blob: f135156a6281188586b46e1e96ae8633dd001e10 [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <gtest/gtest.h>
#include "nir.h"
#include "nir_builder.h"
#include "util/half_float.h"
static void count_sequence(nir_const_value c[NIR_MAX_VEC_COMPONENTS],
nir_alu_type full_type, int first);
static void negate(nir_const_value dst[NIR_MAX_VEC_COMPONENTS],
const nir_const_value src[NIR_MAX_VEC_COMPONENTS],
nir_alu_type full_type, unsigned components);
class const_value_negative_equal_test : public ::testing::Test {
protected:
const_value_negative_equal_test()
{
glsl_type_singleton_init_or_ref();
memset(c1, 0, sizeof(c1));
memset(c2, 0, sizeof(c2));
}
~const_value_negative_equal_test()
{
glsl_type_singleton_decref();
}
nir_const_value c1[NIR_MAX_VEC_COMPONENTS];
nir_const_value c2[NIR_MAX_VEC_COMPONENTS];
};
class alu_srcs_negative_equal_test : public ::testing::Test {
protected:
alu_srcs_negative_equal_test()
{
glsl_type_singleton_init_or_ref();
static const nir_shader_compiler_options options = { };
bld = nir_builder_init_simple_shader(MESA_SHADER_VERTEX, &options,
"negative equal tests");
memset(c1, 0, sizeof(c1));
memset(c2, 0, sizeof(c2));
}
~alu_srcs_negative_equal_test()
{
ralloc_free(bld.shader);
glsl_type_singleton_decref();
}
struct nir_builder bld;
nir_const_value c1[NIR_MAX_VEC_COMPONENTS];
nir_const_value c2[NIR_MAX_VEC_COMPONENTS];
};
TEST_F(const_value_negative_equal_test, float32_zero)
{
/* Verify that 0.0 negative-equals 0.0. */
EXPECT_TRUE(nir_const_value_negative_equal(c1[0], c1[0], nir_type_float32));
}
TEST_F(const_value_negative_equal_test, float64_zero)
{
/* Verify that 0.0 negative-equals 0.0. */
EXPECT_TRUE(nir_const_value_negative_equal(c1[0], c1[0], nir_type_float64));
}
/* Compare an object with non-zero values to itself. This should always be
* false.
*/
#define compare_with_self(full_type) \
TEST_F(const_value_negative_equal_test, full_type ## _self) \
{ \
count_sequence(c1, full_type, 1); \
EXPECT_FALSE(nir_const_value_negative_equal(c1[0], c1[0], full_type)); \
}
compare_with_self(nir_type_float16)
compare_with_self(nir_type_float32)
compare_with_self(nir_type_float64)
compare_with_self(nir_type_int8)
compare_with_self(nir_type_uint8)
compare_with_self(nir_type_int16)
compare_with_self(nir_type_uint16)
compare_with_self(nir_type_int32)
compare_with_self(nir_type_uint32)
compare_with_self(nir_type_int64)
compare_with_self(nir_type_uint64)
#undef compare_with_self
/* Compare an object with the negation of itself. This should always be true.
*/
#define compare_with_negation(full_type) \
TEST_F(const_value_negative_equal_test, full_type ## _trivially_true) \
{ \
count_sequence(c1, full_type, 1); \
negate(c2, c1, full_type, 1); \
EXPECT_TRUE(nir_const_value_negative_equal(c1[0], c2[0], full_type)); \
}
compare_with_negation(nir_type_float16)
compare_with_negation(nir_type_float32)
compare_with_negation(nir_type_float64)
compare_with_negation(nir_type_int8)
compare_with_negation(nir_type_uint8)
compare_with_negation(nir_type_int16)
compare_with_negation(nir_type_uint16)
compare_with_negation(nir_type_int32)
compare_with_negation(nir_type_uint32)
compare_with_negation(nir_type_int64)
compare_with_negation(nir_type_uint64)
#undef compare_with_negation
TEST_F(alu_srcs_negative_equal_test, trivial_float)
{
nir_def *two = nir_imm_float(&bld, 2.0f);
nir_def *negative_two = nir_imm_float(&bld, -2.0f);
nir_def *result = nir_fadd(&bld, two, negative_two);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_int)
{
nir_def *two = nir_imm_int(&bld, 2);
nir_def *negative_two = nir_imm_int(&bld, -2);
nir_def *result = nir_iadd(&bld, two, negative_two);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_negation_float)
{
/* Cannot just do the negation of a nir_load_const_instr because
* nir_alu_srcs_negative_equal expects that constant folding will convert
* fneg(2.0) to just -2.0.
*/
nir_def *two = nir_imm_float(&bld, 2.0f);
nir_def *two_plus_two = nir_fadd(&bld, two, two);
nir_def *negation = nir_fneg(&bld, two_plus_two);
nir_def *result = nir_fadd(&bld, two_plus_two, negation);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_negation_int)
{
/* Cannot just do the negation of a nir_load_const_instr because
* nir_alu_srcs_negative_equal expects that constant folding will convert
* ineg(2) to just -2.
*/
nir_def *two = nir_imm_int(&bld, 2);
nir_def *two_plus_two = nir_iadd(&bld, two, two);
nir_def *negation = nir_ineg(&bld, two_plus_two);
nir_def *result = nir_iadd(&bld, two_plus_two, negation);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
/* Compare an object with non-zero values to itself. This should always be
* false.
*/
#define compare_with_self(full_type) \
TEST_F(alu_srcs_negative_equal_test, full_type ## _self) \
{ \
count_sequence(c1, full_type, 1); \
nir_def *a = nir_build_imm(&bld, \
NIR_MAX_VEC_COMPONENTS, \
nir_alu_type_get_type_size(full_type), \
c1); \
nir_def *result; \
if (nir_alu_type_get_base_type(full_type) == nir_type_float) \
result = nir_fadd(&bld, a, a); \
else \
result = nir_iadd(&bld, a, a); \
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr); \
ASSERT_NE((void *) 0, instr); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0)); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 1)); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 0)); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1)); \
}
compare_with_self(nir_type_float16)
compare_with_self(nir_type_float32)
compare_with_self(nir_type_float64)
compare_with_self(nir_type_int8)
compare_with_self(nir_type_uint8)
compare_with_self(nir_type_int16)
compare_with_self(nir_type_uint16)
compare_with_self(nir_type_int32)
compare_with_self(nir_type_uint32)
compare_with_self(nir_type_int64)
compare_with_self(nir_type_uint64)
/* Compare an object with the negation of itself. This should always be true.
*/
#define compare_with_negation(full_type) \
TEST_F(alu_srcs_negative_equal_test, full_type ## _trivially_true) \
{ \
count_sequence(c1, full_type, 1); \
negate(c2, c1, full_type, NIR_MAX_VEC_COMPONENTS); \
nir_def *a = nir_build_imm(&bld, \
NIR_MAX_VEC_COMPONENTS, \
nir_alu_type_get_type_size(full_type), \
c1); \
nir_def *b = nir_build_imm(&bld, \
NIR_MAX_VEC_COMPONENTS, \
nir_alu_type_get_type_size(full_type), \
c2); \
nir_def *result; \
if (nir_alu_type_get_base_type(full_type) == nir_type_float) \
result = nir_fadd(&bld, a, b); \
else \
result = nir_iadd(&bld, a, b); \
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr); \
ASSERT_NE((void *) 0, instr); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0)); \
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1)); \
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 1, 0)); \
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1)); \
}
compare_with_negation(nir_type_float16)
compare_with_negation(nir_type_float32)
compare_with_negation(nir_type_float64)
compare_with_negation(nir_type_int8)
compare_with_negation(nir_type_uint8)
compare_with_negation(nir_type_int16)
compare_with_negation(nir_type_uint16)
compare_with_negation(nir_type_int32)
compare_with_negation(nir_type_uint32)
compare_with_negation(nir_type_int64)
compare_with_negation(nir_type_uint64)
TEST_F(alu_srcs_negative_equal_test, swizzle_scalar_to_vector)
{
nir_def *v = nir_imm_vec2(&bld, 1.0, -1.0);
const uint8_t s0[4] = { 0, 0, 0, 0 };
const uint8_t s1[4] = { 1, 1, 1, 1 };
/* We can't use nir_swizzle here because it inserts an extra MOV. */
nir_alu_instr *instr = nir_alu_instr_create(bld.shader, nir_op_fadd);
instr->src[0].src = nir_src_for_ssa(v);
instr->src[1].src = nir_src_for_ssa(v);
memcpy(&instr->src[0].swizzle, s0, sizeof(s0));
memcpy(&instr->src[1].swizzle, s1, sizeof(s1));
nir_builder_alu_instr_finish_and_insert(&bld, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
}
static void
count_sequence(nir_const_value c[NIR_MAX_VEC_COMPONENTS],
nir_alu_type full_type, int first)
{
switch (full_type) {
case nir_type_float16:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].u16 = _mesa_float_to_half(float(i + first));
break;
case nir_type_float32:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].f32 = float(i + first);
break;
case nir_type_float64:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].f64 = double(i + first);
break;
case nir_type_int8:
case nir_type_uint8:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i8 = i + first;
break;
case nir_type_int16:
case nir_type_uint16:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i16 = i + first;
break;
case nir_type_int32:
case nir_type_uint32:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i32 = i + first;
break;
case nir_type_int64:
case nir_type_uint64:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i64 = i + first;
break;
case nir_type_bool:
default:
unreachable("invalid base type");
}
}
static void
negate(nir_const_value dst[NIR_MAX_VEC_COMPONENTS],
const nir_const_value src[NIR_MAX_VEC_COMPONENTS],
nir_alu_type full_type, unsigned components)
{
switch (full_type) {
case nir_type_float16:
for (unsigned i = 0; i < components; i++)
dst[i].u16 = _mesa_float_to_half(-_mesa_half_to_float(src[i].u16));
break;
case nir_type_float32:
for (unsigned i = 0; i < components; i++)
dst[i].f32 = -src[i].f32;
break;
case nir_type_float64:
for (unsigned i = 0; i < components; i++)
dst[i].f64 = -src[i].f64;
break;
case nir_type_int8:
case nir_type_uint8:
for (unsigned i = 0; i < components; i++)
dst[i].i8 = -src[i].i8;
break;
case nir_type_int16:
case nir_type_uint16:
for (unsigned i = 0; i < components; i++)
dst[i].i16 = -src[i].i16;
break;
case nir_type_int32:
case nir_type_uint32:
for (unsigned i = 0; i < components; i++)
dst[i].i32 = -src[i].i32;
break;
case nir_type_int64:
case nir_type_uint64:
for (unsigned i = 0; i < components; i++)
dst[i].i64 = -src[i].i64;
break;
case nir_type_bool:
default:
unreachable("invalid base type");
}
}