| /* |
| * Copyright © 2013 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "util/ralloc.h" |
| |
| #include "util/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */ |
| #include "util/format_rgb9e5.h" |
| #include "util/format_srgb.h" |
| #include "util/u_math.h" |
| |
| #include "blorp_priv.h" |
| #include "dev/intel_debug.h" |
| #include "dev/intel_device_info.h" |
| |
| #include "blorp_nir_builder.h" |
| |
| #define FILE_DEBUG_FLAG DEBUG_BLORP |
| |
| #pragma pack(push, 1) |
| struct blorp_const_color_prog_key |
| { |
| struct blorp_base_key base; |
| bool use_simd16_replicated_data; |
| bool clear_rgb_as_red; |
| uint8_t local_y; |
| }; |
| #pragma pack(pop) |
| |
| static bool |
| blorp_params_get_clear_kernel_fs(struct blorp_batch *batch, |
| struct blorp_params *params, |
| bool want_replicated_data, |
| bool clear_rgb_as_red) |
| { |
| const bool use_replicated_data = want_replicated_data && |
| batch->blorp->isl_dev->info->ver < 20; |
| struct blorp_context *blorp = batch->blorp; |
| |
| const struct blorp_const_color_prog_key blorp_key = { |
| .base = BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR), |
| .base.shader_pipeline = BLORP_SHADER_PIPELINE_RENDER, |
| .use_simd16_replicated_data = use_replicated_data, |
| .clear_rgb_as_red = clear_rgb_as_red, |
| .local_y = 0, |
| }; |
| |
| params->shader_type = blorp_key.base.shader_type; |
| params->shader_pipeline = blorp_key.base.shader_pipeline; |
| |
| if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key), |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data)) |
| return true; |
| |
| void *mem_ctx = ralloc_context(NULL); |
| |
| nir_builder b; |
| blorp_nir_init_shader(&b, blorp, mem_ctx, MESA_SHADER_FRAGMENT, |
| blorp_shader_type_to_name(blorp_key.base.shader_type)); |
| |
| nir_variable *v_color = |
| BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type()); |
| nir_def *color = nir_load_var(&b, v_color); |
| |
| if (clear_rgb_as_red) { |
| nir_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b)); |
| nir_def *comp = nir_umod_imm(&b, nir_channel(&b, pos, 0), 3); |
| color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp)); |
| } |
| |
| nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out, |
| glsl_vec4_type(), |
| "gl_FragColor"); |
| frag_color->data.location = FRAG_RESULT_COLOR; |
| nir_store_var(&b, frag_color, color, 0xf); |
| |
| const bool multisample_fbo = false; |
| struct blorp_program p = |
| blorp_compile_fs(blorp, mem_ctx, b.shader, multisample_fbo, use_replicated_data); |
| |
| bool result = |
| blorp->upload_shader(batch, MESA_SHADER_FRAGMENT, |
| &blorp_key, sizeof(blorp_key), |
| p.kernel, p.kernel_size, |
| p.prog_data, p.prog_data_size, |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data); |
| |
| ralloc_free(mem_ctx); |
| return result; |
| } |
| |
| static bool |
| blorp_params_get_clear_kernel_cs(struct blorp_batch *batch, |
| struct blorp_params *params, |
| bool clear_rgb_as_red) |
| { |
| struct blorp_context *blorp = batch->blorp; |
| |
| const struct blorp_const_color_prog_key blorp_key = { |
| .base = BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR), |
| .base.shader_pipeline = BLORP_SHADER_PIPELINE_COMPUTE, |
| .use_simd16_replicated_data = false, |
| .clear_rgb_as_red = clear_rgb_as_red, |
| .local_y = blorp_get_cs_local_y(params), |
| }; |
| |
| params->shader_type = blorp_key.base.shader_type; |
| params->shader_pipeline = blorp_key.base.shader_pipeline; |
| |
| if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key), |
| ¶ms->cs_prog_kernel, ¶ms->cs_prog_data)) |
| return true; |
| |
| void *mem_ctx = ralloc_context(NULL); |
| |
| nir_builder b; |
| blorp_nir_init_shader(&b, blorp, mem_ctx, MESA_SHADER_COMPUTE, |
| "BLORP-gpgpu-clear"); |
| blorp_set_cs_dims(b.shader, blorp_key.local_y); |
| |
| nir_def *dst_pos = nir_load_global_invocation_id(&b, 32); |
| |
| nir_variable *v_color = |
| BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type()); |
| nir_def *color = nir_load_var(&b, v_color); |
| |
| nir_variable *v_bounds_rect = |
| BLORP_CREATE_NIR_INPUT(b.shader, bounds_rect, glsl_vec4_type()); |
| nir_def *bounds_rect = nir_load_var(&b, v_bounds_rect); |
| nir_def *in_bounds = blorp_check_in_bounds(&b, bounds_rect, dst_pos); |
| |
| if (clear_rgb_as_red) { |
| nir_def *comp = nir_umod_imm(&b, nir_channel(&b, dst_pos, 0), 3); |
| color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp)); |
| } |
| |
| nir_push_if(&b, in_bounds); |
| |
| nir_image_store(&b, nir_imm_int(&b, 0), |
| nir_pad_vector_imm_int(&b, dst_pos, 0, 4), |
| nir_imm_int(&b, 0), |
| nir_pad_vector_imm_int(&b, color, 0, 4), |
| nir_imm_int(&b, 0), |
| .image_dim = GLSL_SAMPLER_DIM_2D, |
| .image_array = true, |
| .access = ACCESS_NON_READABLE); |
| |
| nir_pop_if(&b, NULL); |
| |
| const struct blorp_program p = |
| blorp_compile_cs(blorp, mem_ctx, b.shader); |
| |
| bool result = |
| blorp->upload_shader(batch, MESA_SHADER_COMPUTE, |
| &blorp_key, sizeof(blorp_key), |
| p.kernel, p.kernel_size, |
| p.prog_data, p.prog_data_size, |
| ¶ms->cs_prog_kernel, ¶ms->cs_prog_data); |
| |
| ralloc_free(mem_ctx); |
| return result; |
| } |
| |
| static bool |
| blorp_params_get_clear_kernel(struct blorp_batch *batch, |
| struct blorp_params *params, |
| bool use_replicated_data, |
| bool clear_rgb_as_red) |
| { |
| if (batch->flags & BLORP_BATCH_USE_COMPUTE) { |
| assert(!use_replicated_data); |
| return blorp_params_get_clear_kernel_cs(batch, params, clear_rgb_as_red); |
| } else { |
| return blorp_params_get_clear_kernel_fs(batch, params, |
| use_replicated_data, |
| clear_rgb_as_red); |
| } |
| } |
| |
| /* The x0, y0, x1, and y1 parameters must already be populated with the render |
| * area of the framebuffer to be cleared. |
| */ |
| static void |
| get_fast_clear_rect(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| const struct isl_surf *aux_surf, |
| unsigned *x0, unsigned *y0, |
| unsigned *x1, unsigned *y1) |
| { |
| unsigned int x_align, y_align; |
| unsigned int x_scaledown, y_scaledown; |
| |
| /* Only single sampled surfaces need to (and actually can) be resolved. */ |
| if (surf->samples == 1) { |
| const uint32_t bs = isl_format_get_layout(surf->format)->bpb / 8; |
| if (dev->info->ver >= 20) { |
| /* From Bspec 57340, "MCS/CCS Buffers, Fast Clear for Render Target(s)": |
| * |
| * Table "Tile4/Tile64 2D/2D Array/Cube Surface" |
| * Table "Tile64 3D/Volumetric" |
| * |
| * The below calculation is derived from these tables. |
| */ |
| assert(surf->tiling == ISL_TILING_4 || |
| surf->tiling == ISL_TILING_64_XE2); |
| x_align = x_scaledown = 64 / bs; |
| y_align = y_scaledown = 4; |
| } else if (dev->info->verx10 >= 125) { |
| /* From Bspec 47709, "MCS/CCS Buffer for Render Target(s)": |
| * |
| * SW must ensure that clearing rectangle dimensions cover the |
| * entire area desired, to accomplish this task initial X/Y |
| * dimensions need to be rounded up to next multiple of scaledown |
| * factor before dividing by scale down factor: |
| * |
| * The X and Y scale down factors in the table that follows are used |
| * for both alignment and scaling down. |
| */ |
| if (surf->tiling == ISL_TILING_4) { |
| x_align = x_scaledown = 1024 / bs; |
| y_align = y_scaledown = 16; |
| } else if (surf->tiling == ISL_TILING_64) { |
| switch (bs) { |
| case 1: |
| x_align = x_scaledown = 128; |
| y_align = y_scaledown = 128; |
| break; |
| case 2: |
| x_align = x_scaledown = 128; |
| y_align = y_scaledown = 64; |
| break; |
| case 4: |
| x_align = x_scaledown = 64; |
| y_align = y_scaledown = 64; |
| break; |
| case 8: |
| x_align = x_scaledown = 64; |
| y_align = y_scaledown = 32; |
| break; |
| case 16: |
| x_align = x_scaledown = 32; |
| y_align = y_scaledown = 32; |
| break; |
| default: |
| unreachable("unsupported bpp"); |
| } |
| } else { |
| unreachable("Unsupported tiling format"); |
| } |
| } else { |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "Fast Color Clear" bullet (p327): |
| * |
| * Clear pass must have a clear rectangle that must follow |
| * alignment rules in terms of pixels and lines as shown in the |
| * table below. Further, the clear-rectangle height and width |
| * must be multiple of the following dimensions. If the height |
| * and width of the render target being cleared do not meet these |
| * requirements, an MCS buffer can be created such that it |
| * follows the requirement and covers the RT. |
| * |
| * The alignment size in the table that follows is a multiple of the |
| * alignment size that is baked into the CCS surface format. |
| */ |
| enum isl_format ccs_format; |
| if (ISL_GFX_VERX10(dev) == 120) { |
| assert(surf->tiling == ISL_TILING_Y0); |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 8: ccs_format = ISL_FORMAT_GFX12_CCS_8BPP_Y0; break; |
| case 16: ccs_format = ISL_FORMAT_GFX12_CCS_16BPP_Y0; break; |
| case 32: ccs_format = ISL_FORMAT_GFX12_CCS_32BPP_Y0; break; |
| case 64: ccs_format = ISL_FORMAT_GFX12_CCS_64BPP_Y0; break; |
| case 128: ccs_format = ISL_FORMAT_GFX12_CCS_128BPP_Y0; break; |
| default: unreachable("Invalid surface bpb for fast clearing"); |
| } |
| } else { |
| assert(aux_surf->usage == ISL_SURF_USAGE_CCS_BIT); |
| ccs_format = aux_surf->format; |
| } |
| |
| x_align = isl_format_get_layout(ccs_format)->bw * 16; |
| y_align = isl_format_get_layout(ccs_format)->bh * 32 / |
| isl_format_get_layout(ccs_format)->bpb; |
| |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "Fast Color Clear" bullet (p327): |
| * |
| * In order to optimize the performance MCS buffer (when bound to |
| * 1X RT) clear similarly to MCS buffer clear for MSRT case, |
| * clear rect is required to be scaled by the following factors |
| * in the horizontal and vertical directions: |
| * |
| * The X and Y scale down factors in the table that follows are each |
| * equal to half the alignment value computed above. |
| */ |
| x_scaledown = x_align / 2; |
| y_scaledown = y_align / 2; |
| } |
| |
| if (ISL_DEV_IS_HASWELL(dev)) { |
| /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel |
| * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color |
| * Clear of Non-MultiSampled Render Target Restrictions": |
| * |
| * Clear rectangle must be aligned to two times the number of |
| * pixels in the table shown below due to 16x16 hashing across the |
| * slice. |
| * |
| * This restriction is only documented to exist on HSW GT3 but |
| * empirical evidence suggests that it's also needed GT2. |
| */ |
| x_align *= 2; |
| y_align *= 2; |
| } |
| } else { |
| assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT); |
| |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "MSAA Compression" bullet (p326): |
| * |
| * Clear pass for this case requires that scaled down primitive |
| * is sent down with upper left coordinate to coincide with |
| * actual rectangle being cleared. For MSAA, clear rectangle’s |
| * height and width need to as show in the following table in |
| * terms of (width,height) of the RT. |
| * |
| * MSAA Width of Clear Rect Height of Clear Rect |
| * 2X Ceil(1/8*width) Ceil(1/2*height) |
| * 4X Ceil(1/8*width) Ceil(1/2*height) |
| * 8X Ceil(1/2*width) Ceil(1/2*height) |
| * 16X width Ceil(1/2*height) |
| * |
| * The text "with upper left coordinate to coincide with actual |
| * rectangle being cleared" is a little confusing--it seems to imply |
| * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to |
| * feed the pipeline using the rectangle (x,y) to |
| * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on |
| * the number of samples. Experiments indicate that this is not |
| * quite correct; actually, what the hardware appears to do is to |
| * align whatever rectangle is sent down the pipeline to the nearest |
| * multiple of 2x2 blocks, and then scale it up by a factor of N |
| * horizontally and 2 vertically. So the resulting alignment is 4 |
| * vertically and either 4 or 16 horizontally, and the scaledown |
| * factor is 2 vertically and either 2 or 8 horizontally. |
| * |
| * On Xe2+: |
| * Bspec 57340 (r59562): |
| * |
| * Fast Clear MCS Surface |
| * (Table) |
| * |
| * The scaled down values in the Xe2 table are different from what's in |
| * the previous platforms. |
| */ |
| switch (aux_surf->format) { |
| case ISL_FORMAT_MCS_2X: |
| case ISL_FORMAT_MCS_4X: |
| x_scaledown = dev->info->ver >= 20 ? 64 : 8; |
| break; |
| case ISL_FORMAT_MCS_8X: |
| x_scaledown = dev->info->ver >= 20 ? 16 : 2; |
| break; |
| case ISL_FORMAT_MCS_16X: |
| x_scaledown = dev->info->ver >= 20 ? 8 : 1; |
| break; |
| default: |
| unreachable("Unexpected MCS format for fast clear"); |
| } |
| y_scaledown = dev->info->ver >= 20 ? 4 : 2; |
| x_align = x_scaledown * 2; |
| y_align = y_scaledown * 2; |
| } |
| |
| *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown; |
| *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown; |
| *x1 = ALIGN(*x1, x_align) / x_scaledown; |
| *y1 = ALIGN(*y1, y_align) / y_scaledown; |
| } |
| |
| static void |
| convert_rt_from_3d_to_2d(const struct isl_device *isl_dev, |
| struct blorp_surface_info *info) |
| { |
| assert(info->surf.dim == ISL_SURF_DIM_3D); |
| assert(info->surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D); |
| |
| /* Some tilings have different swizzling between 2D/3D images. So, |
| * conversion would not be possible. |
| */ |
| assert(!isl_tiling_is_std_y(info->surf.tiling)); |
| assert(!isl_tiling_is_64(info->surf.tiling)); |
| |
| /* Convert from 3D to 2D-array. */ |
| uint32_t array_pitch_el_rows = info->surf.array_pitch_el_rows; |
| uint64_t size_B = info->surf.size_B; |
| bool ok = isl_surf_init(isl_dev, &info->surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = info->surf.format, |
| .width = info->surf.logical_level0_px.w, |
| .height = info->surf.logical_level0_px.h, |
| .depth = 1, |
| .levels = info->surf.levels, |
| .array_len = info->surf.logical_level0_px.d, |
| .samples = 1, |
| .row_pitch_B = info->surf.row_pitch_B, |
| .usage = info->surf.usage, |
| .tiling_flags = (1 << info->surf.tiling)); |
| assert(ok); |
| |
| /* Fix up the array-pitch and size. */ |
| info->surf.array_pitch_el_rows = array_pitch_el_rows; |
| info->surf.size_B = size_B; |
| } |
| |
| void |
| blorp_fast_clear(struct blorp_batch *batch, |
| const struct blorp_surf *surf, |
| enum isl_format format, struct isl_swizzle swizzle, |
| uint32_t level, uint32_t start_layer, uint32_t num_layers, |
| uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.num_layers = num_layers; |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| |
| if (batch->blorp->isl_dev->info->ver >= 20) { |
| union isl_color_value clear_color = |
| isl_color_value_swizzle_inv(surf->clear_color, swizzle); |
| if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) { |
| clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32); |
| format = ISL_FORMAT_R32_UINT; |
| } else if (format == ISL_FORMAT_L8_UNORM_SRGB) { |
| clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]); |
| format = ISL_FORMAT_R8_UNORM; |
| } |
| |
| /* Bspec 57340 (r59562): |
| * |
| * Overview of Fast Clear: |
| * Pixel shader's color output is treated as Clear Value, value |
| * should be a constant. |
| */ |
| memcpy(¶ms.wm_inputs.clear_color, &clear_color, 4 * sizeof(float)); |
| } else { |
| /* BSpec: 2423 (r153658): |
| * |
| * The pixel shader kernel requires no attributes, and delivers a |
| * value of 0xFFFFFFFF in all channels of the render target write |
| * message The replicated color message should be used. |
| */ |
| memset(¶ms.wm_inputs.clear_color, 0xff, 4 * sizeof(float)); |
| } |
| |
| params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR; |
| |
| get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf, |
| ¶ms.x0, ¶ms.y0, ¶ms.x1, ¶ms.y1); |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false)) |
| return; |
| |
| blorp_surface_info_init(batch, ¶ms.dst, surf, level, |
| start_layer, format, true); |
| |
| /* BSpec: 46969 (r45602): |
| * |
| * 3D/Volumetric surfaces do not support Fast Clear operation. |
| */ |
| if (ISL_GFX_VERX10(batch->blorp->isl_dev) == 120 && |
| params.dst.surf.dim == ISL_SURF_DIM_3D) { |
| convert_rt_from_3d_to_2d(batch->blorp->isl_dev, ¶ms.dst); |
| } |
| |
| params.num_samples = params.dst.surf.samples; |
| |
| assert(params.num_samples != 0); |
| if (params.num_samples == 1) |
| params.op = BLORP_OP_CCS_COLOR_CLEAR; |
| else |
| params.op = BLORP_OP_MCS_COLOR_CLEAR; |
| |
| /* If a swizzle was provided, we need to swizzle the clear color so that |
| * the hardware color format conversion will work properly. |
| */ |
| params.dst.clear_color = |
| isl_color_value_swizzle_inv(params.dst.clear_color, swizzle); |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| bool |
| blorp_clear_supports_blitter(struct blorp_context *blorp, |
| const struct blorp_surf *surf, |
| uint8_t color_write_disable, |
| bool blend_enabled) |
| { |
| const struct intel_device_info *devinfo = blorp->isl_dev->info; |
| |
| if (devinfo->ver < 12) |
| return false; |
| |
| if (surf->surf->samples > 1) |
| return false; |
| |
| if (color_write_disable != 0 || blend_enabled) |
| return false; |
| |
| if (!blorp_blitter_supports_aux(devinfo, surf->aux_usage)) |
| return false; |
| |
| const struct isl_format_layout *fmtl = |
| isl_format_get_layout(surf->surf->format); |
| |
| /* We can only support linear mode for 96bpp. */ |
| if (fmtl->bpb == 96 && surf->surf->tiling != ISL_TILING_LINEAR) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| blorp_clear_supports_compute(struct blorp_context *blorp, |
| uint8_t color_write_disable, bool blend_enabled, |
| enum isl_aux_usage aux_usage) |
| { |
| if (blorp->isl_dev->info->ver < 7) |
| return false; |
| if (color_write_disable != 0 || blend_enabled) |
| return false; |
| if (blorp->isl_dev->info->ver >= 12) { |
| return aux_usage == ISL_AUX_USAGE_FCV_CCS_E || |
| aux_usage == ISL_AUX_USAGE_CCS_E || |
| aux_usage == ISL_AUX_USAGE_NONE; |
| } else { |
| return aux_usage == ISL_AUX_USAGE_NONE; |
| } |
| } |
| |
| void |
| blorp_clear(struct blorp_batch *batch, |
| const struct blorp_surf *surf, |
| enum isl_format format, struct isl_swizzle swizzle, |
| uint32_t level, uint32_t start_layer, uint32_t num_layers, |
| uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, |
| union isl_color_value clear_color, |
| uint8_t color_write_disable) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_SLOW_COLOR_CLEAR; |
| |
| const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE; |
| if (compute) { |
| assert(blorp_clear_supports_compute(batch->blorp, color_write_disable, |
| false, surf->aux_usage)); |
| } else if (batch->flags & BLORP_BATCH_USE_BLITTER) { |
| assert(blorp_clear_supports_blitter(batch->blorp, surf, |
| color_write_disable, false)); |
| } |
| |
| /* Manually apply the clear destination swizzle. This way swizzled clears |
| * will work for swizzles which we can't normally use for rendering and it |
| * also ensures that they work on pre-Haswell hardware which can't swizlle |
| * at all. |
| */ |
| clear_color = isl_color_value_swizzle_inv(clear_color, swizzle); |
| swizzle = ISL_SWIZZLE_IDENTITY; |
| |
| bool clear_rgb_as_red = false; |
| if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) { |
| clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32); |
| format = ISL_FORMAT_R32_UINT; |
| } else if (format == ISL_FORMAT_L8_UNORM_SRGB) { |
| clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]); |
| format = ISL_FORMAT_R8_UNORM; |
| } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) { |
| /* Broadwell and earlier cannot render to this format so we need to work |
| * around it by swapping the colors around and using B4G4R4A4 instead. |
| */ |
| const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE); |
| clear_color = isl_color_value_swizzle_inv(clear_color, ARGB); |
| format = ISL_FORMAT_B4G4R4A4_UNORM; |
| } else if (isl_format_get_layout(format)->bpb % 3 == 0) { |
| clear_rgb_as_red = true; |
| if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) { |
| clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]); |
| clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]); |
| clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]); |
| } |
| } |
| |
| memcpy(¶ms.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4); |
| |
| bool use_simd16_replicated_data = true; |
| |
| /* From the SNB PRM (Vol4_Part1): |
| * |
| * "Replicated data (Message Type = 111) is only supported when |
| * accessing tiled memory. Using this Message Type to access linear |
| * (untiled) memory is UNDEFINED." |
| */ |
| if (surf->surf->tiling == ISL_TILING_LINEAR) |
| use_simd16_replicated_data = false; |
| |
| /* Replicated clears don't work before gfx6 */ |
| if (batch->blorp->isl_dev->info->ver < 6) |
| use_simd16_replicated_data = false; |
| |
| /* From the BSpec: 47719 (TGL/DG2/MTL) Replicate Data: |
| * |
| * "Replicate Data Render Target Write message should not be used |
| * on all projects TGL+." |
| * |
| * Xe2 spec (57350) does not mention this restriction. |
| * |
| * See 14017879046, 14017880152 for additional information. |
| */ |
| if (batch->blorp->isl_dev->info->ver >= 12 && |
| batch->blorp->isl_dev->info->ver < 20) |
| use_simd16_replicated_data = false; |
| |
| if (compute) |
| use_simd16_replicated_data = false; |
| |
| /* Constant color writes ignore everything in blend and color calculator |
| * state. This is not documented. |
| */ |
| params.color_write_disable = color_write_disable & BITFIELD_MASK(4); |
| if (color_write_disable) |
| use_simd16_replicated_data = false; |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, |
| use_simd16_replicated_data, |
| clear_rgb_as_red)) |
| return; |
| |
| if (!compute && !blorp_ensure_sf_program(batch, ¶ms)) |
| return; |
| |
| assert(num_layers > 0); |
| while (num_layers > 0) { |
| blorp_surface_info_init(batch, ¶ms.dst, surf, level, |
| start_layer, format, true); |
| params.dst.view.swizzle = swizzle; |
| |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| |
| if (compute) { |
| params.wm_inputs.bounds_rect.x0 = x0; |
| params.wm_inputs.bounds_rect.y0 = y0; |
| params.wm_inputs.bounds_rect.x1 = x1; |
| params.wm_inputs.bounds_rect.y1 = y1; |
| } |
| |
| if (params.dst.tile_x_sa || params.dst.tile_y_sa) { |
| assert(params.dst.surf.samples == 1); |
| assert(num_layers == 1); |
| params.x0 += params.dst.tile_x_sa; |
| params.y0 += params.dst.tile_y_sa; |
| params.x1 += params.dst.tile_x_sa; |
| params.y1 += params.dst.tile_y_sa; |
| } |
| |
| /* The MinLOD and MinimumArrayElement don't work properly for cube maps. |
| * Convert them to a single slice on gfx4. |
| */ |
| if (batch->blorp->isl_dev->info->ver == 4 && |
| (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) { |
| blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, ¶ms.dst); |
| } |
| |
| if (clear_rgb_as_red) { |
| surf_fake_rgb_with_red(batch->blorp->isl_dev, ¶ms.dst); |
| params.x0 *= 3; |
| params.x1 *= 3; |
| } |
| |
| if (isl_format_is_compressed(params.dst.surf.format)) { |
| blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, ¶ms.dst, |
| NULL, NULL, NULL, NULL); |
| //&dst_x, &dst_y, &dst_w, &dst_h); |
| } |
| |
| if (params.dst.tile_x_sa || params.dst.tile_y_sa) { |
| /* Either we're on gfx4 where there is no multisampling or the |
| * surface is compressed which also implies no multisampling. |
| * Therefore, sa == px and we don't need to do a conversion. |
| */ |
| assert(params.dst.surf.samples == 1); |
| params.x0 += params.dst.tile_x_sa; |
| params.y0 += params.dst.tile_y_sa; |
| params.x1 += params.dst.tile_x_sa; |
| params.y1 += params.dst.tile_y_sa; |
| } |
| |
| params.num_samples = params.dst.surf.samples; |
| |
| /* We may be restricted on the number of layers we can bind at any one |
| * time. In particular, Sandy Bridge has a maximum number of layers of |
| * 512 but a maximum 3D texture size is much larger. |
| */ |
| params.num_layers = MIN2(params.dst.view.array_len, num_layers); |
| |
| const unsigned max_image_width = 16 * 1024; |
| if (params.dst.surf.logical_level0_px.width > max_image_width) { |
| /* Clearing an RGB image as red multiplies the surface width by 3 |
| * so it may now be too wide for the hardware surface limits. We |
| * have to break the clear up into pieces in order to clear wide |
| * images. |
| */ |
| assert(clear_rgb_as_red); |
| assert(params.dst.surf.dim == ISL_SURF_DIM_2D); |
| assert(params.dst.surf.tiling == ISL_TILING_LINEAR); |
| assert(params.dst.surf.logical_level0_px.depth == 1); |
| assert(params.dst.surf.logical_level0_px.array_len == 1); |
| assert(params.dst.surf.levels == 1); |
| assert(params.dst.surf.samples == 1); |
| assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0); |
| assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE); |
| |
| /* max_image_width rounded down to a multiple of 3 */ |
| const unsigned max_fake_rgb_width = (max_image_width / 3) * 3; |
| const unsigned cpp = |
| isl_format_get_layout(params.dst.surf.format)->bpb / 8; |
| |
| params.dst.surf.logical_level0_px.width = max_fake_rgb_width; |
| params.dst.surf.phys_level0_sa.width = max_fake_rgb_width; |
| |
| uint32_t orig_x0 = params.x0, orig_x1 = params.x1; |
| uint64_t orig_offset = params.dst.addr.offset; |
| for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) { |
| /* Offset to the surface. It's easy because we're linear */ |
| params.dst.addr.offset = orig_offset + x * cpp; |
| |
| params.x0 = 0; |
| params.x1 = MIN2(orig_x1 - x, max_image_width); |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| } else { |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| start_layer += params.num_layers; |
| num_layers -= params.num_layers; |
| } |
| } |
| |
| static bool |
| blorp_clear_stencil_as_rgba(struct blorp_batch *batch, |
| const struct blorp_surf *surf, |
| uint32_t level, uint32_t start_layer, |
| uint32_t num_layers, |
| uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, |
| uint8_t stencil_mask, uint8_t stencil_value) |
| { |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| |
| /* Stencil mask support would require piles of shader magic */ |
| if (stencil_mask != 0xff) |
| return false; |
| |
| /* We only support separate W-tiled stencil for now */ |
| if (surf->surf->format != ISL_FORMAT_R8_UINT || |
| surf->surf->tiling != ISL_TILING_W) |
| return false; |
| |
| if (surf->surf->samples > 1) { |
| /* Adjust x0, y0, x1, and y1 to be in units of samples */ |
| assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED); |
| struct isl_extent2d msaa_px_size_sa = |
| isl_get_interleaved_msaa_px_size_sa(surf->surf->samples); |
| |
| x0 *= msaa_px_size_sa.w; |
| y0 *= msaa_px_size_sa.h; |
| x1 *= msaa_px_size_sa.w; |
| y1 *= msaa_px_size_sa.h; |
| } |
| |
| /* W-tiles and Y-tiles have the same layout as far as cache lines are |
| * concerned: both are 8x8 cache lines laid out Y-major. The difference is |
| * entirely in how the data is arranged within the cache line. W-tiling |
| * is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows |
| * regardless of image format size. As long as everything is aligned to 8, |
| * we can just treat the W-tiled image as Y-tiled, ignore the layout |
| * difference within a cache line, and blast out data. |
| */ |
| if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0) |
| return false; |
| |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_SLOW_DEPTH_CLEAR; |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false)) |
| return false; |
| |
| memset(¶ms.wm_inputs.clear_color, stencil_value, |
| sizeof(params.wm_inputs.clear_color)); |
| |
| /* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the |
| * following footnote to the format table: |
| * |
| * 128 BPE Formats cannot be Tiled Y when used as render targets |
| * |
| * We have to use RGBA16_UINT on SNB. |
| */ |
| enum isl_format wide_format; |
| if (ISL_GFX_VER(batch->blorp->isl_dev) <= 6) { |
| wide_format = ISL_FORMAT_R16G16B16A16_UINT; |
| |
| /* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk |
| * clamping giving us the wrong values |
| */ |
| for (unsigned i = 0; i < 4; i++) |
| params.wm_inputs.clear_color[i] &= 0xffff; |
| } else { |
| wide_format = ISL_FORMAT_R32G32B32A32_UINT; |
| } |
| |
| for (uint32_t a = 0; a < num_layers; a++) { |
| uint32_t layer = start_layer + a; |
| |
| blorp_surface_info_init(batch, ¶ms.dst, surf, level, |
| layer, ISL_FORMAT_UNSUPPORTED, true); |
| |
| if (surf->surf->samples > 1) |
| blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, ¶ms.dst); |
| |
| /* Make it Y-tiled */ |
| blorp_surf_retile_w_to_y(batch->blorp->isl_dev, ¶ms.dst); |
| |
| unsigned wide_Bpp = |
| isl_format_get_layout(wide_format)->bpb / 8; |
| |
| params.dst.view.format = params.dst.surf.format = wide_format; |
| assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0); |
| params.dst.surf.logical_level0_px.width /= wide_Bpp; |
| assert(params.dst.tile_x_sa % wide_Bpp == 0); |
| params.dst.tile_x_sa /= wide_Bpp; |
| |
| params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2); |
| params.y0 = params.dst.tile_y_sa + y0 / 2; |
| params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2); |
| params.y1 = params.dst.tile_y_sa + y1 / 2; |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| return true; |
| } |
| |
| void |
| blorp_clear_depth_stencil(struct blorp_batch *batch, |
| const struct blorp_surf *depth, |
| const struct blorp_surf *stencil, |
| uint32_t level, uint32_t start_layer, |
| uint32_t num_layers, |
| uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, |
| bool clear_depth, float depth_value, |
| uint8_t stencil_mask, uint8_t stencil_value) |
| { |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| assert(num_layers > 0); |
| |
| if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level, |
| start_layer, num_layers, |
| x0, y0, x1, y1, |
| stencil_mask, |
| stencil_value)) |
| return; |
| |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_SLOW_DEPTH_CLEAR; |
| |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| |
| if (ISL_GFX_VER(batch->blorp->isl_dev) == 6) { |
| /* For some reason, Sandy Bridge gets occlusion queries wrong if we |
| * don't have a shader. In particular, it records samples even though |
| * we disable statistics in 3DSTATE_WM. Give it the usual clear shader |
| * to work around the issue. |
| */ |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, false, false)) |
| return; |
| } |
| |
| while (num_layers > 0) { |
| params.num_layers = num_layers; |
| |
| if (stencil_mask) { |
| blorp_surface_info_init(batch, ¶ms.stencil, stencil, |
| level, start_layer, |
| ISL_FORMAT_UNSUPPORTED, true); |
| params.stencil_mask = stencil_mask; |
| params.stencil_ref = stencil_value; |
| |
| params.dst.surf.samples = params.stencil.surf.samples; |
| params.dst.surf.logical_level0_px = |
| params.stencil.surf.logical_level0_px; |
| params.dst.view = params.stencil.view; |
| |
| params.num_samples = params.stencil.surf.samples; |
| |
| /* We may be restricted on the number of layers we can bind at any |
| * one time. In particular, Sandy Bridge has a maximum number of |
| * layers of 512 but a maximum 3D texture size is much larger. |
| */ |
| if (params.stencil.view.array_len < params.num_layers) |
| params.num_layers = params.stencil.view.array_len; |
| } |
| |
| if (clear_depth) { |
| blorp_surface_info_init(batch, ¶ms.depth, depth, |
| level, start_layer, |
| ISL_FORMAT_UNSUPPORTED, true); |
| params.z = depth_value; |
| params.depth_format = |
| isl_format_get_depth_format(depth->surf->format, false); |
| |
| params.dst.surf.samples = params.depth.surf.samples; |
| params.dst.surf.logical_level0_px = |
| params.depth.surf.logical_level0_px; |
| params.dst.view = params.depth.view; |
| |
| params.num_samples = params.depth.surf.samples; |
| |
| /* We may be restricted on the number of layers we can bind at any |
| * one time. In particular, Sandy Bridge has a maximum number of |
| * layers of 512 but a maximum 3D texture size is much larger. |
| */ |
| if (params.depth.view.array_len < params.num_layers) |
| params.num_layers = params.depth.view.array_len; |
| } |
| |
| batch->blorp->exec(batch, ¶ms); |
| |
| start_layer += params.num_layers; |
| num_layers -= params.num_layers; |
| } |
| } |
| |
| static bool |
| blorp_can_clear_full_surface(const struct blorp_surf *depth, |
| const struct blorp_surf *stencil, |
| uint32_t level, |
| uint32_t x0, uint32_t y0, |
| uint32_t x1, uint32_t y1, |
| bool clear_depth, |
| bool clear_stencil) |
| { |
| uint32_t width = 0, height = 0; |
| if (clear_stencil) { |
| width = u_minify(stencil->surf->logical_level0_px.width, level); |
| height = u_minify(stencil->surf->logical_level0_px.height, level); |
| } |
| |
| if (clear_depth && !(width || height)) { |
| width = u_minify(depth->surf->logical_level0_px.width, level); |
| height = u_minify(depth->surf->logical_level0_px.height, level); |
| } |
| |
| return x0 == 0 && y0 == 0 && width == x1 && height == y1; |
| } |
| |
| void |
| blorp_hiz_clear_depth_stencil(struct blorp_batch *batch, |
| const struct blorp_surf *depth, |
| const struct blorp_surf *stencil, |
| uint32_t level, |
| uint32_t start_layer, uint32_t num_layers, |
| uint32_t x0, uint32_t y0, |
| uint32_t x1, uint32_t y1, |
| bool clear_depth, float depth_value, |
| bool clear_stencil, uint8_t stencil_value) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_HIZ_CLEAR; |
| |
| /* This requires WM_HZ_OP which only exists on gfx8+ */ |
| assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 8); |
| |
| params.hiz_op = ISL_AUX_OP_FAST_CLEAR; |
| /* From BSpec: 3DSTATE_WM_HZ_OP_BODY >> Full Surface Depth and Stencil Clear |
| * |
| * "Software must set this only when the APP requires the entire Depth |
| * surface to be cleared." |
| */ |
| params.full_surface_hiz_op = |
| blorp_can_clear_full_surface(depth, stencil, level, x0, y0, x1, y1, |
| clear_depth, clear_stencil); |
| params.num_layers = 1; |
| |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| |
| for (uint32_t l = 0; l < num_layers; l++) { |
| const uint32_t layer = start_layer + l; |
| if (clear_stencil) { |
| blorp_surface_info_init(batch, ¶ms.stencil, stencil, |
| level, layer, |
| ISL_FORMAT_UNSUPPORTED, true); |
| params.stencil_mask = 0xff; |
| params.stencil_ref = stencil_value; |
| params.num_samples = params.stencil.surf.samples; |
| } |
| |
| if (clear_depth) { |
| /* If we're clearing depth, we must have HiZ */ |
| assert(depth && isl_aux_usage_has_hiz(depth->aux_usage)); |
| |
| blorp_surface_info_init(batch, ¶ms.depth, depth, |
| level, layer, |
| ISL_FORMAT_UNSUPPORTED, true); |
| params.depth.clear_color.f32[0] = depth_value; |
| params.depth_format = |
| isl_format_get_depth_format(depth->surf->format, false); |
| params.num_samples = params.depth.surf.samples; |
| } |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| } |
| |
| /* Given a depth stencil attachment, this function performs a fast depth clear |
| * on a depth portion and a regular clear on the stencil portion. When |
| * performing a fast depth clear on the depth portion, the HiZ buffer is simply |
| * tagged as cleared so the depth clear value is not actually needed. |
| */ |
| void |
| blorp_gfx8_hiz_clear_attachments(struct blorp_batch *batch, |
| uint32_t num_samples, |
| uint32_t x0, uint32_t y0, |
| uint32_t x1, uint32_t y1, |
| bool clear_depth, bool clear_stencil, |
| uint8_t stencil_value) |
| { |
| assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL); |
| |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_HIZ_CLEAR; |
| params.num_layers = 1; |
| params.hiz_op = ISL_AUX_OP_FAST_CLEAR; |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| params.num_samples = num_samples; |
| params.depth.enabled = clear_depth; |
| params.stencil.enabled = clear_stencil; |
| params.stencil_ref = stencil_value; |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| /** Clear active color/depth/stencili attachments |
| * |
| * This function performs a clear operation on the currently bound |
| * color/depth/stencil attachments. It is assumed that any information passed |
| * in here is valid, consistent, and in-bounds relative to the currently |
| * attached depth/stencil. The binding_table_offset parameter is the 32-bit |
| * offset relative to surface state base address where pre-baked binding table |
| * that we are to use lives. If clear_color is false, binding_table_offset |
| * must point to a binding table with one entry which is a valid null surface |
| * that matches the currently bound depth and stencil. |
| */ |
| void |
| blorp_clear_attachments(struct blorp_batch *batch, |
| uint32_t binding_table_offset, |
| enum isl_format depth_format, |
| uint32_t num_samples, |
| uint32_t start_layer, uint32_t num_layers, |
| uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, |
| bool clear_color, union isl_color_value color_value, |
| bool clear_depth, float depth_value, |
| uint8_t stencil_mask, uint8_t stencil_value) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL); |
| |
| params.x0 = x0; |
| params.y0 = y0; |
| params.x1 = x1; |
| params.y1 = y1; |
| |
| params.use_pre_baked_binding_table = true; |
| params.pre_baked_binding_table_offset = binding_table_offset; |
| |
| params.num_layers = num_layers; |
| params.num_samples = num_samples; |
| |
| if (clear_color) { |
| params.dst.enabled = true; |
| params.op = BLORP_OP_SLOW_COLOR_CLEAR; |
| |
| memcpy(¶ms.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4); |
| |
| /* Unfortunately, without knowing whether or not our destination surface |
| * is tiled or not, we have to assume it may be linear. This means no |
| * SIMD16_REPDATA for us. :-( |
| */ |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, false, false)) |
| return; |
| } |
| |
| if (clear_depth) { |
| params.depth.enabled = true; |
| params.op = BLORP_OP_SLOW_DEPTH_CLEAR; |
| |
| params.z = depth_value; |
| params.depth_format = isl_format_get_depth_format(depth_format, false); |
| } |
| |
| if (stencil_mask) { |
| params.stencil.enabled = true; |
| params.op = BLORP_OP_SLOW_DEPTH_CLEAR; |
| |
| params.stencil_mask = stencil_mask; |
| params.stencil_ref = stencil_value; |
| } |
| |
| if (!blorp_params_get_layer_offset_vs(batch, ¶ms)) |
| return; |
| |
| params.vs_inputs.base_layer = start_layer; |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| void |
| blorp_ccs_resolve(struct blorp_batch *batch, |
| struct blorp_surf *surf, uint32_t level, |
| uint32_t start_layer, uint32_t num_layers, |
| enum isl_format format, |
| enum isl_aux_op resolve_op) |
| { |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| struct blorp_params params; |
| |
| blorp_params_init(¶ms); |
| switch(resolve_op) { |
| case ISL_AUX_OP_AMBIGUATE: |
| params.op = BLORP_OP_CCS_AMBIGUATE; |
| break; |
| case ISL_AUX_OP_FULL_RESOLVE: |
| params.op = BLORP_OP_CCS_RESOLVE; |
| break; |
| case ISL_AUX_OP_PARTIAL_RESOLVE: |
| params.op = BLORP_OP_CCS_PARTIAL_RESOLVE; |
| break; |
| default: |
| assert(false); |
| } |
| blorp_surface_info_init(batch, ¶ms.dst, surf, |
| level, start_layer, format, true); |
| |
| /* From the TGL PRM, Volume 2d: 3DSTATE_PS_BODY, |
| * |
| * 3D/Volumetric surfaces do not support Fast Clear operation. |
| * |
| * [...] |
| * |
| * 3D/Volumetric surfaces do not support in-place resolve pass |
| * operation. |
| * |
| * HSD 1406738321 suggests a more limited scope of restrictions, but |
| * there should be no harm in complying with the Bspec restrictions. |
| */ |
| if (ISL_GFX_VERX10(batch->blorp->isl_dev) == 120 && |
| params.dst.surf.dim == ISL_SURF_DIM_3D) { |
| convert_rt_from_3d_to_2d(batch->blorp->isl_dev, ¶ms.dst); |
| } |
| |
| params.x0 = params.y0 = 0; |
| params.x1 = u_minify(params.dst.surf.logical_level0_px.width, level); |
| params.y1 = u_minify(params.dst.surf.logical_level0_px.height, level); |
| if (ISL_GFX_VER(batch->blorp->isl_dev) >= 9) { |
| /* From Bspec 2424, "Render Target Resolve": |
| * |
| * The Resolve Rectangle size is same as Clear Rectangle size from |
| * SKL+. |
| * |
| * Note that this differs from Vol7 of the Sky Lake PRM, which only |
| * specifies aligning by the scaledown factors. |
| */ |
| get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf, |
| ¶ms.x0, ¶ms.y0, ¶ms.x1, ¶ms.y1); |
| } else { |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve": |
| * |
| * A rectangle primitive must be scaled down by the following factors |
| * with respect to render target being resolved. |
| * |
| * The scaledown factors in the table that follows are related to the |
| * block size of the CCS format. For IVB and HSW, we divide by two, for |
| * BDW we multiply by 8 and 16. |
| */ |
| const struct isl_format_layout *aux_fmtl = |
| isl_format_get_layout(params.dst.aux_surf.format); |
| assert(aux_fmtl->txc == ISL_TXC_CCS); |
| |
| unsigned x_scaledown, y_scaledown; |
| if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) { |
| x_scaledown = aux_fmtl->bw * 8; |
| y_scaledown = aux_fmtl->bh * 16; |
| } else { |
| x_scaledown = aux_fmtl->bw / 2; |
| y_scaledown = aux_fmtl->bh / 2; |
| } |
| params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown; |
| params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown; |
| } |
| |
| if (batch->blorp->isl_dev->info->ver >= 10) { |
| assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE || |
| resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE || |
| resolve_op == ISL_AUX_OP_AMBIGUATE); |
| } else if (batch->blorp->isl_dev->info->ver >= 9) { |
| assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE || |
| resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); |
| } else { |
| /* Broadwell and earlier do not have a partial resolve */ |
| assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); |
| } |
| params.fast_clear_op = resolve_op; |
| params.num_layers = num_layers; |
| |
| /* Note: there is no need to initialize push constants because it doesn't |
| * matter what data gets dispatched to the render target. However, we must |
| * ensure that the fragment shader delivers the data using the "replicated |
| * color" message. |
| */ |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false)) |
| return; |
| |
| batch->blorp->exec(batch, ¶ms); |
| |
| if (batch->blorp->isl_dev->info->ver <= 8) { |
| assert(surf->aux_usage == ISL_AUX_USAGE_CCS_D); |
| assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); |
| /* ISL's state-machine of CCS_D describes full resolves as leaving the |
| * aux buffer in the pass-through state. Hardware doesn't behave this |
| * way on Broadwell however. On that platform, full resolves transition |
| * the aux buffer to the resolved state. We assume that gfx7 behaves the |
| * same. Use an ambiguate to match driver expectations. |
| */ |
| for (int l = 0; l < num_layers; l++) |
| blorp_ccs_ambiguate(batch, surf, level, start_layer + l); |
| } |
| } |
| |
| static nir_def * |
| blorp_nir_bit(nir_builder *b, nir_def *src, unsigned bit) |
| { |
| return nir_iand_imm(b, nir_ushr_imm(b, src, bit), 1); |
| } |
| |
| #pragma pack(push, 1) |
| struct blorp_mcs_partial_resolve_key |
| { |
| struct blorp_base_key base; |
| bool indirect_clear_color; |
| bool int_format; |
| uint32_t num_samples; |
| }; |
| #pragma pack(pop) |
| |
| static bool |
| blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch, |
| struct blorp_params *params) |
| { |
| struct blorp_context *blorp = batch->blorp; |
| const struct blorp_mcs_partial_resolve_key blorp_key = { |
| .base = BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE), |
| .indirect_clear_color = params->dst.clear_color_addr.buffer != NULL, |
| .int_format = isl_format_has_int_channel(params->dst.view.format), |
| .num_samples = params->num_samples, |
| }; |
| |
| if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key), |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data)) |
| return true; |
| |
| void *mem_ctx = ralloc_context(NULL); |
| |
| nir_builder b; |
| blorp_nir_init_shader(&b, blorp, mem_ctx, MESA_SHADER_FRAGMENT, |
| blorp_shader_type_to_name(blorp_key.base.shader_type)); |
| |
| nir_variable *v_color = |
| BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type()); |
| |
| nir_variable *frag_color = |
| nir_variable_create(b.shader, nir_var_shader_out, |
| glsl_vec4_type(), "gl_FragColor"); |
| frag_color->data.location = FRAG_RESULT_COLOR; |
| |
| /* Do an MCS fetch and check if it is equal to the magic clear value */ |
| nir_def *mcs = |
| blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)), |
| nir_load_layer_id(&b)); |
| nir_def *is_clear = |
| blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples); |
| |
| /* If we aren't the clear value, discard. */ |
| nir_discard_if(&b, nir_inot(&b, is_clear)); |
| |
| nir_def *clear_color = nir_load_var(&b, v_color); |
| if (blorp_key.indirect_clear_color && blorp->isl_dev->info->ver <= 8) { |
| /* Gfx7-8 clear colors are stored as single 0/1 bits */ |
| clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31), |
| blorp_nir_bit(&b, clear_color, 30), |
| blorp_nir_bit(&b, clear_color, 29), |
| blorp_nir_bit(&b, clear_color, 28)); |
| |
| if (!blorp_key.int_format) |
| clear_color = nir_i2f32(&b, clear_color); |
| } |
| nir_store_var(&b, frag_color, clear_color, 0xf); |
| |
| const bool multisample_fbo = true; |
| const struct blorp_program p = |
| blorp_compile_fs(blorp, mem_ctx, b.shader, multisample_fbo, false); |
| |
| bool result = |
| blorp->upload_shader(batch, MESA_SHADER_FRAGMENT, |
| &blorp_key, sizeof(blorp_key), |
| p.kernel, p.kernel_size, |
| p.prog_data, p.prog_data_size, |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data); |
| |
| ralloc_free(mem_ctx); |
| return result; |
| } |
| |
| void |
| blorp_mcs_partial_resolve(struct blorp_batch *batch, |
| struct blorp_surf *surf, |
| enum isl_format format, |
| uint32_t start_layer, uint32_t num_layers) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_MCS_PARTIAL_RESOLVE; |
| |
| assert(batch->blorp->isl_dev->info->ver >= 7); |
| |
| params.x0 = 0; |
| params.y0 = 0; |
| params.x1 = surf->surf->logical_level0_px.width; |
| params.y1 = surf->surf->logical_level0_px.height; |
| |
| blorp_surface_info_init(batch, ¶ms.src, surf, 0, |
| start_layer, format, false); |
| blorp_surface_info_init(batch, ¶ms.dst, surf, 0, |
| start_layer, format, true); |
| |
| params.num_samples = params.dst.surf.samples; |
| params.num_layers = num_layers; |
| params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL; |
| |
| memcpy(¶ms.wm_inputs.clear_color, |
| surf->clear_color.f32, sizeof(float) * 4); |
| |
| if (!blorp_params_get_mcs_partial_resolve_kernel(batch, ¶ms)) |
| return; |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| static uint64_t |
| get_mcs_ambiguate_pixel(int sample_count) |
| { |
| /* See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed |
| * Multisample Surfaces". |
| */ |
| assert(sample_count >= 2); |
| assert(sample_count <= 16); |
| |
| /* Each MCS element contains an array of sample slice (SS) elements. The |
| * size of this array matches the sample count. |
| */ |
| const int num_ss_entries = sample_count; |
| |
| /* The width of each SS entry is just large enough to index every slice. */ |
| const int ss_entry_size_b = util_logbase2(num_ss_entries); |
| |
| /* The encoding for "ambiguated" has each sample slice value storing its |
| * index (e.g., SS[0] = 0, SS[1] = 1, etc.). The values are stored in |
| * little endian order. The unused bits are defined as either Reserved or |
| * Reserved (MBZ). We choose to interpret both as MBZ. |
| */ |
| uint64_t ambiguate_pixel = 0; |
| for (uint64_t entry = 0; entry < num_ss_entries; entry++) |
| ambiguate_pixel |= entry << (entry * ss_entry_size_b); |
| |
| return ambiguate_pixel; |
| } |
| |
| /** Clear an MCS to the "uncompressed" state |
| * |
| * This pass is the MCS equivalent of a "HiZ resolve". It sets the MCS values |
| * for a given layer of a surface to a sample-count dependent value which is |
| * the "uncompressed" state which tells the sampler to go look at the main |
| * surface. |
| */ |
| void |
| blorp_mcs_ambiguate(struct blorp_batch *batch, |
| struct blorp_surf *surf, |
| uint32_t start_layer, uint32_t num_layers) |
| { |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_MCS_AMBIGUATE; |
| |
| assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 7); |
| |
| enum isl_format renderable_format; |
| switch (isl_format_get_layout(surf->aux_surf->format)->bpb) { |
| case 8: renderable_format = ISL_FORMAT_R8_UINT; break; |
| case 32: renderable_format = ISL_FORMAT_R32_UINT; break; |
| case 64: renderable_format = ISL_FORMAT_R32G32_UINT; break; |
| default: unreachable("Unexpected MCS format size for ambiguate"); |
| } |
| |
| /* From Bspec 57340 (r59562): |
| * |
| * To the calculated MCS size we add 4kb page to be used as clear value |
| * storage. |
| * |
| * and |
| * |
| * When allocating memory, MCS buffer size is extended by 4KB over its |
| * original calculated size. First 4KB page of the MCS is reserved for |
| * internal HW usage. |
| * |
| * We shift aux buffer's start address by 4KB, accordingly. |
| */ |
| struct blorp_address aux_addr = surf->aux_addr; |
| if (ISL_GFX_VER(batch->blorp->isl_dev) >= 20) |
| aux_addr.offset += 4096; |
| |
| params.dst = (struct blorp_surface_info) { |
| .enabled = true, |
| .surf = *surf->aux_surf, |
| .addr = aux_addr, |
| .view = { |
| .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, |
| .format = renderable_format, |
| .base_level = 0, |
| .base_array_layer = start_layer, |
| .levels = 1, |
| .array_len = num_layers, |
| .swizzle = ISL_SWIZZLE_IDENTITY, |
| }, |
| }; |
| |
| params.x0 = 0; |
| params.y0 = 0; |
| params.x1 = params.dst.surf.logical_level0_px.width; |
| params.y1 = params.dst.surf.logical_level0_px.height; |
| params.num_layers = params.dst.view.array_len; |
| |
| const uint64_t pixel = get_mcs_ambiguate_pixel(surf->surf->samples); |
| params.wm_inputs.clear_color[0] = pixel & 0xFFFFFFFF; |
| params.wm_inputs.clear_color[1] = pixel >> 32; |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false)) |
| return; |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |
| |
| /** Clear a CCS to the "uncompressed" state |
| * |
| * This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values |
| * for a given layer/level of a surface to 0x0 which is the "uncompressed" |
| * state which tells the sampler to go look at the main surface. |
| */ |
| void |
| blorp_ccs_ambiguate(struct blorp_batch *batch, |
| struct blorp_surf *surf, |
| uint32_t level, uint32_t layer) |
| { |
| assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0); |
| |
| if (ISL_GFX_VER(batch->blorp->isl_dev) >= 10) { |
| /* On gfx10 and above, we have a hardware resolve op for this */ |
| return blorp_ccs_resolve(batch, surf, level, layer, 1, |
| surf->surf->format, ISL_AUX_OP_AMBIGUATE); |
| } |
| |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.op = BLORP_OP_CCS_AMBIGUATE; |
| |
| assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 7); |
| |
| const struct isl_format_layout *aux_fmtl = |
| isl_format_get_layout(surf->aux_surf->format); |
| assert(aux_fmtl->txc == ISL_TXC_CCS); |
| |
| params.dst = (struct blorp_surface_info) { |
| .enabled = true, |
| .addr = surf->aux_addr, |
| .view = { |
| .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, |
| .format = ISL_FORMAT_R32G32B32A32_UINT, |
| .base_level = 0, |
| .base_array_layer = 0, |
| .levels = 1, |
| .array_len = 1, |
| .swizzle = ISL_SWIZZLE_IDENTITY, |
| }, |
| }; |
| |
| uint32_t z = 0; |
| if (surf->surf->dim == ISL_SURF_DIM_3D) { |
| z = layer; |
| layer = 0; |
| } |
| |
| uint64_t offset_B; |
| uint32_t x_offset_el, y_offset_el; |
| isl_surf_get_image_offset_B_tile_el(surf->aux_surf, level, layer, z, |
| &offset_B, &x_offset_el, &y_offset_el); |
| params.dst.addr.offset += offset_B; |
| |
| const uint32_t width_px = |
| u_minify(surf->aux_surf->logical_level0_px.width, level); |
| const uint32_t height_px = |
| u_minify(surf->aux_surf->logical_level0_px.height, level); |
| const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw); |
| const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh); |
| |
| struct isl_tile_info ccs_tile_info; |
| isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info); |
| |
| /* We're going to map it as a regular RGBA32_UINT surface. We need to |
| * downscale a good deal. We start by computing the area on the CCS to |
| * clear in units of Y-tiled cache lines. |
| */ |
| uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl; |
| if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) { |
| /* From the Sky Lake PRM Vol. 12 in the section on planes: |
| * |
| * "The Color Control Surface (CCS) contains the compression status |
| * of the cache-line pairs. The compression state of the cache-line |
| * pair is specified by 2 bits in the CCS. Each CCS cache-line |
| * represents an area on the main surface of 16x16 sets of 128 byte |
| * Y-tiled cache-line-pairs. CCS is always Y tiled." |
| * |
| * Each 2-bit surface element in the CCS corresponds to a single |
| * cache-line pair in the main surface. This means that 16x16 el block |
| * in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts |
| * are calculated with a very large alignment so we can round up to a |
| * whole cache line without worrying about overdraw. |
| */ |
| |
| /* On Broadwell and above, a CCS tile is the same as a Y tile when |
| * viewed at the cache-line granularity. Fortunately, the horizontal |
| * and vertical alignment requirements of the CCS are such that we can |
| * align to an entire cache line without worrying about crossing over |
| * from one LOD to another. |
| */ |
| const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8; |
| const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8; |
| assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0); |
| assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0); |
| |
| assert(x_offset_el % x_el_per_cl == 0); |
| assert(y_offset_el % y_el_per_cl == 0); |
| x_offset_cl = x_offset_el / x_el_per_cl; |
| y_offset_cl = y_offset_el / y_el_per_cl; |
| width_cl = DIV_ROUND_UP(width_el, x_el_per_cl); |
| height_cl = DIV_ROUND_UP(height_el, y_el_per_cl); |
| } else { |
| /* On gfx7, the CCS tiling is not so nice. However, there we are |
| * guaranteed that we only have a single level and slice so we don't |
| * have to worry about it and can just align to a whole tile. |
| */ |
| assert(surf->aux_surf->logical_level0_px.depth == 1); |
| assert(surf->aux_surf->logical_level0_px.array_len == 1); |
| assert(x_offset_el == 0 && y_offset_el == 0); |
| const uint32_t width_tl = |
| DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w); |
| const uint32_t height_tl = |
| DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h); |
| x_offset_cl = 0; |
| y_offset_cl = 0; |
| width_cl = width_tl * 8; |
| height_cl = height_tl * 8; |
| } |
| |
| /* We're going to use a RGBA32 format so as to write data as quickly as |
| * possible. A y-tiled cache line will then be 1x4 px. |
| */ |
| const uint32_t x_offset_rgba_px = x_offset_cl; |
| const uint32_t y_offset_rgba_px = y_offset_cl * 4; |
| const uint32_t width_rgba_px = width_cl; |
| const uint32_t height_rgba_px = height_cl * 4; |
| |
| ASSERTED bool ok = |
| isl_surf_init(batch->blorp->isl_dev, ¶ms.dst.surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = ISL_FORMAT_R32G32B32A32_UINT, |
| .width = width_rgba_px + x_offset_rgba_px, |
| .height = height_rgba_px + y_offset_rgba_px, |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = 1, |
| .row_pitch_B = surf->aux_surf->row_pitch_B, |
| .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, |
| .tiling_flags = ISL_TILING_Y0_BIT); |
| assert(ok); |
| |
| params.x0 = x_offset_rgba_px; |
| params.y0 = y_offset_rgba_px; |
| params.x1 = x_offset_rgba_px + width_rgba_px; |
| params.y1 = y_offset_rgba_px + height_rgba_px; |
| |
| /* A CCS value of 0 means "uncompressed." */ |
| memset(¶ms.wm_inputs.clear_color, 0, |
| sizeof(params.wm_inputs.clear_color)); |
| |
| if (!blorp_params_get_clear_kernel(batch, ¶ms, true, false)) |
| return; |
| |
| batch->blorp->exec(batch, ¶ms); |
| } |