blob: e8c59f22b454b8c8c93949fe91f6e8363db37c3d [file] [log] [blame]
/*
* Copyright © 2021 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* This lowering pass supports (as configured via nir_lower_image_options)
* image related conversions:
* + cube array size lowering. The size operation is converted from cube
* size to a 2d-array with the z component divided by 6.
*/
#include "nir.h"
#include "nir_builder.h"
static void
lower_cube_size(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_CUBE);
b->cursor = nir_before_instr(&intrin->instr);
nir_intrinsic_instr *_2darray_size =
nir_instr_as_intrinsic(nir_instr_clone(b->shader, &intrin->instr));
nir_intrinsic_set_image_dim(_2darray_size, GLSL_SAMPLER_DIM_2D);
nir_intrinsic_set_image_array(_2darray_size, true);
nir_builder_instr_insert(b, &_2darray_size->instr);
nir_def *size = nir_instr_def(&_2darray_size->instr);
nir_scalar comps[NIR_MAX_VEC_COMPONENTS] = { 0 };
unsigned coord_comps = intrin->def.num_components;
for (unsigned c = 0; c < coord_comps; c++) {
if (c == 2) {
comps[2] = nir_get_scalar(nir_idiv(b, nir_channel(b, size, 2), nir_imm_int(b, 6)), 0);
} else {
comps[c] = nir_get_scalar(size, c);
}
}
nir_def *vec = nir_vec_scalars(b, comps, intrin->def.num_components);
nir_def_replace(&intrin->def, vec);
nir_instr_free(&intrin->instr);
}
/* Adjust the sample index according to AMD FMASK (fragment mask).
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = ubfe(fmask, sample_index * 4, 3);
*
* Only extract 3 bits because EQAA can generate number 8 in FMASK, which
* means the physical sample index is unknown. We can map 8 to any valid
* sample index, and extracting only 3 bits will map it to 0, which works
* with all MSAA modes.
*/
static void
lower_image_to_fragment_mask_load(nir_builder *b, nir_intrinsic_instr *intrin)
{
b->cursor = nir_before_instr(&intrin->instr);
nir_intrinsic_op fmask_op;
switch (intrin->intrinsic) {
case nir_intrinsic_image_load:
fmask_op = nir_intrinsic_image_fragment_mask_load_amd;
break;
case nir_intrinsic_image_deref_load:
fmask_op = nir_intrinsic_image_deref_fragment_mask_load_amd;
break;
case nir_intrinsic_bindless_image_load:
fmask_op = nir_intrinsic_bindless_image_fragment_mask_load_amd;
break;
default:
unreachable("bad intrinsic");
break;
}
nir_def *fmask =
nir_image_fragment_mask_load_amd(b, intrin->src[0].ssa, intrin->src[1].ssa,
.image_dim = nir_intrinsic_image_dim(intrin),
.image_array = nir_intrinsic_image_array(intrin),
.format = nir_intrinsic_format(intrin),
.access = nir_intrinsic_access(intrin));
/* fix intrinsic op */
nir_intrinsic_instr *fmask_load = nir_instr_as_intrinsic(fmask->parent_instr);
fmask_load->intrinsic = fmask_op;
/* extract real color buffer index from fmask buffer */
nir_def *sample_index_old = intrin->src[2].ssa;
nir_def *fmask_offset = nir_u2u32(b, nir_ishl_imm(b, sample_index_old, 2));
nir_def *fmask_width = nir_imm_int(b, 3);
nir_def *sample_index_new = nir_ubfe(b, fmask, fmask_offset, fmask_width);
/* fix color buffer load */
nir_src_rewrite(&intrin->src[2],
nir_u2uN(b, sample_index_new, sample_index_old->bit_size));
/* Mark uses fmask to prevent lower this intrinsic again. */
enum gl_access_qualifier access = nir_intrinsic_access(intrin);
nir_intrinsic_set_access(intrin, access | ACCESS_FMASK_LOWERED_AMD);
}
static void
lower_image_samples_identical_to_fragment_mask_load(nir_builder *b, nir_intrinsic_instr *intrin)
{
b->cursor = nir_before_instr(&intrin->instr);
nir_intrinsic_instr *fmask_load =
nir_instr_as_intrinsic(nir_instr_clone(b->shader, &intrin->instr));
switch (intrin->intrinsic) {
case nir_intrinsic_image_samples_identical:
fmask_load->intrinsic = nir_intrinsic_image_fragment_mask_load_amd;
break;
case nir_intrinsic_image_deref_samples_identical:
fmask_load->intrinsic = nir_intrinsic_image_deref_fragment_mask_load_amd;
break;
case nir_intrinsic_bindless_image_samples_identical:
fmask_load->intrinsic = nir_intrinsic_bindless_image_fragment_mask_load_amd;
break;
default:
unreachable("bad intrinsic");
break;
}
nir_def_init(&fmask_load->instr, &fmask_load->def, 1, 32);
nir_builder_instr_insert(b, &fmask_load->instr);
nir_def *samples_identical = nir_ieq_imm(b, &fmask_load->def, 0);
nir_def_replace(&intrin->def, samples_identical);
nir_instr_free(&intrin->instr);
}
static bool
lower_image_intrin(nir_builder *b, nir_intrinsic_instr *intrin, void *state)
{
const nir_lower_image_options *options = state;
switch (intrin->intrinsic) {
case nir_intrinsic_image_size:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_bindless_image_size:
if (options->lower_cube_size &&
nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_CUBE) {
lower_cube_size(b, intrin);
return true;
}
return false;
case nir_intrinsic_image_load:
case nir_intrinsic_image_deref_load:
case nir_intrinsic_bindless_image_load:
if (options->lower_to_fragment_mask_load_amd &&
nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_MS &&
/* Don't lower again. */
!(nir_intrinsic_access(intrin) & ACCESS_FMASK_LOWERED_AMD)) {
lower_image_to_fragment_mask_load(b, intrin);
return true;
}
return false;
case nir_intrinsic_image_samples_identical:
case nir_intrinsic_image_deref_samples_identical:
case nir_intrinsic_bindless_image_samples_identical:
if (options->lower_to_fragment_mask_load_amd &&
nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_MS) {
lower_image_samples_identical_to_fragment_mask_load(b, intrin);
return true;
}
return false;
case nir_intrinsic_image_samples:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_bindless_image_samples: {
if (options->lower_image_samples_to_one) {
b->cursor = nir_after_instr(&intrin->instr);
nir_def *samples = nir_imm_intN_t(b, 1, intrin->def.bit_size);
nir_def_rewrite_uses(&intrin->def, samples);
return true;
}
return false;
}
default:
return false;
}
}
bool
nir_lower_image(nir_shader *nir, const nir_lower_image_options *options)
{
return nir_shader_intrinsics_pass(nir, lower_image_intrin,
nir_metadata_control_flow,
(void *)options);
}