blob: b8300d3a4c09b25a7ec84d62ba4fee14fadda314 [file] [log] [blame]
/*
Copyright (C) Intel Corp. 2006. All Rights Reserved.
Intel funded Tungsten Graphics to
develop this 3D driver.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice (including the
next paragraph) shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**********************************************************************/
/*
* Authors:
* Keith Whitwell <[email protected]>
*/
#include <sys/stat.h>
#include <fcntl.h>
#include "brw_disasm.h"
#include "brw_eu_defines.h"
#include "brw_eu.h"
#include "brw_private.h"
#include "intel_gfx_ver_enum.h"
#include "dev/intel_debug.h"
#include "util/u_debug.h"
#include "util/ralloc.h"
/* Returns a conditional modifier that negates the condition. */
enum brw_conditional_mod
brw_negate_cmod(enum brw_conditional_mod cmod)
{
switch (cmod) {
case BRW_CONDITIONAL_Z:
return BRW_CONDITIONAL_NZ;
case BRW_CONDITIONAL_NZ:
return BRW_CONDITIONAL_Z;
case BRW_CONDITIONAL_G:
return BRW_CONDITIONAL_LE;
case BRW_CONDITIONAL_GE:
return BRW_CONDITIONAL_L;
case BRW_CONDITIONAL_L:
return BRW_CONDITIONAL_GE;
case BRW_CONDITIONAL_LE:
return BRW_CONDITIONAL_G;
default:
unreachable("Can't negate this cmod");
}
}
/* Returns the corresponding conditional mod for swapping src0 and
* src1 in e.g. CMP.
*/
enum brw_conditional_mod
brw_swap_cmod(enum brw_conditional_mod cmod)
{
switch (cmod) {
case BRW_CONDITIONAL_Z:
case BRW_CONDITIONAL_NZ:
return cmod;
case BRW_CONDITIONAL_G:
return BRW_CONDITIONAL_L;
case BRW_CONDITIONAL_GE:
return BRW_CONDITIONAL_LE;
case BRW_CONDITIONAL_L:
return BRW_CONDITIONAL_G;
case BRW_CONDITIONAL_LE:
return BRW_CONDITIONAL_GE;
default:
return BRW_CONDITIONAL_NONE;
}
}
/**
* Get the least significant bit offset of the i+1-th component of immediate
* type \p type. For \p i equal to the two's complement of j, return the
* offset of the j-th component starting from the end of the vector. For
* scalar register types return zero.
*/
static unsigned
imm_shift(enum brw_reg_type type, unsigned i)
{
assert(type != BRW_TYPE_UV && type != BRW_TYPE_V &&
"Not implemented.");
if (type == BRW_TYPE_VF)
return 8 * (i & 3);
else
return 0;
}
/**
* Swizzle an arbitrary immediate \p x of the given type according to the
* permutation specified as \p swz.
*/
uint32_t
brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz)
{
if (imm_shift(type, 1)) {
const unsigned n = 32 / imm_shift(type, 1);
uint32_t y = 0;
for (unsigned i = 0; i < n; i++) {
/* Shift the specified component all the way to the right and left to
* discard any undesired L/MSBs, then shift it right into component i.
*/
y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3))
<< imm_shift(type, ~0u)
>> imm_shift(type, ~0u - i);
}
return y;
} else {
return x;
}
}
unsigned
brw_get_default_exec_size(struct brw_codegen *p)
{
return p->current->exec_size;
}
unsigned
brw_get_default_group(struct brw_codegen *p)
{
return p->current->group;
}
unsigned
brw_get_default_access_mode(struct brw_codegen *p)
{
return p->current->access_mode;
}
struct tgl_swsb
brw_get_default_swsb(struct brw_codegen *p)
{
return p->current->swsb;
}
void
brw_set_default_exec_size(struct brw_codegen *p, unsigned value)
{
p->current->exec_size = value;
}
void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc)
{
p->current->predicate = pc;
}
void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse)
{
p->current->pred_inv = predicate_inverse;
}
void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg)
{
assert(subreg < 2);
p->current->flag_subreg = reg * 2 + subreg;
}
void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode )
{
p->current->access_mode = access_mode;
}
/**
* Apply the range of channel enable signals given by
* [group, group + exec_size) to the instruction passed as argument.
*/
void
brw_eu_inst_set_group(const struct intel_device_info *devinfo,
brw_eu_inst *inst, unsigned group)
{
if (devinfo->ver >= 20) {
assert(group % 8 == 0 && group < 32);
brw_eu_inst_set_qtr_control(devinfo, inst, group / 8);
} else {
assert(group % 4 == 0 && group < 32);
brw_eu_inst_set_qtr_control(devinfo, inst, group / 8);
brw_eu_inst_set_nib_control(devinfo, inst, (group / 4) % 2);
}
}
void
brw_set_default_group(struct brw_codegen *p, unsigned group)
{
p->current->group = group;
}
void brw_set_default_mask_control( struct brw_codegen *p, unsigned value )
{
p->current->mask_control = value;
}
void brw_set_default_saturate( struct brw_codegen *p, bool enable )
{
p->current->saturate = enable;
}
void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value)
{
p->current->acc_wr_control = value;
}
void brw_set_default_swsb(struct brw_codegen *p, struct tgl_swsb value)
{
p->current->swsb = value;
}
void brw_push_insn_state( struct brw_codegen *p )
{
assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]);
*(p->current + 1) = *p->current;
p->current++;
}
void brw_pop_insn_state( struct brw_codegen *p )
{
assert(p->current != p->stack);
p->current--;
}
/***********************************************************************
*/
void
brw_init_codegen(const struct brw_isa_info *isa,
struct brw_codegen *p, void *mem_ctx)
{
memset(p, 0, sizeof(*p));
p->isa = isa;
p->devinfo = isa->devinfo;
/*
* Set the initial instruction store array size to 1024, if found that
* isn't enough, then it will double the store size at brw_next_insn()
* until out of memory.
*/
p->store_size = 1024;
p->store = rzalloc_array(mem_ctx, brw_eu_inst, p->store_size);
p->nr_insn = 0;
p->current = p->stack;
memset(p->current, 0, sizeof(p->current[0]));
p->mem_ctx = mem_ctx;
/* Some defaults?
*/
brw_set_default_exec_size(p, BRW_EXECUTE_8);
brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */
brw_set_default_saturate(p, 0);
/* Set up control flow stack */
p->if_stack_depth = 0;
p->if_stack_array_size = 16;
p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size);
p->loop_stack_depth = 0;
p->loop_stack_array_size = 16;
p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
}
const unsigned *brw_get_program( struct brw_codegen *p,
unsigned *sz )
{
*sz = p->next_insn_offset;
return (const unsigned *)p->store;
}
const struct brw_shader_reloc *
brw_get_shader_relocs(struct brw_codegen *p, unsigned *num_relocs)
{
*num_relocs = p->num_relocs;
return p->relocs;
}
DEBUG_GET_ONCE_OPTION(shader_bin_dump_path, "INTEL_SHADER_BIN_DUMP_PATH", NULL);
bool brw_should_dump_shader_bin(void)
{
return debug_get_option_shader_bin_dump_path() != NULL;
}
void brw_dump_shader_bin(void *assembly, int start_offset, int end_offset,
const char *identifier)
{
char *name = ralloc_asprintf(NULL, "%s/%s.bin",
debug_get_option_shader_bin_dump_path(),
identifier);
int fd = open(name, O_CREAT | O_WRONLY | O_TRUNC, 0644);
ralloc_free(name);
if (fd < 0)
return;
struct stat sb;
if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
close(fd);
return;
}
size_t to_write = end_offset - start_offset;
void *write_ptr = assembly + start_offset;
while (to_write) {
ssize_t ret = write(fd, write_ptr, to_write);
if (ret <= 0) {
close(fd);
return;
}
to_write -= ret;
write_ptr += ret;
}
close(fd);
}
bool brw_try_override_assembly(struct brw_codegen *p, int start_offset,
const char *identifier)
{
const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH");
if (!read_path) {
return false;
}
char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier);
int fd = open(name, O_RDONLY);
ralloc_free(name);
if (fd == -1) {
return false;
}
struct stat sb;
if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
close(fd);
return false;
}
p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_eu_inst);
p->nr_insn += sb.st_size / sizeof(brw_eu_inst);
p->next_insn_offset = start_offset + sb.st_size;
p->store_size = (start_offset + sb.st_size) / sizeof(brw_eu_inst);
p->store = (brw_eu_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset);
assert(p->store);
ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size);
close(fd);
if (ret != sb.st_size) {
return false;
}
ASSERTED bool valid =
brw_validate_instructions(p->isa, p->store,
start_offset, p->next_insn_offset,
NULL);
assert(valid);
return true;
}
const struct brw_label *
brw_find_label(const struct brw_label *root, int offset)
{
const struct brw_label *curr = root;
if (curr != NULL)
{
do {
if (curr->offset == offset)
return curr;
curr = curr->next;
} while (curr != NULL);
}
return curr;
}
void
brw_create_label(struct brw_label **labels, int offset, void *mem_ctx)
{
if (*labels != NULL) {
struct brw_label *curr = *labels;
struct brw_label *prev;
do {
prev = curr;
if (curr->offset == offset)
return;
curr = curr->next;
} while (curr != NULL);
curr = ralloc(mem_ctx, struct brw_label);
curr->offset = offset;
curr->number = prev->number + 1;
curr->next = NULL;
prev->next = curr;
} else {
struct brw_label *root = ralloc(mem_ctx, struct brw_label);
root->number = 0;
root->offset = offset;
root->next = NULL;
*labels = root;
}
}
const struct brw_label *
brw_label_assembly(const struct brw_isa_info *isa,
const void *assembly, int start, int end, void *mem_ctx)
{
const struct intel_device_info *const devinfo = isa->devinfo;
struct brw_label *root_label = NULL;
int to_bytes_scale = sizeof(brw_eu_inst) / brw_jump_scale(devinfo);
for (int offset = start; offset < end;) {
const brw_eu_inst *inst = (const brw_eu_inst *) ((const char *) assembly + offset);
brw_eu_inst uncompacted;
bool is_compact = brw_eu_inst_cmpt_control(devinfo, inst);
if (is_compact) {
brw_eu_compact_inst *compacted = (brw_eu_compact_inst *)inst;
brw_uncompact_instruction(isa, &uncompacted, compacted);
inst = &uncompacted;
}
if (brw_has_uip(devinfo, brw_eu_inst_opcode(isa, inst))) {
/* Instructions that have UIP also have JIP. */
brw_create_label(&root_label,
offset + brw_eu_inst_uip(devinfo, inst) * to_bytes_scale, mem_ctx);
brw_create_label(&root_label,
offset + brw_eu_inst_jip(devinfo, inst) * to_bytes_scale, mem_ctx);
} else if (brw_has_jip(devinfo, brw_eu_inst_opcode(isa, inst))) {
int jip = brw_eu_inst_jip(devinfo, inst);
brw_create_label(&root_label, offset + jip * to_bytes_scale, mem_ctx);
}
if (is_compact) {
offset += sizeof(brw_eu_compact_inst);
} else {
offset += sizeof(brw_eu_inst);
}
}
return root_label;
}
void
brw_disassemble_with_labels(const struct brw_isa_info *isa,
const void *assembly, int start, int end, FILE *out)
{
void *mem_ctx = ralloc_context(NULL);
const struct brw_label *root_label =
brw_label_assembly(isa, assembly, start, end, mem_ctx);
brw_disassemble(isa, assembly, start, end, root_label, out);
ralloc_free(mem_ctx);
}
void
brw_disassemble(const struct brw_isa_info *isa,
const void *assembly, int start, int end,
const struct brw_label *root_label, FILE *out)
{
const struct intel_device_info *devinfo = isa->devinfo;
bool dump_hex = INTEL_DEBUG(DEBUG_HEX);
for (int offset = start; offset < end;) {
const brw_eu_inst *insn = (const brw_eu_inst *)((char *)assembly + offset);
brw_eu_inst uncompacted;
if (root_label != NULL) {
const struct brw_label *label = brw_find_label(root_label, offset);
if (label != NULL) {
fprintf(out, "\nLABEL%d:\n", label->number);
}
}
bool compacted = brw_eu_inst_cmpt_control(devinfo, insn);
if (0)
fprintf(out, "0x%08x: ", offset);
if (compacted) {
brw_eu_compact_inst *compacted = (brw_eu_compact_inst *)insn;
if (dump_hex) {
unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
const unsigned int blank_spaces = 24;
for (int i = 0 ; i < 8; i = i + 4) {
fprintf(out, "%02x %02x %02x %02x ",
insn_ptr[i],
insn_ptr[i + 1],
insn_ptr[i + 2],
insn_ptr[i + 3]);
}
/* Make compacted instructions hex value output vertically aligned
* with uncompacted instructions hex value
*/
fprintf(out, "%*c", blank_spaces, ' ');
}
brw_uncompact_instruction(isa, &uncompacted, compacted);
insn = &uncompacted;
} else {
if (dump_hex) {
unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
for (int i = 0 ; i < 16; i = i + 4) {
fprintf(out, "%02x %02x %02x %02x ",
insn_ptr[i],
insn_ptr[i + 1],
insn_ptr[i + 2],
insn_ptr[i + 3]);
}
}
}
brw_disassemble_inst(out, isa, insn, compacted, offset, root_label);
if (compacted) {
offset += sizeof(brw_eu_compact_inst);
} else {
offset += sizeof(brw_eu_inst);
}
}
}
static const struct opcode_desc opcode_descs[] = {
/* IR, HW, name, nsrc, ndst, gfx_vers assuming Gfx9+ */
{ BRW_OPCODE_ILLEGAL, 0, "illegal", 0, 0, GFX_ALL },
{ BRW_OPCODE_SYNC, 1, "sync", 1, 0, GFX_GE(GFX12) },
{ BRW_OPCODE_MOV, 1, "mov", 1, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_MOV, 97, "mov", 1, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SEL, 2, "sel", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SEL, 98, "sel", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_MOVI, 3, "movi", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_MOVI, 99, "movi", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_NOT, 4, "not", 1, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_NOT, 100, "not", 1, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_AND, 5, "and", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_AND, 101, "and", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_OR, 6, "or", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_OR, 102, "or", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_XOR, 7, "xor", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_XOR, 103, "xor", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SHR, 8, "shr", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SHR, 104, "shr", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SHL, 9, "shl", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SHL, 105, "shl", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SMOV, 10, "smov", 0, 0, GFX_LT(GFX12) },
{ BRW_OPCODE_SMOV, 106, "smov", 0, 0, GFX_GE(GFX12) },
{ BRW_OPCODE_ASR, 12, "asr", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_ASR, 108, "asr", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_ROR, 14, "ror", 2, 1, GFX11 },
{ BRW_OPCODE_ROR, 110, "ror", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_ROL, 15, "rol", 2, 1, GFX11 },
{ BRW_OPCODE_ROL, 111, "rol", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_CMP, 16, "cmp", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_CMP, 112, "cmp", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_CMPN, 17, "cmpn", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_CMPN, 113, "cmpn", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_CSEL, 18, "csel", 3, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_CSEL, 114, "csel", 3, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_BFREV, 23, "bfrev", 1, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_BFREV, 119, "bfrev", 1, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_BFE, 24, "bfe", 3, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_BFE, 120, "bfe", 3, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_BFI1, 25, "bfi1", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_BFI1, 121, "bfi1", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_BFI2, 26, "bfi2", 3, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_BFI2, 122, "bfi2", 3, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_JMPI, 32, "jmpi", 0, 0, GFX_ALL },
{ BRW_OPCODE_BRD, 33, "brd", 0, 0, GFX_ALL },
{ BRW_OPCODE_IF, 34, "if", 0, 0, GFX_ALL },
{ BRW_OPCODE_BRC, 35, "brc", 0, 0, GFX_ALL },
{ BRW_OPCODE_ELSE, 36, "else", 0, 0, GFX_ALL },
{ BRW_OPCODE_ENDIF, 37, "endif", 0, 0, GFX_ALL },
{ BRW_OPCODE_DO, 38, "do", 0, 0, 0 }, /* Pseudo opcode. */
{ BRW_OPCODE_WHILE, 39, "while", 0, 0, GFX_ALL },
{ BRW_OPCODE_BREAK, 40, "break", 0, 0, GFX_ALL },
{ BRW_OPCODE_CONTINUE, 41, "cont", 0, 0, GFX_ALL },
{ BRW_OPCODE_HALT, 42, "halt", 0, 0, GFX_ALL },
{ BRW_OPCODE_CALLA, 43, "calla", 0, 0, GFX_ALL },
{ BRW_OPCODE_CALL, 44, "call", 0, 0, GFX_ALL },
{ BRW_OPCODE_RET, 45, "ret", 0, 0, GFX_ALL },
{ BRW_OPCODE_GOTO, 46, "goto", 0, 0, GFX_ALL },
{ BRW_OPCODE_WAIT, 48, "wait", 0, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SEND, 49, "send", 1, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SENDC, 50, "sendc", 1, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SEND, 49, "send", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SENDC, 50, "sendc", 2, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_SENDS, 51, "sends", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_SENDSC, 52, "sendsc", 2, 1, GFX_LT(GFX12) },
{ BRW_OPCODE_MATH, 56, "math", 2, 1, GFX_ALL },
{ BRW_OPCODE_ADD, 64, "add", 2, 1, GFX_ALL },
{ BRW_OPCODE_MUL, 65, "mul", 2, 1, GFX_ALL },
{ BRW_OPCODE_AVG, 66, "avg", 2, 1, GFX_ALL },
{ BRW_OPCODE_FRC, 67, "frc", 1, 1, GFX_ALL },
{ BRW_OPCODE_RNDU, 68, "rndu", 1, 1, GFX_ALL },
{ BRW_OPCODE_RNDD, 69, "rndd", 1, 1, GFX_ALL },
{ BRW_OPCODE_RNDE, 70, "rnde", 1, 1, GFX_ALL },
{ BRW_OPCODE_RNDZ, 71, "rndz", 1, 1, GFX_ALL },
{ BRW_OPCODE_MAC, 72, "mac", 2, 1, GFX_ALL },
{ BRW_OPCODE_MACH, 73, "mach", 2, 1, GFX_ALL },
{ BRW_OPCODE_LZD, 74, "lzd", 1, 1, GFX_ALL },
{ BRW_OPCODE_FBH, 75, "fbh", 1, 1, GFX_ALL },
{ BRW_OPCODE_FBL, 76, "fbl", 1, 1, GFX_ALL },
{ BRW_OPCODE_CBIT, 77, "cbit", 1, 1, GFX_ALL },
{ BRW_OPCODE_ADDC, 78, "addc", 2, 1, GFX_ALL },
{ BRW_OPCODE_SUBB, 79, "subb", 2, 1, GFX_ALL },
{ BRW_OPCODE_ADD3, 82, "add3", 3, 1, GFX_GE(GFX125) },
{ BRW_OPCODE_DP4, 84, "dp4", 2, 1, GFX_LT(GFX11) },
{ BRW_OPCODE_DPH, 85, "dph", 2, 1, GFX_LT(GFX11) },
{ BRW_OPCODE_DP3, 86, "dp3", 2, 1, GFX_LT(GFX11) },
{ BRW_OPCODE_DP2, 87, "dp2", 2, 1, GFX_LT(GFX11) },
{ BRW_OPCODE_DP4A, 88, "dp4a", 3, 1, GFX_GE(GFX12) },
{ BRW_OPCODE_LINE, 89, "line", 2, 1, GFX9 },
{ BRW_OPCODE_DPAS, 89, "dpas", 3, 1, GFX_GE(GFX125) },
{ BRW_OPCODE_PLN, 90, "pln", 2, 1, GFX9 },
{ BRW_OPCODE_MAD, 91, "mad", 3, 1, GFX_ALL },
{ BRW_OPCODE_LRP, 92, "lrp", 3, 1, GFX9 },
{ BRW_OPCODE_MADM, 93, "madm", 3, 1, GFX_ALL },
{ BRW_OPCODE_NOP, 126, "nop", 0, 0, GFX_LT(GFX12) },
{ BRW_OPCODE_NOP, 96, "nop", 0, 0, GFX_GE(GFX12) }
};
void
brw_init_isa_info(struct brw_isa_info *isa,
const struct intel_device_info *devinfo)
{
assert(devinfo->ver >= 9);
isa->devinfo = devinfo;
enum gfx_ver ver = gfx_ver_from_devinfo(devinfo);
memset(isa->ir_to_descs, 0, sizeof(isa->ir_to_descs));
memset(isa->hw_to_descs, 0, sizeof(isa->hw_to_descs));
for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) {
if (opcode_descs[i].gfx_vers & ver) {
const unsigned e = opcode_descs[i].ir;
const unsigned h = opcode_descs[i].hw;
assert(e < ARRAY_SIZE(isa->ir_to_descs) && !isa->ir_to_descs[e]);
assert(h < ARRAY_SIZE(isa->hw_to_descs) && !isa->hw_to_descs[h]);
isa->ir_to_descs[e] = &opcode_descs[i];
isa->hw_to_descs[h] = &opcode_descs[i];
}
}
}
/**
* Return the matching opcode_desc for the specified IR opcode and hardware
* generation, or NULL if the opcode is not supported by the device.
*/
const struct opcode_desc *
brw_opcode_desc(const struct brw_isa_info *isa, enum opcode op)
{
return op < ARRAY_SIZE(isa->ir_to_descs) ? isa->ir_to_descs[op] : NULL;
}
/**
* Return the matching opcode_desc for the specified HW opcode and hardware
* generation, or NULL if the opcode is not supported by the device.
*/
const struct opcode_desc *
brw_opcode_desc_from_hw(const struct brw_isa_info *isa, unsigned hw)
{
return hw < ARRAY_SIZE(isa->hw_to_descs) ? isa->hw_to_descs[hw] : NULL;
}
unsigned
brw_num_sources_from_inst(const struct brw_isa_info *isa,
const brw_eu_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_eu_inst_opcode(isa, inst));
unsigned math_function;
if (brw_eu_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
math_function = brw_eu_inst_math_function(devinfo, inst);
} else {
assert(desc->nsrc < 4);
return desc->nsrc;
}
switch (math_function) {
case BRW_MATH_FUNCTION_INV:
case BRW_MATH_FUNCTION_LOG:
case BRW_MATH_FUNCTION_EXP:
case BRW_MATH_FUNCTION_SQRT:
case BRW_MATH_FUNCTION_RSQ:
case BRW_MATH_FUNCTION_SIN:
case BRW_MATH_FUNCTION_COS:
case GFX8_MATH_FUNCTION_INVM:
case GFX8_MATH_FUNCTION_RSQRTM:
return 1;
case BRW_MATH_FUNCTION_FDIV:
case BRW_MATH_FUNCTION_POW:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
return 2;
default:
unreachable("not reached");
}
}