blob: bee668065832def522ad8e4d5da63fa038e57ff2 [file] [log] [blame]
/*
* Copyright © 2018 Red Hat Inc.
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <math.h>
#include "nir.h"
#include "nir_builder.h"
#include "nir_builtin_builder.h"
nir_def *
nir_cross3(nir_builder *b, nir_def *x, nir_def *y)
{
unsigned yzx[3] = { 1, 2, 0 };
unsigned zxy[3] = { 2, 0, 1 };
return nir_ffma(b, nir_swizzle(b, x, yzx, 3),
nir_swizzle(b, y, zxy, 3),
nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3),
nir_swizzle(b, y, yzx, 3))));
}
nir_def *
nir_cross4(nir_builder *b, nir_def *x, nir_def *y)
{
nir_def *cross = nir_cross3(b, x, y);
return nir_vec4(b,
nir_channel(b, cross, 0),
nir_channel(b, cross, 1),
nir_channel(b, cross, 2),
nir_imm_intN_t(b, 0, cross->bit_size));
}
nir_def *
nir_fast_length(nir_builder *b, nir_def *vec)
{
return nir_fsqrt(b, nir_fdot(b, vec, vec));
}
nir_def *
nir_nextafter(nir_builder *b, nir_def *x, nir_def *y)
{
nir_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
nir_def *one = nir_imm_intN_t(b, 1, x->bit_size);
nir_def *condeq = nir_feq(b, x, y);
nir_def *conddir = nir_flt(b, x, y);
nir_def *condzero = nir_feq(b, x, zero);
uint64_t sign_mask = 1ull << (x->bit_size - 1);
uint64_t min_abs = 1;
if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) {
switch (x->bit_size) {
case 16:
min_abs = 1 << 10;
break;
case 32:
min_abs = 1 << 23;
break;
case 64:
min_abs = 1ULL << 52;
break;
}
/* Flush denorm to zero to avoid returning a denorm when condeq is true. */
x = nir_fmul_imm(b, x, 1.0);
}
/* beware of: +/-0.0 - 1 == NaN */
nir_def *xn =
nir_bcsel(b,
condzero,
nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size),
nir_isub(b, x, one));
/* beware of -0.0 + 1 == -0x1p-149 */
nir_def *xp = nir_bcsel(b, condzero,
nir_imm_intN_t(b, min_abs, x->bit_size),
nir_iadd(b, x, one));
/* nextafter can be implemented by just +/- 1 on the int value */
nir_def *res =
nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
}
nir_def *
nir_normalize(nir_builder *b, nir_def *vec)
{
if (vec->num_components == 1)
return nir_fsign(b, vec);
nir_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
nir_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
nir_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
/* scale the input to increase precision */
nir_def *maxc = nir_fmax_abs_vec_comp(b, vec);
nir_def *svec = nir_fdiv(b, vec, maxc);
/* for inf */
nir_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
nir_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
nir_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
}
nir_def *
nir_smoothstep(nir_builder *b, nir_def *edge0, nir_def *edge1, nir_def *x)
{
nir_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
nir_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
/* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
nir_def *t =
nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
nir_fsub(b, edge1, edge0)));
/* result = t * t * (3 - 2 * t) */
return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t)));
}
nir_def *
nir_upsample(nir_builder *b, nir_def *hi, nir_def *lo)
{
assert(lo->num_components == hi->num_components);
assert(lo->bit_size == hi->bit_size);
nir_def *res[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < lo->num_components; ++i) {
nir_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
}
return nir_vec(b, res, lo->num_components);
}
nir_def *
nir_atan(nir_builder *b, nir_def *y_over_x)
{
const uint32_t bit_size = y_over_x->bit_size;
nir_def *abs_y_over_x = nir_fabs(b, y_over_x);
/*
* range-reduction, first step:
*
* / y_over_x if |y_over_x| <= 1.0;
* u = <
* \ 1.0 / y_over_x otherwise
*
* x = |u| for the corrected sign.
*/
nir_def *le_1 = nir_fle_imm(b, abs_y_over_x, 1.0);
nir_def *u = nir_bcsel(b, le_1, y_over_x, nir_frcp(b, y_over_x));
/*
* approximate atan by evaluating polynomial using Horner's method:
*
* x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
* x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
* x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
*/
float coeffs[] = {
-0.0121323213173444f, 0.0536813784310406f,
-0.1173503194786851f, 0.1938924977115610f,
-0.3326756418091246f, 0.9999793128310355f
};
nir_def *x_2 = nir_fmul(b, u, u);
nir_def *res = nir_imm_floatN_t(b, coeffs[0], bit_size);
for (unsigned i = 1; i < ARRAY_SIZE(coeffs); ++i) {
res = nir_ffma_imm2(b, res, x_2, coeffs[i]);
}
/* range-reduction fixup value */
nir_def *bias = nir_bcsel(b, le_1, nir_imm_floatN_t(b, 0, bit_size),
nir_imm_floatN_t(b, -M_PI_2, bit_size));
/* multiply through by x while fixing up the range reduction */
nir_def *tmp = nir_ffma(b, nir_fabs(b, u), res, bias);
/* sign fixup */
return nir_copysign(b, tmp, y_over_x);
}
nir_def *
nir_atan2(nir_builder *b, nir_def *y, nir_def *x)
{
assert(y->bit_size == x->bit_size);
const uint32_t bit_size = x->bit_size;
nir_def *zero = nir_imm_floatN_t(b, 0, bit_size);
nir_def *one = nir_imm_floatN_t(b, 1, bit_size);
/* If we're on the left half-plane rotate the coordinates π/2 clock-wise
* for the y=0 discontinuity to end up aligned with the vertical
* discontinuity of atan(s/t) along t=0. This also makes sure that we
* don't attempt to divide by zero along the vertical line, which may give
* unspecified results on non-GLSL 4.1-capable hardware.
*/
nir_def *flip = nir_fge(b, zero, x);
nir_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
nir_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
/* If the magnitude of the denominator exceeds some huge value, scale down
* the arguments in order to prevent the reciprocal operation from flushing
* its result to zero, which would cause precision problems, and for s
* infinite would cause us to return a NaN instead of the correct finite
* value.
*
* If fmin and fmax are respectively the smallest and largest positive
* normalized floating point values representable by the implementation,
* the constants below should be in agreement with:
*
* huge <= 1 / fmin
* scale <= 1 / fmin / fmax (for |t| >= huge)
*
* In addition scale should be a negative power of two in order to avoid
* loss of precision. The values chosen below should work for most usual
* floating point representations with at least the dynamic range of ATI's
* 24-bit representation.
*/
const double huge_val = bit_size >= 32 ? 1e18 : 16384;
nir_def *scale = nir_bcsel(b, nir_fge_imm(b, nir_fabs(b, t), huge_val),
nir_imm_floatN_t(b, 0.25, bit_size), one);
nir_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
nir_def *abs_s_over_t = nir_fmul(b, nir_fabs(b, nir_fmul(b, s, scale)),
nir_fabs(b, rcp_scaled_t));
/* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
* that ∞/∞ = 1) in order to comply with the rather artificial rules
* inherited from IEEE 754-2008, namely:
*
* "atan2(±∞, −∞) is ±3π/4
* atan2(±∞, +∞) is ±π/4"
*
* Note that this is inconsistent with the rules for the neighborhood of
* zero that are based on iterated limits:
*
* "atan2(±0, −0) is ±π
* atan2(±0, +0) is ±0"
*
* but GLSL specifically allows implementations to deviate from IEEE rules
* at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
* well).
*/
nir_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
one, abs_s_over_t);
/* Calculate the arctangent and fix up the result if we had flipped the
* coordinate system.
*/
nir_def *arc =
nir_ffma_imm1(b, nir_b2fN(b, flip, bit_size), M_PI_2, nir_atan(b, tan));
/* Rather convoluted calculation of the sign of the result. When x < 0 we
* cannot use fsign because we need to be able to distinguish between
* negative and positive zero. We don't use bitwise arithmetic tricks for
* consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will
* always be non-negative so this won't be able to distinguish between
* negative and positive zero, but we don't care because atan2 is
* continuous along the whole positive y = 0 half-line, so it won't affect
* the result significantly.
*/
return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
nir_fneg(b, arc), arc);
}
nir_def *
nir_build_texture_query(nir_builder *b, nir_tex_instr *tex, nir_texop texop,
unsigned components, nir_alu_type dest_type,
bool include_coord, bool include_lod)
{
nir_tex_instr *query;
unsigned num_srcs = include_lod ? 1 : 0;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) ||
tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle)
num_srcs++;
}
query = nir_tex_instr_create(b->shader, num_srcs);
query->op = texop;
query->sampler_dim = tex->sampler_dim;
query->is_array = tex->is_array;
query->is_shadow = tex->is_shadow;
query->is_new_style_shadow = tex->is_new_style_shadow;
query->texture_index = tex->texture_index;
query->sampler_index = tex->sampler_index;
query->dest_type = dest_type;
if (include_coord) {
query->coord_components = tex->coord_components;
}
unsigned idx = 0;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) ||
tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle) {
query->src[idx].src = nir_src_for_ssa(tex->src[i].src.ssa);
query->src[idx].src_type = tex->src[i].src_type;
idx++;
}
}
/* Add in an LOD because some back-ends require it */
if (include_lod) {
query->src[idx] = nir_tex_src_for_ssa(nir_tex_src_lod, nir_imm_int(b, 0));
}
nir_def_init(&query->instr, &query->def, nir_tex_instr_dest_size(query),
nir_alu_type_get_type_size(dest_type));
nir_builder_instr_insert(b, &query->instr);
return &query->def;
}
nir_def *
nir_get_texture_size(nir_builder *b, nir_tex_instr *tex)
{
b->cursor = nir_before_instr(&tex->instr);
return nir_build_texture_query(b, tex, nir_texop_txs,
nir_tex_instr_dest_size(tex),
nir_type_int32, false, true);
}
nir_def *
nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex)
{
b->cursor = nir_before_instr(&tex->instr);
nir_def *tql = nir_build_texture_query(b, tex, nir_texop_lod, 2,
nir_type_float32, true, false);
/* The LOD is the y component of the result */
return nir_channel(b, tql, 1);
}