| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "nir.h" |
| #include "nir_builder.h" |
| #include "nir_builder_opcodes.h" |
| #include "nir_vla.h" |
| |
| /* |
| * This file implements an out-of-SSA pass as described in "Revisiting |
| * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by |
| * Boissinot et al. |
| */ |
| |
| struct from_ssa_state { |
| nir_builder builder; |
| void *dead_ctx; |
| struct exec_list dead_instrs; |
| bool phi_webs_only; |
| struct hash_table *merge_node_table; |
| nir_instr *instr; |
| bool progress; |
| }; |
| |
| /* Returns if def @a comes after def @b. |
| * |
| * The core observation that makes the Boissinot algorithm efficient |
| * is that, given two properly sorted sets, we can check for |
| * interference in these sets via a linear walk. This is accomplished |
| * by doing single combined walk over union of the two sets in DFS |
| * order. It doesn't matter what DFS we do so long as we're |
| * consistent. Fortunately, the dominance algorithm we ran prior to |
| * this pass did such a walk and recorded the pre- and post-indices in |
| * the blocks. |
| * |
| * We treat SSA undefs as always coming before other instruction types. |
| */ |
| static bool |
| def_after(nir_def *a, nir_def *b) |
| { |
| if (a->parent_instr->type == nir_instr_type_undef) |
| return false; |
| |
| if (b->parent_instr->type == nir_instr_type_undef) |
| return true; |
| |
| /* If they're in the same block, we can rely on whichever instruction |
| * comes first in the block. |
| */ |
| if (a->parent_instr->block == b->parent_instr->block) |
| return a->parent_instr->index > b->parent_instr->index; |
| |
| /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */ |
| return a->parent_instr->block->dom_pre_index > |
| b->parent_instr->block->dom_pre_index; |
| } |
| |
| /* Returns true if a dominates b */ |
| static bool |
| ssa_def_dominates(nir_def *a, nir_def *b) |
| { |
| if (a->parent_instr->type == nir_instr_type_undef) { |
| /* SSA undefs always dominate */ |
| return true; |
| } |
| if (def_after(a, b)) { |
| return false; |
| } else if (a->parent_instr->block == b->parent_instr->block) { |
| return def_after(b, a); |
| } else { |
| return nir_block_dominates(a->parent_instr->block, |
| b->parent_instr->block); |
| } |
| } |
| |
| /* The following data structure, which I have named merge_set is a way of |
| * representing a set registers of non-interfering registers. This is |
| * based on the concept of a "dominance forest" presented in "Fast Copy |
| * Coalescing and Live-Range Identification" by Budimlic et al. but the |
| * implementation concept is taken from "Revisiting Out-of-SSA Translation |
| * for Correctness, Code Quality, and Efficiency" by Boissinot et al. |
| * |
| * Each SSA definition is associated with a merge_node and the association |
| * is represented by a combination of a hash table and the "def" parameter |
| * in the merge_node structure. The merge_set stores a linked list of |
| * merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since |
| * the liveness analysis pass indexes the SSA values in dominance order for |
| * us, this is an easy thing to keep up.) It is assumed that no pair of the |
| * nodes in a given set interfere. Merging two sets or checking for |
| * interference can be done in a single linear-time merge-sort walk of the |
| * two lists of nodes. |
| */ |
| struct merge_set; |
| |
| typedef struct { |
| struct exec_node node; |
| struct merge_set *set; |
| nir_def *def; |
| } merge_node; |
| |
| typedef struct merge_set { |
| struct exec_list nodes; |
| unsigned size; |
| bool divergent; |
| nir_def *reg_decl; |
| } merge_set; |
| |
| #if 0 |
| static void |
| merge_set_dump(merge_set *set, FILE *fp) |
| { |
| NIR_VLA(nir_def *, dom, set->size); |
| int dom_idx = -1; |
| |
| foreach_list_typed(merge_node, node, node, &set->nodes) { |
| while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) |
| dom_idx--; |
| |
| for (int i = 0; i <= dom_idx; i++) |
| fprintf(fp, " "); |
| |
| fprintf(fp, "ssa_%d\n", node->def->index); |
| |
| dom[++dom_idx] = node->def; |
| } |
| } |
| #endif |
| |
| static merge_node * |
| get_merge_node(nir_def *def, struct from_ssa_state *state) |
| { |
| struct hash_entry *entry = |
| _mesa_hash_table_search(state->merge_node_table, def); |
| if (entry) |
| return entry->data; |
| |
| merge_set *set = rzalloc(state->dead_ctx, merge_set); |
| exec_list_make_empty(&set->nodes); |
| set->size = 1; |
| set->divergent = def->divergent; |
| |
| merge_node *node = ralloc(state->dead_ctx, merge_node); |
| node->set = set; |
| node->def = def; |
| exec_list_push_head(&set->nodes, &node->node); |
| |
| _mesa_hash_table_insert(state->merge_node_table, def, node); |
| |
| return node; |
| } |
| |
| static bool |
| merge_nodes_interfere(merge_node *a, merge_node *b) |
| { |
| /* There's no need to check for interference within the same set, |
| * because we assume, that sets themselves are already |
| * interference-free. |
| */ |
| if (a->set == b->set) |
| return false; |
| |
| return nir_defs_interfere(a->def, b->def); |
| } |
| |
| /* Merges b into a |
| * |
| * This algorithm uses def_after to ensure that the sets always stay in the |
| * same order as the pre-order DFS done by the liveness algorithm. |
| */ |
| static merge_set * |
| merge_merge_sets(merge_set *a, merge_set *b) |
| { |
| struct exec_node *an = exec_list_get_head(&a->nodes); |
| struct exec_node *bn = exec_list_get_head(&b->nodes); |
| while (!exec_node_is_tail_sentinel(bn)) { |
| merge_node *a_node = exec_node_data(merge_node, an, node); |
| merge_node *b_node = exec_node_data(merge_node, bn, node); |
| |
| if (exec_node_is_tail_sentinel(an) || |
| def_after(a_node->def, b_node->def)) { |
| struct exec_node *next = bn->next; |
| exec_node_remove(bn); |
| exec_node_insert_node_before(an, bn); |
| exec_node_data(merge_node, bn, node)->set = a; |
| bn = next; |
| } else { |
| an = an->next; |
| } |
| } |
| |
| a->size += b->size; |
| b->size = 0; |
| a->divergent |= b->divergent; |
| |
| return a; |
| } |
| |
| /* Checks for any interference between two merge sets |
| * |
| * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA |
| * Translation for Correctness, Code Quality, and Efficiency" by |
| * Boissinot et al. |
| */ |
| static bool |
| merge_sets_interfere(merge_set *a, merge_set *b) |
| { |
| /* List of all the nodes which dominate the current node, in dominance |
| * order. |
| */ |
| NIR_VLA(merge_node *, dom, a->size + b->size); |
| int dom_idx = -1; |
| |
| struct exec_node *an = exec_list_get_head(&a->nodes); |
| struct exec_node *bn = exec_list_get_head(&b->nodes); |
| while (!exec_node_is_tail_sentinel(an) || |
| !exec_node_is_tail_sentinel(bn)) { |
| |
| /* We walk the union of the two sets in the same order as the pre-order |
| * DFS done by liveness analysis. |
| */ |
| merge_node *current; |
| if (exec_node_is_tail_sentinel(an)) { |
| current = exec_node_data(merge_node, bn, node); |
| bn = bn->next; |
| } else if (exec_node_is_tail_sentinel(bn)) { |
| current = exec_node_data(merge_node, an, node); |
| an = an->next; |
| } else { |
| merge_node *a_node = exec_node_data(merge_node, an, node); |
| merge_node *b_node = exec_node_data(merge_node, bn, node); |
| |
| if (def_after(b_node->def, a_node->def)) { |
| current = a_node; |
| an = an->next; |
| } else { |
| current = b_node; |
| bn = bn->next; |
| } |
| } |
| |
| /* Because our walk is a pre-order DFS, we can maintain the list of |
| * dominating nodes as a simple stack, pushing every node onto the list |
| * after we visit it and popping any non-dominating nodes off before we |
| * visit the current node. |
| */ |
| while (dom_idx >= 0 && |
| !ssa_def_dominates(dom[dom_idx]->def, current->def)) |
| dom_idx--; |
| |
| /* There are three invariants of this algorithm that are important here: |
| * |
| * 1. There is no interference within either set a or set b. |
| * 2. None of the nodes processed up until this point interfere. |
| * 3. All the dominators of `current` have been processed |
| * |
| * Because of these invariants, we only need to check the current node |
| * against its minimal dominator. If any other node N in the union |
| * interferes with current, then N must dominate current because we are |
| * in SSA form. If N dominates current then it must also dominate our |
| * minimal dominator dom[dom_idx]. Since N is live at current it must |
| * also be live at the minimal dominator which means N interferes with |
| * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above, |
| * the algorithm would have already terminated. Therefore, if we got |
| * here, the only node that can possibly interfere with current is the |
| * minimal dominator dom[dom_idx]. |
| * |
| * This is what allows us to do a interference check of the union of the |
| * two sets with a single linear-time walk. |
| */ |
| if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) |
| return true; |
| |
| dom[++dom_idx] = current; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx) |
| { |
| bool need_end_copy = false; |
| if (block->successors[0]) { |
| nir_instr *instr = nir_block_first_instr(block->successors[0]); |
| if (instr && instr->type == nir_instr_type_phi) |
| need_end_copy = true; |
| } |
| |
| if (block->successors[1]) { |
| nir_instr *instr = nir_block_first_instr(block->successors[1]); |
| if (instr && instr->type == nir_instr_type_phi) |
| need_end_copy = true; |
| } |
| |
| if (need_end_copy) { |
| /* If one of our successors has at least one phi node, we need to |
| * create a parallel copy at the end of the block but before the jump |
| * (if there is one). |
| */ |
| nir_parallel_copy_instr *pcopy = |
| nir_parallel_copy_instr_create(shader); |
| |
| nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); |
| } |
| |
| return true; |
| } |
| |
| static nir_parallel_copy_instr * |
| get_parallel_copy_at_end_of_block(nir_block *block) |
| { |
| nir_instr *last_instr = nir_block_last_instr(block); |
| if (last_instr == NULL) |
| return NULL; |
| |
| /* The last instruction may be a jump in which case the parallel copy is |
| * right before it. |
| */ |
| if (last_instr->type == nir_instr_type_jump) |
| last_instr = nir_instr_prev(last_instr); |
| |
| if (last_instr && last_instr->type == nir_instr_type_parallel_copy) |
| return nir_instr_as_parallel_copy(last_instr); |
| else |
| return NULL; |
| } |
| |
| /** Isolate phi nodes with parallel copies |
| * |
| * In order to solve the dependency problems with the sources and |
| * destinations of phi nodes, we first isolate them by adding parallel |
| * copies to the beginnings and ends of basic blocks. For every block with |
| * phi nodes, we add a parallel copy immediately following the last phi |
| * node that copies the destinations of all of the phi nodes to new SSA |
| * values. We also add a parallel copy to the end of every block that has |
| * a successor with phi nodes that, for each phi node in each successor, |
| * copies the corresponding sorce of the phi node and adjust the phi to |
| * used the destination of the parallel copy. |
| * |
| * In SSA form, each value has exactly one definition. What this does is |
| * ensure that each value used in a phi also has exactly one use. The |
| * destinations of phis are only used by the parallel copy immediately |
| * following the phi nodes and. Thanks to the parallel copy at the end of |
| * the predecessor block, the sources of phi nodes are are the only use of |
| * that value. This allows us to immediately assign all the sources and |
| * destinations of any given phi node to the same register without worrying |
| * about interference at all. We do coalescing to get rid of the parallel |
| * copies where possible. |
| * |
| * Before this pass can be run, we have to iterate over the blocks with |
| * add_parallel_copy_to_end_of_block to ensure that the parallel copies at |
| * the ends of blocks exist. We can create the ones at the beginnings as |
| * we go, but the ones at the ends of blocks need to be created ahead of |
| * time because of potential back-edges in the CFG. |
| */ |
| static bool |
| isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx) |
| { |
| /* If we don't have any phis, then there's nothing for us to do. */ |
| nir_phi_instr *last_phi = nir_block_last_phi_instr(block); |
| if (last_phi == NULL) |
| return true; |
| |
| /* If we have phi nodes, we need to create a parallel copy at the |
| * start of this block but after the phi nodes. |
| */ |
| nir_parallel_copy_instr *block_pcopy = |
| nir_parallel_copy_instr_create(shader); |
| nir_instr_insert_after(&last_phi->instr, &block_pcopy->instr); |
| |
| nir_foreach_phi(phi, block) { |
| nir_foreach_phi_src(src, phi) { |
| if (nir_src_is_undef(src->src)) |
| continue; |
| |
| nir_parallel_copy_instr *pcopy = |
| get_parallel_copy_at_end_of_block(src->pred); |
| assert(pcopy); |
| |
| nir_parallel_copy_entry *entry = rzalloc(dead_ctx, |
| nir_parallel_copy_entry); |
| |
| entry->dest_is_reg = false; |
| nir_def_init(&pcopy->instr, &entry->dest.def, |
| phi->def.num_components, phi->def.bit_size); |
| entry->dest.def.divergent = nir_src_is_divergent(&src->src); |
| |
| /* We're adding a source to a live instruction so we need to use |
| * nir_instr_init_src() |
| */ |
| entry->src_is_reg = false; |
| nir_instr_init_src(&pcopy->instr, &entry->src, src->src.ssa); |
| |
| exec_list_push_tail(&pcopy->entries, &entry->node); |
| |
| nir_src_rewrite(&src->src, &entry->dest.def); |
| } |
| |
| nir_parallel_copy_entry *entry = rzalloc(dead_ctx, |
| nir_parallel_copy_entry); |
| |
| entry->dest_is_reg = false; |
| nir_def_init(&block_pcopy->instr, &entry->dest.def, |
| phi->def.num_components, phi->def.bit_size); |
| entry->dest.def.divergent = phi->def.divergent; |
| |
| nir_def_rewrite_uses(&phi->def, &entry->dest.def); |
| |
| /* We're adding a source to a live instruction so we need to use |
| * nir_instr_init_src(). |
| * |
| * Note that we do this after we've rewritten all uses of the phi to |
| * entry->def, ensuring that entry->src will be the only remaining use |
| * of the phi. |
| */ |
| entry->src_is_reg = false; |
| nir_instr_init_src(&block_pcopy->instr, &entry->src, &phi->def); |
| |
| exec_list_push_tail(&block_pcopy->entries, &entry->node); |
| } |
| |
| return true; |
| } |
| |
| static bool |
| coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) |
| { |
| nir_foreach_phi(phi, block) { |
| merge_node *dest_node = get_merge_node(&phi->def, state); |
| |
| nir_foreach_phi_src(src, phi) { |
| if (nir_src_is_undef(src->src)) |
| continue; |
| |
| merge_node *src_node = get_merge_node(src->src.ssa, state); |
| if (src_node->set != dest_node->set) |
| merge_merge_sets(dest_node->set, src_node->set); |
| } |
| } |
| |
| return true; |
| } |
| |
| static void |
| aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, |
| struct from_ssa_state *state) |
| { |
| nir_foreach_parallel_copy_entry(entry, pcopy) { |
| assert(!entry->src_is_reg); |
| assert(!entry->dest_is_reg); |
| assert(entry->dest.def.num_components == |
| entry->src.ssa->num_components); |
| |
| /* Since load_const instructions are SSA only, we can't replace their |
| * destinations with registers and, therefore, can't coalesce them. |
| */ |
| if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) |
| continue; |
| |
| merge_node *src_node = get_merge_node(entry->src.ssa, state); |
| merge_node *dest_node = get_merge_node(&entry->dest.def, state); |
| |
| if (src_node->set == dest_node->set) |
| continue; |
| |
| /* TODO: We can probably do better here but for now we should be safe if |
| * we just don't coalesce things with different divergence. |
| */ |
| if (dest_node->set->divergent != src_node->set->divergent) |
| continue; |
| |
| if (!merge_sets_interfere(src_node->set, dest_node->set)) |
| merge_merge_sets(src_node->set, dest_node->set); |
| } |
| } |
| |
| static bool |
| aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) |
| { |
| nir_parallel_copy_instr *start_pcopy = NULL; |
| nir_foreach_instr(instr, block) { |
| /* Phi nodes only ever come at the start of a block */ |
| if (instr->type != nir_instr_type_phi) { |
| if (instr->type != nir_instr_type_parallel_copy) |
| break; /* The parallel copy must be right after the phis */ |
| |
| start_pcopy = nir_instr_as_parallel_copy(instr); |
| |
| aggressive_coalesce_parallel_copy(start_pcopy, state); |
| |
| break; |
| } |
| } |
| |
| nir_parallel_copy_instr *end_pcopy = |
| get_parallel_copy_at_end_of_block(block); |
| |
| if (end_pcopy && end_pcopy != start_pcopy) |
| aggressive_coalesce_parallel_copy(end_pcopy, state); |
| |
| return true; |
| } |
| |
| static nir_def * |
| decl_reg_for_ssa_def(nir_builder *b, nir_def *def) |
| { |
| return nir_decl_reg(b, def->num_components, def->bit_size, 0); |
| } |
| |
| static void |
| set_reg_divergent(nir_def *reg, bool divergent) |
| { |
| nir_intrinsic_instr *decl = nir_reg_get_decl(reg); |
| nir_intrinsic_set_divergent(decl, divergent); |
| } |
| |
| void |
| nir_rewrite_uses_to_load_reg(nir_builder *b, nir_def *old, |
| nir_def *reg) |
| { |
| nir_foreach_use_including_if_safe(use, old) { |
| b->cursor = nir_before_src(use); |
| |
| /* If this is a parallel copy, it can just take the register directly */ |
| if (!nir_src_is_if(use) && |
| nir_src_parent_instr(use)->type == nir_instr_type_parallel_copy) { |
| |
| nir_parallel_copy_entry *copy_entry = |
| list_entry(use, nir_parallel_copy_entry, src); |
| |
| assert(!copy_entry->src_is_reg); |
| copy_entry->src_is_reg = true; |
| nir_src_rewrite(©_entry->src, reg); |
| continue; |
| } |
| |
| /* If the immediate preceding instruction is a load_reg from the same |
| * register, use it instead of creating a new load_reg. This helps when |
| * a register is referenced in multiple sources in the same instruction, |
| * which otherwise would turn into piles of unnecessary moves. |
| */ |
| nir_def *load = NULL; |
| if (b->cursor.option == nir_cursor_before_instr) { |
| nir_instr *prev = nir_instr_prev(b->cursor.instr); |
| |
| if (prev != NULL && prev->type == nir_instr_type_intrinsic) { |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(prev); |
| if (intr->intrinsic == nir_intrinsic_load_reg && |
| intr->src[0].ssa == reg && |
| nir_intrinsic_base(intr) == 0) |
| load = &intr->def; |
| } |
| } |
| |
| if (load == NULL) |
| load = nir_load_reg(b, reg); |
| |
| nir_src_rewrite(use, load); |
| } |
| } |
| |
| static bool |
| def_replace_with_reg(nir_def *def, nir_function_impl *impl) |
| { |
| /* These are handled elsewhere */ |
| assert(def->parent_instr->type != nir_instr_type_undef && |
| def->parent_instr->type != nir_instr_type_load_const); |
| |
| nir_builder b = nir_builder_create(impl); |
| |
| nir_def *reg = decl_reg_for_ssa_def(&b, def); |
| nir_rewrite_uses_to_load_reg(&b, def, reg); |
| |
| if (def->parent_instr->type == nir_instr_type_phi) |
| b.cursor = nir_before_block_after_phis(def->parent_instr->block); |
| else |
| b.cursor = nir_after_instr(def->parent_instr); |
| |
| nir_store_reg(&b, def, reg); |
| return true; |
| } |
| |
| static nir_def * |
| reg_for_ssa_def(nir_def *def, struct from_ssa_state *state) |
| { |
| struct hash_entry *entry = |
| _mesa_hash_table_search(state->merge_node_table, def); |
| if (entry) { |
| /* In this case, we're part of a phi web. Use the web's register. */ |
| merge_node *node = (merge_node *)entry->data; |
| |
| /* If it doesn't have a register yet, create one. Note that all of |
| * the things in the merge set should be the same so it doesn't |
| * matter which node's definition we use. |
| */ |
| if (node->set->reg_decl == NULL) { |
| node->set->reg_decl = decl_reg_for_ssa_def(&state->builder, def); |
| set_reg_divergent(node->set->reg_decl, node->set->divergent); |
| } |
| |
| return node->set->reg_decl; |
| } else { |
| assert(state->phi_webs_only); |
| return NULL; |
| } |
| } |
| |
| static void |
| remove_no_op_phi(nir_instr *instr, struct from_ssa_state *state) |
| { |
| #ifndef NDEBUG |
| nir_phi_instr *phi = nir_instr_as_phi(instr); |
| |
| struct hash_entry *entry = |
| _mesa_hash_table_search(state->merge_node_table, &phi->def); |
| assert(entry != NULL); |
| merge_node *node = (merge_node *)entry->data; |
| |
| nir_foreach_phi_src(src, phi) { |
| if (nir_src_is_undef(src->src)) |
| continue; |
| |
| entry = _mesa_hash_table_search(state->merge_node_table, src->src.ssa); |
| assert(entry != NULL); |
| merge_node *src_node = (merge_node *)entry->data; |
| assert(src_node->set == node->set); |
| } |
| #endif |
| |
| nir_instr_remove(instr); |
| } |
| |
| static bool |
| rewrite_ssa_def(nir_def *def, void *void_state) |
| { |
| struct from_ssa_state *state = void_state; |
| |
| nir_def *reg = reg_for_ssa_def(def, state); |
| if (reg == NULL) |
| return true; |
| |
| assert(nir_def_is_unused(def)); |
| |
| /* At this point we know a priori that this SSA def is part of a |
| * nir_dest. We can use exec_node_data to get the dest pointer. |
| */ |
| assert(def->parent_instr->type != nir_instr_type_load_const); |
| nir_store_reg(&state->builder, def, reg); |
| |
| state->progress = true; |
| return true; |
| } |
| |
| static bool |
| rewrite_src(nir_src *src, void *void_state) |
| { |
| struct from_ssa_state *state = void_state; |
| |
| nir_def *reg = reg_for_ssa_def(src->ssa, state); |
| if (reg == NULL) |
| return true; |
| |
| nir_src_rewrite(src, nir_load_reg(&state->builder, reg)); |
| |
| state->progress = true; |
| return true; |
| } |
| |
| /* Resolves ssa definitions to registers. While we're at it, we also |
| * remove phi nodes. |
| */ |
| static void |
| resolve_registers_impl(nir_function_impl *impl, struct from_ssa_state *state) |
| { |
| nir_foreach_block_reverse(block, impl) { |
| /* Remove successor phis in case there's a back edge. */ |
| for (unsigned i = 0; i < 2; i++) { |
| nir_block *succ = block->successors[i]; |
| if (succ == NULL) |
| continue; |
| |
| nir_foreach_instr_safe(instr, succ) { |
| if (instr->type != nir_instr_type_phi) |
| break; |
| |
| remove_no_op_phi(instr, state); |
| } |
| } |
| |
| /* The following if is right after the block, handle its condition as the |
| * last source "in" the block. |
| */ |
| nir_if *nif = nir_block_get_following_if(block); |
| if (nif) { |
| state->builder.cursor = nir_before_src(&nif->condition); |
| rewrite_src(&nif->condition, state); |
| } |
| |
| nir_foreach_instr_reverse_safe(instr, block) { |
| switch (instr->type) { |
| case nir_instr_type_phi: |
| remove_no_op_phi(instr, state); |
| break; |
| |
| case nir_instr_type_parallel_copy: { |
| nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); |
| |
| nir_foreach_parallel_copy_entry(entry, pcopy) { |
| assert(!entry->dest_is_reg); |
| |
| /* Parallel copy destinations will always be registers */ |
| nir_def *reg = reg_for_ssa_def(&entry->dest.def, state); |
| assert(reg != NULL); |
| |
| /* We're switching from the nir_def to the nir_src in the dest |
| * union so we need to use nir_instr_init_src() here. |
| */ |
| assert(nir_def_is_unused(&entry->dest.def)); |
| entry->dest_is_reg = true; |
| nir_instr_init_src(&pcopy->instr, &entry->dest.reg, reg); |
| } |
| |
| nir_foreach_parallel_copy_entry(entry, pcopy) { |
| assert(!entry->src_is_reg); |
| nir_def *reg = reg_for_ssa_def(entry->src.ssa, state); |
| if (reg == NULL) |
| continue; |
| |
| entry->src_is_reg = true; |
| nir_src_rewrite(&entry->src, reg); |
| } |
| break; |
| } |
| |
| default: |
| state->builder.cursor = nir_after_instr(instr); |
| nir_foreach_def(instr, rewrite_ssa_def, state); |
| state->builder.cursor = nir_before_instr(instr); |
| nir_foreach_src(instr, rewrite_src, state); |
| } |
| } |
| } |
| } |
| |
| /* Resolves a single parallel copy operation into a sequence of movs |
| * |
| * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for |
| * Correctness, Code Quality, and Efficiency" by Boissinot et al. |
| * However, I never got the algorithm to work as written, so this version |
| * is slightly modified. |
| * |
| * The algorithm works by playing this little shell game with the values. |
| * We start by recording where every source value is and which source value |
| * each destination value should receive. We then grab any copy whose |
| * destination is "empty", i.e. not used as a source, and do the following: |
| * - Find where its source value currently lives |
| * - Emit the move instruction |
| * - Set the location of the source value to the destination |
| * - Mark the location containing the source value |
| * - Mark the destination as no longer needing to be copied |
| * |
| * When we run out of "empty" destinations, we have a cycle and so we |
| * create a temporary register, copy to that register, and mark the value |
| * we copied as living in that temporary. Now, the cycle is broken, so we |
| * can continue with the above steps. |
| */ |
| struct copy_value { |
| bool is_reg; |
| nir_def *ssa; |
| }; |
| |
| static bool |
| copy_values_equal(struct copy_value a, struct copy_value b) |
| { |
| return a.is_reg == b.is_reg && a.ssa == b.ssa; |
| } |
| |
| static bool |
| copy_value_is_divergent(struct copy_value v) |
| { |
| if (!v.is_reg) |
| return v.ssa->divergent; |
| |
| nir_intrinsic_instr *decl = nir_reg_get_decl(v.ssa); |
| return nir_intrinsic_divergent(decl); |
| } |
| |
| static void |
| copy_values(nir_builder *b, struct copy_value dest, struct copy_value src) |
| { |
| nir_def *val = src.is_reg ? nir_load_reg(b, src.ssa) : src.ssa; |
| |
| assert(!copy_value_is_divergent(src) || copy_value_is_divergent(dest)); |
| |
| assert(dest.is_reg); |
| nir_store_reg(b, val, dest.ssa); |
| } |
| |
| static void |
| resolve_parallel_copy(nir_parallel_copy_instr *pcopy, |
| struct from_ssa_state *state) |
| { |
| unsigned num_copies = 0; |
| nir_foreach_parallel_copy_entry(entry, pcopy) { |
| /* Sources may be SSA but destinations are always registers */ |
| assert(entry->dest_is_reg); |
| if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa) |
| continue; |
| |
| num_copies++; |
| } |
| |
| if (num_copies == 0) { |
| /* Hooray, we don't need any copies! */ |
| nir_instr_remove(&pcopy->instr); |
| exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); |
| return; |
| } |
| |
| /* The register/source corresponding to the given index */ |
| NIR_VLA_ZERO(struct copy_value, values, num_copies * 2); |
| |
| /* The current location of a given piece of data. We will use -1 for "null" */ |
| NIR_VLA_FILL(int, loc, num_copies * 2, -1); |
| |
| /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ |
| NIR_VLA_FILL(int, pred, num_copies * 2, -1); |
| |
| /* The destinations we have yet to properly fill */ |
| NIR_VLA(int, to_do, num_copies * 2); |
| int to_do_idx = -1; |
| |
| state->builder.cursor = nir_before_instr(&pcopy->instr); |
| |
| /* Now we set everything up: |
| * - All values get assigned a temporary index |
| * - Current locations are set from sources |
| * - Predecessors are recorded from sources and destinations |
| */ |
| int num_vals = 0; |
| nir_foreach_parallel_copy_entry(entry, pcopy) { |
| /* Sources may be SSA but destinations are always registers */ |
| if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa) |
| continue; |
| |
| struct copy_value src_value = { |
| .is_reg = entry->src_is_reg, |
| .ssa = entry->src.ssa, |
| }; |
| |
| int src_idx = -1; |
| for (int i = 0; i < num_vals; ++i) { |
| if (copy_values_equal(values[i], src_value)) |
| src_idx = i; |
| } |
| if (src_idx < 0) { |
| src_idx = num_vals++; |
| values[src_idx] = src_value; |
| } |
| |
| assert(entry->dest_is_reg); |
| struct copy_value dest_value = { |
| .is_reg = true, |
| .ssa = entry->dest.reg.ssa, |
| }; |
| |
| int dest_idx = -1; |
| for (int i = 0; i < num_vals; ++i) { |
| if (copy_values_equal(values[i], dest_value)) { |
| /* Each destination of a parallel copy instruction should be |
| * unique. A destination may get used as a source, so we still |
| * have to walk the list. However, the predecessor should not, |
| * at this point, be set yet, so we should have -1 here. |
| */ |
| assert(pred[i] == -1); |
| dest_idx = i; |
| } |
| } |
| if (dest_idx < 0) { |
| dest_idx = num_vals++; |
| values[dest_idx] = dest_value; |
| } |
| |
| loc[src_idx] = src_idx; |
| pred[dest_idx] = src_idx; |
| |
| to_do[++to_do_idx] = dest_idx; |
| } |
| |
| /* Currently empty destinations we can go ahead and fill */ |
| NIR_VLA(int, ready, num_copies * 2); |
| int ready_idx = -1; |
| |
| /* Mark the ones that are ready for copying. We know an index is a |
| * destination if it has a predecessor and it's ready for copying if |
| * it's not marked as containing data. |
| */ |
| for (int i = 0; i < num_vals; i++) { |
| if (pred[i] != -1 && loc[i] == -1) |
| ready[++ready_idx] = i; |
| } |
| |
| while (1) { |
| while (ready_idx >= 0) { |
| int b = ready[ready_idx--]; |
| int a = pred[b]; |
| copy_values(&state->builder, values[b], values[loc[a]]); |
| |
| /* b has been filled, mark it as not needing to be copied */ |
| pred[b] = -1; |
| |
| /* The next bit only applies if the source and destination have the |
| * same divergence. If they differ (it must be convergent -> |
| * divergent), then we can't guarantee we won't need the convergent |
| * version of it again. |
| */ |
| if (copy_value_is_divergent(values[a]) == |
| copy_value_is_divergent(values[b])) { |
| /* If a needs to be filled... */ |
| if (pred[a] != -1) { |
| /* If any other copies want a they can find it at b */ |
| loc[a] = b; |
| |
| /* It's ready for copying now */ |
| ready[++ready_idx] = a; |
| } |
| } |
| } |
| |
| assert(ready_idx < 0); |
| if (to_do_idx < 0) |
| break; |
| |
| int b = to_do[to_do_idx--]; |
| if (pred[b] == -1) |
| continue; |
| |
| /* If we got here, then we don't have any more trivial copies that we |
| * can do. We have to break a cycle, so we create a new temporary |
| * register for that purpose. Normally, if going out of SSA after |
| * register allocation, you would want to avoid creating temporary |
| * registers. However, we are going out of SSA before register |
| * allocation, so we would rather not create extra register |
| * dependencies for the backend to deal with. If it wants, the |
| * backend can coalesce the (possibly multiple) temporaries. |
| * |
| * We can also get here in the case where there is no cycle but our |
| * source value is convergent, is also used as a destination by another |
| * element of the parallel copy, and all the destinations of the |
| * parallel copy which copy from it are divergent. In this case, the |
| * above loop cannot detect that the value has moved due to all the |
| * divergent destinations and we'll end up emitting a copy to a |
| * temporary which never gets used. We can avoid this with additional |
| * tracking or we can just trust the back-end to dead-code the unused |
| * temporary (which is trivial). |
| */ |
| assert(num_vals < num_copies * 2); |
| nir_def *reg; |
| if (values[b].is_reg) { |
| nir_intrinsic_instr *decl = nir_reg_get_decl(values[b].ssa); |
| uint8_t num_components = nir_intrinsic_num_components(decl); |
| uint8_t bit_size = nir_intrinsic_bit_size(decl); |
| reg = nir_decl_reg(&state->builder, num_components, bit_size, 0); |
| } else { |
| reg = decl_reg_for_ssa_def(&state->builder, values[b].ssa); |
| } |
| set_reg_divergent(reg, copy_value_is_divergent(values[b])); |
| |
| values[num_vals] = (struct copy_value){ |
| .is_reg = true, |
| .ssa = reg, |
| }; |
| copy_values(&state->builder, values[num_vals], values[b]); |
| loc[b] = num_vals; |
| ready[++ready_idx] = b; |
| num_vals++; |
| } |
| |
| nir_instr_remove(&pcopy->instr); |
| exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node); |
| } |
| |
| /* Resolves the parallel copies in a block. Each block can have at most |
| * two: One at the beginning, right after all the phi noces, and one at |
| * the end (or right before the final jump if it exists). |
| */ |
| static bool |
| resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) |
| { |
| /* At this point, we have removed all of the phi nodes. If a parallel |
| * copy existed right after the phi nodes in this block, it is now the |
| * first instruction. |
| */ |
| nir_instr *first_instr = nir_block_first_instr(block); |
| if (first_instr == NULL) |
| return true; /* Empty, nothing to do. */ |
| |
| /* There can be load_reg in the way of the copies... don't be clever. */ |
| nir_foreach_instr_safe(instr, block) { |
| if (instr->type == nir_instr_type_parallel_copy) { |
| nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); |
| |
| resolve_parallel_copy(pcopy, state); |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool |
| nir_convert_from_ssa_impl(nir_function_impl *impl, |
| bool phi_webs_only) |
| { |
| nir_shader *shader = impl->function->shader; |
| |
| struct from_ssa_state state; |
| |
| state.builder = nir_builder_create(impl); |
| state.dead_ctx = ralloc_context(NULL); |
| state.phi_webs_only = phi_webs_only; |
| state.merge_node_table = _mesa_pointer_hash_table_create(NULL); |
| state.progress = false; |
| exec_list_make_empty(&state.dead_instrs); |
| |
| nir_foreach_block(block, impl) { |
| add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx); |
| } |
| |
| nir_foreach_block(block, impl) { |
| isolate_phi_nodes_block(shader, block, state.dead_ctx); |
| } |
| |
| /* Mark metadata as dirty before we ask for liveness analysis */ |
| nir_metadata_preserve(impl, nir_metadata_control_flow); |
| |
| nir_metadata_require(impl, nir_metadata_instr_index | |
| nir_metadata_live_defs | |
| nir_metadata_dominance); |
| |
| nir_foreach_block(block, impl) { |
| coalesce_phi_nodes_block(block, &state); |
| } |
| |
| nir_foreach_block(block, impl) { |
| aggressive_coalesce_block(block, &state); |
| } |
| |
| resolve_registers_impl(impl, &state); |
| |
| nir_foreach_block(block, impl) { |
| resolve_parallel_copies_block(block, &state); |
| } |
| |
| nir_metadata_preserve(impl, nir_metadata_control_flow); |
| |
| /* Clean up dead instructions and the hash tables */ |
| nir_instr_free_list(&state.dead_instrs); |
| _mesa_hash_table_destroy(state.merge_node_table, NULL); |
| ralloc_free(state.dead_ctx); |
| return state.progress; |
| } |
| |
| bool |
| nir_convert_from_ssa(nir_shader *shader, |
| bool phi_webs_only) |
| { |
| bool progress = false; |
| |
| nir_foreach_function_impl(impl, shader) { |
| progress |= nir_convert_from_ssa_impl(impl, phi_webs_only); |
| } |
| |
| return progress; |
| } |
| |
| static void |
| place_phi_read(nir_builder *b, nir_def *reg, |
| nir_def *def, nir_block *block, struct set *visited_blocks) |
| { |
| /* Search already visited blocks to avoid back edges in tree */ |
| if (_mesa_set_search(visited_blocks, block) == NULL) { |
| /* Try to go up the single-successor tree */ |
| bool all_single_successors = true; |
| set_foreach(block->predecessors, entry) { |
| nir_block *pred = (nir_block *)entry->key; |
| if (pred->successors[0] && pred->successors[1]) { |
| all_single_successors = false; |
| break; |
| } |
| } |
| |
| if (all_single_successors) { |
| /* All predecessors of this block have exactly one successor and it |
| * is this block so they must eventually lead here without |
| * intersecting each other. Place the reads in the predecessors |
| * instead of this block. |
| */ |
| _mesa_set_add(visited_blocks, block); |
| |
| set_foreach(block->predecessors, entry) { |
| place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks); |
| } |
| return; |
| } |
| } |
| |
| b->cursor = nir_after_block_before_jump(block); |
| nir_store_reg(b, def, reg); |
| } |
| |
| /** Lower all of the phi nodes in a block to movs to and from a register |
| * |
| * This provides a very quick-and-dirty out-of-SSA pass that you can run on a |
| * single block to convert all of its phis to a register and some movs. |
| * The code that is generated, while not optimal for actual codegen in a |
| * back-end, is easy to generate, correct, and will turn into the same set of |
| * phis after you call regs_to_ssa and do some copy propagation. For each phi |
| * node we do the following: |
| * |
| * 1. For each phi instruction in the block, create a new nir_register |
| * |
| * 2. Insert movs at the top of the destination block for each phi and |
| * rewrite all uses of the phi to use the mov. |
| * |
| * 3. For each phi source, insert movs in the predecessor block from the phi |
| * source to the register associated with the phi. |
| * |
| * Correctness is guaranteed by the fact that we create a new register for |
| * each phi and emit movs on both sides of the control-flow edge. Because all |
| * the phis have SSA destinations (we assert this) and there is a separate |
| * temporary for each phi, all movs inserted in any particular block have |
| * unique destinations so the order of operations does not matter. |
| * |
| * The one intelligent thing this pass does is that it places the moves from |
| * the phi sources as high up the predecessor tree as possible instead of in |
| * the exact predecessor. This means that, in particular, it will crawl into |
| * the deepest nesting of any if-ladders. In order to ensure that doing so is |
| * safe, it stops as soon as one of the predecessors has multiple successors. |
| */ |
| bool |
| nir_lower_phis_to_regs_block(nir_block *block) |
| { |
| nir_builder b = nir_builder_create(nir_cf_node_get_function(&block->cf_node)); |
| struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer, |
| _mesa_key_pointer_equal); |
| |
| bool progress = false; |
| nir_foreach_phi_safe(phi, block) { |
| nir_def *reg = decl_reg_for_ssa_def(&b, &phi->def); |
| set_reg_divergent(reg, phi->def.divergent); |
| |
| b.cursor = nir_after_instr(&phi->instr); |
| nir_def_rewrite_uses(&phi->def, nir_load_reg(&b, reg)); |
| |
| nir_foreach_phi_src(src, phi) { |
| |
| _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block); |
| place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks); |
| _mesa_set_clear(visited_blocks, NULL); |
| } |
| |
| nir_instr_remove(&phi->instr); |
| |
| progress = true; |
| } |
| |
| _mesa_set_destroy(visited_blocks, NULL); |
| |
| return progress; |
| } |
| |
| struct ssa_def_to_reg_state { |
| nir_function_impl *impl; |
| bool progress; |
| }; |
| |
| static bool |
| def_replace_with_reg_state(nir_def *def, void *void_state) |
| { |
| struct ssa_def_to_reg_state *state = void_state; |
| state->progress |= def_replace_with_reg(def, state->impl); |
| return true; |
| } |
| |
| static bool |
| ssa_def_is_local_to_block(nir_def *def, UNUSED void *state) |
| { |
| nir_block *block = def->parent_instr->block; |
| nir_foreach_use_including_if(use_src, def) { |
| if (nir_src_is_if(use_src) || |
| nir_src_parent_instr(use_src)->block != block || |
| nir_src_parent_instr(use_src)->type == nir_instr_type_phi) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool |
| instr_is_load_new_reg(nir_instr *instr, unsigned old_num_ssa) |
| { |
| if (instr->type != nir_instr_type_intrinsic) |
| return false; |
| |
| nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); |
| if (load->intrinsic != nir_intrinsic_load_reg) |
| return false; |
| |
| nir_def *reg = load->src[0].ssa; |
| |
| return reg->index >= old_num_ssa; |
| } |
| |
| /** Lower all of the SSA defs in a block to registers |
| * |
| * This performs the very simple operation of blindly replacing all of the SSA |
| * defs in the given block with registers. If not used carefully, this may |
| * result in phi nodes with register sources which is technically invalid. |
| * Fortunately, the register-based into-SSA pass handles them anyway. |
| */ |
| bool |
| nir_lower_ssa_defs_to_regs_block(nir_block *block) |
| { |
| nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); |
| nir_builder b = nir_builder_create(impl); |
| |
| struct ssa_def_to_reg_state state = { |
| .impl = impl, |
| .progress = false, |
| }; |
| |
| /* Save off the current number of SSA defs so we can detect which regs |
| * we've added vs. regs that were already there. |
| */ |
| const unsigned num_ssa = impl->ssa_alloc; |
| |
| nir_foreach_instr_safe(instr, block) { |
| if (instr->type == nir_instr_type_undef) { |
| /* Undefs are just a read of something never written. */ |
| nir_undef_instr *undef = nir_instr_as_undef(instr); |
| nir_def *reg = decl_reg_for_ssa_def(&b, &undef->def); |
| nir_rewrite_uses_to_load_reg(&b, &undef->def, reg); |
| } else if (instr->type == nir_instr_type_load_const) { |
| nir_load_const_instr *load = nir_instr_as_load_const(instr); |
| nir_def *reg = decl_reg_for_ssa_def(&b, &load->def); |
| nir_rewrite_uses_to_load_reg(&b, &load->def, reg); |
| |
| b.cursor = nir_after_instr(instr); |
| nir_store_reg(&b, &load->def, reg); |
| } else if (instr_is_load_new_reg(instr, num_ssa)) { |
| /* Calls to nir_rewrite_uses_to_load_reg() may place new load_reg |
| * intrinsics in this block with new SSA destinations. To avoid |
| * infinite recursion, we don't want to lower any newly placed |
| * load_reg instructions to yet anoter load/store_reg. |
| */ |
| } else if (nir_foreach_def(instr, ssa_def_is_local_to_block, NULL)) { |
| /* If the SSA def produced by this instruction is only in the block |
| * in which it is defined and is not used by ifs or phis, then we |
| * don't have a reason to convert it to a register. |
| */ |
| } else { |
| nir_foreach_def(instr, def_replace_with_reg_state, &state); |
| } |
| } |
| |
| return state.progress; |
| } |