| /* |
| * Copyright © 2018 Red Hat Inc. |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <math.h> |
| |
| #include "nir.h" |
| #include "nir_builder.h" |
| #include "nir_builtin_builder.h" |
| |
| nir_def * |
| nir_cross3(nir_builder *b, nir_def *x, nir_def *y) |
| { |
| unsigned yzx[3] = { 1, 2, 0 }; |
| unsigned zxy[3] = { 2, 0, 1 }; |
| |
| return nir_ffma(b, nir_swizzle(b, x, yzx, 3), |
| nir_swizzle(b, y, zxy, 3), |
| nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3), |
| nir_swizzle(b, y, yzx, 3)))); |
| } |
| |
| nir_def * |
| nir_cross4(nir_builder *b, nir_def *x, nir_def *y) |
| { |
| nir_def *cross = nir_cross3(b, x, y); |
| |
| return nir_vec4(b, |
| nir_channel(b, cross, 0), |
| nir_channel(b, cross, 1), |
| nir_channel(b, cross, 2), |
| nir_imm_intN_t(b, 0, cross->bit_size)); |
| } |
| |
| nir_def * |
| nir_fast_length(nir_builder *b, nir_def *vec) |
| { |
| return nir_fsqrt(b, nir_fdot(b, vec, vec)); |
| } |
| |
| nir_def * |
| nir_nextafter(nir_builder *b, nir_def *x, nir_def *y) |
| { |
| nir_def *zero = nir_imm_intN_t(b, 0, x->bit_size); |
| nir_def *one = nir_imm_intN_t(b, 1, x->bit_size); |
| |
| nir_def *condeq = nir_feq(b, x, y); |
| nir_def *conddir = nir_flt(b, x, y); |
| nir_def *condzero = nir_feq(b, x, zero); |
| |
| uint64_t sign_mask = 1ull << (x->bit_size - 1); |
| uint64_t min_abs = 1; |
| |
| if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) { |
| switch (x->bit_size) { |
| case 16: |
| min_abs = 1 << 10; |
| break; |
| case 32: |
| min_abs = 1 << 23; |
| break; |
| case 64: |
| min_abs = 1ULL << 52; |
| break; |
| } |
| |
| /* Flush denorm to zero to avoid returning a denorm when condeq is true. */ |
| x = nir_fmul_imm(b, x, 1.0); |
| } |
| |
| /* beware of: +/-0.0 - 1 == NaN */ |
| nir_def *xn = |
| nir_bcsel(b, |
| condzero, |
| nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size), |
| nir_isub(b, x, one)); |
| |
| /* beware of -0.0 + 1 == -0x1p-149 */ |
| nir_def *xp = nir_bcsel(b, condzero, |
| nir_imm_intN_t(b, min_abs, x->bit_size), |
| nir_iadd(b, x, one)); |
| |
| /* nextafter can be implemented by just +/- 1 on the int value */ |
| nir_def *res = |
| nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn); |
| |
| return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res)); |
| } |
| |
| nir_def * |
| nir_normalize(nir_builder *b, nir_def *vec) |
| { |
| if (vec->num_components == 1) |
| return nir_fsign(b, vec); |
| |
| nir_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size); |
| nir_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size); |
| nir_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size); |
| |
| /* scale the input to increase precision */ |
| nir_def *maxc = nir_fmax_abs_vec_comp(b, vec); |
| nir_def *svec = nir_fdiv(b, vec, maxc); |
| /* for inf */ |
| nir_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1); |
| |
| nir_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec); |
| nir_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp))); |
| |
| return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res); |
| } |
| |
| nir_def * |
| nir_smoothstep(nir_builder *b, nir_def *edge0, nir_def *edge1, nir_def *x) |
| { |
| nir_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size); |
| nir_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size); |
| |
| /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */ |
| nir_def *t = |
| nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0), |
| nir_fsub(b, edge1, edge0))); |
| |
| /* result = t * t * (3 - 2 * t) */ |
| return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t))); |
| } |
| |
| nir_def * |
| nir_upsample(nir_builder *b, nir_def *hi, nir_def *lo) |
| { |
| assert(lo->num_components == hi->num_components); |
| assert(lo->bit_size == hi->bit_size); |
| |
| nir_def *res[NIR_MAX_VEC_COMPONENTS]; |
| for (unsigned i = 0; i < lo->num_components; ++i) { |
| nir_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i)); |
| res[i] = nir_pack_bits(b, vec, vec->bit_size * 2); |
| } |
| |
| return nir_vec(b, res, lo->num_components); |
| } |
| |
| nir_def * |
| nir_atan(nir_builder *b, nir_def *y_over_x) |
| { |
| const uint32_t bit_size = y_over_x->bit_size; |
| |
| nir_def *abs_y_over_x = nir_fabs(b, y_over_x); |
| |
| /* |
| * range-reduction, first step: |
| * |
| * / y_over_x if |y_over_x| <= 1.0; |
| * u = < |
| * \ 1.0 / y_over_x otherwise |
| * |
| * x = |u| for the corrected sign. |
| */ |
| nir_def *le_1 = nir_fle_imm(b, abs_y_over_x, 1.0); |
| nir_def *u = nir_bcsel(b, le_1, y_over_x, nir_frcp(b, y_over_x)); |
| |
| /* |
| * approximate atan by evaluating polynomial using Horner's method: |
| * |
| * x * 0.9999793128310355 - x^3 * 0.3326756418091246 + |
| * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 + |
| * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444 |
| */ |
| float coeffs[] = { |
| -0.0121323213173444f, 0.0536813784310406f, |
| -0.1173503194786851f, 0.1938924977115610f, |
| -0.3326756418091246f, 0.9999793128310355f |
| }; |
| |
| nir_def *x_2 = nir_fmul(b, u, u); |
| nir_def *res = nir_imm_floatN_t(b, coeffs[0], bit_size); |
| |
| for (unsigned i = 1; i < ARRAY_SIZE(coeffs); ++i) { |
| res = nir_ffma_imm2(b, res, x_2, coeffs[i]); |
| } |
| |
| /* range-reduction fixup value */ |
| nir_def *bias = nir_bcsel(b, le_1, nir_imm_floatN_t(b, 0, bit_size), |
| nir_imm_floatN_t(b, -M_PI_2, bit_size)); |
| |
| /* multiply through by x while fixing up the range reduction */ |
| nir_def *tmp = nir_ffma(b, nir_fabs(b, u), res, bias); |
| |
| /* sign fixup */ |
| return nir_copysign(b, tmp, y_over_x); |
| } |
| |
| nir_def * |
| nir_atan2(nir_builder *b, nir_def *y, nir_def *x) |
| { |
| assert(y->bit_size == x->bit_size); |
| const uint32_t bit_size = x->bit_size; |
| |
| nir_def *zero = nir_imm_floatN_t(b, 0, bit_size); |
| nir_def *one = nir_imm_floatN_t(b, 1, bit_size); |
| |
| /* If we're on the left half-plane rotate the coordinates π/2 clock-wise |
| * for the y=0 discontinuity to end up aligned with the vertical |
| * discontinuity of atan(s/t) along t=0. This also makes sure that we |
| * don't attempt to divide by zero along the vertical line, which may give |
| * unspecified results on non-GLSL 4.1-capable hardware. |
| */ |
| nir_def *flip = nir_fge(b, zero, x); |
| nir_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y); |
| nir_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x)); |
| |
| /* If the magnitude of the denominator exceeds some huge value, scale down |
| * the arguments in order to prevent the reciprocal operation from flushing |
| * its result to zero, which would cause precision problems, and for s |
| * infinite would cause us to return a NaN instead of the correct finite |
| * value. |
| * |
| * If fmin and fmax are respectively the smallest and largest positive |
| * normalized floating point values representable by the implementation, |
| * the constants below should be in agreement with: |
| * |
| * huge <= 1 / fmin |
| * scale <= 1 / fmin / fmax (for |t| >= huge) |
| * |
| * In addition scale should be a negative power of two in order to avoid |
| * loss of precision. The values chosen below should work for most usual |
| * floating point representations with at least the dynamic range of ATI's |
| * 24-bit representation. |
| */ |
| const double huge_val = bit_size >= 32 ? 1e18 : 16384; |
| nir_def *scale = nir_bcsel(b, nir_fge_imm(b, nir_fabs(b, t), huge_val), |
| nir_imm_floatN_t(b, 0.25, bit_size), one); |
| nir_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale)); |
| nir_def *abs_s_over_t = nir_fmul(b, nir_fabs(b, nir_fmul(b, s, scale)), |
| nir_fabs(b, rcp_scaled_t)); |
| |
| /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily |
| * that ∞/∞ = 1) in order to comply with the rather artificial rules |
| * inherited from IEEE 754-2008, namely: |
| * |
| * "atan2(±∞, −∞) is ±3π/4 |
| * atan2(±∞, +∞) is ±π/4" |
| * |
| * Note that this is inconsistent with the rules for the neighborhood of |
| * zero that are based on iterated limits: |
| * |
| * "atan2(±0, −0) is ±π |
| * atan2(±0, +0) is ±0" |
| * |
| * but GLSL specifically allows implementations to deviate from IEEE rules |
| * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as |
| * well). |
| */ |
| nir_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)), |
| one, abs_s_over_t); |
| |
| /* Calculate the arctangent and fix up the result if we had flipped the |
| * coordinate system. |
| */ |
| nir_def *arc = |
| nir_ffma_imm1(b, nir_b2fN(b, flip, bit_size), M_PI_2, nir_atan(b, tan)); |
| |
| /* Rather convoluted calculation of the sign of the result. When x < 0 we |
| * cannot use fsign because we need to be able to distinguish between |
| * negative and positive zero. We don't use bitwise arithmetic tricks for |
| * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will |
| * always be non-negative so this won't be able to distinguish between |
| * negative and positive zero, but we don't care because atan2 is |
| * continuous along the whole positive y = 0 half-line, so it won't affect |
| * the result significantly. |
| */ |
| return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero), |
| nir_fneg(b, arc), arc); |
| } |
| |
| nir_def * |
| nir_build_texture_query(nir_builder *b, nir_tex_instr *tex, nir_texop texop, |
| unsigned components, nir_alu_type dest_type, |
| bool include_coord, bool include_lod) |
| { |
| nir_tex_instr *query; |
| |
| unsigned num_srcs = include_lod ? 1 : 0; |
| for (unsigned i = 0; i < tex->num_srcs; i++) { |
| if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) || |
| tex->src[i].src_type == nir_tex_src_texture_deref || |
| tex->src[i].src_type == nir_tex_src_sampler_deref || |
| tex->src[i].src_type == nir_tex_src_texture_offset || |
| tex->src[i].src_type == nir_tex_src_sampler_offset || |
| tex->src[i].src_type == nir_tex_src_texture_handle || |
| tex->src[i].src_type == nir_tex_src_sampler_handle) |
| num_srcs++; |
| } |
| |
| query = nir_tex_instr_create(b->shader, num_srcs); |
| query->op = texop; |
| query->sampler_dim = tex->sampler_dim; |
| query->is_array = tex->is_array; |
| query->is_shadow = tex->is_shadow; |
| query->is_new_style_shadow = tex->is_new_style_shadow; |
| query->texture_index = tex->texture_index; |
| query->sampler_index = tex->sampler_index; |
| query->dest_type = dest_type; |
| |
| if (include_coord) { |
| query->coord_components = tex->coord_components; |
| } |
| |
| unsigned idx = 0; |
| for (unsigned i = 0; i < tex->num_srcs; i++) { |
| if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) || |
| tex->src[i].src_type == nir_tex_src_texture_deref || |
| tex->src[i].src_type == nir_tex_src_sampler_deref || |
| tex->src[i].src_type == nir_tex_src_texture_offset || |
| tex->src[i].src_type == nir_tex_src_sampler_offset || |
| tex->src[i].src_type == nir_tex_src_texture_handle || |
| tex->src[i].src_type == nir_tex_src_sampler_handle) { |
| query->src[idx].src = nir_src_for_ssa(tex->src[i].src.ssa); |
| query->src[idx].src_type = tex->src[i].src_type; |
| idx++; |
| } |
| } |
| |
| /* Add in an LOD because some back-ends require it */ |
| if (include_lod) { |
| query->src[idx] = nir_tex_src_for_ssa(nir_tex_src_lod, nir_imm_int(b, 0)); |
| } |
| |
| nir_def_init(&query->instr, &query->def, nir_tex_instr_dest_size(query), |
| nir_alu_type_get_type_size(dest_type)); |
| |
| nir_builder_instr_insert(b, &query->instr); |
| return &query->def; |
| } |
| |
| nir_def * |
| nir_get_texture_size(nir_builder *b, nir_tex_instr *tex) |
| { |
| b->cursor = nir_before_instr(&tex->instr); |
| |
| return nir_build_texture_query(b, tex, nir_texop_txs, |
| nir_tex_instr_dest_size(tex), |
| nir_type_int32, false, true); |
| } |
| |
| nir_def * |
| nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex) |
| { |
| b->cursor = nir_before_instr(&tex->instr); |
| |
| nir_def *tql = nir_build_texture_query(b, tex, nir_texop_lod, 2, |
| nir_type_float32, true, false); |
| |
| /* The LOD is the y component of the result */ |
| return nir_channel(b, tql, 1); |
| } |