| /* |
| * Copyright © 2015 Connor Abbott |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| /** |
| * nir_opt_vectorize() aims to vectorize ALU instructions. |
| * |
| * The default vectorization width is 4. |
| * If desired, a callback function which returns the max vectorization width |
| * per instruction can be provided. |
| * |
| * The max vectorization width must be a power of 2. |
| */ |
| |
| #include "util/u_dynarray.h" |
| #include "nir.h" |
| #include "nir_builder.h" |
| #include "nir_vla.h" |
| |
| #define HASH(hash, data) XXH32(&data, sizeof(data), hash) |
| |
| static uint32_t |
| hash_src(uint32_t hash, const nir_src *src) |
| { |
| void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa; |
| |
| return HASH(hash, hash_data); |
| } |
| |
| static uint32_t |
| hash_alu_src(uint32_t hash, const nir_alu_src *src, |
| uint32_t num_components, uint32_t max_vec) |
| { |
| /* hash whether a swizzle accesses elements beyond the maximum |
| * vectorization factor: |
| * For example accesses to .x and .y are considered different variables |
| * compared to accesses to .z and .w for 16-bit vec2. |
| */ |
| uint32_t swizzle = (src->swizzle[0] & ~(max_vec - 1)); |
| hash = HASH(hash, swizzle); |
| |
| return hash_src(hash, &src->src); |
| } |
| |
| static uint32_t |
| hash_phi_src(uint32_t hash, const nir_phi_instr *phi, const nir_phi_src *src, |
| uint32_t max_vec) |
| { |
| hash = HASH(hash, src->pred); |
| |
| nir_scalar chased = nir_scalar_chase_movs(nir_get_scalar(src->src.ssa, 0)); |
| uint32_t swizzle = chased.comp & ~(max_vec - 1); |
| hash = HASH(hash, swizzle); |
| |
| if (nir_scalar_is_const(chased)) { |
| void *data = NULL; |
| hash = HASH(hash, data); |
| } else if (src->pred->index < phi->instr.block->index) { |
| hash = HASH(hash, chased.def); |
| } else { |
| nir_instr *chased_instr = chased.def->parent_instr; |
| hash = HASH(hash, chased_instr->type); |
| |
| if (chased_instr->type == nir_instr_type_alu) |
| hash = HASH(hash, nir_instr_as_alu(chased_instr)->op); |
| } |
| |
| return hash; |
| } |
| |
| static uint32_t |
| hash_instr(const void *data) |
| { |
| const nir_instr *instr = (nir_instr *)data; |
| uint32_t hash = HASH(0, instr->type); |
| |
| if (instr->type == nir_instr_type_phi) { |
| nir_phi_instr *phi = nir_instr_as_phi(instr); |
| |
| hash = HASH(hash, instr->block); |
| hash = HASH(hash, phi->def.bit_size); |
| |
| /* The order of phi sources is not guaranteed so hash commutatively. */ |
| nir_foreach_phi_src(src, phi) |
| hash *= hash_phi_src(0, phi, src, instr->pass_flags); |
| |
| return hash; |
| } |
| |
| assert(instr->type == nir_instr_type_alu); |
| nir_alu_instr *alu = nir_instr_as_alu(instr); |
| |
| hash = HASH(hash, alu->op); |
| hash = HASH(hash, alu->def.bit_size); |
| |
| for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) |
| hash = hash_alu_src(hash, &alu->src[i], |
| alu->def.num_components, |
| instr->pass_flags); |
| |
| return hash; |
| } |
| |
| static bool |
| srcs_equal(const nir_src *src1, const nir_src *src2) |
| { |
| |
| return src1->ssa == src2->ssa || |
| (nir_src_is_const(*src1) && nir_src_is_const(*src2)); |
| } |
| |
| static bool |
| alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2, |
| uint32_t max_vec) |
| { |
| uint32_t mask = ~(max_vec - 1); |
| if ((src1->swizzle[0] & mask) != (src2->swizzle[0] & mask)) |
| return false; |
| |
| return srcs_equal(&src1->src, &src2->src); |
| } |
| |
| static bool |
| phi_srcs_equal(nir_block *block, const nir_phi_src *src1, |
| const nir_phi_src *src2, uint32_t max_vec) |
| { |
| if (src1->pred != src2->pred) |
| return false; |
| |
| /* Since phi sources don't have swizzles, they are swizzled using movs. |
| * Get the real sources first. |
| */ |
| nir_scalar chased1 = nir_scalar_chase_movs(nir_get_scalar(src1->src.ssa, 0)); |
| nir_scalar chased2 = nir_scalar_chase_movs(nir_get_scalar(src2->src.ssa, 0)); |
| |
| if (nir_scalar_is_const(chased1) && nir_scalar_is_const(chased2)) |
| return true; |
| |
| uint32_t mask = ~(max_vec - 1); |
| if ((chased1.comp & mask) != (chased2.comp & mask)) |
| return false; |
| |
| /* For phi sources whose defs we have already processed, we require that |
| * they point to the same def like we do for ALU instructions. |
| */ |
| if (src1->pred->index < block->index) |
| return chased1.def == chased2.def; |
| |
| /* Otherwise (i.e., for loop back-edges), we haven't processed the sources |
| * yet so they haven't been vectorized. In this case, try to guess if they |
| * could be vectorized later. Keep it simple for now: if they are the same |
| * type of instruction and, if ALU, have the same operation, assume they |
| * might be vectorized later. Although this won't be true in general, this |
| * heuristic is probable good enough in practice: since we check that other |
| * (forward-edge) sources are vectorized, chances are the back-edge will |
| * also be vectorized. |
| */ |
| nir_instr *chased_instr1 = chased1.def->parent_instr; |
| nir_instr *chased_instr2 = chased2.def->parent_instr; |
| |
| if (chased_instr1->type != chased_instr2->type) |
| return false; |
| |
| if (chased_instr1->type != nir_instr_type_alu) |
| return true; |
| |
| return nir_instr_as_alu(chased_instr1)->op == |
| nir_instr_as_alu(chased_instr2)->op; |
| } |
| |
| static bool |
| instrs_equal(const void *data1, const void *data2) |
| { |
| const nir_instr *instr1 = (nir_instr *)data1; |
| const nir_instr *instr2 = (nir_instr *)data2; |
| |
| if (instr1->type != instr2->type) |
| return false; |
| |
| if (instr1->type == nir_instr_type_phi) { |
| if (instr1->block != instr2->block) |
| return false; |
| |
| nir_phi_instr *phi1 = nir_instr_as_phi(instr1); |
| nir_phi_instr *phi2 = nir_instr_as_phi(instr2); |
| |
| if (phi1->def.bit_size != phi2->def.bit_size) |
| return false; |
| |
| nir_foreach_phi_src(src1, phi1) { |
| nir_phi_src *src2 = nir_phi_get_src_from_block(phi2, src1->pred); |
| |
| if (!phi_srcs_equal(instr1->block, src1, src2, instr1->pass_flags)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| assert(instr1->type == nir_instr_type_alu); |
| assert(instr2->type == nir_instr_type_alu); |
| |
| nir_alu_instr *alu1 = nir_instr_as_alu(instr1); |
| nir_alu_instr *alu2 = nir_instr_as_alu(instr2); |
| |
| if (alu1->op != alu2->op) |
| return false; |
| |
| if (alu1->def.bit_size != alu2->def.bit_size) |
| return false; |
| |
| for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) { |
| if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i], instr1->pass_flags)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| instr_can_rewrite(nir_instr *instr) |
| { |
| switch (instr->type) { |
| case nir_instr_type_alu: { |
| nir_alu_instr *alu = nir_instr_as_alu(instr); |
| |
| /* Don't try and vectorize mov's. Either they'll be handled by copy |
| * prop, or they're actually necessary and trying to vectorize them |
| * would result in fighting with copy prop. |
| */ |
| if (alu->op == nir_op_mov) |
| return false; |
| |
| /* no need to hash instructions which are already vectorized */ |
| if (alu->def.num_components >= instr->pass_flags) |
| return false; |
| |
| if (nir_op_infos[alu->op].output_size != 0) |
| return false; |
| |
| for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { |
| if (nir_op_infos[alu->op].input_sizes[i] != 0) |
| return false; |
| |
| /* don't hash instructions which are already swizzled |
| * outside of max_components: these should better be scalarized */ |
| uint32_t mask = ~(instr->pass_flags - 1); |
| for (unsigned j = 1; j < alu->def.num_components; j++) { |
| if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| case nir_instr_type_phi: { |
| nir_phi_instr *phi = nir_instr_as_phi(instr); |
| return phi->def.num_components < instr->pass_flags; |
| } |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static void |
| rewrite_uses(nir_builder *b, struct set *instr_set, nir_def *def1, |
| nir_def *def2, nir_def *new_def) |
| { |
| /* update all ALU uses */ |
| nir_foreach_use_safe(src, def1) { |
| nir_instr *user_instr = nir_src_parent_instr(src); |
| if (user_instr->type == nir_instr_type_alu) { |
| /* Check if user is found in the hashset */ |
| struct set_entry *entry = _mesa_set_search(instr_set, user_instr); |
| |
| /* For ALU instructions, rewrite the source directly to avoid a |
| * round-trip through copy propagation. |
| */ |
| nir_src_rewrite(src, new_def); |
| |
| /* Rehash user if it was found in the hashset */ |
| if (entry && entry->key == user_instr) { |
| _mesa_set_remove(instr_set, entry); |
| _mesa_set_add(instr_set, user_instr); |
| } |
| } |
| } |
| |
| nir_foreach_use_safe(src, def2) { |
| if (nir_src_parent_instr(src)->type == nir_instr_type_alu) { |
| /* For ALU instructions, rewrite the source directly to avoid a |
| * round-trip through copy propagation. |
| */ |
| nir_src_rewrite(src, new_def); |
| |
| nir_alu_src *alu_src = container_of(src, nir_alu_src, src); |
| nir_alu_instr *use = nir_instr_as_alu(nir_src_parent_instr(src)); |
| unsigned components = |
| nir_ssa_alu_instr_src_components(use, alu_src - use->src); |
| for (unsigned i = 0; i < components; i++) |
| alu_src->swizzle[i] += def1->num_components; |
| } |
| } |
| |
| /* update all other uses if there are any */ |
| unsigned swiz[NIR_MAX_VEC_COMPONENTS]; |
| |
| if (!nir_def_is_unused(def1)) { |
| for (unsigned i = 0; i < def1->num_components; i++) |
| swiz[i] = i; |
| nir_def *new_def1 = nir_swizzle(b, new_def, swiz, def1->num_components); |
| nir_def_rewrite_uses(def1, new_def1); |
| } |
| |
| if (!nir_def_is_unused(def2)) { |
| for (unsigned i = 0; i < def2->num_components; i++) |
| swiz[i] = i + def1->num_components; |
| nir_def *new_def2 = nir_swizzle(b, new_def, swiz, def2->num_components); |
| nir_def_rewrite_uses(def2, new_def2); |
| } |
| |
| nir_instr_remove(def1->parent_instr); |
| nir_instr_remove(def2->parent_instr); |
| } |
| |
| static nir_instr * |
| instr_try_combine_phi(struct set *instr_set, nir_phi_instr *phi1, nir_phi_instr *phi2) |
| { |
| assert(phi1->def.bit_size == phi2->def.bit_size); |
| unsigned phi1_components = phi1->def.num_components; |
| unsigned phi2_components = phi2->def.num_components; |
| unsigned total_components = phi1_components + phi2_components; |
| |
| assert(phi1->instr.pass_flags == phi2->instr.pass_flags); |
| if (total_components > phi1->instr.pass_flags) |
| return NULL; |
| |
| assert(phi1->instr.block == phi2->instr.block); |
| nir_block *block = phi1->instr.block; |
| |
| nir_builder b = nir_builder_at(nir_after_instr(&phi1->instr)); |
| nir_phi_instr *new_phi = nir_phi_instr_create(b.shader); |
| nir_def_init(&new_phi->instr, &new_phi->def, total_components, |
| phi1->def.bit_size); |
| nir_builder_instr_insert(&b, &new_phi->instr); |
| new_phi->instr.pass_flags = phi1->instr.pass_flags; |
| |
| assert(exec_list_length(&phi1->srcs) == exec_list_length(&phi2->srcs)); |
| |
| nir_foreach_phi_src(src1, phi1) { |
| nir_phi_src *src2 = nir_phi_get_src_from_block(phi2, src1->pred); |
| nir_block *pred_block = src1->pred; |
| |
| nir_scalar new_srcs[NIR_MAX_VEC_COMPONENTS]; |
| |
| for (unsigned i = 0; i < phi1_components; i++) { |
| nir_scalar s = nir_get_scalar(src1->src.ssa, i); |
| new_srcs[i] = nir_scalar_chase_movs(s); |
| } |
| |
| for (unsigned i = 0; i < phi2_components; i++) { |
| nir_scalar s = nir_get_scalar(src2->src.ssa, i); |
| new_srcs[phi1_components + i] = nir_scalar_chase_movs(s); |
| } |
| |
| nir_def *new_src; |
| |
| if (nir_scalar_is_const(new_srcs[0])) { |
| nir_const_value value[NIR_MAX_VEC_COMPONENTS]; |
| |
| for (unsigned i = 0; i < total_components; i++) { |
| assert(nir_scalar_is_const(new_srcs[i])); |
| value[i] = nir_scalar_as_const_value(new_srcs[i]); |
| } |
| |
| b.cursor = nir_after_block_before_jump(pred_block); |
| unsigned bit_size = src1->src.ssa->bit_size; |
| new_src = nir_build_imm(&b, total_components, bit_size, value); |
| } else if (pred_block->index < block->index) { |
| nir_def *def = new_srcs[0].def; |
| unsigned swizzle[NIR_MAX_VEC_COMPONENTS]; |
| |
| for (unsigned i = 0; i < total_components; i++) { |
| assert(new_srcs[i].def == def); |
| swizzle[i] = new_srcs[i].comp; |
| } |
| |
| b.cursor = nir_after_instr_and_phis(def->parent_instr); |
| new_src = nir_swizzle(&b, def, swizzle, total_components); |
| } else { |
| /* This is a loop back-edge so we haven't vectorized the sources yet. |
| * Combine them in a vec which, if they are vectorized later, will be |
| * cleaned up by copy propagation. |
| */ |
| b.cursor = nir_after_block_before_jump(pred_block); |
| new_src = nir_vec_scalars(&b, new_srcs, total_components); |
| } |
| |
| nir_phi_src *new_phi_src = |
| nir_phi_instr_add_src(new_phi, src1->pred, new_src); |
| list_addtail(&new_phi_src->src.use_link, &new_src->uses); |
| } |
| |
| b.cursor = nir_after_phis(block); |
| rewrite_uses(&b, instr_set, &phi1->def, &phi2->def, &new_phi->def); |
| |
| return &new_phi->instr; |
| } |
| |
| static nir_instr * |
| instr_try_combine_alu(struct set *instr_set, nir_alu_instr *alu1, nir_alu_instr *alu2) |
| { |
| assert(alu1->def.bit_size == alu2->def.bit_size); |
| unsigned alu1_components = alu1->def.num_components; |
| unsigned alu2_components = alu2->def.num_components; |
| unsigned total_components = alu1_components + alu2_components; |
| |
| assert(alu1->instr.pass_flags == alu2->instr.pass_flags); |
| if (total_components > alu1->instr.pass_flags) |
| return NULL; |
| |
| nir_builder b = nir_builder_at(nir_after_instr(&alu1->instr)); |
| |
| nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op); |
| nir_def_init(&new_alu->instr, &new_alu->def, total_components, |
| alu1->def.bit_size); |
| new_alu->instr.pass_flags = alu1->instr.pass_flags; |
| |
| /* If either channel is exact, we have to preserve it even if it's |
| * not optimal for other channels. |
| */ |
| new_alu->exact = alu1->exact || alu2->exact; |
| |
| /* fp_fast_math is a set of FLOAT_CONTROLS_*_PRESERVE_*. Preserve anything |
| * preserved by either instruction. |
| */ |
| new_alu->fp_fast_math = alu1->fp_fast_math | alu2->fp_fast_math; |
| |
| /* If all channels don't wrap, we can say that the whole vector doesn't |
| * wrap. |
| */ |
| new_alu->no_signed_wrap = alu1->no_signed_wrap && alu2->no_signed_wrap; |
| new_alu->no_unsigned_wrap = alu1->no_unsigned_wrap && alu2->no_unsigned_wrap; |
| |
| for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) { |
| /* handle constant merging case */ |
| if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) { |
| nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src); |
| nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src); |
| assert(c1 && c2); |
| nir_const_value value[NIR_MAX_VEC_COMPONENTS]; |
| unsigned bit_size = alu1->src[i].src.ssa->bit_size; |
| |
| for (unsigned j = 0; j < total_components; j++) { |
| value[j].u64 = j < alu1_components ? c1[alu1->src[i].swizzle[j]].u64 : c2[alu2->src[i].swizzle[j - alu1_components]].u64; |
| } |
| nir_def *def = nir_build_imm(&b, total_components, bit_size, value); |
| |
| new_alu->src[i].src = nir_src_for_ssa(def); |
| for (unsigned j = 0; j < total_components; j++) |
| new_alu->src[i].swizzle[j] = j; |
| continue; |
| } |
| |
| new_alu->src[i].src = alu1->src[i].src; |
| |
| for (unsigned j = 0; j < alu1_components; j++) |
| new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j]; |
| |
| for (unsigned j = 0; j < alu2_components; j++) { |
| new_alu->src[i].swizzle[j + alu1_components] = |
| alu2->src[i].swizzle[j]; |
| } |
| } |
| |
| nir_builder_instr_insert(&b, &new_alu->instr); |
| rewrite_uses(&b, instr_set, &alu1->def, &alu2->def, &new_alu->def); |
| |
| return &new_alu->instr; |
| } |
| |
| /* |
| * Tries to combine two instructions whose sources are different components of |
| * the same instructions into one vectorized instruction. Note that instr1 |
| * should dominate instr2. |
| */ |
| static nir_instr * |
| instr_try_combine(struct set *instr_set, nir_instr *instr1, nir_instr *instr2) |
| { |
| switch (instr1->type) { |
| case nir_instr_type_alu: |
| assert(instr2->type == nir_instr_type_alu); |
| return instr_try_combine_alu(instr_set, nir_instr_as_alu(instr1), |
| nir_instr_as_alu(instr2)); |
| |
| case nir_instr_type_phi: |
| assert(instr2->type == nir_instr_type_phi); |
| return instr_try_combine_phi(instr_set, nir_instr_as_phi(instr1), |
| nir_instr_as_phi(instr2)); |
| |
| default: |
| unreachable("Unsupported instruction type"); |
| } |
| } |
| |
| static struct set * |
| vec_instr_set_create(void) |
| { |
| return _mesa_set_create(NULL, hash_instr, instrs_equal); |
| } |
| |
| static void |
| vec_instr_set_destroy(struct set *instr_set) |
| { |
| _mesa_set_destroy(instr_set, NULL); |
| } |
| |
| static bool |
| vec_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr, |
| nir_vectorize_cb filter, void *data) |
| { |
| /* set max vector to instr pass flags: this is used to hash swizzles */ |
| instr->pass_flags = filter ? filter(instr, data) : 4; |
| assert(util_is_power_of_two_or_zero(instr->pass_flags)); |
| |
| if (!instr_can_rewrite(instr)) |
| return false; |
| |
| struct set_entry *entry = _mesa_set_search(instr_set, instr); |
| if (entry) { |
| nir_instr *old_instr = (nir_instr *)entry->key; |
| |
| /* We cannot combine the instructions if the old one doesn't dominate |
| * the new one. Since we will never encounter a block again that is |
| * dominated by the old instruction, overwrite it with the new one in |
| * the instruction set. |
| */ |
| if (!nir_block_dominates(old_instr->block, instr->block)) { |
| entry->key = instr; |
| return false; |
| } |
| |
| _mesa_set_remove(instr_set, entry); |
| nir_instr *new_instr = instr_try_combine(instr_set, old_instr, instr); |
| if (new_instr) { |
| if (instr_can_rewrite(new_instr)) |
| _mesa_set_add(instr_set, new_instr); |
| return true; |
| } |
| } |
| |
| _mesa_set_add(instr_set, instr); |
| return false; |
| } |
| |
| static bool |
| nir_opt_vectorize_impl(nir_function_impl *impl, |
| nir_vectorize_cb filter, void *data) |
| { |
| struct set *instr_set = vec_instr_set_create(); |
| |
| nir_metadata_require(impl, nir_metadata_control_flow); |
| |
| bool progress = false; |
| |
| nir_foreach_block(block, impl) { |
| nir_foreach_instr_safe(instr, block) { |
| progress |= vec_instr_set_add_or_rewrite(instr_set, instr, filter, data); |
| } |
| } |
| |
| if (progress) { |
| nir_metadata_preserve(impl, nir_metadata_control_flow); |
| } else { |
| nir_metadata_preserve(impl, nir_metadata_all); |
| } |
| |
| vec_instr_set_destroy(instr_set); |
| return progress; |
| } |
| |
| bool |
| nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter, |
| void *data) |
| { |
| bool progress = false; |
| |
| nir_foreach_function_impl(impl, shader) { |
| progress |= nir_opt_vectorize_impl(impl, filter, data); |
| } |
| |
| return progress; |
| } |