blob: 6a3c35fc57e3d06d67cf5c95a1436ffbd44b331d [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_control_flow.h"
#include "nir_vla.h"
/*
* TODO: write a proper inliner for GPUs.
* This heuristic just inlines small functions,
* and tail calls get inlined as well.
*/
static bool
nir_function_can_inline(nir_function *function)
{
bool can_inline = true;
if (!function->should_inline) {
if (function->impl) {
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic == nir_intrinsic_barrier)
return true;
}
}
if (function->impl->num_blocks > 2)
can_inline = false;
if (function->impl->ssa_alloc > 45)
can_inline = false;
}
}
return can_inline;
}
static bool
function_ends_in_jump(nir_function_impl *impl)
{
nir_block *last_block = nir_impl_last_block(impl);
return nir_block_ends_in_jump(last_block);
}
/* A cast is used to deref function in/out params. However the bindless
* textures spec allows both uniforms and functions temps to be passed to a
* function param defined the same way. To deal with this we need to update
* this when we inline and know what variable mode we are dealing with.
*/
static void
fixup_cast_deref_mode(nir_deref_instr *deref)
{
nir_deref_instr *parent = nir_src_as_deref(deref->parent);
if (parent && deref->modes & nir_var_function_temp) {
if (parent->modes & nir_var_uniform) {
deref->modes |= nir_var_uniform;
} else if (parent->modes & nir_var_image) {
deref->modes |= nir_var_image;
} else if (parent->modes & nir_var_mem_ubo) {
deref->modes |= nir_var_mem_ubo;
} else if (parent->modes & nir_var_mem_ssbo) {
deref->modes |= nir_var_mem_ssbo;
} else
return;
deref->modes ^= nir_var_function_temp;
nir_foreach_use(use, &deref->def) {
if (nir_src_parent_instr(use)->type != nir_instr_type_deref)
continue;
/* Recurse into children */
fixup_cast_deref_mode(nir_instr_as_deref(nir_src_parent_instr(use)));
}
}
}
void
nir_inline_function_impl(struct nir_builder *b,
const nir_function_impl *impl,
nir_def **params,
struct hash_table *shader_var_remap)
{
nir_function_impl *copy = nir_function_impl_clone(b->shader, impl);
exec_list_append(&b->impl->locals, &copy->locals);
nir_foreach_block(block, copy) {
nir_foreach_instr_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_deref: {
nir_deref_instr *deref = nir_instr_as_deref(instr);
/* Note: This shouldn't change the mode of anything but the
* replaced nir_intrinsic_load_param intrinsics handled later in
* this switch table. Any incorrect modes should have already been
* detected by previous nir_vaidate calls.
*/
if (deref->deref_type == nir_deref_type_cast) {
fixup_cast_deref_mode(deref);
break;
}
if (deref->deref_type != nir_deref_type_var)
break;
/* We don't need to remap function variables. We already cloned
* them as part of nir_function_impl_clone and appended them to
* b->impl->locals.
*/
if (deref->var->data.mode == nir_var_function_temp)
break;
/* If no map is provided, we assume that there are either no
* shader variables or they already live b->shader (this is the
* case for function inlining within a single shader.
*/
if (shader_var_remap == NULL)
break;
struct hash_entry *entry =
_mesa_hash_table_search(shader_var_remap, deref->var);
if (entry == NULL) {
nir_variable *nvar = nir_variable_clone(deref->var, b->shader);
nir_shader_add_variable(b->shader, nvar);
entry = _mesa_hash_table_insert(shader_var_remap,
deref->var, nvar);
}
deref->var = entry->data;
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
if (load->intrinsic != nir_intrinsic_load_param)
break;
unsigned param_idx = nir_intrinsic_param_idx(load);
assert(param_idx < impl->function->num_params);
nir_def_replace(&load->def, params[param_idx]);
break;
}
case nir_instr_type_jump:
/* Returns have to be lowered for this to work */
assert(nir_instr_as_jump(instr)->type != nir_jump_return);
break;
default:
break;
}
}
}
bool nest_if = function_ends_in_jump(copy);
/* Pluck the body out of the function and place it here */
nir_cf_list body;
nir_cf_list_extract(&body, &copy->body);
if (nest_if) {
nir_if *cf = nir_push_if(b, nir_imm_true(b));
nir_cf_reinsert(&body, nir_after_cf_list(&cf->then_list));
nir_pop_if(b, cf);
} else {
/* Insert a nop at the cursor so we can keep track of where things are as
* we add/remove stuff from the CFG.
*/
nir_intrinsic_instr *nop = nir_nop(b);
nir_cf_reinsert(&body, nir_before_instr(&nop->instr));
b->cursor = nir_instr_remove(&nop->instr);
}
}
static bool inline_function_impl(nir_function_impl *impl, struct set *inlined);
static bool inline_functions_pass(nir_builder *b,
nir_instr *instr,
void *cb_data)
{
struct set *inlined = cb_data;
if (instr->type != nir_instr_type_call)
return false;
nir_call_instr *call = nir_instr_as_call(instr);
assert(call->callee->impl);
if (b->shader->options->driver_functions &&
b->shader->info.stage == MESA_SHADER_KERNEL) {
bool last_instr = (instr == nir_block_last_instr(instr->block));
if (!nir_function_can_inline(call->callee) && !last_instr) {
return false;
}
}
/* Make sure that the function we're calling is already inlined */
inline_function_impl(call->callee->impl, inlined);
b->cursor = nir_instr_remove(&call->instr);
/* Rewrite all of the uses of the callee's parameters to use the call
* instructions sources. In order to ensure that the "load" happens
* here and not later (for register sources), we make sure to convert it
* to an SSA value first.
*/
const unsigned num_params = call->num_params;
NIR_VLA(nir_def *, params, num_params);
for (unsigned i = 0; i < num_params; i++) {
params[i] = call->params[i].ssa;
}
nir_inline_function_impl(b, call->callee->impl, params, NULL);
return true;
}
static bool
inline_function_impl(nir_function_impl *impl, struct set *inlined)
{
if (_mesa_set_search(inlined, impl))
return false; /* Already inlined */
bool progress;
progress = nir_function_instructions_pass(impl, inline_functions_pass,
nir_metadata_none, inlined);
if (progress) {
/* Indices are completely messed up now */
nir_index_ssa_defs(impl);
}
_mesa_set_add(inlined, impl);
return progress;
}
/** A pass to inline all functions in a shader into their callers
*
* For most use-cases, function inlining is a multi-step process. The general
* pattern employed by SPIR-V consumers and others is as follows:
*
* 1. nir_lower_variable_initializers(shader, nir_var_function_temp)
*
* This is needed because local variables from the callee are simply added
* to the locals list for the caller and the information about where the
* constant initializer logically happens is lost. If the callee is
* called in a loop, this can cause the variable to go from being
* initialized once per loop iteration to being initialized once at the
* top of the caller and values to persist from one invocation of the
* callee to the next. The simple solution to this problem is to get rid
* of constant initializers before function inlining.
*
* 2. nir_lower_returns(shader)
*
* nir_inline_functions assumes that all functions end "naturally" by
* execution reaching the end of the function without any return
* instructions causing instant jumps to the end. Thanks to NIR being
* structured, we can't represent arbitrary jumps to various points in the
* program which is what an early return in the callee would have to turn
* into when we inline it into the caller. Instead, we require returns to
* be lowered which lets us just copy+paste the callee directly into the
* caller.
*
* 3. nir_inline_functions(shader)
*
* This does the actual function inlining and the resulting shader will
* contain no call instructions.
*
* 4. nir_opt_deref(shader)
*
* Most functions contain pointer parameters where the result of a deref
* instruction is passed in as a parameter, loaded via a load_param
* intrinsic, and then turned back into a deref via a cast. Function
* inlining will get rid of the load_param but we are still left with a
* cast. Running nir_opt_deref gets rid of the intermediate cast and
* results in a whole deref chain again. This is currently required by a
* number of optimizations and lowering passes at least for certain
* variable modes.
*
* 5. Loop over the functions and delete all but the main entrypoint.
*
* In the Intel Vulkan driver this looks like this:
*
* nir_remove_non_entrypoints(nir);
*
* While nir_inline_functions does get rid of all call instructions, it
* doesn't get rid of any functions because it doesn't know what the "root
* function" is. Instead, it's up to the individual driver to know how to
* decide on a root function and delete the rest. With SPIR-V,
* spirv_to_nir returns the root function and so we can just use == whereas
* with GL, you may have to look for a function named "main".
*
* 6. nir_lower_variable_initializers(shader, ~nir_var_function_temp)
*
* Lowering constant initializers on inputs, outputs, global variables,
* etc. requires that we know the main entrypoint so that we know where to
* initialize them. Otherwise, we would have to assume that anything
* could be a main entrypoint and initialize them at the start of every
* function but that would clearly be wrong if any of those functions were
* ever called within another function. Simply requiring a single-
* entrypoint function shader is the best way to make it well-defined.
*/
bool
nir_inline_functions(nir_shader *shader)
{
struct set *inlined = _mesa_pointer_set_create(NULL);
bool progress = false;
nir_foreach_function_impl(impl, shader) {
progress = inline_function_impl(impl, inlined) || progress;
}
_mesa_set_destroy(inlined, NULL);
return progress;
}
struct lower_link_state {
struct hash_table *shader_var_remap;
const nir_shader *link_shader;
unsigned printf_index_offset;
};
static bool
lower_calls_vars_instr(struct nir_builder *b,
nir_instr *instr,
void *cb_data)
{
struct lower_link_state *state = cb_data;
switch (instr->type) {
case nir_instr_type_deref: {
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (deref->deref_type != nir_deref_type_var)
return false;
if (deref->var->data.mode == nir_var_function_temp)
return false;
assert(state->shader_var_remap);
struct hash_entry *entry =
_mesa_hash_table_search(state->shader_var_remap, deref->var);
if (entry == NULL) {
nir_variable *nvar = nir_variable_clone(deref->var, b->shader);
nir_shader_add_variable(b->shader, nvar);
entry = _mesa_hash_table_insert(state->shader_var_remap,
deref->var, nvar);
}
deref->var = entry->data;
break;
}
case nir_instr_type_call: {
nir_call_instr *ncall = nir_instr_as_call(instr);
if (!ncall->callee->name)
return false;
nir_function *func = nir_shader_get_function_for_name(b->shader, ncall->callee->name);
if (func) {
ncall->callee = func;
break;
}
nir_function *new_func;
new_func = nir_shader_get_function_for_name(state->link_shader, ncall->callee->name);
if (new_func)
ncall->callee = nir_function_clone(b->shader, new_func);
break;
}
case nir_instr_type_intrinsic: {
/* Reindex the offset of the printf intrinsic by the number of already
* present printfs in the shader where functions are linked into.
*/
if (state->printf_index_offset == 0)
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_printf)
return false;
b->cursor = nir_before_instr(instr);
nir_src_rewrite(&intrin->src[0],
nir_iadd_imm(b, intrin->src[0].ssa,
state->printf_index_offset));
break;
}
default:
break;
}
return true;
}
static bool
lower_call_function_impl(struct nir_builder *b,
nir_function *callee,
const nir_function_impl *impl,
struct lower_link_state *state)
{
nir_function_impl *copy = nir_function_impl_clone(b->shader, impl);
copy->function = callee;
callee->impl = copy;
return nir_function_instructions_pass(copy,
lower_calls_vars_instr,
nir_metadata_none,
state);
}
static bool
function_link_pass(struct nir_builder *b,
nir_instr *instr,
void *cb_data)
{
struct lower_link_state *state = cb_data;
if (instr->type != nir_instr_type_call)
return false;
nir_call_instr *call = nir_instr_as_call(instr);
nir_function *func = NULL;
if (!call->callee->name)
return false;
if (call->callee->impl)
return false;
func = nir_shader_get_function_for_name(state->link_shader, call->callee->name);
if (!func || !func->impl) {
return false;
}
return lower_call_function_impl(b, call->callee,
func->impl,
state);
}
bool
nir_link_shader_functions(nir_shader *shader,
const nir_shader *link_shader)
{
void *ra_ctx = ralloc_context(NULL);
struct hash_table *copy_vars = _mesa_pointer_hash_table_create(ra_ctx);
bool progress = false, overall_progress = false;
struct lower_link_state state = {
.shader_var_remap = copy_vars,
.link_shader = link_shader,
.printf_index_offset = shader->printf_info_count,
};
/* do progress passes inside the pass */
do {
progress = false;
nir_foreach_function_impl(impl, shader) {
bool this_progress = nir_function_instructions_pass(impl,
function_link_pass,
nir_metadata_none,
&state);
if (this_progress)
nir_index_ssa_defs(impl);
progress |= this_progress;
}
overall_progress |= progress;
} while (progress);
if (overall_progress && link_shader->printf_info_count > 0) {
shader->printf_info = reralloc(shader, shader->printf_info,
u_printf_info,
shader->printf_info_count +
link_shader->printf_info_count);
for (unsigned i = 0; i < link_shader->printf_info_count; i++){
const u_printf_info *src_info = &link_shader->printf_info[i];
u_printf_info *dst_info = &shader->printf_info[shader->printf_info_count++];
dst_info->num_args = src_info->num_args;
dst_info->arg_sizes = ralloc_array(shader, unsigned, dst_info->num_args);
memcpy(dst_info->arg_sizes, src_info->arg_sizes,
sizeof(dst_info->arg_sizes[0]) * dst_info->num_args);
dst_info->string_size = src_info->string_size;
dst_info->strings = ralloc_memdup(shader, src_info->strings,
dst_info->string_size);
}
}
ralloc_free(ra_ctx);
return overall_progress;
}
static void
nir_mark_used_functions(struct nir_function *func, struct set *used_funcs);
static bool mark_used_pass_cb(struct nir_builder *b,
nir_instr *instr, void *data)
{
struct set *used_funcs = data;
if (instr->type != nir_instr_type_call)
return false;
nir_call_instr *call = nir_instr_as_call(instr);
_mesa_set_add(used_funcs, call->callee);
nir_mark_used_functions(call->callee, used_funcs);
return true;
}
static void
nir_mark_used_functions(struct nir_function *func, struct set *used_funcs)
{
if (func->impl) {
nir_function_instructions_pass(func->impl,
mark_used_pass_cb,
nir_metadata_none,
used_funcs);
}
}
void
nir_cleanup_functions(nir_shader *nir)
{
if (!nir->options->driver_functions) {
nir_remove_non_entrypoints(nir);
return;
}
struct set *used_funcs = _mesa_set_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func->is_entrypoint) {
_mesa_set_add(used_funcs, func);
nir_mark_used_functions(func, used_funcs);
}
}
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (!_mesa_set_search(used_funcs, func))
exec_node_remove(&func->node);
}
_mesa_set_destroy(used_funcs, NULL);
}