_imm_int(build, size));
}
static inline nir_def *
nir_extract_u8_imm(nir_builder *b, nir_def *a, unsigned i)
{
return nir_extract_u8(b, a, nir_imm_intN_t(b, i, a->bit_size));
}
static inline nir_def *
nir_extract_i8_imm(nir_builder *b, nir_def *a, unsigned i)
{
return nir_extract_i8(b, a, nir_imm_intN_t(b, i, a->bit_size));
}
static inline nir_def *
nir_fclamp(nir_builder *b,
nir_def *x, nir_def *min_val, nir_def *max_val)
{
return nir_fmin(b, nir_fmax(b, x, min_val), max_val);
}
static inline nir_def *
nir_iclamp(nir_builder *b,
nir_def *x, nir_def *min_val, nir_def *max_val)
{
return nir_imin(b, nir_imax(b, x, min_val), max_val);
}
static inline nir_def *
nir_uclamp(nir_builder *b,
nir_def *x, nir_def *min_val, nir_def *max_val)
{
return nir_umin(b, nir_umax(b, x, min_val), max_val);
}
static inline nir_def *
nir_ffma_imm12(nir_builder *build, nir_def *src0, double src1, double src2)
{
if (build->shader->options &&
build->shader->options->avoid_ternary_with_two_constants)
return nir_fadd_imm(build, nir_fmul_imm(build, src0, src1), src2);
else
return nir_ffma(build, src0, nir_imm_floatN_t(build, src1, src0->bit_size),
nir_imm_floatN_t(build, src2, src0->bit_size));
}
static inline nir_def *
nir_ffma_imm1(nir_builder *build, nir_def *src0, double src1, nir_def *src2)
{
return nir_ffma(build, src0, nir_imm_floatN_t(build, src1, src0->bit_size), src2);
}
static inline nir_def *
nir_ffma_imm2(nir_builder *build, nir_def *src0, nir_def *src1, double src2)
{
return nir_ffma(build, src0, src1, nir_imm_floatN_t(build, src2, src0->bit_size));
}
static inline nir_def *
nir_a_minus_bc(nir_builder *build, nir_def *src0, nir_def *src1,
nir_def *src2)
{
return nir_ffma(build, nir_fneg(build, src1), src2, src0);
}
static inline nir_def *
nir_pack_bits(nir_builder *b, nir_def *src, unsigned dest_bit_size)
{
assert((unsigned)(src->num_components * src->bit_size) == dest_bit_size);
switch (dest_bit_size) {
case 64:
switch (src->bit_size) {
case 32:
return nir_pack_64_2x32(b, src);
case 16:
return nir_pack_64_4x16(b, src);
case 8: {
nir_def *lo = nir_pack_32_4x8(b, nir_channels(b, src, 0x0f));
nir_def *hi = nir_pack_32_4x8(b, nir_channels(b, src, 0xf0));
return nir_pack_64_2x32(b, nir_vec2(b, lo, hi));
}
default:
break;
}
break;
case 32:
switch (src->bit_size) {
case 32: return src;
case 16: return nir_pack_32_2x16(b, src);
case 8: return nir_pack_32_4x8(b, src);
default: break;
}
break;
default:
break;
}
/* If we got here, we have no dedicated unpack opcode. */
nir_def *dest = nir_imm_intN_t(b, 0, dest_bit_size);
for (unsigned i = 0; i < src->num_components; i++) {
nir_def *val = nir_u2uN(b, nir_channel(b, src, i), dest_bit_size);
val = nir_ishl(b, val, nir_imm_int(b, i * src->bit_size));
dest = nir_ior(b, dest, val);
}
return dest;
}
static inline nir_def *
nir_unpack_bits(nir_builder *b, nir_def *src, unsigned dest_bit_size)
{
assert(src->num_components == 1);
assert(src->bit_size >= dest_bit_size);
const unsigned dest_num_components = src->bit_size / dest_bit_size;
assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS);
switch (src->bit_size) {
case 64:
switch (dest_bit_size) {
case 32:
return nir_unpack_64_2x32(b, src);
case 16:
return nir_unpack_64_4x16(b, src);
case 8: {
nir_def *split = nir_unpack_64_2x32(b, src);
nir_def *lo = nir_unpack_32_4x8(b, nir_channel(b, split, 0));
nir_def *hi = nir_unpack_32_4x8(b, nir_channel(b, split, 1));
return nir_vec8(b, nir_channel(b, lo, 0), nir_channel(b, lo, 1),
nir_channel(b, lo, 2), nir_channel(b, lo, 3),
nir_channel(b, hi, 0), nir_channel(b, hi, 1),
nir_channel(b, hi, 2), nir_channel(b, hi, 3));
}
default:
break;
}
break;
case 32:
switch (dest_bit_size) {
case 32: return src;
case 16: return nir_unpack_32_2x16(b, src);
case 8: return nir_unpack_32_4x8(b, src);
default: break;
}
break;
default:
break;
}
/* If we got here, we have no dedicated unpack opcode. */
nir_def *dest_comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < dest_num_components; i++) {
nir_def *val = nir_ushr_imm(b, src, i * dest_bit_size);
dest_comps[i] = nir_u2uN(b, val, dest_bit_size);
}
return nir_vec(b, dest_comps, dest_num_components);
}
/**
* Treats srcs as if it's one big blob of bits and extracts the range of bits
* given by
*
* [first_bit, first_bit + dest_num_components * dest_bit_size)
*
* The range can have any alignment or size as long as it's an integer number
* of destination components and fits inside the concatenated sources.
*
* TODO: The one caveat here is that we can't handle byte alignment if 64-bit
* values are involved because that would require pack/unpack to/from a vec8
* which NIR currently does not support.
*/
static inline nir_def *
nir_extract_bits(nir_builder *b, nir_def **srcs, unsigned num_srcs,
unsigned first_bit,
unsigned dest_num_components, unsigned dest_bit_size)
{
const unsigned num_bits = dest_num_components * dest_bit_size;
/* Figure out the common bit size */
unsigned common_bit_size = dest_bit_size;
for (unsigned i = 0; i < num_srcs; i++)
common_bit_size = MIN2(common_bit_size, srcs[i]->bit_size);
if (first_bit > 0)
common_bit_size = MIN2(common_bit_size, (1u << (ffs(first_bit) - 1)));
/* We don't want to have to deal with 1-bit values */
assert(common_bit_size >= 8);
nir_def *common_comps[NIR_MAX_VEC_COMPONENTS * sizeof(uint64_t)];
assert(num_bits / common_bit_size <= ARRAY_SIZE(common_comps));
/* First, unpack to the common bit size and select the components from the
* source.
*/
int src_idx = -1;
unsigned src_start_bit = 0;
unsigned src_end_bit = 0;
for (unsigned i = 0; i < num_bits / common_bit_size; i++) {
const unsigned bit = first_bit + (i * common_bit_size);
while (bit >= src_end_bit) {
src_idx++;
assert(src_idx < (int)num_srcs);
src_start_bit = src_end_bit;
src_end_bit += srcs[src_idx]->bit_size *
srcs[src_idx]->num_components;
}
assert(bit >= src_start_bit);
assert(bit + common_bit_size <= src_end_bit);
const unsigned rel_bit = bit - src_start_bit;
const unsigned src_bit_size = srcs[src_idx]->bit_size;
nir_def *comp = nir_channel(b, srcs[src_idx],
rel_bit / src_bit_size);
if (srcs[src_idx]->bit_size > common_bit_size) {
nir_def *unpacked = nir_unpack_bits(b, comp, common_bit_size);
comp = nir_channel(b, unpacked, (rel_bit % src_bit_size) / common_bit_size);
}
common_comps[i] = comp;
}
/* Now, re-pack the destination if we have to */
if (dest_bit_size > common_bit_size) {
unsigned common_per_dest = dest_bit_size / common_bit_size;
nir_def *dest_comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < dest_num_components; i++) {
nir_def *unpacked = nir_vec(b, common_comps + i * common_per_dest,
common_per_dest);
dest_comps[i] = nir_pack_bits(b, unpacked, dest_bit_size);
}
return nir_vec(b, dest_comps, dest_num_components);
} else {
assert(dest_bit_size == common_bit_size);
return nir_vec(b, common_comps, dest_num_components);
}
}
static inline nir_def *
nir_bitcast_vector(nir_builder *b, nir_def *src, unsigned dest_bit_size)
{
assert((src->bit_size * src->num_components) % dest_bit_size == 0);
const unsigned dest_num_components =
(src->bit_size * src->num_components) / dest_bit_size;
assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS);
return nir_extract_bits(b, &src, 1, 0, dest_num_components, dest_bit_size);
}
static inline nir_def *
nir_trim_vector(nir_builder *b, nir_def *src, unsigned num_components)
{
assert(src->num_components >= num_components);
if (src->num_components == num_components)
return src;
return nir_channels(b, src, nir_component_mask(num_components));
}
/**
* Pad a value to N components with undefs of matching bit size.
* If the value already contains >= num_components, it is returned without change.
*/
static inline nir_def *
nir_pad_vector(nir_builder *b, nir_def *src, unsigned num_components)
{
assert(src->num_components <= num_components);
if (src->num_components == num_components)
return src;
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
nir_scalar undef = nir_get_scalar(nir_undef(b, 1, src->bit_size), 0);
unsigned i = 0;
for (; i < src->num_components; i++)
components[i] = nir_get_scalar(src, i);
for (; i < num_components; i++)
components[i] = undef;
return nir_vec_scalars(b, components, num_components);
}
/**
* Pad a value to N components with copies of the given immediate of matching
* bit size. If the value already contains >= num_components, it is returned
* without change.
*/
static inline nir_def *
nir_pad_vector_imm_int(nir_builder *b, nir_def *src, uint64_t imm_val,
unsigned num_components)
{
assert(src->num_components <= num_components);
if (src->num_components == num_components)
return src;
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
nir_scalar imm = nir_get_scalar(nir_imm_intN_t(b, imm_val, src->bit_size), 0);
unsigned i = 0;
for (; i < src->num_components; i++)
components[i] = nir_get_scalar(src, i);
for (; i < num_components; i++)
components[i] = imm;
return nir_vec_scalars(b, components, num_components);
}
/**
* Pad a value to 4 components with undefs of matching bit size.
* If the value already contains >= 4 components, it is returned without change.
*/
static inline nir_def *
nir_pad_vec4(nir_builder *b, nir_def *src)
{
return nir_pad_vector(b, src, 4);
}
/**
* Resizes a vector by either trimming off components or adding undef
* components, as needed. Only use this helper if it's actually what you
* need. Prefer nir_pad_vector() or nir_trim_vector() instead if you know a
* priori which direction you're resizing.
*/
static inline nir_def *
nir_resize_vector(nir_builder *b, nir_def *src, unsigned num_components)
{
if (src->num_components < num_components)
return nir_pad_vector(b, src, num_components);
else
return nir_trim_vector(b, src, num_components);
}
nir_def *
nir_ssa_for_alu_src(nir_builder *build, nir_alu_instr *instr, unsigned srcn);
static inline unsigned
nir_get_ptr_bitsize(nir_shader *shader)
{
if (shader->info.stage == MESA_SHADER_KERNEL)
return shader->info.cs.ptr_size;
return 32;
}
static inline nir_deref_instr *
nir_build_deref_var(nir_builder *build, nir_variable *var)
{
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_var);
deref->modes = (nir_variable_mode)var->data.mode;
deref->type = var->type;
deref->var = var;
nir_def_init(&deref->instr, &deref->def, 1,
nir_get_ptr_bitsize(build->shader));
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array(nir_builder *build, nir_deref_instr *parent,
nir_def *index)
{
assert(glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type) ||
glsl_type_is_vector(parent->type));
assert(index->bit_size == parent->def.bit_size);
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_array);
deref->modes = parent->modes;
deref->type = glsl_get_array_element(parent->type);
deref->parent = nir_src_for_ssa(&parent->def);
deref->arr.index = nir_src_for_ssa(index);
nir_def_init(&deref->instr, &deref->def,
parent->def.num_components, parent->def.bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array_imm(nir_builder *build, nir_deref_instr *parent,
int64_t index)
{
nir_def *idx_ssa = nir_imm_intN_t(build, index,
parent->def.bit_size);
return nir_build_deref_array(build, parent, idx_ssa);
}
static inline nir_deref_instr *
nir_build_deref_ptr_as_array(nir_builder *build, nir_deref_instr *parent,
nir_def *index)
{
assert(parent->deref_type == nir_deref_type_array ||
parent->deref_type == nir_deref_type_ptr_as_array ||
parent->deref_type == nir_deref_type_cast);
assert(index->bit_size == parent->def.bit_size);
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_ptr_as_array);
deref->modes = parent->modes;
deref->type = parent->type;
deref->parent = nir_src_for_ssa(&parent->def);
deref->arr.index = nir_src_for_ssa(index);
nir_def_init(&deref->instr, &deref->def,
parent->def.num_components, parent->def.bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array_wildcard(nir_builder *build, nir_deref_instr *parent)
{
assert(glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type));
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_array_wildcard);
deref->modes = parent->modes;
deref->type = glsl_get_array_element(parent->type);
deref->parent = nir_src_for_ssa(&parent->def);
nir_def_init(&deref->instr, &deref->def,
parent->def.num_components, parent->def.bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_struct(nir_builder *build, nir_deref_instr *parent,
unsigned index)
{
assert(glsl_type_is_struct_or_ifc(parent->type));
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_struct);
deref->modes = parent->modes;
deref->type = glsl_get_struct_field(parent->type, index);
deref->parent = nir_src_for_ssa(&parent->def);
deref->strct.index = index;
nir_def_init(&deref->instr, &deref->def,
parent->def.num_components, parent->def.bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_cast_with_alignment(nir_builder *build, nir_def *parent,
nir_variable_mode modes,
const struct glsl_type *type,
unsigned ptr_stride,
unsigned align_mul,
unsigned align_offset)
{
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_cast);
deref->modes = modes;
deref->type = type;
deref->parent = nir_src_for_ssa(parent);
deref->cast.align_mul = align_mul;
deref->cast.align_offset = align_offset;
deref->cast.ptr_stride = ptr_stride;
nir_def_init(&deref->instr, &deref->def, parent->num_components,
parent->bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_cast(nir_builder *build, nir_def *parent,
nir_variable_mode modes, const struct glsl_type *type,
unsigned ptr_stride)
{
return nir_build_deref_cast_with_alignment(build, parent, modes, type,
ptr_stride, 0, 0);
}
static inline nir_deref_instr *
nir_alignment_deref_cast(nir_builder *build, nir_deref_instr *parent,
uint32_t align_mul, uint32_t align_offset)
{
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_cast);
deref->modes = parent->modes;
deref->type = parent->type;
deref->parent = nir_src_for_ssa(&parent->def);
deref->cast.ptr_stride = nir_deref_instr_array_stride(deref);
deref->cast.align_mul = align_mul;
deref->cast.align_offset = align_offset;
nir_def_init(&deref->instr, &deref->def,
parent->def.num_components, parent->def.bit_size);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
/** Returns a deref that follows another but starting from the given parent
*
* The new deref will be the same type and take the same array or struct index
* as the leader deref but it may have a different parent. This is very
* useful for walking deref paths.
*/
static inline nir_deref_instr *
nir_build_deref_follower(nir_builder *b, nir_deref_instr *parent,
nir_deref_instr *leader)
{
/* If the derefs would have the same parent, don't make a new one */
if (leader->parent.ssa == &parent->def)
return leader;
UNUSED nir_deref_instr *leader_parent = nir_src_as_deref(leader->parent);
switch (leader->deref_type) {
case nir_deref_type_var:
unreachable("A var dereference cannot have a parent");
break;
case nir_deref_type_array:
case nir_deref_type_array_wildcard:
assert(glsl_type_is_matrix(parent->type) ||
glsl_type_is_array(parent->type) ||
(leader->deref_type == nir_deref_type_array &&
glsl_type_is_vector(parent->type)));
assert(glsl_get_length(parent->type) ==
glsl_get_length(leader_parent->type));
if (leader->deref_type == nir_deref_type_array) {
nir_def *index = nir_i2iN(b, leader->arr.index.ssa,
parent->def.bit_size);
return nir_build_deref_array(b, parent, index);
} else {
return nir_build_deref_array_wildcard(b, parent);
}
case nir_deref_type_struct:
assert(glsl_type_is_struct_or_ifc(parent->type));
assert(glsl_get_length(parent->type) ==
glsl_get_length(leader_parent->type));
return nir_build_deref_struct(b, parent, leader->strct.index);
case nir_deref_type_cast:
return nir_build_deref_cast_with_alignment(b, &parent->def,
leader->modes,
leader->type,
leader->cast.ptr_stride,
leader->cast.align_mul,
leader->cast.align_offset);
case nir_deref_type_ptr_as_array: {
assert(parent->deref_type == nir_deref_type_array ||
parent->deref_type == nir_deref_type_ptr_as_array ||
parent->deref_type == nir_deref_type_cast);
nir_def *index = nir_i2iN(b, leader->arr.index.ssa,
parent->def.bit_size);
return nir_build_deref_ptr_as_array(b, parent, index);
}
default:
unreachable("Invalid deref instruction type");
}
return NULL;
}
static inline nir_def *
nir_load_deref_with_access(nir_builder *build, nir_deref_instr *deref,
enum gl_access_qualifier access)
{
return nir_build_load_deref(build, glsl_get_vector_elements(deref->type),
glsl_get_bit_size(deref->type), &deref->def,
access);
}
#undef nir_load_deref
static inline nir_def *
nir_load_deref(nir_builder *build, nir_deref_instr *deref)
{
return nir_load_deref_with_access(build, deref, (enum gl_access_qualifier)0);
}
static inline void
nir_store_deref_with_access(nir_builder *build, nir_deref_instr *deref,
nir_def *value, unsigned writemask,
enum gl_access_qualifier access)
{
writemask &= (1u << value->num_components) - 1u;
nir_build_store_deref(build, &deref->def, value, writemask, access);
}
#undef nir_store_deref
static inline void
nir_store_deref(nir_builder *build, nir_deref_instr *deref,
nir_def *value, unsigned writemask)
{
nir_store_deref_with_access(build, deref, value, writemask,
(enum gl_access_qualifier)0);
}
static inline void
nir_build_write_masked_store(nir_builder *b, nir_deref_instr *vec_deref,
nir_def *value, unsigned component)
{
assert(value->num_components == 1);
unsigned num_components = glsl_get_components(vec_deref->type);
assert(num_components > 1 && num_components <= NIR_MAX_VEC_COMPONENTS);
nir_def *vec =
nir_vector_insert_imm(b, nir_undef(b, num_components, value->bit_size),
value, component);
nir_store_deref(b, vec_deref, vec, (1u << component));
}
static inline void
nir_build_write_masked_stores(nir_builder *b, nir_deref_instr *vec_deref,
nir_def *value, nir_def *index,
unsigned start, unsigned end)
{
if (start == end - 1) {
nir_build_write_masked_store(b, vec_deref, value, start);
} else {
unsigned mid = start + (end - start) / 2;
nir_push_if(b, nir_ilt_imm(b, index, mid));
nir_build_write_masked_stores(b, vec_deref, value, index, start, mid);
nir_push_else(b, NULL);
nir_build_write_masked_stores(b, vec_deref, value, index, mid, end);
nir_pop_if(b, NULL);
}
}
static inline void
nir_copy_deref_with_access(nir_builder *build, nir_deref_instr *dest,
nir_deref_instr *src,
enum gl_access_qualifier dest_access,
enum gl_access_qualifier src_access)
{
nir_build_copy_deref(build, &dest->def, &src->def, dest_access, src_access);
}
#undef nir_copy_deref
static inline void
nir_copy_deref(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src)
{
nir_copy_deref_with_access(build, dest, src,
(enum gl_access_qualifier)0,
(enum gl_access_qualifier)0);
}
static inline void
nir_memcpy_deref_with_access(nir_builder *build, nir_deref_instr *dest,
nir_deref_instr *src, nir_def *size,
enum gl_access_qualifier dest_access,
enum gl_access_qualifier src_access)
{
nir_build_memcpy_deref(build, &dest->def, &src->def,
size, dest_access, src_access);
}
#undef nir_memcpy_deref
static inline void
nir_memcpy_deref(nir_builder *build, nir_deref_instr *dest,
nir_deref_instr *src, nir_def *size)
{
nir_memcpy_deref_with_access(build, dest, src, size,
(enum gl_access_qualifier)0,
(enum gl_access_qualifier)0);
}
static inline nir_def *
nir_load_var(nir_builder *build, nir_variable *var)
{
return nir_load_deref(build, nir_build_deref_var(build, var));
}
static inline void
nir_store_var(nir_builder *build, nir_variable *var, nir_def *value,
unsigned writemask)
{
nir_store_deref(build, nir_build_deref_var(build, var), value, writemask);
}
static inline void
nir_copy_var(nir_builder *build, nir_variable *dest, nir_variable *src)
{
nir_copy_deref(build, nir_build_deref_var(build, dest),
nir_build_deref_var(build, src));
}
static inline nir_def *
nir_load_array_var(nir_builder *build, nir_variable *var, nir_def *index)
{
nir_deref_instr *deref =
nir_build_deref_array(build, nir_build_deref_var(build, var), index);
return nir_load_deref(build, deref);
}
static inline nir_def *
nir_load_array_var_imm(nir_builder *build, nir_variable *var, int64_t index)
{
nir_deref_instr *deref =
nir_build_deref_array_imm(build, nir_build_deref_var(build, var), index);
return nir_load_deref(build, deref);
}
static inline void
nir_store_array_var(nir_builder *build, nir_variable *var, nir_def *index,
nir_def *value, unsigned writemask)
{
nir_deref_instr *deref =
nir_build_deref_array(build, nir_build_deref_var(build, var), index);
nir_store_deref(build, deref, value, writemask);
}
static inline void
nir_store_array_var_imm(nir_builder *build, nir_variable *var, int64_t index,
nir_def *value, unsigned writemask)
{
nir_deref_instr *deref =
nir_build_deref_array_imm(build, nir_build_deref_var(build, var), index);
nir_store_deref(build, deref, value, writemask);
}
#undef nir_load_global
static inline nir_def *
nir_load_global(nir_builder *build, nir_def *addr, unsigned align,
unsigned num_components, unsigned bit_size)
{
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_global);
load->num_components = (uint8_t)num_components;
load->src[0] = nir_src_for_ssa(addr);
nir_intrinsic_set_align(load, align, 0);
nir_def_init(&load->instr, &load->def, num_components, bit_size);
nir_builder_instr_insert(build, &load->instr);
return &load->def;
}
#undef nir_store_global
static inline void
nir_store_global(nir_builder *build, nir_def *addr, unsigned align,
nir_def *value, nir_component_mask_t write_mask)
{
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_store_global);
store->num_components = value->num_components;
store->src[0] = nir_src_for_ssa(value);
store->src[1] = nir_src_for_ssa(addr);
nir_intrinsic_set_write_mask(store,
write_mask & BITFIELD_MASK(value->num_components));
nir_intrinsic_set_align(store, align, 0);
nir_builder_instr_insert(build, &store->instr);
}
#undef nir_load_global_constant
static inline nir_def *
nir_load_global_constant(nir_builder *build, nir_def *addr, unsigned align,
unsigned num_components, unsigned bit_size)
{
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_global_constant);
load->num_components = (uint8_t)num_components;
load->src[0] = nir_src_for_ssa(addr);
nir_intrinsic_set_align(load, align, 0);
nir_def_init(&load->instr, &load->def, num_components, bit_size);
nir_builder_instr_insert(build, &load->instr);
return &load->def;
}
#undef nir_load_param
static inline nir_def *
nir_load_param(nir_builder *build, uint32_t param_idx)
{
assert(param_idx < build->impl->function->num_params);
nir_parameter *param = &build->impl->function->params[param_idx];
return nir_build_load_param(build, param->num_components, param->bit_size, param_idx);
}
#undef nir_decl_reg
static inline nir_def *
nir_decl_reg(nir_builder *b, unsigned num_components, unsigned bit_size,
unsigned num_array_elems)
{
nir_intrinsic_instr *decl =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_decl_reg);
nir_intrinsic_set_num_components(decl, num_components);
nir_intrinsic_set_bit_size(decl, bit_size);
nir_intrinsic_set_num_array_elems(decl, num_array_elems);
nir_intrinsic_set_divergent(decl, true);
nir_def_init(&decl->instr, &decl->def, 1, 32);
nir_builder_instr_insert_at_top(b, &decl->instr);
return &decl->def;
}
#undef nir_load_reg
static inline nir_def *
nir_load_reg(nir_builder *b, nir_def *reg)
{
nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
unsigned num_components = nir_intrinsic_num_components(decl);
unsigned bit_size = nir_intrinsic_bit_size(decl);
nir_def *res = nir_build_load_reg(b, num_components, bit_size, reg);
res->divergent = nir_intrinsic_divergent(decl);
return res;
}
#undef nir_store_reg
static inline void
nir_store_reg(nir_builder *b, nir_def *value, nir_def *reg)
{
ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
ASSERTED unsigned num_components = nir_intrinsic_num_components(decl);
ASSERTED unsigned bit_size = nir_intrinsic_bit_size(decl);
assert(value->num_components == num_components);
assert(value->bit_size == bit_size);
nir_build_store_reg(b, value, reg);
}
static inline nir_tex_src
nir_tex_src_for_ssa(nir_tex_src_type src_type, nir_def *def)
{
nir_tex_src src;
src.src = nir_src_for_ssa(def);
src.src_type = src_type;
return src;
}
#undef nir_ddx
#undef nir_ddx_fine
#undef nir_ddx_coarse
#undef nir_ddy
#undef nir_ddy_fine
#undef nir_ddy_coarse
static inline nir_def *
nir_build_deriv(nir_builder *b, nir_def *x, nir_intrinsic_op intrin)
{
if (b->shader->options->scalarize_ddx && x->num_components > 1) {
nir_def *res[NIR_MAX_VEC_COMPONENTS] = { NULL };
for (unsigned i = 0; i < x->num_components; ++i) {
res[i] = _nir_build_ddx(b, x->bit_size, nir_channel(b, x, i));
nir_instr_as_intrinsic(res[i]->parent_instr)->intrinsic = intrin;
}
return nir_vec(b, res, x->num_components);
} else {
nir_def *res = _nir_build_ddx(b, x->bit_size, x);
nir_instr_as_intrinsic(res->parent_instr)->intrinsic = intrin;
return res;
}
}
#define DEF_DERIV(op) \
static inline nir_def * \
nir_##op(nir_builder *build, nir_def *src0) \
{ \
return nir_build_deriv(build, src0, nir_intrinsic_##op); \
}
DEF_DERIV(ddx)
DEF_DERIV(ddx_fine)
DEF_DERIV(ddx_coarse)
DEF_DERIV(ddy)
DEF_DERIV(ddy_fine)
DEF_DERIV(ddy_coarse)
/*
* Find a texture source, remove it, and return its nir_def. If the texture
* source does not exist, return NULL. This is useful for texture lowering pass
* that consume their input sources and produce a new lowered source.
*/
static inline nir_def *
nir_steal_tex_src(nir_tex_instr *tex, nir_tex_src_type type_)
{
int idx = nir_tex_instr_src_index(tex, type_);
if (idx < 0)
return NULL;
nir_def *ssa = tex->src[idx].src.ssa;
nir_tex_instr_remove_src(tex, idx);
return ssa;
}
static inline nir_def *
nir_tex_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s,
nir_def *coord)
{
nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord) };
return nir_build_tex_deref_instr(b, nir_texop_tex, t, s,
ARRAY_SIZE(srcs), srcs);
}
static inline nir_def *
nir_txl_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s,
nir_def *coord, nir_def *lod)
{
nir_tex_src srcs[] = {
nir_tex_src_for_ssa(nir_tex_src_coord, coord),
nir_tex_src_for_ssa(nir_tex_src_lod, lod),
};
return nir_build_tex_deref_instr(b, nir_texop_txl, t, s,
ARRAY_SIZE(srcs), srcs);
}
static inline nir_def *
nir_txl_zero_deref(nir_builder *b, nir_deref_instr *t, nir_deref_instr *s,
nir_def *coord)
{
return nir_txl_deref(b, t, s, coord, nir_imm_float(b, 0));
}
static inline bool
nir_tex_type_has_lod(const struct glsl_type *tex_type)
{
switch (glsl_get_sampler_dim(tex_type)) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return true;
default:
return false;
}
}
static inline nir_def *
nir_txf_deref(nir_builder *b, nir_deref_instr *t,
nir_def *coord, nir_def *lod)
{
nir_tex_src srcs[2];
unsigned num_srcs = 0;
srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_coord, coord);
if (lod == NULL && nir_tex_type_has_lod(t->type))
lod = nir_imm_int(b, 0);
if (lod != NULL)
srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_lod, lod);
return nir_build_tex_deref_instr(b, nir_texop_txf, t, NULL,
num_srcs, srcs);
}
static inline nir_def *
nir_txf_ms_deref(nir_builder *b, nir_deref_instr *t,
nir_def *coord, nir_def *ms_index)
{
nir_tex_src srcs[] = {
nir_tex_src_for_ssa(nir_tex_src_coord, coord),
nir_tex_src_for_ssa(nir_tex_src_ms_index, ms_index),
};
return nir_build_tex_deref_instr(b, nir_texop_txf_ms, t, NULL,
ARRAY_SIZE(srcs), srcs);
}
static inline nir_def *
nir_txs_deref(nir_builder *b, nir_deref_instr *t, nir_def *lod)
{
nir_tex_src srcs[1];
unsigned num_srcs = 0;
if (lod == NULL && nir_tex_type_has_lod(t->type))
lod = nir_imm_int(b, 0);
if (lod != NULL)
srcs[num_srcs++] = nir_tex_src_for_ssa(nir_tex_src_lod, lod);
return nir_build_tex_deref_instr(b, nir_texop_txs, t, NULL,
num_srcs, srcs);
}
static inline nir_def *
nir_samples_identical_deref(nir_builder *b, nir_deref_instr *t,
nir_def *coord)
{
nir_tex_src srcs[] = { nir_tex_src_for_ssa(nir_tex_src_coord, coord) };
return nir_build_tex_deref_instr(b, nir_texop_samples_identical, t, NULL,
ARRAY_SIZE(srcs), srcs);
}
/* calculate a `(1 << value) - 1` in ssa without overflows */
static inline nir_def *
nir_mask(nir_builder *b, nir_def *bits, unsigned dst_bit_size)
{
return nir_ushr(b, nir_imm_intN_t(b, -1, dst_bit_size),
nir_isub_imm(b, dst_bit_size, nir_u2u32(b, bits)));
}
static inline nir_def *
nir_load_barycentric(nir_builder *build, nir_intrinsic_op op,
unsigned interp_mode)
{
unsigned num_components = op == nir_intrinsic_load_barycentric_model ? 3 : 2;
nir_intrinsic_instr *bary = nir_intrinsic_instr_create(build->shader, op);
nir_def_init(&bary->instr, &bary->def, num_components, 32);
nir_intrinsic_set_interp_mode(bary, interp_mode);
nir_builder_instr_insert(build, &bary->instr);
return &bary->def;
}
static inline void
nir_jump(nir_builder *build, nir_jump_type jump_type)
{
assert(jump_type != nir_jump_goto && jump_type != nir_jump_goto_if);
nir_jump_instr *jump = nir_jump_instr_create(build->shader, jump_type);
nir_builder_instr_insert(build, &jump->instr);
}
static inline void
nir_goto(nir_builder *build, struct nir_block *target)
{
assert(!build->impl->structured);
nir_jump_instr *jump = nir_jump_instr_create(build->shader, nir_jump_goto);
jump->target = target;
nir_builder_instr_insert(build, &jump->instr);
}
static inline void
nir_goto_if(nir_builder *build, struct nir_block *target, nir_def *cond,
struct nir_block *else_target)
{
assert(!build->impl->structured);
nir_jump_instr *jump = nir_jump_instr_create(build->shader, nir_jump_goto_if);
jump->condition = nir_src_for_ssa(cond);
jump->target = target;
jump->else_target = else_target;
nir_builder_instr_insert(build, &jump->instr);
}
static inline void
nir_break_if(nir_builder *build, nir_def *cond)
{
nir_if *nif = nir_push_if(build, cond);
{
nir_jump(build, nir_jump_break);
}
nir_pop_if(build, nif);
}
static inline void
nir_build_call(nir_builder *build, nir_function *func, size_t count,
nir_def **args)
{
assert(count == func->num_params && "parameter count must match");
nir_call_instr *call = nir_call_instr_create(build->shader, func);
for (unsigned i = 0; i < count; ++i) {
call->params[i] = nir_src_for_ssa(args[i]);
}
nir_builder_instr_insert(build, &call->instr);
}
static inline void
nir_discard(nir_builder *build)
{
if (build->shader->options->discard_is_demote)
nir_demote(build);
else
nir_terminate(build);
}
static inline void
nir_discard_if(nir_builder *build, nir_def *src)
{
if (build->shader->options->discard_is_demote)
nir_demote_if(build, src);
else
nir_terminate_if(build, src);
}
nir_def *
nir_build_string(nir_builder *build, const char *value);
/*
* Call a given nir_function * with a variadic number of nir_def * arguments.
*
* Defined with __VA_ARGS__ instead of va_list so we can assert the correct
* number of parameters are passed in.
*/
#define nir_call(build, func, ...) \
do { \
nir_def *args[] = { __VA_ARGS__ }; \
nir_build_call(build, func, ARRAY_SIZE(args), args); \
} while (0)
nir_def *
nir_compare_func(nir_builder *b, enum compare_func func,
nir_def *src0, nir_def *src1);
static inline void
nir_scoped_memory_barrier(nir_builder *b,
mesa_scope scope,
nir_memory_semantics semantics,
nir_variable_mode modes)
{
nir_barrier(b, SCOPE_NONE, scope, semantics, modes);
}
nir_def *
nir_gen_rect_vertices(nir_builder *b, nir_def *z, nir_def *w);
/* Emits a printf in the same way nir_lower_printf(). Each of the variadic
* argument is a pointer to a nir_def value.
*/
void nir_printf_fmt(nir_builder *b,
bool use_printf_base_identifier,
unsigned ptr_bit_size,
const char *fmt, ...);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* NIR_BUILDER_H */