| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /** @file |
| * |
| * This file supports generating code from the FS LIR to the actual |
| * native instructions. |
| */ |
| |
| #include "brw_eu.h" |
| #include "brw_disasm_info.h" |
| #include "brw_fs.h" |
| #include "brw_generator.h" |
| #include "brw_cfg.h" |
| #include "dev/intel_debug.h" |
| #include "util/mesa-sha1.h" |
| #include "util/half_float.h" |
| |
| static uint32_t |
| brw_math_function(enum opcode op) |
| { |
| switch (op) { |
| case SHADER_OPCODE_RCP: |
| return BRW_MATH_FUNCTION_INV; |
| case SHADER_OPCODE_RSQ: |
| return BRW_MATH_FUNCTION_RSQ; |
| case SHADER_OPCODE_SQRT: |
| return BRW_MATH_FUNCTION_SQRT; |
| case SHADER_OPCODE_EXP2: |
| return BRW_MATH_FUNCTION_EXP; |
| case SHADER_OPCODE_LOG2: |
| return BRW_MATH_FUNCTION_LOG; |
| case SHADER_OPCODE_POW: |
| return BRW_MATH_FUNCTION_POW; |
| case SHADER_OPCODE_SIN: |
| return BRW_MATH_FUNCTION_SIN; |
| case SHADER_OPCODE_COS: |
| return BRW_MATH_FUNCTION_COS; |
| case SHADER_OPCODE_INT_QUOTIENT: |
| return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT; |
| case SHADER_OPCODE_INT_REMAINDER: |
| return BRW_MATH_FUNCTION_INT_DIV_REMAINDER; |
| default: |
| unreachable("not reached: unknown math function"); |
| } |
| } |
| |
| static struct brw_reg |
| normalize_brw_reg_for_encoding(brw_reg *reg) |
| { |
| struct brw_reg brw_reg; |
| |
| switch (reg->file) { |
| case ADDRESS: |
| case ARF: |
| case FIXED_GRF: |
| case IMM: |
| assert(reg->offset == 0); |
| brw_reg = *reg; |
| break; |
| case BAD_FILE: |
| /* Probably unused. */ |
| brw_reg = brw_null_reg(); |
| break; |
| case VGRF: |
| case ATTR: |
| case UNIFORM: |
| unreachable("not reached"); |
| } |
| |
| return brw_reg; |
| } |
| |
| brw_generator::brw_generator(const struct brw_compiler *compiler, |
| const struct brw_compile_params *params, |
| struct brw_stage_prog_data *prog_data, |
| gl_shader_stage stage) |
| |
| : compiler(compiler), params(params), |
| devinfo(compiler->devinfo), |
| prog_data(prog_data), dispatch_width(0), |
| debug_flag(false), |
| shader_name(NULL), stage(stage), mem_ctx(params->mem_ctx) |
| { |
| p = rzalloc(mem_ctx, struct brw_codegen); |
| brw_init_codegen(&compiler->isa, p, mem_ctx); |
| } |
| |
| brw_generator::~brw_generator() |
| { |
| } |
| |
| class ip_record : public exec_node { |
| public: |
| DECLARE_RALLOC_CXX_OPERATORS(ip_record) |
| |
| ip_record(int ip) |
| { |
| this->ip = ip; |
| } |
| |
| int ip; |
| }; |
| |
| bool |
| brw_generator::patch_halt_jumps() |
| { |
| if (this->discard_halt_patches.is_empty()) |
| return false; |
| |
| int scale = brw_jump_scale(p->devinfo); |
| |
| /* There is a somewhat strange undocumented requirement of using |
| * HALT, according to the simulator. If some channel has HALTed to |
| * a particular UIP, then by the end of the program, every channel |
| * must have HALTed to that UIP. Furthermore, the tracking is a |
| * stack, so you can't do the final halt of a UIP after starting |
| * halting to a new UIP. |
| * |
| * Symptoms of not emitting this instruction on actual hardware |
| * included GPU hangs and sparkly rendering on the piglit discard |
| * tests. |
| */ |
| brw_eu_inst *last_halt = brw_HALT(p); |
| brw_eu_inst_set_uip(p->devinfo, last_halt, 1 * scale); |
| brw_eu_inst_set_jip(p->devinfo, last_halt, 1 * scale); |
| |
| int ip = p->nr_insn; |
| |
| foreach_in_list(ip_record, patch_ip, &discard_halt_patches) { |
| brw_eu_inst *patch = &p->store[patch_ip->ip]; |
| |
| assert(brw_eu_inst_opcode(p->isa, patch) == BRW_OPCODE_HALT); |
| /* HALT takes a half-instruction distance from the pre-incremented IP. */ |
| brw_eu_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale); |
| } |
| |
| this->discard_halt_patches.make_empty(); |
| |
| return true; |
| } |
| |
| void |
| brw_generator::generate_send(fs_inst *inst, |
| struct brw_reg dst, |
| struct brw_reg desc, |
| struct brw_reg ex_desc, |
| struct brw_reg payload, |
| struct brw_reg payload2) |
| { |
| if (ex_desc.file == IMM && ex_desc.ud == 0) { |
| brw_send_indirect_message(p, inst->sfid, dst, payload, desc, inst->eot); |
| if (inst->check_tdr) |
| brw_eu_inst_set_opcode(p->isa, brw_last_inst, BRW_OPCODE_SENDC); |
| } else { |
| /* If we have any sort of extended descriptor, then we need SENDS. This |
| * also covers the dual-payload case because ex_mlen goes in ex_desc. |
| */ |
| brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2, |
| desc, ex_desc, inst->ex_mlen, |
| inst->send_ex_bso, inst->eot); |
| if (inst->check_tdr) |
| brw_eu_inst_set_opcode(p->isa, brw_last_inst, |
| devinfo->ver >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC); |
| } |
| } |
| |
| void |
| brw_generator::generate_mov_indirect(fs_inst *inst, |
| struct brw_reg dst, |
| struct brw_reg reg, |
| struct brw_reg indirect_byte_offset) |
| { |
| assert(indirect_byte_offset.type == BRW_TYPE_UD); |
| assert(indirect_byte_offset.file == FIXED_GRF); |
| assert(!reg.abs && !reg.negate); |
| |
| /* Gen12.5 adds the following region restriction: |
| * |
| * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float |
| * and Quad-Word data must not be used." |
| * |
| * We require the source and destination types to match so stomp to an |
| * unsigned integer type. |
| */ |
| assert(reg.type == dst.type); |
| reg.type = dst.type = |
| brw_type_with_size(BRW_TYPE_UD, brw_type_size_bits(reg.type)); |
| |
| unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr; |
| |
| if (indirect_byte_offset.file == IMM) { |
| imm_byte_offset += indirect_byte_offset.ud; |
| |
| reg.nr = imm_byte_offset / REG_SIZE; |
| reg.subnr = imm_byte_offset % REG_SIZE; |
| if (brw_type_size_bytes(reg.type) > 4 && !devinfo->has_64bit_int) { |
| brw_MOV(p, subscript(dst, BRW_TYPE_D, 0), |
| subscript(reg, BRW_TYPE_D, 0)); |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| brw_MOV(p, subscript(dst, BRW_TYPE_D, 1), |
| subscript(reg, BRW_TYPE_D, 1)); |
| } else { |
| brw_MOV(p, dst, reg); |
| } |
| } else { |
| /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ |
| struct brw_reg addr = vec8(brw_address_reg(0)); |
| |
| /* Whether we can use destination dependency control without running the |
| * risk of a hang if an instruction gets shot down. |
| */ |
| const bool use_dep_ctrl = !inst->predicate && |
| inst->exec_size == dispatch_width; |
| brw_eu_inst *insn; |
| |
| /* The destination stride of an instruction (in bytes) must be greater |
| * than or equal to the size of the rest of the instruction. Since the |
| * address register is of type UW, we can't use a D-type instruction. |
| * In order to get around this, re retype to UW and use a stride. |
| */ |
| indirect_byte_offset = |
| retype(spread(indirect_byte_offset, 2), BRW_TYPE_UW); |
| |
| /* There are a number of reasons why we don't use the base offset here. |
| * One reason is that the field is only 9 bits which means we can only |
| * use it to access the first 16 GRFs. Also, from the Haswell PRM |
| * section "Register Region Restrictions": |
| * |
| * "The lower bits of the AddressImmediate must not overflow to |
| * change the register address. The lower 5 bits of Address |
| * Immediate when added to lower 5 bits of address register gives |
| * the sub-register offset. The upper bits of Address Immediate |
| * when added to upper bits of address register gives the register |
| * address. Any overflow from sub-register offset is dropped." |
| * |
| * Since the indirect may cause us to cross a register boundary, this |
| * makes the base offset almost useless. We could try and do something |
| * clever where we use a actual base offset if base_offset % 32 == 0 but |
| * that would mean we were generating different code depending on the |
| * base offset. Instead, for the sake of consistency, we'll just do the |
| * add ourselves. This restriction is only listed in the Haswell PRM |
| * but empirical testing indicates that it applies on all older |
| * generations and is lifted on Broadwell. |
| * |
| * In the end, while base_offset is nice to look at in the generated |
| * code, using it saves us 0 instructions and would require quite a bit |
| * of case-by-case work. It's just not worth it. |
| * |
| * Due to a hardware bug some platforms (particularly Gfx11+) seem to |
| * require the address components of all channels to be valid whether or |
| * not they're active, which causes issues if we use VxH addressing |
| * under non-uniform control-flow. We can easily work around that by |
| * initializing the whole address register with a pipelined NoMask MOV |
| * instruction. |
| */ |
| insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset)); |
| brw_eu_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE); |
| brw_eu_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE); |
| if (devinfo->ver >= 12) |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| else |
| brw_eu_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl); |
| |
| insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset)); |
| if (devinfo->ver >= 12) |
| brw_set_default_swsb(p, tgl_swsb_regdist(1)); |
| else |
| brw_eu_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl); |
| |
| if (brw_type_size_bytes(reg.type) > 4 && |
| (intel_device_info_is_9lp(devinfo) || !devinfo->has_64bit_int)) { |
| /* From the Cherryview PRM Vol 7. "Register Region Restrictions": |
| * |
| * "When source or destination datatype is 64b or operation is |
| * integer DWord multiply, indirect addressing must not be used." |
| * |
| * We may also not support Q/UQ types. |
| * |
| * To work around both of these, we do two integer MOVs instead |
| * of one 64-bit MOV. Because no double value should ever cross |
| * a register boundary, it's safe to use the immediate offset in |
| * the indirect here to handle adding 4 bytes to the offset and |
| * avoid the extra ADD to the register file. |
| */ |
| brw_MOV(p, subscript(dst, BRW_TYPE_D, 0), |
| retype(brw_VxH_indirect(0, 0), BRW_TYPE_D)); |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| brw_MOV(p, subscript(dst, BRW_TYPE_D, 1), |
| retype(brw_VxH_indirect(0, 4), BRW_TYPE_D)); |
| } else { |
| struct brw_reg ind_src = brw_VxH_indirect(0, 0); |
| |
| brw_MOV(p, dst, retype(ind_src, reg.type)); |
| } |
| } |
| } |
| |
| void |
| brw_generator::generate_shuffle(fs_inst *inst, |
| struct brw_reg dst, |
| struct brw_reg src, |
| struct brw_reg idx) |
| { |
| assert(src.file == FIXED_GRF); |
| assert(!src.abs && !src.negate); |
| |
| /* Ivy bridge has some strange behavior that makes this a real pain to |
| * implement for 64-bit values so we just don't bother. |
| */ |
| assert(devinfo->has_64bit_float || brw_type_size_bytes(src.type) <= 4); |
| |
| /* Gen12.5 adds the following region restriction: |
| * |
| * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float |
| * and Quad-Word data must not be used." |
| * |
| * We require the source and destination types to match so stomp to an |
| * unsigned integer type. |
| */ |
| assert(src.type == dst.type); |
| src.type = dst.type = |
| brw_type_with_size(BRW_TYPE_UD, brw_type_size_bits(src.type)); |
| |
| /* Because we're using the address register, we're limited to 16-wide |
| * by the address register file and 8-wide for 64-bit types. We could try |
| * and make this instruction splittable higher up in the compiler but that |
| * gets weird because it reads all of the channels regardless of execution |
| * size. It's easier just to split it here. |
| */ |
| unsigned lower_width = MIN2(16, inst->exec_size); |
| if (devinfo->ver < 20 && (element_sz(src) > 4 || element_sz(dst) > 4)) { |
| lower_width = 8; |
| } |
| |
| brw_set_default_exec_size(p, cvt(lower_width) - 1); |
| for (unsigned group = 0; group < inst->exec_size; group += lower_width) { |
| brw_set_default_group(p, group); |
| |
| if ((src.vstride == 0 && src.hstride == 0) || |
| idx.file == IMM) { |
| /* Trivial, the source is already uniform or the index is a constant. |
| * We will typically not get here if the optimizer is doing its job, |
| * but asserting would be mean. |
| */ |
| const unsigned i = idx.file == IMM ? idx.ud : 0; |
| struct brw_reg group_src = stride(suboffset(src, i), 0, 1, 0); |
| struct brw_reg group_dst = suboffset(dst, group << (dst.hstride - 1)); |
| brw_MOV(p, group_dst, group_src); |
| } else { |
| /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ |
| struct brw_reg addr = vec8(brw_address_reg(0)); |
| |
| struct brw_reg group_idx = suboffset(idx, group); |
| |
| if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) { |
| /* Things get grumpy if the register is too wide. */ |
| group_idx.width--; |
| group_idx.vstride--; |
| } |
| |
| assert(brw_type_size_bytes(group_idx.type) <= 4); |
| if (brw_type_size_bytes(group_idx.type) == 4) { |
| /* The destination stride of an instruction (in bytes) must be |
| * greater than or equal to the size of the rest of the |
| * instruction. Since the address register is of type UW, we |
| * can't use a D-type instruction. In order to get around this, |
| * re retype to UW and use a stride. |
| */ |
| group_idx = retype(spread(group_idx, 2), BRW_TYPE_W); |
| } |
| |
| uint32_t src_start_offset = src.nr * REG_SIZE + src.subnr; |
| |
| /* From the Haswell PRM: |
| * |
| * "When a sequence of NoDDChk and NoDDClr are used, the last |
| * instruction that completes the scoreboard clear must have a |
| * non-zero execution mask. This means, if any kind of predication |
| * can change the execution mask or channel enable of the last |
| * instruction, the optimization must be avoided. This is to |
| * avoid instructions being shot down the pipeline when no writes |
| * are required." |
| * |
| * Whenever predication is enabled or the instructions being emitted |
| * aren't the full width, it's possible that it will be run with zero |
| * channels enabled so we can't use dependency control without |
| * running the risk of a hang if an instruction gets shot down. |
| */ |
| const bool use_dep_ctrl = !inst->predicate && |
| lower_width == dispatch_width; |
| brw_eu_inst *insn; |
| |
| /* Due to a hardware bug some platforms (particularly Gfx11+) seem |
| * to require the address components of all channels to be valid |
| * whether or not they're active, which causes issues if we use VxH |
| * addressing under non-uniform control-flow. We can easily work |
| * around that by initializing the whole address register with a |
| * pipelined NoMask MOV instruction. |
| */ |
| insn = brw_MOV(p, addr, brw_imm_uw(src_start_offset)); |
| brw_eu_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE); |
| brw_eu_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE); |
| if (devinfo->ver >= 12) |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| else |
| brw_eu_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl); |
| |
| /* Take into account the component size and horizontal stride. */ |
| assert(src.vstride == src.hstride + src.width); |
| insn = brw_SHL(p, addr, group_idx, |
| brw_imm_uw(util_logbase2(brw_type_size_bytes(src.type)) + |
| src.hstride - 1)); |
| if (devinfo->ver >= 12) |
| brw_set_default_swsb(p, tgl_swsb_regdist(1)); |
| else |
| brw_eu_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl); |
| |
| /* Add on the register start offset */ |
| brw_ADD(p, addr, addr, brw_imm_uw(src_start_offset)); |
| brw_MOV(p, suboffset(dst, group << (dst.hstride - 1)), |
| retype(brw_VxH_indirect(0, 0), src.type)); |
| } |
| |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| } |
| } |
| |
| void |
| brw_generator::generate_quad_swizzle(const fs_inst *inst, |
| struct brw_reg dst, struct brw_reg src, |
| unsigned swiz) |
| { |
| /* Requires a quad. */ |
| assert(inst->exec_size >= 4); |
| |
| if (src.file == IMM || |
| has_scalar_region(src)) { |
| /* The value is uniform across all channels */ |
| brw_MOV(p, dst, src); |
| |
| } else if (devinfo->ver < 11 && brw_type_size_bytes(src.type) == 4) { |
| /* This only works on 8-wide 32-bit values */ |
| assert(inst->exec_size == 8); |
| assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); |
| assert(src.vstride == src.width + 1); |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| struct brw_reg swiz_src = stride(src, 4, 4, 1); |
| swiz_src.swizzle = swiz; |
| brw_MOV(p, dst, swiz_src); |
| |
| } else { |
| assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); |
| assert(src.vstride == src.width + 1); |
| const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0)); |
| |
| switch (swiz) { |
| case BRW_SWIZZLE_XXXX: |
| case BRW_SWIZZLE_YYYY: |
| case BRW_SWIZZLE_ZZZZ: |
| case BRW_SWIZZLE_WWWW: |
| brw_MOV(p, dst, stride(src_0, 4, 4, 0)); |
| break; |
| |
| case BRW_SWIZZLE_XXZZ: |
| case BRW_SWIZZLE_YYWW: |
| brw_MOV(p, dst, stride(src_0, 2, 2, 0)); |
| break; |
| |
| case BRW_SWIZZLE_XYXY: |
| case BRW_SWIZZLE_ZWZW: |
| assert(inst->exec_size == 4); |
| brw_MOV(p, dst, stride(src_0, 0, 2, 1)); |
| break; |
| |
| default: |
| assert(inst->force_writemask_all); |
| brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1); |
| |
| for (unsigned c = 0; c < 4; c++) { |
| brw_eu_inst *insn = brw_MOV( |
| p, stride(suboffset(dst, c), |
| 4 * inst->dst.stride, 1, 4 * inst->dst.stride), |
| stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0)); |
| |
| if (devinfo->ver < 12) { |
| brw_eu_inst_set_no_dd_clear(devinfo, insn, c < 3); |
| brw_eu_inst_set_no_dd_check(devinfo, insn, c > 0); |
| } |
| |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| void |
| brw_generator::generate_barrier(fs_inst *, struct brw_reg src) |
| { |
| brw_barrier(p, src); |
| if (devinfo->ver >= 12) { |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| brw_SYNC(p, TGL_SYNC_BAR); |
| } else { |
| brw_WAIT(p); |
| } |
| } |
| |
| /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input |
| * looking like: |
| * |
| * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br |
| * |
| * Ideally, we want to produce: |
| * |
| * DDX DDY |
| * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) |
| * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) |
| * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) |
| * (ss0.br - ss0.bl) (ss0.tr - ss0.br) |
| * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) |
| * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) |
| * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) |
| * (ss1.br - ss1.bl) (ss1.tr - ss1.br) |
| * |
| * and add another set of two more subspans if in 16-pixel dispatch mode. |
| * |
| * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result |
| * for each pair, and vertstride = 2 jumps us 2 elements after processing a |
| * pair. But the ideal approximation may impose a huge performance cost on |
| * sample_d. On at least Haswell, sample_d instruction does some |
| * optimizations if the same LOD is used for all pixels in the subspan. |
| * |
| * For DDY, we need to use ALIGN16 mode since it's capable of doing the |
| * appropriate swizzling. |
| */ |
| void |
| brw_generator::generate_ddx(const fs_inst *inst, |
| struct brw_reg dst, struct brw_reg src) |
| { |
| unsigned vstride, width; |
| |
| if (inst->opcode == FS_OPCODE_DDX_FINE) { |
| /* produce accurate derivatives */ |
| vstride = BRW_VERTICAL_STRIDE_2; |
| width = BRW_WIDTH_2; |
| } else { |
| /* replicate the derivative at the top-left pixel to other pixels */ |
| vstride = BRW_VERTICAL_STRIDE_4; |
| width = BRW_WIDTH_4; |
| } |
| |
| struct brw_reg src0 = byte_offset(src, brw_type_size_bytes(src.type));; |
| struct brw_reg src1 = src; |
| |
| src0.vstride = vstride; |
| src0.width = width; |
| src0.hstride = BRW_HORIZONTAL_STRIDE_0; |
| src1.vstride = vstride; |
| src1.width = width; |
| src1.hstride = BRW_HORIZONTAL_STRIDE_0; |
| |
| brw_ADD(p, dst, src0, negate(src1)); |
| } |
| |
| /* The negate_value boolean is used to negate the derivative computation for |
| * FBOs, since they place the origin at the upper left instead of the lower |
| * left. |
| */ |
| void |
| brw_generator::generate_ddy(const fs_inst *inst, |
| struct brw_reg dst, struct brw_reg src) |
| { |
| const uint32_t type_size = brw_type_size_bytes(src.type); |
| |
| if (inst->opcode == FS_OPCODE_DDY_FINE) { |
| /* produce accurate derivatives. |
| * |
| * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU) |
| * "Register Region Restrictions", Section "1. Special Restrictions": |
| * |
| * "In Align16 mode, the channel selects and channel enables apply to |
| * a pair of half-floats, because these parameters are defined for |
| * DWord elements ONLY. This is applicable when both source and |
| * destination are half-floats." |
| * |
| * So for half-float operations we use the Gfx11+ Align1 path. CHV |
| * inherits its FP16 hardware from SKL, so it is not affected. |
| */ |
| if (devinfo->ver >= 11) { |
| src = stride(src, 0, 2, 1); |
| |
| brw_push_insn_state(p); |
| brw_set_default_exec_size(p, BRW_EXECUTE_4); |
| for (uint32_t g = 0; g < inst->exec_size; g += 4) { |
| brw_set_default_group(p, inst->group + g); |
| brw_ADD(p, byte_offset(dst, g * type_size), |
| negate(byte_offset(src, g * type_size)), |
| byte_offset(src, (g + 2) * type_size)); |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| } |
| brw_pop_insn_state(p); |
| } else { |
| struct brw_reg src0 = stride(src, 4, 4, 1); |
| struct brw_reg src1 = stride(src, 4, 4, 1); |
| src0.swizzle = BRW_SWIZZLE_XYXY; |
| src1.swizzle = BRW_SWIZZLE_ZWZW; |
| |
| brw_push_insn_state(p); |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_ADD(p, dst, negate(src0), src1); |
| brw_pop_insn_state(p); |
| } |
| } else { |
| /* replicate the derivative at the top-left pixel to other pixels */ |
| struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size); |
| struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size); |
| |
| brw_ADD(p, dst, negate(src0), src1); |
| } |
| } |
| |
| void |
| brw_generator::generate_halt(fs_inst *) |
| { |
| /* This HALT will be patched up at FB write time to point UIP at the end of |
| * the program, and at brw_uip_jip() JIP will be set to the end of the |
| * current block (or the program). |
| */ |
| this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn)); |
| brw_HALT(p); |
| } |
| |
| /* The A32 messages take a buffer base address in header.5:[31:0] (See |
| * MH1_A32_PSM for typed messages or MH_A32_GO for byte/dword scattered |
| * and OWord block messages in the SKL PRM Vol. 2d for more details.) |
| * Unfortunately, there are a number of subtle differences: |
| * |
| * For the block read/write messages: |
| * |
| * - We always stomp header.2 to fill in the actual scratch address (in |
| * units of OWORDs) so we don't care what's in there. |
| * |
| * - They rely on per-thread scratch space value in header.3[3:0] to do |
| * bounds checking so that needs to be valid. The upper bits of |
| * header.3 are ignored, though, so we can copy all of g0.3. |
| * |
| * - They ignore header.5[9:0] and assumes the address is 1KB aligned. |
| * |
| * |
| * For the byte/dword scattered read/write messages: |
| * |
| * - We want header.2 to be zero because that gets added to the per-channel |
| * offset in the non-header portion of the message. |
| * |
| * - Contrary to what the docs claim, they don't do any bounds checking so |
| * the value of header.3[3:0] doesn't matter. |
| * |
| * - They consider all of header.5 for the base address and header.5[9:0] |
| * are not ignored. This means that we can't copy g0.5 verbatim because |
| * g0.5[9:0] contains the FFTID on most platforms. Instead, we have to |
| * use an AND to mask off the bottom 10 bits. |
| * |
| * |
| * For block messages, just copying g0 gives a valid header because all the |
| * garbage gets ignored except for header.2 which we stomp as part of message |
| * setup. For byte/dword scattered messages, we can just zero out the header |
| * and copy over the bits we need from g0.5. This opcode, however, tries to |
| * satisfy the requirements of both by starting with 0 and filling out the |
| * information required by either set of opcodes. |
| */ |
| void |
| brw_generator::generate_scratch_header(fs_inst *inst, |
| struct brw_reg dst, |
| struct brw_reg src) |
| { |
| assert(inst->exec_size == 8 && inst->force_writemask_all); |
| assert(dst.file == FIXED_GRF); |
| assert(src.file == FIXED_GRF); |
| assert(src.type == BRW_TYPE_UD); |
| |
| dst.type = BRW_TYPE_UD; |
| |
| brw_eu_inst *insn = brw_MOV(p, dst, brw_imm_ud(0)); |
| if (devinfo->ver >= 12) |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| else |
| brw_eu_inst_set_no_dd_clear(p->devinfo, insn, true); |
| |
| /* Copy the per-thread scratch space size from g0.3[3:0] */ |
| brw_set_default_exec_size(p, BRW_EXECUTE_1); |
| insn = brw_AND(p, suboffset(dst, 3), component(src, 3), |
| brw_imm_ud(INTEL_MASK(3, 0))); |
| if (devinfo->ver < 12) { |
| brw_eu_inst_set_no_dd_clear(p->devinfo, insn, true); |
| brw_eu_inst_set_no_dd_check(p->devinfo, insn, true); |
| } |
| |
| /* Copy the scratch base address from g0.5[31:10] */ |
| insn = brw_AND(p, suboffset(dst, 5), component(src, 5), |
| brw_imm_ud(INTEL_MASK(31, 10))); |
| if (devinfo->ver < 12) |
| brw_eu_inst_set_no_dd_check(p->devinfo, insn, true); |
| } |
| |
| void |
| brw_generator::enable_debug(const char *shader_name) |
| { |
| debug_flag = true; |
| this->shader_name = shader_name; |
| } |
| |
| static gfx12_systolic_depth |
| translate_systolic_depth(unsigned d) |
| { |
| /* Could also return (ffs(d) - 1) & 3. */ |
| switch (d) { |
| case 2: return BRW_SYSTOLIC_DEPTH_2; |
| case 4: return BRW_SYSTOLIC_DEPTH_4; |
| case 8: return BRW_SYSTOLIC_DEPTH_8; |
| case 16: return BRW_SYSTOLIC_DEPTH_16; |
| default: unreachable("Invalid systolic depth."); |
| } |
| } |
| |
| int |
| brw_generator::generate_code(const cfg_t *cfg, int dispatch_width, |
| struct brw_shader_stats shader_stats, |
| const brw::performance &perf, |
| struct brw_compile_stats *stats, |
| unsigned max_polygons) |
| { |
| /* align to 64 byte boundary. */ |
| brw_realign(p, 64); |
| |
| this->dispatch_width = dispatch_width; |
| |
| int start_offset = p->next_insn_offset; |
| |
| int loop_count = 0, send_count = 0, nop_count = 0, sync_nop_count = 0; |
| bool is_accum_used = false; |
| |
| struct disasm_info *disasm_info = disasm_initialize(p->isa, cfg); |
| |
| enum opcode prev_opcode = BRW_OPCODE_ILLEGAL; |
| foreach_block_and_inst (block, fs_inst, inst, cfg) { |
| if (inst->opcode == SHADER_OPCODE_UNDEF) |
| continue; |
| |
| struct brw_reg src[4], dst; |
| unsigned int last_insn_offset = p->next_insn_offset; |
| bool multiple_instructions_emitted = false; |
| tgl_swsb swsb = inst->sched; |
| |
| /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the |
| * "Register Region Restrictions" section: for BDW, SKL: |
| * |
| * "A POW/FDIV operation must not be followed by an instruction |
| * that requires two destination registers." |
| * |
| * The documentation is often lacking annotations for Atom parts, |
| * and empirically this affects CHV as well. |
| */ |
| if (devinfo->ver <= 9 && |
| p->nr_insn > 1 && |
| brw_eu_inst_opcode(p->isa, brw_last_inst) == BRW_OPCODE_MATH && |
| brw_eu_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW && |
| inst->dst.component_size(inst->exec_size) > REG_SIZE) { |
| brw_NOP(p); |
| last_insn_offset = p->next_insn_offset; |
| |
| /* In order to avoid spurious instruction count differences when the |
| * instruction schedule changes, keep track of the number of inserted |
| * NOPs. |
| */ |
| nop_count++; |
| } |
| |
| /* Wa_14010017096: |
| * |
| * Clear accumulator register before end of thread. |
| */ |
| if (inst->eot && is_accum_used && |
| intel_needs_workaround(devinfo, 14010017096)) { |
| brw_set_default_exec_size(p, BRW_EXECUTE_16); |
| brw_set_default_group(p, 0); |
| brw_set_default_mask_control(p, BRW_MASK_DISABLE); |
| brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); |
| brw_set_default_flag_reg(p, 0, 0); |
| brw_set_default_swsb(p, tgl_swsb_src_dep(swsb)); |
| brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f)); |
| last_insn_offset = p->next_insn_offset; |
| swsb = tgl_swsb_dst_dep(swsb, 1); |
| } |
| |
| if (!is_accum_used && !inst->eot) { |
| is_accum_used = inst->writes_accumulator_implicitly(devinfo) || |
| inst->dst.is_accumulator(); |
| } |
| |
| /* Wa_14013672992: |
| * |
| * Always use @1 SWSB for EOT. |
| */ |
| if (inst->eot && intel_needs_workaround(devinfo, 14013672992)) { |
| if (tgl_swsb_src_dep(swsb).mode) { |
| brw_set_default_exec_size(p, BRW_EXECUTE_1); |
| brw_set_default_mask_control(p, BRW_MASK_DISABLE); |
| brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); |
| brw_set_default_flag_reg(p, 0, 0); |
| brw_set_default_swsb(p, tgl_swsb_src_dep(swsb)); |
| brw_SYNC(p, TGL_SYNC_NOP); |
| last_insn_offset = p->next_insn_offset; |
| } |
| |
| swsb = tgl_swsb_dst_dep(swsb, 1); |
| } |
| |
| if (unlikely(debug_flag)) |
| disasm_annotate(disasm_info, inst, p->next_insn_offset); |
| |
| if (devinfo->ver >= 20 && inst->group % 8 != 0) { |
| assert(inst->force_writemask_all); |
| assert(!inst->predicate && !inst->conditional_mod); |
| assert(!inst->writes_accumulator_implicitly(devinfo) && |
| !inst->reads_accumulator_implicitly()); |
| assert(inst->opcode != SHADER_OPCODE_SEL_EXEC); |
| brw_set_default_group(p, 0); |
| } else { |
| brw_set_default_group(p, inst->group); |
| } |
| |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| src[i] = normalize_brw_reg_for_encoding(&inst->src[i]); |
| /* The accumulator result appears to get used for the |
| * conditional modifier generation. When negating a UD |
| * value, there is a 33rd bit generated for the sign in the |
| * accumulator value, so now you can't check, for example, |
| * equality with a 32-bit value. See piglit fs-op-neg-uvec4. |
| */ |
| assert(!inst->conditional_mod || |
| inst->src[i].type != BRW_TYPE_UD || |
| !inst->src[i].negate); |
| } |
| dst = normalize_brw_reg_for_encoding(&inst->dst); |
| |
| brw_set_default_access_mode(p, BRW_ALIGN_1); |
| brw_set_default_predicate_control(p, inst->predicate); |
| brw_set_default_predicate_inverse(p, inst->predicate_inverse); |
| /* On gfx7 and above, hardware automatically adds the group onto the |
| * flag subregister number. |
| */ |
| const unsigned flag_subreg = inst->flag_subreg; |
| brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2); |
| brw_set_default_saturate(p, inst->saturate); |
| brw_set_default_mask_control(p, inst->force_writemask_all); |
| if (devinfo->ver >= 20 && inst->writes_accumulator) { |
| assert(inst->dst.is_accumulator() || |
| inst->opcode == BRW_OPCODE_ADDC || |
| inst->opcode == BRW_OPCODE_MACH || |
| inst->opcode == BRW_OPCODE_SUBB); |
| } else { |
| brw_set_default_acc_write_control(p, inst->writes_accumulator); |
| } |
| brw_set_default_swsb(p, swsb); |
| |
| unsigned exec_size = inst->exec_size; |
| |
| brw_set_default_exec_size(p, cvt(exec_size) - 1); |
| |
| assert(inst->force_writemask_all || inst->exec_size >= 4); |
| assert(inst->force_writemask_all || inst->group % inst->exec_size == 0); |
| assert(inst->mlen <= BRW_MAX_MSG_LENGTH * reg_unit(devinfo)); |
| |
| switch (inst->opcode) { |
| case BRW_OPCODE_NOP: |
| brw_NOP(p); |
| break; |
| case BRW_OPCODE_SYNC: |
| assert(src[0].file == IMM); |
| brw_SYNC(p, tgl_sync_function(src[0].ud)); |
| |
| if (tgl_sync_function(src[0].ud) == TGL_SYNC_NOP) |
| ++sync_nop_count; |
| |
| break; |
| case BRW_OPCODE_MOV: |
| brw_MOV(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_ADD: |
| brw_ADD(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_MUL: |
| brw_MUL(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_AVG: |
| brw_AVG(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_MACH: |
| brw_MACH(p, dst, src[0], src[1]); |
| break; |
| |
| case BRW_OPCODE_DP4A: |
| assert(devinfo->ver >= 12); |
| brw_DP4A(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_LINE: |
| brw_LINE(p, dst, src[0], src[1]); |
| break; |
| |
| case BRW_OPCODE_DPAS: |
| assert(devinfo->verx10 >= 125); |
| brw_DPAS(p, translate_systolic_depth(inst->sdepth), inst->rcount, |
| dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_MAD: |
| if (devinfo->ver < 10) |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_MAD(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_LRP: |
| assert(devinfo->ver <= 10); |
| if (devinfo->ver < 10) |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_LRP(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_ADD3: |
| assert(devinfo->verx10 >= 125); |
| brw_ADD3(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_FRC: |
| brw_FRC(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_RNDD: |
| brw_RNDD(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_RNDE: |
| brw_RNDE(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_RNDZ: |
| brw_RNDZ(p, dst, src[0]); |
| break; |
| |
| case BRW_OPCODE_AND: |
| brw_AND(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_OR: |
| brw_OR(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_XOR: |
| brw_XOR(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_NOT: |
| brw_NOT(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_ASR: |
| brw_ASR(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_SHR: |
| brw_SHR(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_SHL: |
| brw_SHL(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_ROL: |
| assert(devinfo->ver >= 11); |
| assert(src[0].type == dst.type); |
| brw_ROL(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_ROR: |
| assert(devinfo->ver >= 11); |
| assert(src[0].type == dst.type); |
| brw_ROR(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_CMP: |
| brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); |
| break; |
| case BRW_OPCODE_CMPN: |
| brw_CMPN(p, dst, inst->conditional_mod, src[0], src[1]); |
| break; |
| case BRW_OPCODE_SEL: |
| brw_SEL(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_CSEL: |
| if (devinfo->ver < 10) |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_CSEL(p, dst, src[0], src[1], src[2]); |
| break; |
| case BRW_OPCODE_BFREV: |
| brw_BFREV(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); |
| break; |
| case BRW_OPCODE_FBH: |
| brw_FBH(p, retype(dst, src[0].type), src[0]); |
| break; |
| case BRW_OPCODE_FBL: |
| brw_FBL(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); |
| break; |
| case BRW_OPCODE_LZD: |
| brw_LZD(p, dst, src[0]); |
| break; |
| case BRW_OPCODE_CBIT: |
| brw_CBIT(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); |
| break; |
| case BRW_OPCODE_ADDC: |
| brw_ADDC(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_SUBB: |
| brw_SUBB(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_MAC: |
| brw_MAC(p, dst, src[0], src[1]); |
| break; |
| |
| case BRW_OPCODE_BFE: |
| if (devinfo->ver < 10) |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_BFE(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_BFI1: |
| brw_BFI1(p, dst, src[0], src[1]); |
| break; |
| case BRW_OPCODE_BFI2: |
| if (devinfo->ver < 10) |
| brw_set_default_access_mode(p, BRW_ALIGN_16); |
| brw_BFI2(p, dst, src[0], src[1], src[2]); |
| break; |
| |
| case BRW_OPCODE_IF: |
| brw_IF(p, brw_get_default_exec_size(p)); |
| break; |
| |
| case BRW_OPCODE_ELSE: |
| brw_ELSE(p); |
| break; |
| case BRW_OPCODE_ENDIF: |
| brw_ENDIF(p); |
| break; |
| |
| case BRW_OPCODE_DO: |
| brw_DO(p, brw_get_default_exec_size(p)); |
| break; |
| |
| case BRW_OPCODE_BREAK: |
| brw_BREAK(p); |
| break; |
| case BRW_OPCODE_CONTINUE: |
| brw_CONT(p); |
| break; |
| |
| case BRW_OPCODE_WHILE: |
| /* On LNL and newer, if we don't put a NOP in between two consecutive |
| * WHILE instructions we may end up with misrendering or GPU hangs. |
| * See HSD 22020521218. |
| */ |
| if (devinfo->ver >= 20 && unlikely(prev_opcode == BRW_OPCODE_WHILE)) |
| brw_NOP(p); |
| |
| brw_WHILE(p); |
| loop_count++; |
| break; |
| |
| case SHADER_OPCODE_RCP: |
| case SHADER_OPCODE_RSQ: |
| case SHADER_OPCODE_SQRT: |
| case SHADER_OPCODE_EXP2: |
| case SHADER_OPCODE_LOG2: |
| case SHADER_OPCODE_SIN: |
| case SHADER_OPCODE_COS: |
| assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); |
| assert(inst->mlen == 0); |
| gfx6_math(p, dst, brw_math_function(inst->opcode), |
| src[0], retype(brw_null_reg(), src[0].type)); |
| break; |
| case SHADER_OPCODE_INT_QUOTIENT: |
| case SHADER_OPCODE_INT_REMAINDER: |
| case SHADER_OPCODE_POW: |
| assert(devinfo->verx10 < 125); |
| assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); |
| assert(inst->mlen == 0); |
| assert(inst->opcode == SHADER_OPCODE_POW || inst->exec_size == 8); |
| gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]); |
| break; |
| case BRW_OPCODE_PLN: |
| /* PLN reads: |
| * / in SIMD16 \ |
| * ----------------------------------- |
| * | src1+0 | src1+1 | src1+2 | src1+3 | |
| * |-----------------------------------| |
| * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)| |
| * ----------------------------------- |
| */ |
| brw_PLN(p, dst, src[0], src[1]); |
| break; |
| case FS_OPCODE_PIXEL_X: |
| assert(src[0].type == BRW_TYPE_UW); |
| assert(src[1].type == BRW_TYPE_UW); |
| src[0].subnr = 0 * brw_type_size_bytes(src[0].type); |
| if (src[1].file == IMM) { |
| assert(src[1].ud == 0); |
| brw_MOV(p, dst, stride(src[0], 8, 4, 1)); |
| } else { |
| /* Coarse pixel case */ |
| brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]); |
| } |
| break; |
| case FS_OPCODE_PIXEL_Y: |
| assert(src[0].type == BRW_TYPE_UW); |
| assert(src[1].type == BRW_TYPE_UW); |
| src[0].subnr = 4 * brw_type_size_bytes(src[0].type); |
| if (src[1].file == IMM) { |
| assert(src[1].ud == 0); |
| brw_MOV(p, dst, stride(src[0], 8, 4, 1)); |
| } else { |
| /* Coarse pixel case */ |
| brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]); |
| } |
| break; |
| |
| case SHADER_OPCODE_SEND: |
| generate_send(inst, dst, src[0], src[1], src[2], |
| inst->ex_mlen > 0 ? src[3] : brw_null_reg()); |
| send_count++; |
| break; |
| |
| case FS_OPCODE_DDX_COARSE: |
| case FS_OPCODE_DDX_FINE: |
| generate_ddx(inst, dst, src[0]); |
| break; |
| case FS_OPCODE_DDY_COARSE: |
| case FS_OPCODE_DDY_FINE: |
| generate_ddy(inst, dst, src[0]); |
| break; |
| |
| case SHADER_OPCODE_SCRATCH_HEADER: |
| generate_scratch_header(inst, dst, src[0]); |
| break; |
| |
| case SHADER_OPCODE_MOV_INDIRECT: |
| generate_mov_indirect(inst, dst, src[0], src[1]); |
| break; |
| |
| case SHADER_OPCODE_MOV_RELOC_IMM: |
| assert(src[0].file == IMM); |
| assert(src[1].file == IMM); |
| brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud, src[1].ud); |
| break; |
| |
| case BRW_OPCODE_HALT: |
| generate_halt(inst); |
| break; |
| |
| case SHADER_OPCODE_INTERLOCK: |
| case SHADER_OPCODE_MEMORY_FENCE: { |
| assert(src[1].file == IMM); |
| assert(src[2].file == IMM); |
| |
| const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ? |
| BRW_OPCODE_SENDC : BRW_OPCODE_SEND; |
| |
| brw_memory_fence(p, dst, src[0], send_op, |
| brw_message_target(inst->sfid), |
| inst->desc, |
| /* commit_enable */ src[1].ud, |
| /* bti */ src[2].ud); |
| send_count++; |
| break; |
| } |
| |
| case FS_OPCODE_SCHEDULING_FENCE: |
| if (inst->sources == 0 && swsb.regdist == 0 && |
| swsb.mode == TGL_SBID_NULL) { |
| if (unlikely(debug_flag)) |
| disasm_info->use_tail = true; |
| break; |
| } |
| |
| if (devinfo->ver >= 12) { |
| /* Use the available SWSB information to stall. A single SYNC is |
| * sufficient since if there were multiple dependencies, the |
| * scoreboard algorithm already injected other SYNCs before this |
| * instruction. |
| */ |
| brw_SYNC(p, TGL_SYNC_NOP); |
| } else { |
| for (unsigned i = 0; i < inst->sources; i++) { |
| /* Emit a MOV to force a stall until the instruction producing the |
| * registers finishes. |
| */ |
| brw_MOV(p, retype(brw_null_reg(), BRW_TYPE_UW), |
| retype(src[i], BRW_TYPE_UW)); |
| } |
| |
| if (inst->sources > 1) |
| multiple_instructions_emitted = true; |
| } |
| |
| break; |
| |
| case SHADER_OPCODE_FIND_LIVE_CHANNEL: |
| case SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL: |
| case SHADER_OPCODE_LOAD_LIVE_CHANNELS: |
| unreachable("Should be lowered by lower_find_live_channel()"); |
| break; |
| |
| case FS_OPCODE_LOAD_LIVE_CHANNELS: { |
| assert(inst->force_writemask_all && inst->group == 0); |
| assert(inst->dst.file == BAD_FILE); |
| brw_set_default_exec_size(p, BRW_EXECUTE_1); |
| brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg), BRW_TYPE_UD), |
| retype(brw_mask_reg(0), BRW_TYPE_UD)); |
| break; |
| } |
| case SHADER_OPCODE_BROADCAST: |
| assert(inst->force_writemask_all); |
| brw_broadcast(p, dst, src[0], src[1]); |
| break; |
| |
| case SHADER_OPCODE_SHUFFLE: |
| generate_shuffle(inst, dst, src[0], src[1]); |
| break; |
| |
| case SHADER_OPCODE_SEL_EXEC: |
| assert(inst->force_writemask_all); |
| assert(devinfo->has_64bit_float || brw_type_size_bytes(dst.type) <= 4); |
| brw_set_default_mask_control(p, BRW_MASK_DISABLE); |
| brw_MOV(p, dst, src[1]); |
| brw_set_default_mask_control(p, BRW_MASK_ENABLE); |
| brw_set_default_swsb(p, tgl_swsb_null()); |
| brw_MOV(p, dst, src[0]); |
| break; |
| |
| case SHADER_OPCODE_QUAD_SWIZZLE: |
| assert(src[1].file == IMM); |
| assert(src[1].type == BRW_TYPE_UD); |
| generate_quad_swizzle(inst, dst, src[0], src[1].ud); |
| break; |
| |
| case SHADER_OPCODE_CLUSTER_BROADCAST: { |
| assert((!intel_device_info_is_9lp(devinfo) && |
| devinfo->has_64bit_float) || brw_type_size_bytes(src[0].type) <= 4); |
| assert(!src[0].negate && !src[0].abs); |
| assert(src[1].file == IMM); |
| assert(src[1].type == BRW_TYPE_UD); |
| assert(src[2].file == IMM); |
| assert(src[2].type == BRW_TYPE_UD); |
| const unsigned component = src[1].ud; |
| const unsigned cluster_size = src[2].ud; |
| assert(inst->src[0].file != ARF); |
| |
| unsigned s; |
| if (inst->src[0].file == FIXED_GRF) { |
| s = inst->src[0].hstride ? 1 << (inst->src[0].hstride - 1) : 0; |
| } else { |
| s = inst->src[0].stride; |
| } |
| unsigned vstride = cluster_size * s; |
| unsigned width = cluster_size; |
| |
| /* The maximum exec_size is 32, but the maximum width is only 16. */ |
| if (inst->exec_size == width) { |
| vstride = 0; |
| width = 1; |
| } |
| |
| struct brw_reg strided = stride(suboffset(src[0], component * s), |
| vstride, width, 0); |
| brw_MOV(p, dst, strided); |
| break; |
| } |
| |
| case SHADER_OPCODE_HALT_TARGET: |
| /* This is the place where the final HALT needs to be inserted if |
| * we've emitted any discards. If not, this will emit no code. |
| */ |
| if (!patch_halt_jumps()) { |
| if (unlikely(debug_flag)) { |
| disasm_info->use_tail = true; |
| } |
| } |
| break; |
| |
| case SHADER_OPCODE_BARRIER: |
| generate_barrier(inst, src[0]); |
| send_count++; |
| break; |
| |
| case SHADER_OPCODE_RND_MODE: { |
| assert(src[0].file == IMM); |
| /* |
| * Changes the floating point rounding mode updating the control |
| * register field defined at cr0.0[5-6] bits. |
| */ |
| enum brw_rnd_mode mode = |
| (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT); |
| brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK); |
| } |
| break; |
| |
| case SHADER_OPCODE_FLOAT_CONTROL_MODE: |
| assert(src[0].file == IMM); |
| assert(src[1].file == IMM); |
| brw_float_controls_mode(p, src[0].d, src[1].d); |
| break; |
| |
| case SHADER_OPCODE_READ_ARCH_REG: |
| if (devinfo->ver >= 12) { |
| /* There is a SWSB restriction that requires that any time sr0 is |
| * accessed both the instruction doing the access and the next one |
| * have SWSB set to RegDist(1). |
| */ |
| if (brw_get_default_swsb(p).mode != TGL_SBID_NULL) |
| brw_SYNC(p, TGL_SYNC_NOP); |
| brw_set_default_swsb(p, tgl_swsb_regdist(1)); |
| brw_MOV(p, dst, src[0]); |
| brw_set_default_swsb(p, tgl_swsb_regdist(1)); |
| brw_AND(p, dst, dst, brw_imm_ud(0xffffffff)); |
| } else { |
| brw_MOV(p, dst, src[0]); |
| } |
| break; |
| |
| default: |
| unreachable("Unsupported opcode"); |
| |
| case SHADER_OPCODE_LOAD_PAYLOAD: |
| unreachable("Should be lowered by lower_load_payload()"); |
| } |
| prev_opcode = inst->opcode; |
| |
| if (multiple_instructions_emitted) |
| continue; |
| |
| if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) { |
| assert(p->next_insn_offset == last_insn_offset + 16 || |
| !"conditional_mod, no_dd_check, or no_dd_clear set for IR " |
| "emitting more than 1 instruction"); |
| |
| brw_eu_inst *last = &p->store[last_insn_offset / 16]; |
| |
| if (inst->conditional_mod) |
| brw_eu_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod); |
| if (devinfo->ver < 12) { |
| brw_eu_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear); |
| brw_eu_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check); |
| } |
| } |
| |
| /* When enabled, insert sync NOP after every instruction and make sure |
| * that current instruction depends on the previous instruction. |
| */ |
| if (INTEL_DEBUG(DEBUG_SWSB_STALL) && devinfo->ver >= 12) { |
| brw_set_default_swsb(p, tgl_swsb_regdist(1)); |
| brw_SYNC(p, TGL_SYNC_NOP); |
| } |
| } |
| |
| brw_set_uip_jip(p, start_offset); |
| |
| /* end of program sentinel */ |
| disasm_new_inst_group(disasm_info, p->next_insn_offset); |
| |
| /* `send_count` explicitly does not include spills or fills, as we'd |
| * like to use it as a metric for intentional memory access or other |
| * shared function use. Otherwise, subtle changes to scheduling or |
| * register allocation could cause it to fluctuate wildly - and that |
| * effect is already counted in spill/fill counts. |
| */ |
| send_count -= shader_stats.spill_count; |
| send_count -= shader_stats.fill_count; |
| |
| #ifndef NDEBUG |
| bool validated = |
| #else |
| if (unlikely(debug_flag)) |
| #endif |
| brw_validate_instructions(&compiler->isa, p->store, |
| start_offset, |
| p->next_insn_offset, |
| disasm_info); |
| |
| int before_size = p->next_insn_offset - start_offset; |
| brw_compact_instructions(p, start_offset, disasm_info); |
| int after_size = p->next_insn_offset - start_offset; |
| |
| bool dump_shader_bin = brw_should_dump_shader_bin(); |
| unsigned char sha1[21]; |
| char sha1buf[41]; |
| |
| if (unlikely(debug_flag || dump_shader_bin)) { |
| _mesa_sha1_compute(p->store + start_offset / sizeof(brw_eu_inst), |
| after_size, sha1); |
| _mesa_sha1_format(sha1buf, sha1); |
| } |
| |
| if (unlikely(dump_shader_bin)) |
| brw_dump_shader_bin(p->store, start_offset, p->next_insn_offset, |
| sha1buf); |
| |
| if (unlikely(debug_flag)) { |
| fprintf(stderr, "Native code for %s (src_hash 0x%08x) (sha1 %s)\n" |
| "SIMD%d shader: %d instructions. %d loops. %u cycles. " |
| "%d:%d spills:fills, %u sends, " |
| "scheduled with mode %s. " |
| "Promoted %u constants. " |
| "Non-SSA regs (after NIR): %u. " |
| "Compacted %d to %d bytes (%.0f%%)\n", |
| shader_name, params->source_hash, sha1buf, |
| dispatch_width, |
| before_size / 16 - nop_count - sync_nop_count, |
| loop_count, perf.latency, |
| shader_stats.spill_count, |
| shader_stats.fill_count, |
| send_count, |
| shader_stats.scheduler_mode, |
| shader_stats.promoted_constants, |
| shader_stats.non_ssa_registers_after_nir, |
| before_size, after_size, |
| 100.0f * (before_size - after_size) / before_size); |
| |
| /* overriding the shader makes disasm_info invalid */ |
| if (!brw_try_override_assembly(p, start_offset, sha1buf)) { |
| dump_assembly(p->store, start_offset, p->next_insn_offset, |
| disasm_info, perf.block_latency); |
| } else { |
| fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf); |
| } |
| } |
| ralloc_free(disasm_info); |
| #ifndef NDEBUG |
| if (!validated && !debug_flag) { |
| fprintf(stderr, |
| "Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n"); |
| } |
| #endif |
| assert(validated); |
| |
| brw_shader_debug_log(compiler, params->log_data, |
| "%s SIMD%d shader: %d inst, %d loops, %u cycles, " |
| "%d:%d spills:fills, %u sends, " |
| "scheduled with mode %s, " |
| "Promoted %u constants, " |
| "compacted %d to %d bytes.\n", |
| _mesa_shader_stage_to_abbrev(stage), |
| dispatch_width, |
| before_size / 16 - nop_count - sync_nop_count, |
| loop_count, perf.latency, |
| shader_stats.spill_count, |
| shader_stats.fill_count, |
| send_count, |
| shader_stats.scheduler_mode, |
| shader_stats.promoted_constants, |
| before_size, after_size); |
| if (stats) { |
| stats->dispatch_width = dispatch_width; |
| stats->max_polygons = max_polygons; |
| stats->max_dispatch_width = dispatch_width; |
| stats->instructions = before_size / 16 - nop_count - sync_nop_count; |
| stats->sends = send_count; |
| stats->loops = loop_count; |
| stats->cycles = perf.latency; |
| stats->spills = shader_stats.spill_count; |
| stats->fills = shader_stats.fill_count; |
| stats->max_live_registers = shader_stats.max_register_pressure; |
| stats->non_ssa_registers_after_nir = shader_stats.non_ssa_registers_after_nir; |
| } |
| |
| return start_offset; |
| } |
| |
| void |
| brw_generator::add_const_data(void *data, unsigned size) |
| { |
| assert(prog_data->const_data_size == 0); |
| if (size > 0) { |
| prog_data->const_data_size = size; |
| prog_data->const_data_offset = brw_append_data(p, data, size, 32); |
| } |
| } |
| |
| void |
| brw_generator::add_resume_sbt(unsigned num_resume_shaders, uint64_t *sbt) |
| { |
| assert(brw_shader_stage_is_bindless(stage)); |
| struct brw_bs_prog_data *bs_prog_data = brw_bs_prog_data(prog_data); |
| if (num_resume_shaders > 0) { |
| bs_prog_data->resume_sbt_offset = |
| brw_append_data(p, sbt, num_resume_shaders * sizeof(uint64_t), 32); |
| for (unsigned i = 0; i < num_resume_shaders; i++) { |
| size_t offset = bs_prog_data->resume_sbt_offset + i * sizeof(*sbt); |
| assert(offset <= UINT32_MAX); |
| brw_add_reloc(p, BRW_SHADER_RELOC_SHADER_START_OFFSET, |
| BRW_SHADER_RELOC_TYPE_U32, |
| (uint32_t)offset, (uint32_t)sbt[i]); |
| } |
| } |
| } |
| |
| const unsigned * |
| brw_generator::get_assembly() |
| { |
| prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs); |
| |
| return brw_get_program(p, &prog_data->program_size); |
| } |