| /* |
| * Copyright © 2015 Thomas Helland |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "nir_loop_analyze.h" |
| #include "util/bitset.h" |
| #include "nir.h" |
| #include "nir_constant_expressions.h" |
| |
| typedef enum { |
| undefined, |
| basic_induction |
| } nir_loop_variable_type; |
| |
| typedef struct { |
| /* A link for the work list */ |
| struct list_head process_link; |
| |
| bool in_loop; |
| |
| /* The ssa_def associated with this info */ |
| nir_def *def; |
| |
| /* The type of this ssa_def */ |
| nir_loop_variable_type type; |
| |
| /* True if variable is in an if branch */ |
| bool in_if_branch; |
| |
| /* True if variable is in a nested loop */ |
| bool in_nested_loop; |
| |
| /* Could be a basic_induction if following uniforms are inlined */ |
| nir_src *init_src; |
| nir_alu_src *update_src; |
| |
| /** |
| * SSA def of the phi-node associated with this induction variable. |
| * |
| * Every loop induction variable has an associated phi node in the loop |
| * header. This may point to the same SSA def as \c def. If, however, \c def |
| * is the increment of the induction variable, this will point to the SSA |
| * def being incremented. |
| */ |
| nir_def *basis; |
| } nir_loop_variable; |
| |
| typedef struct { |
| /* The loop we store information for */ |
| nir_loop *loop; |
| |
| /* Loop_variable for all ssa_defs in function */ |
| nir_loop_variable *loop_vars; |
| BITSET_WORD *loop_vars_init; |
| |
| /* A list of the loop_vars to analyze */ |
| struct list_head process_list; |
| |
| nir_variable_mode indirect_mask; |
| |
| bool force_unroll_sampler_indirect; |
| } loop_info_state; |
| |
| static nir_loop_variable * |
| get_loop_var(nir_def *value, loop_info_state *state) |
| { |
| nir_loop_variable *var = &(state->loop_vars[value->index]); |
| |
| if (!BITSET_TEST(state->loop_vars_init, value->index)) { |
| var->in_loop = false; |
| var->def = value; |
| var->in_if_branch = false; |
| var->in_nested_loop = false; |
| var->init_src = NULL; |
| var->update_src = NULL; |
| var->type = undefined; |
| |
| BITSET_SET(state->loop_vars_init, value->index); |
| } |
| |
| return var; |
| } |
| |
| typedef struct { |
| loop_info_state *state; |
| bool in_if_branch; |
| bool in_nested_loop; |
| } init_loop_state; |
| |
| static bool |
| init_loop_def(nir_def *def, void *void_init_loop_state) |
| { |
| init_loop_state *loop_init_state = void_init_loop_state; |
| nir_loop_variable *var = get_loop_var(def, loop_init_state->state); |
| |
| if (loop_init_state->in_nested_loop) { |
| var->in_nested_loop = true; |
| } else if (loop_init_state->in_if_branch) { |
| var->in_if_branch = true; |
| } else { |
| /* Add to the tail of the list. That way we start at the beginning of |
| * the defs in the loop instead of the end when walking the list. This |
| * means less recursive calls. Only add defs that are not in nested |
| * loops or conditional blocks. |
| */ |
| list_addtail(&var->process_link, &loop_init_state->state->process_list); |
| } |
| |
| var->in_loop = true; |
| |
| return true; |
| } |
| |
| /** Calculate an estimated cost in number of instructions |
| * |
| * We do this so that we don't unroll loops which will later get massively |
| * inflated due to int64 or fp64 lowering. The estimates provided here don't |
| * have to be massively accurate; they just have to be good enough that loop |
| * unrolling doesn't cause things to blow up too much. |
| */ |
| static unsigned |
| instr_cost(loop_info_state *state, nir_instr *instr, |
| const nir_shader_compiler_options *options) |
| { |
| if (instr->type == nir_instr_type_intrinsic || |
| instr->type == nir_instr_type_tex) |
| return 1; |
| |
| if (instr->type != nir_instr_type_alu) |
| return 0; |
| |
| nir_alu_instr *alu = nir_instr_as_alu(instr); |
| const nir_op_info *info = &nir_op_infos[alu->op]; |
| unsigned cost = 1; |
| |
| if (nir_op_is_selection(alu->op)) { |
| nir_scalar cond_scalar = { alu->src[0].src.ssa, 0 }; |
| if (nir_is_terminator_condition_with_two_inputs(cond_scalar)) { |
| nir_instr *sel_cond = alu->src[0].src.ssa->parent_instr; |
| nir_alu_instr *sel_alu = nir_instr_as_alu(sel_cond); |
| |
| nir_scalar rhs, lhs; |
| lhs = nir_scalar_chase_alu_src(cond_scalar, 0); |
| rhs = nir_scalar_chase_alu_src(cond_scalar, 1); |
| |
| /* If the selects condition is a comparision between a constant and |
| * a basic induction variable we know that it will be eliminated once |
| * the loop is unrolled so here we assign it a cost of 0. |
| */ |
| if ((nir_src_is_const(sel_alu->src[0].src) && |
| get_loop_var(rhs.def, state)->type == basic_induction) || |
| (nir_src_is_const(sel_alu->src[1].src) && |
| get_loop_var(lhs.def, state)->type == basic_induction)) { |
| /* Also if the selects condition is only used by the select then |
| * remove that alu instructons cost from the cost total also. |
| */ |
| if (!list_is_singular(&sel_alu->def.uses) || |
| nir_def_used_by_if(&sel_alu->def)) |
| return 0; |
| else |
| return -1; |
| } |
| } |
| } |
| |
| if (alu->op == nir_op_flrp) { |
| if ((options->lower_flrp16 && alu->def.bit_size == 16) || |
| (options->lower_flrp32 && alu->def.bit_size == 32) || |
| (options->lower_flrp64 && alu->def.bit_size == 64)) |
| cost *= 3; |
| } |
| |
| /* Assume everything 16 or 32-bit is cheap. |
| * |
| * There are no 64-bit ops that don't have a 64-bit thing as their |
| * destination or first source. |
| */ |
| if (alu->def.bit_size < 64 && |
| nir_src_bit_size(alu->src[0].src) < 64) |
| return cost; |
| |
| bool is_fp64 = alu->def.bit_size == 64 && |
| nir_alu_type_get_base_type(info->output_type) == nir_type_float; |
| for (unsigned i = 0; i < info->num_inputs; i++) { |
| if (nir_src_bit_size(alu->src[i].src) == 64 && |
| nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float) |
| is_fp64 = true; |
| } |
| |
| if (is_fp64) { |
| /* If it's something lowered normally, it's expensive. */ |
| if (options->lower_doubles_options & |
| nir_lower_doubles_op_to_options_mask(alu->op)) |
| cost *= 20; |
| |
| /* If it's full software, it's even more expensive */ |
| if (options->lower_doubles_options & nir_lower_fp64_full_software) { |
| cost *= 100; |
| state->loop->info->has_soft_fp64 = true; |
| } |
| |
| return cost; |
| } else { |
| if (options->lower_int64_options & |
| nir_lower_int64_op_to_options_mask(alu->op)) { |
| /* These require a doing the division algorithm. */ |
| if (alu->op == nir_op_idiv || alu->op == nir_op_udiv || |
| alu->op == nir_op_imod || alu->op == nir_op_umod || |
| alu->op == nir_op_irem) |
| return cost * 100; |
| |
| /* Other int64 lowering isn't usually all that expensive */ |
| return cost * 5; |
| } |
| |
| return cost; |
| } |
| } |
| |
| static bool |
| init_loop_block(nir_block *block, loop_info_state *state, |
| bool in_if_branch, bool in_nested_loop) |
| { |
| init_loop_state init_state = { .in_if_branch = in_if_branch, |
| .in_nested_loop = in_nested_loop, |
| .state = state }; |
| |
| nir_foreach_instr(instr, block) { |
| nir_foreach_def(instr, init_loop_def, &init_state); |
| } |
| |
| return true; |
| } |
| |
| static inline bool |
| is_var_alu(nir_loop_variable *var) |
| { |
| return var->def->parent_instr->type == nir_instr_type_alu; |
| } |
| |
| static inline bool |
| is_var_phi(nir_loop_variable *var) |
| { |
| return var->def->parent_instr->type == nir_instr_type_phi; |
| } |
| |
| /* If all of the instruction sources point to identical ALU instructions (as |
| * per nir_instrs_equal), return one of the ALU instructions. Otherwise, |
| * return NULL. |
| */ |
| static nir_alu_instr * |
| phi_instr_as_alu(nir_phi_instr *phi) |
| { |
| nir_alu_instr *first = NULL; |
| nir_foreach_phi_src(src, phi) { |
| if (src->src.ssa->parent_instr->type != nir_instr_type_alu) |
| return NULL; |
| |
| nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr); |
| if (first == NULL) { |
| first = alu; |
| } else { |
| if (!nir_instrs_equal(&first->instr, &alu->instr)) |
| return NULL; |
| } |
| } |
| |
| return first; |
| } |
| |
| static bool |
| alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx) |
| { |
| assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0); |
| for (unsigned i = 0; i < alu->def.num_components; i++) { |
| if (alu->src[src_idx].swizzle[i] != i) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| is_only_uniform_src(nir_src *src) |
| { |
| nir_instr *instr = src->ssa->parent_instr; |
| |
| switch (instr->type) { |
| case nir_instr_type_alu: { |
| /* Return true if all sources return true. */ |
| nir_alu_instr *alu = nir_instr_as_alu(instr); |
| for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { |
| if (!is_only_uniform_src(&alu->src[i].src)) |
| return false; |
| } |
| return true; |
| } |
| |
| case nir_instr_type_intrinsic: { |
| nir_intrinsic_instr *inst = nir_instr_as_intrinsic(instr); |
| /* current uniform inline only support load ubo */ |
| return inst->intrinsic == nir_intrinsic_load_ubo; |
| } |
| |
| case nir_instr_type_load_const: |
| /* Always return true for constants. */ |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| static bool |
| compute_induction_information(loop_info_state *state) |
| { |
| unsigned num_induction_vars = 0; |
| |
| list_for_each_entry_safe(nir_loop_variable, var, &state->process_list, |
| process_link) { |
| |
| /* Things in nested loops or conditionals should not have been added into |
| * the procss_list. |
| */ |
| assert(!var->in_if_branch && !var->in_nested_loop); |
| |
| /* We are only interested in checking phis for the basic induction |
| * variable case as its simple to detect. All basic induction variables |
| * have a phi node |
| */ |
| if (!is_var_phi(var)) |
| continue; |
| |
| nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr); |
| |
| nir_loop_variable *alu_src_var = NULL; |
| nir_foreach_phi_src(src, phi) { |
| nir_loop_variable *src_var = get_loop_var(src->src.ssa, state); |
| |
| /* If one of the sources is in an if branch or nested loop then don't |
| * attempt to go any further. |
| */ |
| if (src_var->in_if_branch || src_var->in_nested_loop) |
| break; |
| |
| /* Detect inductions variables that are incremented in both branches |
| * of an unnested if rather than in a loop block. |
| */ |
| if (is_var_phi(src_var)) { |
| nir_phi_instr *src_phi = |
| nir_instr_as_phi(src_var->def->parent_instr); |
| nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi); |
| if (src_phi_alu) { |
| src_var = get_loop_var(&src_phi_alu->def, state); |
| if (!src_var->in_if_branch) |
| break; |
| } |
| } |
| |
| if (!src_var->in_loop && !var->init_src) { |
| var->init_src = &src->src; |
| } else if (is_var_alu(src_var) && !var->update_src) { |
| alu_src_var = src_var; |
| nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr); |
| |
| /* Check for unsupported alu operations */ |
| if (alu->op != nir_op_iadd && alu->op != nir_op_fadd && |
| alu->op != nir_op_imul && alu->op != nir_op_fmul && |
| alu->op != nir_op_ishl && alu->op != nir_op_ishr && |
| alu->op != nir_op_ushr) |
| break; |
| |
| if (nir_op_infos[alu->op].num_inputs == 2) { |
| for (unsigned i = 0; i < 2; i++) { |
| /* Is one of the operands const or uniform, and the other the phi. |
| * The phi source can't be swizzled in any way. |
| */ |
| if (alu->src[1 - i].src.ssa == &phi->def && |
| alu_src_has_identity_swizzle(alu, 1 - i)) { |
| if (is_only_uniform_src(&alu->src[i].src)) |
| var->update_src = alu->src + i; |
| } |
| } |
| } |
| |
| if (!var->update_src) |
| break; |
| } else { |
| var->update_src = NULL; |
| break; |
| } |
| } |
| |
| if (var->update_src && var->init_src && |
| is_only_uniform_src(var->init_src)) { |
| alu_src_var->init_src = var->init_src; |
| alu_src_var->update_src = var->update_src; |
| alu_src_var->basis = var->def; |
| alu_src_var->type = basic_induction; |
| |
| var->basis = var->def; |
| var->type = basic_induction; |
| |
| num_induction_vars += 2; |
| } else { |
| var->init_src = NULL; |
| var->update_src = NULL; |
| var->basis = NULL; |
| } |
| } |
| |
| nir_loop_info *info = state->loop->info; |
| ralloc_free(info->induction_vars); |
| info->num_induction_vars = 0; |
| |
| /* record induction variables into nir_loop_info */ |
| if (num_induction_vars) { |
| info->induction_vars = ralloc_array(info, nir_loop_induction_variable, |
| num_induction_vars); |
| |
| list_for_each_entry(nir_loop_variable, var, &state->process_list, |
| process_link) { |
| if (var->type == basic_induction) { |
| nir_loop_induction_variable *ivar = |
| &info->induction_vars[info->num_induction_vars++]; |
| ivar->def = var->def; |
| ivar->init_src = var->init_src; |
| ivar->update_src = var->update_src; |
| } |
| } |
| /* don't overflow */ |
| assert(info->num_induction_vars <= num_induction_vars); |
| } |
| |
| return num_induction_vars != 0; |
| } |
| |
| static bool |
| find_loop_terminators(loop_info_state *state) |
| { |
| bool success = false; |
| foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) { |
| if (node->type == nir_cf_node_if) { |
| nir_if *nif = nir_cf_node_as_if(node); |
| |
| nir_block *break_blk = NULL; |
| nir_block *continue_from_blk = NULL; |
| bool continue_from_then = true; |
| |
| nir_block *last_then = nir_if_last_then_block(nif); |
| nir_block *last_else = nir_if_last_else_block(nif); |
| if (nir_block_ends_in_break(last_then)) { |
| break_blk = last_then; |
| continue_from_blk = last_else; |
| continue_from_then = false; |
| } else if (nir_block_ends_in_break(last_else)) { |
| break_blk = last_else; |
| continue_from_blk = last_then; |
| } |
| |
| /* If there is a break then we should find a terminator. If we can |
| * not find a loop terminator, but there is a break-statement then |
| * we should return false so that we do not try to find trip-count |
| */ |
| if (!nir_is_trivial_loop_if(nif, break_blk)) { |
| state->loop->info->complex_loop = true; |
| return false; |
| } |
| |
| /* Continue if the if contained no jumps at all */ |
| if (!break_blk) |
| continue; |
| |
| if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) { |
| state->loop->info->complex_loop = true; |
| return false; |
| } |
| |
| nir_loop_terminator *terminator = |
| rzalloc(state->loop->info, nir_loop_terminator); |
| |
| list_addtail(&terminator->loop_terminator_link, |
| &state->loop->info->loop_terminator_list); |
| |
| terminator->nif = nif; |
| terminator->break_block = break_blk; |
| terminator->continue_from_block = continue_from_blk; |
| terminator->continue_from_then = continue_from_then; |
| terminator->conditional_instr = nif->condition.ssa->parent_instr; |
| |
| success = true; |
| } |
| } |
| |
| return success; |
| } |
| |
| /* This function looks for an array access within a loop that uses an |
| * induction variable for the array index. If found it returns the size of the |
| * array, otherwise 0 is returned. If we find an induction var we pass it back |
| * to the caller via array_index_out. |
| */ |
| static unsigned |
| find_array_access_via_induction(loop_info_state *state, |
| nir_deref_instr *deref, |
| nir_loop_variable **array_index_out) |
| { |
| for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) { |
| if (d->deref_type != nir_deref_type_array) |
| continue; |
| |
| nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state); |
| |
| if (array_index->type != basic_induction) |
| continue; |
| |
| if (array_index_out) |
| *array_index_out = array_index; |
| |
| nir_deref_instr *parent = nir_deref_instr_parent(d); |
| |
| if (glsl_type_is_array_or_matrix(parent->type)) { |
| return glsl_get_length(parent->type); |
| } else { |
| assert(glsl_type_is_vector(parent->type)); |
| return glsl_get_vector_elements(parent->type); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| guess_loop_limit(loop_info_state *state, nir_const_value *limit_val, |
| nir_scalar basic_ind) |
| { |
| unsigned min_array_size = 0; |
| |
| nir_foreach_block_in_cf_node(block, &state->loop->cf_node) { |
| nir_foreach_instr(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| |
| /* Check for arrays variably-indexed by a loop induction variable. */ |
| if (intrin->intrinsic == nir_intrinsic_load_deref || |
| intrin->intrinsic == nir_intrinsic_store_deref || |
| intrin->intrinsic == nir_intrinsic_copy_deref) { |
| |
| nir_loop_variable *array_idx = NULL; |
| unsigned array_size = |
| find_array_access_via_induction(state, |
| nir_src_as_deref(intrin->src[0]), |
| &array_idx); |
| if (array_idx && basic_ind.def == array_idx->def && |
| (min_array_size == 0 || min_array_size > array_size)) { |
| /* Array indices are scalars */ |
| assert(basic_ind.def->num_components == 1); |
| min_array_size = array_size; |
| } |
| |
| if (intrin->intrinsic != nir_intrinsic_copy_deref) |
| continue; |
| |
| array_size = |
| find_array_access_via_induction(state, |
| nir_src_as_deref(intrin->src[1]), |
| &array_idx); |
| if (array_idx && basic_ind.def == array_idx->def && |
| (min_array_size == 0 || min_array_size > array_size)) { |
| /* Array indices are scalars */ |
| assert(basic_ind.def->num_components == 1); |
| min_array_size = array_size; |
| } |
| } |
| } |
| } |
| |
| if (min_array_size) { |
| *limit_val = nir_const_value_for_uint(min_array_size, |
| basic_ind.def->bit_size); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static nir_op invert_comparison_if_needed(nir_op alu_op, bool invert); |
| |
| /* Returns whether "limit_op(a, b) alu_op c" is equivalent to "(a alu_op c) || (b alu_op c)". */ |
| static bool |
| is_minmax_compatible(nir_op limit_op, nir_op alu_op, bool limit_rhs, bool invert_cond) |
| { |
| bool is_max; |
| switch (limit_op) { |
| case nir_op_imin: |
| case nir_op_fmin: |
| case nir_op_umin: |
| is_max = false; |
| break; |
| case nir_op_imax: |
| case nir_op_fmax: |
| case nir_op_umax: |
| is_max = true; |
| break; |
| default: |
| return false; |
| } |
| |
| if (nir_op_infos[limit_op].input_types[0] != nir_op_infos[alu_op].input_types[0]) |
| return false; |
| |
| /* Comparisons we can split are: |
| * - min(a, b) < c |
| * - c < max(a, b) |
| * - max(a, b) >= c |
| * - c >= min(a, b) |
| */ |
| switch (invert_comparison_if_needed(alu_op, invert_cond)) { |
| case nir_op_ilt: |
| case nir_op_flt: |
| case nir_op_ult: |
| return (!limit_rhs && !is_max) || (limit_rhs && is_max); |
| case nir_op_ige: |
| case nir_op_fge: |
| case nir_op_uge: |
| return (!limit_rhs && is_max) || (limit_rhs && !is_max); |
| default: |
| return false; |
| } |
| } |
| |
| static bool |
| try_find_limit_of_alu(nir_scalar limit, nir_const_value *limit_val, nir_op alu_op, |
| bool invert_cond, nir_loop_terminator *terminator, |
| loop_info_state *state) |
| { |
| if (!nir_scalar_is_alu(limit)) |
| return false; |
| |
| nir_op limit_op = nir_scalar_alu_op(limit); |
| if (is_minmax_compatible(limit_op, alu_op, !terminator->induction_rhs, invert_cond)) { |
| for (unsigned i = 0; i < 2; i++) { |
| nir_scalar src = nir_scalar_chase_alu_src(limit, i); |
| if (nir_scalar_is_const(src)) { |
| *limit_val = nir_scalar_as_const_value(src); |
| terminator->exact_trip_count_unknown = true; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static nir_const_value |
| eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0, |
| unsigned execution_mode) |
| { |
| assert(nir_op_infos[op].num_inputs == 1); |
| nir_const_value dest; |
| nir_const_value *src[1] = { &src0 }; |
| nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode); |
| return dest; |
| } |
| |
| static nir_const_value |
| eval_const_binop(nir_op op, unsigned bit_size, |
| nir_const_value src0, nir_const_value src1, |
| unsigned execution_mode) |
| { |
| assert(nir_op_infos[op].num_inputs == 2); |
| nir_const_value dest; |
| nir_const_value *src[2] = { &src0, &src1 }; |
| nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode); |
| return dest; |
| } |
| |
| static int |
| find_replacement(const nir_scalar *originals, nir_scalar key, |
| unsigned num_replacements) |
| { |
| for (int i = 0; i < num_replacements; i++) { |
| if (nir_scalar_equal(originals[i], key)) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * Try to evaluate an ALU instruction as a constant with a replacement |
| * |
| * Much like \c nir_opt_constant_folding.c:try_fold_alu, this method attempts |
| * to evaluate an ALU instruction as a constant. There are two significant |
| * differences. |
| * |
| * First, this method performs the evaluation recursively. If any source of |
| * the ALU instruction is not itself a constant, it is first evaluated. |
| * |
| * Second, if the SSA value \c original is encountered as a source of the ALU |
| * instruction, the value \c replacement is substituted. |
| * |
| * The intended purpose of this function is to evaluate an arbitrary |
| * expression involving a loop induction variable. In this case, \c original |
| * would be the phi node associated with the induction variable, and |
| * \c replacement is the initial value of the induction variable. |
| * |
| * \returns true if the ALU instruction can be evaluated as constant (after |
| * applying the previously described substitution) or false otherwise. |
| */ |
| static bool |
| try_eval_const_alu(nir_const_value *dest, nir_scalar alu_s, const nir_scalar *originals, |
| const nir_const_value *replacements, |
| unsigned num_replacements, unsigned execution_mode) |
| { |
| nir_alu_instr *alu = nir_instr_as_alu(alu_s.def->parent_instr); |
| |
| if (nir_op_infos[alu->op].output_size) |
| return false; |
| |
| /* In the case that any outputs/inputs have unsized types, then we need to |
| * guess the bit-size. In this case, the validator ensures that all |
| * bit-sizes match so we can just take the bit-size from first |
| * output/input with an unsized type. If all the outputs/inputs are sized |
| * then we don't need to guess the bit-size at all because the code we |
| * generate for constant opcodes in this case already knows the sizes of |
| * the types involved and does not need the provided bit-size for anything |
| * (although it still requires to receive a valid bit-size). |
| */ |
| unsigned bit_size = 0; |
| if (!nir_alu_type_get_type_size(nir_op_infos[alu->op].output_type)) { |
| bit_size = alu->def.bit_size; |
| } else { |
| for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { |
| if (!nir_alu_type_get_type_size(nir_op_infos[alu->op].input_types[i])) |
| bit_size = alu->src[i].src.ssa->bit_size; |
| } |
| |
| if (bit_size == 0) |
| bit_size = 32; |
| } |
| |
| nir_const_value src[NIR_MAX_VEC_COMPONENTS]; |
| nir_const_value *src_ptrs[NIR_MAX_VEC_COMPONENTS]; |
| |
| for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { |
| nir_scalar src_s = nir_scalar_chase_alu_src(alu_s, i); |
| |
| src_ptrs[i] = &src[i]; |
| if (nir_scalar_is_const(src_s)) { |
| src[i] = nir_scalar_as_const_value(src_s); |
| continue; |
| } |
| |
| int r = find_replacement(originals, src_s, num_replacements); |
| if (r >= 0) { |
| src[i] = replacements[r]; |
| } else if (!nir_scalar_is_alu(src_s) || |
| !try_eval_const_alu(&src[i], src_s, |
| originals, replacements, |
| num_replacements, execution_mode)) { |
| return false; |
| } |
| } |
| |
| nir_eval_const_opcode(alu->op, dest, 1, bit_size, src_ptrs, execution_mode); |
| |
| return true; |
| } |
| |
| static nir_op |
| invert_comparison_if_needed(nir_op alu_op, bool invert) |
| { |
| if (!invert) |
| return alu_op; |
| |
| switch (alu_op) { |
| case nir_op_fge: |
| return nir_op_flt; |
| case nir_op_ige: |
| return nir_op_ilt; |
| case nir_op_uge: |
| return nir_op_ult; |
| case nir_op_flt: |
| return nir_op_fge; |
| case nir_op_ilt: |
| return nir_op_ige; |
| case nir_op_ult: |
| return nir_op_uge; |
| case nir_op_feq: |
| return nir_op_fneu; |
| case nir_op_ieq: |
| return nir_op_ine; |
| case nir_op_fneu: |
| return nir_op_feq; |
| case nir_op_ine: |
| return nir_op_ieq; |
| default: |
| unreachable("Unsuported comparison!"); |
| } |
| } |
| |
| static int32_t |
| get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step, |
| nir_const_value limit, bool invert_cond, unsigned bit_size, |
| unsigned execution_mode) |
| { |
| nir_const_value span, iter; |
| unsigned iter_bit_size = bit_size; |
| |
| switch (invert_comparison_if_needed(cond_op, invert_cond)) { |
| case nir_op_ine: |
| /* In order for execution to be here, limit must be the same as initial. |
| * Otherwise will_break_on_first_iteration would have returned false. |
| * If step is zero, the loop is infinite. Otherwise the loop will |
| * execute once. |
| */ |
| return step.u64 == 0 ? -1 : 1; |
| |
| case nir_op_ige: |
| case nir_op_ilt: |
| case nir_op_ieq: |
| span = eval_const_binop(nir_op_isub, bit_size, limit, initial, |
| execution_mode); |
| iter = eval_const_binop(nir_op_idiv, bit_size, span, step, |
| execution_mode); |
| break; |
| |
| case nir_op_uge: |
| case nir_op_ult: |
| span = eval_const_binop(nir_op_isub, bit_size, limit, initial, |
| execution_mode); |
| iter = eval_const_binop(nir_op_udiv, bit_size, span, step, |
| execution_mode); |
| break; |
| |
| case nir_op_fneu: |
| /* In order for execution to be here, limit must be the same as initial. |
| * Otherwise will_break_on_first_iteration would have returned false. |
| * If step is zero, the loop is infinite. Otherwise the loop will |
| * execute once. |
| * |
| * This is a little more tricky for floating point since X-Y might still |
| * be X even if Y is not zero. Instead check that (initial + step) != |
| * initial. |
| */ |
| span = eval_const_binop(nir_op_fadd, bit_size, initial, step, |
| execution_mode); |
| iter = eval_const_binop(nir_op_feq, bit_size, initial, |
| span, execution_mode); |
| |
| /* return (initial + step) == initial ? -1 : 1 */ |
| return iter.b ? -1 : 1; |
| |
| case nir_op_fge: |
| case nir_op_flt: |
| case nir_op_feq: |
| span = eval_const_binop(nir_op_fsub, bit_size, limit, initial, |
| execution_mode); |
| iter = eval_const_binop(nir_op_fdiv, bit_size, span, |
| step, execution_mode); |
| iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode); |
| iter_bit_size = 64; |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| uint64_t iter_u64 = nir_const_value_as_uint(iter, iter_bit_size); |
| return iter_u64 > u_intN_max(iter_bit_size) ? -1 : (int)iter_u64; |
| } |
| |
| static int32_t |
| get_iteration_empirical(nir_scalar cond, nir_alu_instr *incr_alu, |
| nir_scalar basis, nir_const_value initial, |
| nir_scalar limit_basis, nir_const_value limit, |
| bool invert_cond, unsigned execution_mode, |
| unsigned max_unroll_iterations) |
| { |
| int iter_count = 0; |
| nir_const_value result; |
| |
| const nir_scalar incr = nir_get_scalar(&incr_alu->def, basis.comp); |
| |
| const nir_scalar original[] = {basis, limit_basis}; |
| nir_const_value replacement[] = {initial, limit}; |
| |
| while (iter_count <= max_unroll_iterations) { |
| bool success; |
| |
| success = try_eval_const_alu(&result, cond, original, replacement, |
| 2, execution_mode); |
| if (!success) |
| return -1; |
| |
| const bool cond_succ = invert_cond ? !result.b : result.b; |
| if (cond_succ) |
| return iter_count; |
| |
| iter_count++; |
| |
| success = try_eval_const_alu(&result, incr, original, replacement, |
| 2, execution_mode); |
| assert(success); |
| |
| replacement[0] = result; |
| } |
| |
| return -1; |
| } |
| |
| static bool |
| will_break_on_first_iteration(nir_scalar cond, nir_scalar basis, |
| nir_scalar limit_basis, |
| nir_const_value initial, nir_const_value limit, |
| bool invert_cond, unsigned execution_mode) |
| { |
| nir_const_value result; |
| |
| const nir_scalar originals[2] = { basis, limit_basis }; |
| const nir_const_value replacements[2] = { initial, limit }; |
| |
| ASSERTED bool success = try_eval_const_alu(&result, cond, originals, |
| replacements, 2, execution_mode); |
| |
| assert(success); |
| |
| return invert_cond ? !result.b : result.b; |
| } |
| |
| static bool |
| test_iterations(int32_t iter_int, nir_const_value step, |
| nir_const_value limit, nir_op cond_op, unsigned bit_size, |
| nir_alu_type induction_base_type, |
| nir_const_value initial, bool limit_rhs, bool invert_cond, |
| unsigned execution_mode) |
| { |
| assert(nir_op_infos[cond_op].num_inputs == 2); |
| |
| nir_const_value iter_src; |
| nir_op mul_op; |
| nir_op add_op; |
| switch (induction_base_type) { |
| case nir_type_float: |
| iter_src = nir_const_value_for_float(iter_int, bit_size); |
| mul_op = nir_op_fmul; |
| add_op = nir_op_fadd; |
| break; |
| case nir_type_int: |
| case nir_type_uint: |
| iter_src = nir_const_value_for_int(iter_int, bit_size); |
| mul_op = nir_op_imul; |
| add_op = nir_op_iadd; |
| break; |
| default: |
| unreachable("Unhandled induction variable base type!"); |
| } |
| |
| /* Multiple the iteration count we are testing by the number of times we |
| * step the induction variable each iteration. |
| */ |
| nir_const_value mul_result = |
| eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode); |
| |
| /* Add the initial value to the accumulated induction variable total */ |
| nir_const_value add_result = |
| eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode); |
| |
| nir_const_value *src[2]; |
| src[limit_rhs ? 0 : 1] = &add_result; |
| src[limit_rhs ? 1 : 0] = &limit; |
| |
| /* Evaluate the loop exit condition */ |
| nir_const_value result; |
| nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode); |
| |
| return invert_cond ? !result.b : result.b; |
| } |
| |
| static int |
| calculate_iterations(nir_scalar basis, nir_scalar limit_basis, |
| nir_const_value initial, nir_const_value step, |
| nir_const_value limit, nir_alu_instr *alu, |
| nir_scalar cond, nir_op alu_op, bool limit_rhs, |
| bool invert_cond, unsigned execution_mode, |
| unsigned max_unroll_iterations) |
| { |
| /* nir_op_isub should have been lowered away by this point */ |
| assert(alu->op != nir_op_isub); |
| |
| /* Make sure the alu type for our induction variable is compatible with the |
| * conditional alus input type. If its not something has gone really wrong. |
| */ |
| nir_alu_type induction_base_type = |
| nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type); |
| if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) { |
| assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int || |
| nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint); |
| } else { |
| assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) == |
| induction_base_type); |
| } |
| |
| /* do-while loops can increment the starting value before the condition is |
| * checked. e.g. |
| * |
| * do { |
| * ndx++; |
| * } while (ndx < 3); |
| * |
| * Here we check if the induction variable is used directly by the loop |
| * condition and if so we assume we need to step the initial value. |
| */ |
| unsigned trip_offset = 0; |
| nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr); |
| if (cond_alu->src[0].src.ssa == &alu->def || |
| cond_alu->src[1].src.ssa == &alu->def) { |
| trip_offset = 1; |
| } |
| |
| unsigned bit_size = nir_src_bit_size(alu->src[0].src); |
| |
| /* get_iteration works under assumption that iterator will be |
| * incremented or decremented until it hits the limit, |
| * however if the loop condition is false on the first iteration |
| * get_iteration's assumption is broken. Handle such loops first. |
| */ |
| if (will_break_on_first_iteration(cond, basis, limit_basis, initial, |
| limit, invert_cond, execution_mode)) { |
| return 0; |
| } |
| |
| /* For loops incremented with addition operation, it's easy to |
| * calculate the number of iterations theoretically. Even though it |
| * is possible for other operations as well, it is much more error |
| * prone, and doesn't cover all possible cases. So, we try to |
| * emulate the loop. |
| */ |
| int iter_int; |
| switch (alu->op) { |
| case nir_op_iadd: |
| case nir_op_fadd: |
| assert(nir_src_bit_size(alu->src[0].src) == |
| nir_src_bit_size(alu->src[1].src)); |
| |
| iter_int = get_iteration(alu_op, initial, step, limit, invert_cond, |
| bit_size, execution_mode); |
| break; |
| case nir_op_fmul: |
| /* Detecting non-zero loop counts when the loop increment is floating |
| * point multiplication triggers a preexisting problem in |
| * glsl-fs-loop-unroll-mul-fp64.shader_test. See |
| * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3445#note_1779438. |
| */ |
| return -1; |
| case nir_op_imul: |
| case nir_op_ishl: |
| case nir_op_ishr: |
| case nir_op_ushr: |
| return get_iteration_empirical(cond, alu, basis, initial, |
| limit_basis, limit, invert_cond, |
| execution_mode, max_unroll_iterations); |
| default: |
| unreachable("Invalid induction variable increment operation."); |
| } |
| |
| /* If iter_int is negative the loop is ill-formed or is the conditional is |
| * unsigned with a huge iteration count so don't bother going any further. |
| */ |
| if (iter_int < 0) |
| return -1; |
| |
| nir_op actual_alu_op = invert_comparison_if_needed(alu_op, invert_cond); |
| if (actual_alu_op == nir_op_ine || actual_alu_op == nir_op_fneu) |
| return iter_int; |
| |
| /* An explanation from the GLSL unrolling pass: |
| * |
| * Make sure that the calculated number of iterations satisfies the exit |
| * condition. This is needed to catch off-by-one errors and some types of |
| * ill-formed loops. For example, we need to detect that the following |
| * loop does not have a maximum iteration count. |
| * |
| * for (float x = 0.0; x != 0.9; x += 0.2); |
| */ |
| for (int bias = -1; bias <= 1; bias++) { |
| const int iter_bias = iter_int + bias; |
| if (iter_bias < 1) |
| continue; |
| |
| if (test_iterations(iter_bias, step, limit, alu_op, bit_size, |
| induction_base_type, initial, |
| limit_rhs, invert_cond, execution_mode)) { |
| return iter_bias - trip_offset; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static bool |
| get_induction_and_limit_vars(nir_scalar cond, |
| nir_scalar *ind, |
| nir_scalar *limit, |
| bool *limit_rhs, |
| loop_info_state *state) |
| { |
| nir_scalar rhs, lhs; |
| lhs = nir_scalar_chase_alu_src(cond, 0); |
| rhs = nir_scalar_chase_alu_src(cond, 1); |
| |
| nir_loop_variable *src0_lv = get_loop_var(lhs.def, state); |
| nir_loop_variable *src1_lv = get_loop_var(rhs.def, state); |
| |
| if (src0_lv->type == basic_induction) { |
| *ind = lhs; |
| *limit = rhs; |
| *limit_rhs = true; |
| return true; |
| } else if (src1_lv->type == basic_induction) { |
| *ind = rhs; |
| *limit = lhs; |
| *limit_rhs = false; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| static bool |
| try_find_trip_count_vars_in_logical_op(nir_scalar *cond, |
| nir_scalar *ind, |
| nir_scalar *limit, |
| bool *limit_rhs, |
| loop_info_state *state) |
| { |
| const nir_op alu_op = nir_scalar_alu_op(*cond); |
| bool exit_loop_on_false = alu_op == nir_op_ieq || alu_op == nir_op_inot; |
| nir_scalar logical_op = exit_loop_on_false ? |
| nir_scalar_chase_alu_src(*cond, 0) : *cond; |
| |
| if (alu_op == nir_op_ieq) { |
| nir_scalar zero = nir_scalar_chase_alu_src(*cond, 1); |
| |
| if (!nir_scalar_is_alu(logical_op) || !nir_scalar_is_const(zero)) { |
| /* Maybe we had it the wrong way, flip things around */ |
| nir_scalar tmp = zero; |
| zero = logical_op; |
| logical_op = tmp; |
| |
| /* If we still didn't find what we need then return */ |
| if (!nir_scalar_is_const(zero)) |
| return false; |
| } |
| |
| /* If the loop is not breaking on (x && y) == 0 then return */ |
| if (nir_scalar_as_uint(zero) != 0) |
| return false; |
| } |
| |
| if (!nir_scalar_is_alu(logical_op)) |
| return false; |
| |
| if ((exit_loop_on_false && (nir_scalar_alu_op(logical_op) != nir_op_iand)) || |
| (!exit_loop_on_false && (nir_scalar_alu_op(logical_op) != nir_op_ior))) |
| return false; |
| |
| /* Check if iand src is a terminator condition and try get induction var |
| * and trip limit var. |
| */ |
| bool found_induction_var = false; |
| for (unsigned i = 0; i < 2; i++) { |
| nir_scalar src = nir_scalar_chase_alu_src(logical_op, i); |
| if (nir_is_terminator_condition_with_two_inputs(src) && |
| get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) { |
| *cond = src; |
| found_induction_var = true; |
| |
| /* If we've found one with a constant limit, stop. */ |
| if (nir_scalar_is_const(*limit)) |
| return true; |
| } |
| } |
| |
| return found_induction_var; |
| } |
| |
| /* Run through each of the terminators of the loop and try to infer a possible |
| * trip-count. We need to check them all, and set the lowest trip-count as the |
| * trip-count of our loop. If one of the terminators has an undecidable |
| * trip-count we can not safely assume anything about the duration of the |
| * loop. |
| */ |
| static void |
| find_trip_count(loop_info_state *state, unsigned execution_mode, |
| unsigned max_unroll_iterations) |
| { |
| bool trip_count_known = true; |
| bool guessed_trip_count = false; |
| nir_loop_terminator *limiting_terminator = NULL; |
| int max_trip_count = -1; |
| |
| list_for_each_entry(nir_loop_terminator, terminator, |
| &state->loop->info->loop_terminator_list, |
| loop_terminator_link) { |
| nir_scalar cond = { terminator->nif->condition.ssa, 0 }; |
| |
| if (!nir_scalar_is_alu(cond)) { |
| /* If we get here the loop is dead and will get cleaned up by the |
| * nir_opt_dead_cf pass. |
| */ |
| trip_count_known = false; |
| terminator->exact_trip_count_unknown = true; |
| continue; |
| } |
| |
| nir_op alu_op = nir_scalar_alu_op(cond); |
| |
| bool invert_cond = terminator->continue_from_then; |
| |
| bool limit_rhs; |
| nir_scalar basic_ind = { NULL, 0 }; |
| nir_scalar limit; |
| |
| if ((alu_op == nir_op_inot || alu_op == nir_op_ieq || alu_op == nir_op_ior) && |
| try_find_trip_count_vars_in_logical_op(&cond, &basic_ind, &limit, |
| &limit_rhs, state)) { |
| |
| /* The loop is exiting on (x && y) == 0 so we need to get the |
| * inverse of x or y (i.e. which ever contained the induction var) in |
| * order to compute the trip count. |
| */ |
| if (alu_op == nir_op_inot || alu_op == nir_op_ieq) |
| invert_cond = !invert_cond; |
| |
| alu_op = nir_scalar_alu_op(cond); |
| trip_count_known = false; |
| terminator->conditional_instr = cond.def->parent_instr; |
| terminator->exact_trip_count_unknown = true; |
| } |
| |
| if (!basic_ind.def) { |
| if (nir_is_supported_terminator_condition(cond)) { |
| /* Extract and inverse the comparision if it is wrapped in an inot |
| */ |
| if (alu_op == nir_op_inot) { |
| cond = nir_scalar_chase_alu_src(cond, 0); |
| alu_op = nir_scalar_alu_op(cond); |
| invert_cond = !invert_cond; |
| } |
| |
| get_induction_and_limit_vars(cond, &basic_ind, |
| &limit, &limit_rhs, state); |
| } |
| } |
| |
| /* The comparison has to have a basic induction variable for us to be |
| * able to find trip counts. |
| */ |
| if (!basic_ind.def) { |
| trip_count_known = false; |
| terminator->exact_trip_count_unknown = true; |
| continue; |
| } |
| |
| terminator->induction_rhs = !limit_rhs; |
| |
| /* Attempt to find a constant limit for the loop */ |
| nir_const_value limit_val; |
| if (nir_scalar_is_const(limit)) { |
| limit_val = nir_scalar_as_const_value(limit); |
| } else { |
| trip_count_known = false; |
| |
| if (!try_find_limit_of_alu(limit, &limit_val, alu_op, invert_cond, terminator, state)) { |
| /* Guess loop limit based on array access */ |
| if (!guess_loop_limit(state, &limit_val, basic_ind)) { |
| terminator->exact_trip_count_unknown = true; |
| continue; |
| } |
| |
| guessed_trip_count = true; |
| } |
| } |
| |
| /* We have determined that we have the following constants: |
| * (With the typical int i = 0; i < x; i++; as an example) |
| * - Upper limit. |
| * - Starting value |
| * - Step / iteration size |
| * Thats all thats needed to calculate the trip-count |
| */ |
| |
| nir_loop_variable *lv = get_loop_var(basic_ind.def, state); |
| |
| /* The basic induction var might be a vector but, because we guarantee |
| * earlier that the phi source has a scalar swizzle, we can take the |
| * component from basic_ind. |
| */ |
| nir_scalar initial_s = { lv->init_src->ssa, basic_ind.comp }; |
| nir_scalar alu_s = { |
| lv->update_src->src.ssa, |
| lv->update_src->swizzle[basic_ind.comp] |
| }; |
| |
| nir_alu_instr *step_alu = |
| nir_instr_as_alu(nir_src_parent_instr(&lv->update_src->src)); |
| |
| /* If the comparision is of unsigned type we don't necessarily need to |
| * know the initial value to be able to calculate the max number of |
| * iterations |
| */ |
| bool can_find_max_trip_count = step_alu->op == nir_op_iadd && |
| ((alu_op == nir_op_uge && !invert_cond && limit_rhs) || |
| (alu_op == nir_op_ult && !invert_cond && !limit_rhs)); |
| |
| /* nir_op_isub should have been lowered away by this point */ |
| assert(step_alu->op != nir_op_isub); |
| |
| /* For nir_op_uge as alu_op, the induction variable is [0,limit). For |
| * nir_op_ult, it's [0,limit]. It must always be step_val larger in the |
| * next iteration to use the can_find_max_trip_count=true path. This |
| * check ensures that no unsigned overflow happens. |
| * TODO: support for overflow could be added if a non-zero initial_val |
| * is chosen. |
| */ |
| if (can_find_max_trip_count && nir_scalar_is_const(alu_s)) { |
| uint64_t uint_max = u_uintN_max(alu_s.def->bit_size); |
| uint64_t max_step_val = |
| uint_max - nir_const_value_as_uint(limit_val, alu_s.def->bit_size) + |
| (alu_op == nir_op_uge ? 1 : 0); |
| can_find_max_trip_count &= nir_scalar_as_uint(alu_s) <= max_step_val; |
| } |
| |
| /* We are not guaranteed by that at one of these sources is a constant. |
| * Try to find one. |
| */ |
| if ((!nir_scalar_is_const(initial_s) && !can_find_max_trip_count) || |
| !nir_scalar_is_const(alu_s)) |
| continue; |
| |
| nir_const_value initial_val; |
| if (nir_scalar_is_const(initial_s)) |
| initial_val = nir_scalar_as_const_value(initial_s); |
| else { |
| trip_count_known = false; |
| terminator->exact_trip_count_unknown = true; |
| initial_val = nir_const_value_for_uint(0, 32); |
| assert(can_find_max_trip_count); |
| } |
| nir_const_value step_val = nir_scalar_as_const_value(alu_s); |
| |
| int iterations = calculate_iterations(nir_get_scalar(lv->basis, basic_ind.comp), limit, |
| initial_val, step_val, limit_val, |
| step_alu, cond, |
| alu_op, limit_rhs, |
| invert_cond, |
| execution_mode, |
| max_unroll_iterations); |
| |
| /* Where we not able to calculate the iteration count */ |
| if (iterations == -1) { |
| trip_count_known = false; |
| guessed_trip_count = false; |
| terminator->exact_trip_count_unknown = true; |
| continue; |
| } |
| |
| if (guessed_trip_count) { |
| guessed_trip_count = false; |
| terminator->exact_trip_count_unknown = true; |
| if (state->loop->info->guessed_trip_count == 0 || |
| state->loop->info->guessed_trip_count > iterations) |
| state->loop->info->guessed_trip_count = iterations; |
| |
| continue; |
| } |
| |
| /* If this is the first run or we have found a smaller amount of |
| * iterations than previously (we have identified a more limiting |
| * terminator) set the trip count and limiting terminator. |
| */ |
| if (max_trip_count == -1 || iterations < max_trip_count) { |
| max_trip_count = iterations; |
| limiting_terminator = terminator; |
| } |
| } |
| |
| state->loop->info->exact_trip_count_known = trip_count_known; |
| if (max_trip_count > -1) |
| state->loop->info->max_trip_count = max_trip_count; |
| state->loop->info->limiting_terminator = limiting_terminator; |
| } |
| |
| static bool |
| force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref, |
| bool contains_sampler) |
| { |
| unsigned array_size = find_array_access_via_induction(state, deref, NULL); |
| if (array_size) { |
| if ((array_size == state->loop->info->max_trip_count) && |
| nir_deref_mode_must_be(deref, nir_var_shader_in | |
| nir_var_shader_out | |
| nir_var_shader_temp | |
| nir_var_function_temp)) |
| return true; |
| |
| if (nir_deref_mode_must_be(deref, state->indirect_mask)) |
| return true; |
| |
| if (contains_sampler && state->force_unroll_sampler_indirect) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| force_unroll_heuristics(loop_info_state *state, nir_block *block) |
| { |
| nir_foreach_instr(instr, block) { |
| if (instr->type == nir_instr_type_tex) { |
| nir_tex_instr *tex_instr = nir_instr_as_tex(instr); |
| int sampler_idx = |
| nir_tex_instr_src_index(tex_instr, |
| nir_tex_src_sampler_deref); |
| |
| if (sampler_idx >= 0) { |
| nir_deref_instr *deref = |
| nir_instr_as_deref(tex_instr->src[sampler_idx].src.ssa->parent_instr); |
| if (force_unroll_array_access(state, deref, true)) |
| return true; |
| } |
| } |
| |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| |
| /* Check for arrays variably-indexed by a loop induction variable. |
| * Unrolling the loop may convert that access into constant-indexing. |
| */ |
| if (intrin->intrinsic == nir_intrinsic_load_deref || |
| intrin->intrinsic == nir_intrinsic_store_deref || |
| intrin->intrinsic == nir_intrinsic_copy_deref) { |
| if (force_unroll_array_access(state, |
| nir_src_as_deref(intrin->src[0]), |
| false)) |
| return true; |
| |
| if (intrin->intrinsic == nir_intrinsic_copy_deref && |
| force_unroll_array_access(state, |
| nir_src_as_deref(intrin->src[1]), |
| false)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void |
| get_loop_info(loop_info_state *state, nir_function_impl *impl) |
| { |
| nir_shader *shader = impl->function->shader; |
| const nir_shader_compiler_options *options = shader->options; |
| |
| /* Add all entries in the outermost part of the loop to the processing list |
| * Mark the entries in conditionals or in nested loops accordingly |
| */ |
| foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) { |
| switch (node->type) { |
| |
| case nir_cf_node_block: |
| init_loop_block(nir_cf_node_as_block(node), state, false, false); |
| break; |
| |
| case nir_cf_node_if: |
| nir_foreach_block_in_cf_node(block, node) |
| init_loop_block(block, state, true, false); |
| break; |
| |
| case nir_cf_node_loop: |
| nir_foreach_block_in_cf_node(block, node) { |
| init_loop_block(block, state, false, true); |
| } |
| break; |
| |
| case nir_cf_node_function: |
| break; |
| } |
| } |
| |
| /* Try to find all simple terminators of the loop. If we can't find any, |
| * or we find possible terminators that have side effects then bail. |
| */ |
| if (!find_loop_terminators(state)) { |
| list_for_each_entry_safe(nir_loop_terminator, terminator, |
| &state->loop->info->loop_terminator_list, |
| loop_terminator_link) { |
| list_del(&terminator->loop_terminator_link); |
| ralloc_free(terminator); |
| } |
| return; |
| } |
| |
| if (!compute_induction_information(state)) |
| return; |
| |
| /* Run through each of the terminators and try to compute a trip-count */ |
| find_trip_count(state, |
| impl->function->shader->info.float_controls_execution_mode, |
| impl->function->shader->options->max_unroll_iterations); |
| |
| nir_foreach_block_in_cf_node(block, &state->loop->cf_node) { |
| nir_foreach_instr(instr, block) { |
| state->loop->info->instr_cost += instr_cost(state, instr, options); |
| } |
| |
| if (state->loop->info->force_unroll) |
| continue; |
| |
| if (force_unroll_heuristics(state, block)) { |
| state->loop->info->force_unroll = true; |
| } |
| } |
| } |
| |
| static loop_info_state * |
| initialize_loop_info_state(nir_loop *loop, void *mem_ctx, |
| nir_function_impl *impl) |
| { |
| loop_info_state *state = rzalloc(mem_ctx, loop_info_state); |
| state->loop_vars = ralloc_array(mem_ctx, nir_loop_variable, |
| impl->ssa_alloc); |
| state->loop_vars_init = rzalloc_array(mem_ctx, BITSET_WORD, |
| BITSET_WORDS(impl->ssa_alloc)); |
| state->loop = loop; |
| |
| list_inithead(&state->process_list); |
| |
| if (loop->info) |
| ralloc_free(loop->info); |
| |
| loop->info = rzalloc(loop, nir_loop_info); |
| |
| list_inithead(&loop->info->loop_terminator_list); |
| |
| return state; |
| } |
| |
| static void |
| process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask, |
| bool force_unroll_sampler_indirect) |
| { |
| switch (cf_node->type) { |
| case nir_cf_node_block: |
| return; |
| case nir_cf_node_if: { |
| nir_if *if_stmt = nir_cf_node_as_if(cf_node); |
| foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list) |
| process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect); |
| foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list) |
| process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect); |
| return; |
| } |
| case nir_cf_node_loop: { |
| nir_loop *loop = nir_cf_node_as_loop(cf_node); |
| assert(!nir_loop_has_continue_construct(loop)); |
| |
| foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) |
| process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect); |
| break; |
| } |
| default: |
| unreachable("unknown cf node type"); |
| } |
| |
| nir_loop *loop = nir_cf_node_as_loop(cf_node); |
| nir_function_impl *impl = nir_cf_node_get_function(cf_node); |
| void *mem_ctx = ralloc_context(NULL); |
| |
| loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl); |
| state->indirect_mask = indirect_mask; |
| state->force_unroll_sampler_indirect = force_unroll_sampler_indirect; |
| |
| get_loop_info(state, impl); |
| |
| ralloc_free(mem_ctx); |
| } |
| |
| void |
| nir_loop_analyze_impl(nir_function_impl *impl, |
| nir_variable_mode indirect_mask, |
| bool force_unroll_sampler_indirect) |
| { |
| nir_index_ssa_defs(impl); |
| foreach_list_typed(nir_cf_node, node, node, &impl->body) |
| process_loops(node, indirect_mask, force_unroll_sampler_indirect); |
| } |