| /* |
| * Copyright 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <inttypes.h> |
| |
| #include "dev/intel_debug.h" |
| #include "genxml/genX_bits.h" |
| #include "util/log.h" |
| #include "util/u_math.h" |
| |
| #include "isl.h" |
| #include "isl_gfx4.h" |
| #include "isl_gfx6.h" |
| #include "isl_gfx7.h" |
| #include "isl_gfx8.h" |
| #include "isl_gfx9.h" |
| #include "isl_gfx12.h" |
| #include "isl_gfx20.h" |
| #include "isl_priv.h" |
| |
| isl_genX_declare_get_func(surf_fill_state_s) |
| isl_genX_declare_get_func(buffer_fill_state_s) |
| isl_genX_declare_get_func(emit_depth_stencil_hiz_s) |
| isl_genX_declare_get_func(null_fill_state_s) |
| isl_genX_declare_get_func(emit_cpb_control_s) |
| |
| void |
| isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2, |
| uint32_t yt1, uint32_t yt2, |
| char *dst, const char *src, |
| uint32_t dst_pitch, int32_t src_pitch, |
| bool has_swizzling, |
| enum isl_tiling tiling, |
| isl_memcpy_type copy_type) |
| { |
| #ifdef USE_SSE41 |
| if (copy_type == ISL_MEMCPY_STREAMING_LOAD) { |
| _isl_memcpy_linear_to_tiled_sse41( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| return; |
| } |
| #endif |
| |
| _isl_memcpy_linear_to_tiled( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| } |
| |
| void |
| isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2, |
| uint32_t yt1, uint32_t yt2, |
| char *dst, const char *src, |
| int32_t dst_pitch, uint32_t src_pitch, |
| bool has_swizzling, |
| enum isl_tiling tiling, |
| isl_memcpy_type copy_type) |
| { |
| #ifdef USE_SSE41 |
| if (copy_type == ISL_MEMCPY_STREAMING_LOAD) { |
| _isl_memcpy_tiled_to_linear_sse41( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| return; |
| } |
| #endif |
| |
| _isl_memcpy_tiled_to_linear( |
| xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling, |
| tiling, copy_type); |
| } |
| |
| void PRINTFLIKE(3, 4) UNUSED |
| __isl_finishme(const char *file, int line, const char *fmt, ...) |
| { |
| va_list ap; |
| char buf[512]; |
| |
| va_start(ap, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, ap); |
| va_end(ap); |
| |
| fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf); |
| } |
| |
| static void |
| isl_device_setup_mocs(struct isl_device *dev) |
| { |
| dev->mocs.protected_mask = 0; |
| |
| if (dev->info->ver >= 20) { |
| /* L3+L4=WB; BSpec: 71582 */ |
| dev->mocs.internal = 1 << 1; |
| dev->mocs.external = 1 << 1; |
| dev->mocs.protected_mask = 1 << 0; |
| /* TODO: Setting to uncached |
| * WA 14018443005: |
| * Ensure that any compression-enabled resource from gfx memory subject |
| * to app recycling (e.g. OGL sparse resource backing memory or |
| * Vulkan heaps) is never PAT/MOCS'ed as L3:UC. |
| */ |
| dev->mocs.blitter_dst = 1 << 1; |
| dev->mocs.blitter_src = 1 << 1; |
| } else if (dev->info->ver >= 12) { |
| if (intel_device_info_is_mtl_or_arl(dev->info)) { |
| /* Cached L3+L4; BSpec: 45101 */ |
| dev->mocs.internal = 1 << 1; |
| /* Displayables cached to L3+L4:WT */ |
| dev->mocs.external = 14 << 1; |
| /* Uncached - GO:Mem */ |
| dev->mocs.uncached = 5 << 1; |
| /* TODO: XY_BLOCK_COPY_BLT don't mention what should be the L4 cache |
| * mode so for now it is setting L4 as uncached following what is |
| * asked for L3 |
| */ |
| dev->mocs.blitter_dst = 9 << 1; |
| dev->mocs.blitter_src = 9 << 1; |
| } else if (intel_device_info_is_dg2(dev->info)) { |
| /* L3CC=WB; BSpec: 45101 */ |
| dev->mocs.internal = 3 << 1; |
| dev->mocs.external = 3 << 1; |
| /* UC - Coherent; GO:Memory */ |
| dev->mocs.uncached = 1 << 1; |
| |
| /* XY_BLOCK_COPY_BLT MOCS fields have programming notes which say: |
| * |
| * "Destination MOCS value, which is used to program MOCS index |
| * for writing to memory, should select a MOCS register having |
| * "L3 Cacheability Control" programmed as uncacheable(UC) and |
| * "Global GO" parameter set as GOMemory (pushes GO point to |
| * memory). The MOCS Register may have L3 Lookup programmed as |
| * UCL3LKDIS for better efficiency." |
| * |
| * The GO:Memory setting requires us to use MOCS 1 or 2. MOCS 2 |
| * has LKUP set to 0 and is marked "Non-Coherent", which we assume |
| * is probably the "better efficiency" they mention... |
| * |
| * "Source MOCS value, which is used to program MOCS index for |
| * reading from memory, should select a MOCS register having |
| * "L3 Cacheability Control" programmed as uncacheable(UC). |
| * The MOCS Register may have L3 Lookup programmed as UCL3LKDIS |
| * for better efficiency." |
| * |
| * Any MOCS except 3 should work. We use MOCS 2... |
| */ |
| dev->mocs.blitter_dst = 2 << 1; |
| dev->mocs.blitter_src = 2 << 1; |
| } else if (dev->info->platform == INTEL_PLATFORM_DG1) { |
| /* L3CC=WB */ |
| dev->mocs.internal = 5 << 1; |
| /* Displayables on DG1 are free to cache in L3 since L3 is transient |
| * and flushed at bottom of each submission. |
| */ |
| dev->mocs.external = 5 << 1; |
| /* UC */ |
| dev->mocs.uncached = 1 << 1; |
| dev->mocs.blitter_dst = 1 << 1; |
| dev->mocs.blitter_src = 1 << 1; |
| } else { |
| /* TC=1/LLC Only, LeCC=1/UC, LRUM=0, L3CC=3/WB */ |
| dev->mocs.external = 61 << 1; |
| /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ |
| dev->mocs.internal = 2 << 1; |
| /* Uncached */ |
| dev->mocs.uncached = 3 << 1; |
| |
| /* L1 - HDC:L1 + L3 + LLC */ |
| dev->mocs.l1_hdc_l3_llc = 48 << 1; |
| |
| /* Uncached */ |
| dev->mocs.blitter_dst = 3 << 1; |
| dev->mocs.blitter_src = 3 << 1; |
| } |
| /* Protected is just an additional flag. */ |
| dev->mocs.protected_mask = 1 << 0; |
| } else if (dev->info->ver >= 9) { |
| /* TC=LLC/eLLC, LeCC=PTE, LRUM=3, L3CC=WB */ |
| dev->mocs.external = 1 << 1; |
| /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ |
| dev->mocs.internal = 2 << 1; |
| /* Uncached */ |
| dev->mocs.uncached = (dev->info->ver >= 11 ? 3 : 0) << 1; |
| } else if (dev->info->ver >= 8) { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle, |
| * .TargetCache = L3DefertoPATforLLCeLLCselection, |
| * .AgeforQUADLRU = 0 |
| */ |
| dev->mocs.external = 0x18; |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryTypeLLCeLLCCacheabilityControl = WB, |
| * .TargetCache = L3DefertoPATforLLCeLLCselection, |
| * .AgeforQUADLRU = 0 |
| */ |
| dev->mocs.internal = 0x78; |
| if (dev->info->platform == INTEL_PLATFORM_CHV) { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryType = UC, |
| * .TargetCache = NoCaching, |
| */ |
| dev->mocs.uncached = 0; |
| } else { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .MemoryTypeLLCeLLCCacheabilityControl = UCUncacheable, |
| * .TargetCache = eLLCOnlywheneDRAMispresentelsegetsallocatedinLLC, |
| * .AgeforQUADLRU = 0 |
| */ |
| dev->mocs.uncached = 0x20; |
| } |
| } else if (dev->info->ver >= 7) { |
| if (dev->info->platform == INTEL_PLATFORM_HSW) { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .LLCeLLCCacheabilityControlLLCCC = 0, |
| * .L3CacheabilityControlL3CC = 1, |
| */ |
| dev->mocs.internal = 1; |
| dev->mocs.external = 1; |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .LLCeLLCCacheabilityControlLLCCC = 1, |
| * .L3CacheabilityControlL3CC = 0, |
| */ |
| dev->mocs.uncached = 2; |
| } else { |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .GraphicsDataTypeGFDT = 0, |
| * .LLCCacheabilityControlLLCCC = 0, |
| * .L3CacheabilityControlL3CC = 1, |
| */ |
| dev->mocs.internal = 1; |
| dev->mocs.external = 1; |
| /* MEMORY_OBJECT_CONTROL_STATE: |
| * .GraphicsDataTypeGFDT = 0, |
| * .LLCCacheabilityControlLLCCC = 0, |
| * .L3CacheabilityControlL3CC = 0, |
| */ |
| dev->mocs.uncached = 0; |
| } |
| } else { |
| dev->mocs.internal = 0; |
| dev->mocs.external = 0; |
| dev->mocs.uncached = 0; |
| } |
| } |
| |
| /** |
| * Return an appropriate MOCS entry for the given usage flags. |
| */ |
| uint32_t |
| isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage, |
| bool external) |
| { |
| uint32_t mask = (usage & ISL_SURF_USAGE_PROTECTED_BIT) ? |
| dev->mocs.protected_mask : 0; |
| |
| if (usage & ISL_SURF_USAGE_BLITTER_SRC_BIT) |
| return dev->mocs.blitter_src | mask; |
| |
| if (usage & ISL_SURF_USAGE_BLITTER_DST_BIT) |
| return dev->mocs.blitter_dst | mask; |
| |
| if (external) |
| return dev->mocs.external | mask; |
| |
| if (intel_device_info_is_mtl_or_arl(dev->info) && |
| (usage & ISL_SURF_USAGE_STREAM_OUT_BIT)) |
| return dev->mocs.uncached | mask; |
| |
| if (dev->info->verx10 == 120 && dev->info->platform != INTEL_PLATFORM_DG1) { |
| if (usage & ISL_SURF_USAGE_STAGING_BIT) |
| return dev->mocs.internal | mask; |
| |
| if (usage & ISL_SURF_USAGE_CPB_BIT) |
| return dev->mocs.internal | mask; |
| |
| /* Using L1:HDC for storage buffers breaks Vulkan memory model |
| * tests that use shader atomics. This isn't likely to work out, |
| * and we can't know a priori whether they'll be used. So just |
| * continue with ordinary internal MOCS for now. |
| */ |
| if (usage & ISL_SURF_USAGE_STORAGE_BIT) |
| return dev->mocs.internal | mask; |
| |
| if (usage & (ISL_SURF_USAGE_CONSTANT_BUFFER_BIT | |
| ISL_SURF_USAGE_RENDER_TARGET_BIT | |
| ISL_SURF_USAGE_TEXTURE_BIT)) |
| return dev->mocs.l1_hdc_l3_llc | mask; |
| } |
| |
| return dev->mocs.internal | mask; |
| } |
| |
| void |
| isl_device_init(struct isl_device *dev, |
| const struct intel_device_info *info) |
| { |
| /* Gfx8+ don't have bit6 swizzling, ensure callsite is not confused. */ |
| assert(!(info->has_bit6_swizzle && info->ver >= 8)); |
| |
| dev->info = info; |
| dev->use_separate_stencil = ISL_GFX_VER(dev) >= 6; |
| dev->has_bit6_swizzling = info->has_bit6_swizzle; |
| dev->buffer_length_in_aux_addr = false; |
| dev->sampler_route_to_lsc = false; |
| |
| /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some |
| * device properties at buildtime. Verify that the macros with the device |
| * properties chosen during runtime. |
| */ |
| ISL_GFX_VER_SANITIZE(dev); |
| ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev); |
| |
| /* Did we break hiz or stencil? */ |
| if (ISL_DEV_USE_SEPARATE_STENCIL(dev)) |
| assert(info->has_hiz_and_separate_stencil); |
| if (info->must_use_separate_stencil) |
| assert(ISL_DEV_USE_SEPARATE_STENCIL(dev)); |
| |
| dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4; |
| dev->ss.align = isl_align(dev->ss.size, 32); |
| |
| dev->ss.clear_color_state_size = CLEAR_COLOR_length(info) * 4; |
| dev->ss.clear_color_state_offset = |
| RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4; |
| |
| dev->ss.clear_value_size = |
| isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) + |
| RENDER_SURFACE_STATE_GreenClearColor_bits(info) + |
| RENDER_SURFACE_STATE_BlueClearColor_bits(info) + |
| RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8; |
| |
| dev->ss.clear_value_offset = |
| RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4; |
| |
| assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ss.addr_offset = |
| RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8; |
| |
| /* The "Auxiliary Surface Base Address" field starts a bit higher up |
| * because the bottom 12 bits are used for other things. Round down to |
| * the nearest dword before. |
| */ |
| dev->ss.aux_addr_offset = |
| (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8; |
| |
| dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4; |
| assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.depth_offset = |
| _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| |
| if (dev->use_separate_stencil) { |
| dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 + |
| _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_CLEAR_PARAMS_length(info) * 4; |
| |
| assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.stencil_offset = |
| _3DSTATE_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| |
| assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0); |
| dev->ds.hiz_offset = |
| _3DSTATE_DEPTH_BUFFER_length(info) * 4 + |
| _3DSTATE_STENCIL_BUFFER_length(info) * 4 + |
| _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| } else { |
| dev->ds.stencil_offset = 0; |
| dev->ds.hiz_offset = 0; |
| } |
| |
| /* From the IVB PRM, SURFACE_STATE::Height, |
| * |
| * For typed buffer and structured buffer surfaces, the number |
| * of entries in the buffer ranges from 1 to 2^27. For raw buffer |
| * surfaces, the number of entries in the buffer is the number of bytes |
| * which can range from 1 to 2^30. |
| * |
| * From the SKL PRM, SURFACE_STATE::Width/Height/Depth for RAW buffers, |
| * |
| * Width : bits [6:0] |
| * Height : bits [20:7] |
| * Depth : bits [31:21] |
| * |
| * So we can address 4Gb |
| * |
| * This limit is only concerned with raw buffers. |
| */ |
| if (ISL_GFX_VER(dev) >= 9) { |
| dev->max_buffer_size = 1ull << 32; |
| } else if (ISL_GFX_VER(dev) >= 7) { |
| dev->max_buffer_size = 1ull << 30; |
| } else { |
| dev->max_buffer_size = 1ull << 27; |
| } |
| |
| dev->cpb.size = _3DSTATE_CPSIZE_CONTROL_BUFFER_length(info) * 4; |
| dev->cpb.offset = |
| _3DSTATE_CPSIZE_CONTROL_BUFFER_SurfaceBaseAddress_start(info) / 8; |
| |
| isl_device_setup_mocs(dev); |
| |
| dev->surf_fill_state_s = isl_surf_fill_state_s_get_func(dev); |
| dev->buffer_fill_state_s = isl_buffer_fill_state_s_get_func(dev); |
| dev->emit_depth_stencil_hiz_s = isl_emit_depth_stencil_hiz_s_get_func(dev); |
| dev->null_fill_state_s = isl_null_fill_state_s_get_func(dev); |
| dev->emit_cpb_control_s = isl_emit_cpb_control_s_get_func(dev); |
| } |
| |
| /** |
| * @brief Query the set of multisamples supported by the device. |
| * |
| * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always |
| * supported. |
| */ |
| isl_sample_count_mask_t ATTRIBUTE_CONST |
| isl_device_get_sample_counts(const struct isl_device *dev) |
| { |
| if (ISL_GFX_VER(dev) >= 9) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_2_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT | |
| ISL_SAMPLE_COUNT_16_BIT; |
| } else if (ISL_GFX_VER(dev) >= 8) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_2_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT; |
| } else if (ISL_GFX_VER(dev) >= 7) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_4_BIT | |
| ISL_SAMPLE_COUNT_8_BIT; |
| } else if (ISL_GFX_VER(dev) >= 6) { |
| return ISL_SAMPLE_COUNT_1_BIT | |
| ISL_SAMPLE_COUNT_4_BIT; |
| } else { |
| return ISL_SAMPLE_COUNT_1_BIT; |
| } |
| } |
| |
| uint64_t |
| isl_get_sampler_clear_field_offset(const struct intel_device_info *devinfo, |
| enum isl_format format) |
| { |
| assert(devinfo->ver == 11 || devinfo->ver == 12); |
| |
| /* For 32bpc formats, the sampler fetches the raw clear color dwords |
| * used for rendering instead of the converted pixel dwords typically |
| * used for sampling. The CLEAR_COLOR struct page documents this for |
| * 128bpp formats, but not for 32bpp and 64bpp formats. |
| * |
| * Note that although the sampler doesn't use the converted clear color |
| * field with 32bpc formats, the hardware will still convert the clear |
| * color to a pixel when the surface format size is less than 128bpp. |
| */ |
| if (isl_format_get_layout(format)->channels.r.bits == 32) |
| return 0; |
| |
| /* According to Wa_2201730850, the gfx120 sampler reads the |
| * U24_X8-formatted pixel from the first raw clear color dword. |
| */ |
| if (devinfo->verx10 == 120 && format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) |
| return 0; |
| |
| return 16; |
| } |
| |
| static uint32_t |
| isl_get_miptail_base_row(enum isl_tiling tiling) |
| { |
| /* Miptails base levels can depend on the number of samples, but since we |
| * don't support levels > 1 with multisampling, the base miptail level is |
| * really simple : |
| */ |
| if (tiling == ISL_TILING_SKL_Yf || |
| tiling == ISL_TILING_ICL_Yf) |
| return 4; |
| else |
| return 0; |
| } |
| |
| static const uint8_t skl_std_y_2d_miptail_offset_el[][5][2] = { |
| /* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */ |
| { {32, 0}, {64, 0}, {64, 0}, {128, 0}, {128, 0} }, |
| { { 0, 32}, { 0, 32}, { 0, 64}, { 0, 64}, { 0,128} }, |
| { {16, 0}, {32, 0}, {32, 0}, { 64, 0}, { 64, 0} }, |
| { { 0, 16}, { 0, 16}, { 0, 32}, { 0, 32}, { 0, 64} }, |
| { { 8, 0}, {16, 0}, {16, 0}, { 32, 0}, { 32, 0} }, |
| { { 4, 8}, { 8, 8}, { 8, 16}, { 16, 16}, { 16, 32} }, |
| { { 0, 12}, { 0, 12}, { 0, 24}, { 0, 24}, { 0, 48} }, |
| { { 0, 8}, { 0, 8}, { 0, 16}, { 0, 16}, { 0, 32} }, |
| { { 4, 4}, { 8, 4}, { 8, 8}, { 16, 8}, { 16, 16} }, |
| { { 4, 0}, { 8, 0}, { 8, 0}, { 16, 0}, { 16, 0} }, |
| { { 0, 4}, { 0, 4}, { 0, 8}, { 0, 8}, { 0, 16} }, |
| { { 3, 0}, { 6, 0}, { 4, 4}, { 8, 4}, { 0, 12} }, |
| { { 2, 0}, { 4, 0}, { 4, 0}, { 8, 0}, { 0, 8} }, |
| { { 1, 0}, { 2, 0}, { 0, 4}, { 0, 4}, { 0, 4} }, |
| { { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0} }, |
| }; |
| |
| static const uint8_t icl_std_y_2d_miptail_offset_el[][5][2] = { |
| /* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */ |
| { {32, 0}, {64, 0}, {64, 0}, {128, 0}, {128, 0} }, |
| { { 0, 32}, { 0, 32}, { 0, 64}, { 0, 64}, { 0, 128} }, |
| { {16, 0}, {32, 0}, {32, 0}, { 64, 0}, { 64, 0} }, |
| { { 0, 16}, { 0, 16}, { 0, 32}, { 0, 32}, { 0, 64} }, |
| { { 8, 0}, {16, 0}, {16, 0}, { 32, 0}, { 32, 0} }, |
| { { 4, 8}, { 8, 8}, { 8, 16}, { 16, 16}, { 16, 32} }, |
| { { 0, 12}, { 0, 12}, { 0, 24}, { 0, 24}, { 0, 48} }, |
| { { 0, 8}, { 0, 8}, { 0, 16}, { 0, 16}, { 0, 32} }, |
| { { 4, 4}, { 8, 4}, { 8, 8}, { 16, 8}, { 16, 16} }, |
| { { 4, 0}, { 8, 0}, { 8, 0}, { 16, 0}, { 16, 0} }, |
| { { 0, 4}, { 0, 4}, { 0, 8}, { 0, 8}, { 0, 16} }, |
| { { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, { 0, 0} }, |
| { { 1, 0}, { 2, 0}, { 0, 4}, { 0, 4}, { 0, 4} }, |
| { { 2, 0}, { 4, 0}, { 4, 0}, { 8, 0}, { 0, 8} }, |
| { { 3, 0}, { 6, 0}, { 4, 4}, { 8, 4}, { 0, 12} }, |
| }; |
| |
| static const uint8_t skl_std_y_3d_miptail_offset_el[][5][3] = { |
| /* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */ |
| { {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0} }, |
| { {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0} }, |
| { {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16} }, |
| { {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0} }, |
| { {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0} }, |
| { {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8} }, |
| { {3, 0, 0}, { 6, 0, 0}, { 4, 4, 0}, { 0, 4, 4}, { 0, 4, 4} }, |
| { {2, 0, 0}, { 4, 0, 0}, { 0, 4, 0}, { 0, 4, 0}, { 0, 4, 0} }, |
| { {1, 0, 3}, { 2, 0, 3}, { 4, 0, 3}, { 0, 0, 7}, { 0, 0, 7} }, |
| { {1, 0, 2}, { 2, 0, 2}, { 4, 0, 2}, { 0, 0, 6}, { 0, 0, 6} }, |
| { {1, 0, 1}, { 2, 0, 1}, { 4, 0, 1}, { 0, 0, 5}, { 0, 0, 5} }, |
| { {1, 0, 0}, { 2, 0, 0}, { 4, 0, 0}, { 0, 0, 4}, { 0, 0, 4} }, |
| { {0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3} }, |
| { {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2} }, |
| { {0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1} }, |
| { {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0} }, |
| }; |
| |
| static const uint8_t icl_std_y_3d_miptail_offset_el[][5][3] = { |
| /* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */ |
| { {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0} }, |
| { {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0} }, |
| { {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16} }, |
| { {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0} }, |
| { {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0} }, |
| { {2, 0, 4}, { 4, 0, 4}, { 4, 0, 4}, { 4, 0, 8}, { 8, 0, 8} }, |
| { {0, 2, 4}, { 0, 2, 4}, { 0, 4, 4}, { 0, 4, 8}, { 0, 4, 8} }, |
| { {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8} }, |
| { {2, 2, 0}, { 4, 2, 0}, { 4, 4, 0}, { 4, 4, 0}, { 8, 4, 0} }, |
| { {2, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 8, 0, 0} }, |
| { {0, 2, 0}, { 0, 2, 0}, { 0, 4, 0}, { 0, 4, 0}, { 0, 4, 0} }, |
| { {1, 0, 2}, { 2, 0, 2}, { 2, 0, 2}, { 2, 0, 4}, { 4, 0, 4} }, |
| { {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 4}, { 0, 0, 4} }, |
| { {1, 0, 0}, { 2, 0, 0}, { 2, 0, 0}, { 2, 0, 0}, { 4, 0, 0} }, |
| { {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0} }, |
| }; |
| |
| static const uint8_t acm_tile64_3d_miptail_offset_el[][5][3] = { |
| /* 128 bpb 64 bpb 32 bpb 16 bpb 8 bpb */ |
| { {8, 0, 0}, {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {32, 0, 0}, }, |
| { {0, 8, 0}, { 0, 8, 0}, { 0, 16, 0}, { 0, 16, 0}, { 0, 16, 0}, }, |
| { {0, 0, 8}, { 0, 0, 8}, { 0, 0, 8}, { 0, 0, 16}, { 0, 0, 16}, }, |
| { {4, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, { 8, 0, 0}, {16, 0, 0}, }, |
| { {0, 4, 0}, { 0, 4, 0}, { 0, 8, 0}, { 0, 8, 0}, { 0, 8, 0}, }, |
| { {2, 0, 4}, { 4, 0, 4}, { 4, 0, 4}, { 0, 4, 8}, { 0, 4, 8}, }, |
| { {1, 0, 4}, { 2, 0, 4}, { 0, 4, 4}, { 0, 0, 12}, { 0, 0, 12}, }, |
| { {0, 0, 4}, { 0, 0, 4}, { 0, 0, 4}, { 0, 0, 8}, { 0, 0, 8}, }, |
| { {3, 0, 0}, { 6, 0, 0}, { 4, 4, 0}, { 0, 4, 4}, { 0, 4, 4}, }, |
| { {2, 0, 0}, { 4, 0, 0}, { 4, 0, 0}, { 0, 4, 0}, { 0, 4, 0}, }, |
| { {1, 0, 0}, { 2, 0, 0}, { 0, 4, 0}, { 0, 0, 4}, { 0, 0, 4}, }, |
| { {0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}, }, |
| { {0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, { 0, 0, 1}, }, |
| { {0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, { 0, 0, 2}, }, |
| { {0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, { 0, 0, 3}, }, |
| }; |
| |
| static uint32_t |
| tiling_max_mip_tail(enum isl_tiling tiling, |
| enum isl_surf_dim dim, |
| uint32_t samples) |
| { |
| /* In theory, miptails work for multisampled images, but we don't support |
| * mipmapped multisampling. |
| * |
| * BSpec 58770: Xe2 does not support miptails on multisampled images. |
| */ |
| if (samples > 1) |
| return 0; |
| |
| int num_2d_table_rows; |
| int num_3d_table_rows; |
| |
| switch (tiling) { |
| case ISL_TILING_LINEAR: |
| case ISL_TILING_X: |
| case ISL_TILING_Y0: |
| case ISL_TILING_4: |
| case ISL_TILING_W: |
| case ISL_TILING_HIZ: |
| case ISL_TILING_CCS: |
| /* There is no miptail for those tilings */ |
| return 0; |
| |
| case ISL_TILING_SKL_Yf: |
| case ISL_TILING_SKL_Ys: |
| /* SKL PRMs, Volume 5: Memory Views : |
| * |
| * Given by the last row of the table in the following sections: |
| * |
| * - Tiling and Mip Tail for 1D Surfaces |
| * - Tiling and Mip Tail for 2D Surfaces |
| * - Tiling and Mip Tail for 3D Surfaces |
| */ |
| num_2d_table_rows = ARRAY_SIZE(skl_std_y_2d_miptail_offset_el); |
| num_3d_table_rows = ARRAY_SIZE(skl_std_y_3d_miptail_offset_el); |
| break; |
| |
| case ISL_TILING_ICL_Yf: |
| case ISL_TILING_ICL_Ys: |
| /* ICL PRMs, Volume 5: Memory Views : |
| * |
| * - Tiling and Mip Tail for 1D Surfaces : |
| * "There is no MIP Tail allowed for 1D surfaces because they are |
| * not allowed to be tiled. They must be declared as linear." |
| * - Tiling and Mip Tail for 2D Surfaces |
| * - Tiling and Mip Tail for 3D Surfaces |
| */ |
| num_2d_table_rows = ARRAY_SIZE(icl_std_y_2d_miptail_offset_el); |
| num_3d_table_rows = ARRAY_SIZE(icl_std_y_3d_miptail_offset_el); |
| break; |
| |
| case ISL_TILING_64: |
| case ISL_TILING_64_XE2: |
| /* ATS-M PRMS, Volume 5: Memory Data Formats : |
| * |
| * - Tiling and Mip Tail for 1D Surfaces : |
| * "There is no MIP Tail allowed for 1D surfaces because they are |
| * not allowed to be tiled. They must be declared as linear." |
| * - Tiling and Mip Tail for 2D Surfaces |
| * - Tiling and Mip Tail for 3D Surfaces |
| */ |
| num_2d_table_rows = ARRAY_SIZE(icl_std_y_2d_miptail_offset_el); |
| num_3d_table_rows = ARRAY_SIZE(acm_tile64_3d_miptail_offset_el); |
| break; |
| |
| default: |
| unreachable("Invalid tiling"); |
| } |
| |
| assert(dim != ISL_SURF_DIM_1D); |
| const int num_rows = dim == ISL_SURF_DIM_2D ? num_2d_table_rows : |
| num_3d_table_rows; |
| return num_rows - isl_get_miptail_base_row(tiling); |
| } |
| |
| /** |
| * Returns an isl_tile_info representation of the given isl_tiling when |
| * combined when used in the given configuration. |
| * |
| * :param tiling: |in| The tiling format to introspect |
| * :param dim: |in| The dimensionality of the surface being tiled |
| * :param msaa_layout: |in| The layout of samples in the surface being tiled |
| * :param format_bpb: |in| The number of bits per surface element (block) for |
| * the surface being tiled |
| * :param samples: |in| The samples in the surface being tiled |
| * :param tile_info: |out| Return parameter for the tiling information |
| */ |
| void |
| isl_tiling_get_info(enum isl_tiling tiling, |
| enum isl_surf_dim dim, |
| enum isl_msaa_layout msaa_layout, |
| uint32_t format_bpb, |
| uint32_t samples, |
| struct isl_tile_info *tile_info) |
| { |
| const uint32_t bs = format_bpb / 8; |
| struct isl_extent4d logical_el; |
| struct isl_extent2d phys_B; |
| |
| if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) { |
| /* It is possible to have non-power-of-two formats in a tiled buffer. |
| * The easiest way to handle this is to treat the tile as if it is three |
| * times as wide. This way no pixel will ever cross a tile boundary. |
| * This really only works on a subset of tiling formats. |
| */ |
| assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0 || |
| tiling == ISL_TILING_4); |
| assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3)); |
| isl_tiling_get_info(tiling, dim, msaa_layout, format_bpb / 3, samples, |
| tile_info); |
| return; |
| } |
| |
| switch (tiling) { |
| case ISL_TILING_LINEAR: |
| assert(bs > 0); |
| logical_el = isl_extent4d(1, 1, 1, 1); |
| phys_B = isl_extent2d(bs, 1); |
| break; |
| |
| case ISL_TILING_X: |
| assert(bs > 0); |
| logical_el = isl_extent4d(512 / bs, 8, 1, 1); |
| phys_B = isl_extent2d(512, 8); |
| break; |
| |
| case ISL_TILING_Y0: |
| case ISL_TILING_4: |
| assert(bs > 0); |
| logical_el = isl_extent4d(128 / bs, 32, 1, 1); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_W: |
| assert(bs == 1); |
| logical_el = isl_extent4d(64, 64, 1, 1); |
| /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch: |
| * |
| * "If the surface is a stencil buffer (and thus has Tile Mode set |
| * to TILEMODE_WMAJOR), the pitch must be set to 2x the value |
| * computed based on width, as the stencil buffer is stored with two |
| * rows interleaved." |
| * |
| * This, together with the fact that stencil buffers are referred to as |
| * being Y-tiled in the PRMs for older hardware implies that the |
| * physical size of a W-tile is actually the same as for a Y-tile. |
| */ |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_SKL_Yf: |
| case ISL_TILING_SKL_Ys: |
| case ISL_TILING_ICL_Yf: |
| case ISL_TILING_ICL_Ys: { |
| bool is_Ys = tiling == ISL_TILING_SKL_Ys || |
| tiling == ISL_TILING_ICL_Ys; |
| assert(format_bpb >= 8); |
| |
| switch (dim) { |
| case ISL_SURF_DIM_2D: |
| /* See the BSpec Memory Data Formats » Common Surface Formats » |
| * Surface Layout and Tiling [SKL+] » 2D Surfaces SKL+ » 2D/CUBE |
| * Alignment Requirement [SKL+] |
| * |
| * Or, look in the SKL PRM under Memory Views > Common Surface |
| * Formats > Surface Layout and Tiling > 2D Surfaces > 2D/CUBE |
| * Alignment Requirements. |
| */ |
| logical_el = (struct isl_extent4d) { |
| .w = 1 << (6 - ((ffs(format_bpb) - 4) / 2) + (2 * is_Ys)), |
| .h = 1 << (6 - ((ffs(format_bpb) - 3) / 2) + (2 * is_Ys)), |
| .d = 1, |
| .a = 1, |
| }; |
| |
| if (samples > 1 && tiling != ISL_TILING_SKL_Yf) { |
| /* SKL PRMs, Volume 5: Memory Views, 2D/CUBE Alignment |
| * Requirement: |
| * |
| * "For MSFMT_MSS type multi-sampled TileYS surfaces, the |
| * alignments given above must be divided by the appropriate |
| * value from the table below." |
| * |
| * The formulas below reproduce those values. |
| */ |
| if (msaa_layout == ISL_MSAA_LAYOUT_ARRAY) { |
| logical_el.w >>= (ffs(samples) - 0) / 2; |
| logical_el.h >>= (ffs(samples) - 1) / 2; |
| logical_el.a = samples; |
| } |
| } |
| break; |
| |
| case ISL_SURF_DIM_3D: |
| /* See the BSpec Memory Data Formats » Common Surface Formats » |
| * Surface Layout and Tiling [SKL+] » 3D Surfaces SKL+ » 3D Alignment |
| * Requirements [SKL+] |
| * |
| * Or, look in the SKL PRM under Memory Views > Common Surface |
| * Formats > Surface Layout and Tiling > 3D Surfaces > 3D Alignment |
| * Requirements. |
| */ |
| logical_el = (struct isl_extent4d) { |
| .w = 1 << (4 - ((ffs(format_bpb) - 2) / 3) + (2 * is_Ys)), |
| .h = 1 << (4 - ((ffs(format_bpb) - 4) / 3) + (1 * is_Ys)), |
| .d = 1 << (4 - ((ffs(format_bpb) - 3) / 3) + (1 * is_Ys)), |
| .a = 1, |
| }; |
| break; |
| default: |
| unreachable("Invalid dimension"); |
| } |
| |
| uint32_t tile_size_B = is_Ys ? (1 << 16) : (1 << 12); |
| |
| phys_B.w = logical_el.width * bs; |
| phys_B.h = tile_size_B / phys_B.w; |
| break; |
| } |
| case ISL_TILING_64: |
| /* The tables below are taken from the "2D Surfaces" & "3D Surfaces" |
| * pages in the Bspec which are formulated in terms of the Cv and Cu |
| * constants. This is different from the tables in the "Tile64 Format" |
| * page which should be equivalent but are usually in terms of pixels. |
| * Also note that Cv and Cu are HxW order to match the Bspec table, not |
| * WxH order like you might expect. |
| * |
| * From the Bspec's or ATS-M PRMs Volume 5: Memory Data Formats, "Tile64 |
| * Format" : |
| * |
| * MSAA Depth/Stencil surface use IMS (Interleaved Multi Samples) |
| * which means: |
| * |
| * - Use the 1X MSAA (non-MSRT) version of the Tile64 equations and |
| * let the client unit do the swizzling internally |
| * |
| * Surfaces using the IMS layout will use the mapping for 1x MSAA. |
| */ |
| #define tile_extent2d(bs, cv, cu, a) \ |
| isl_extent4d((1 << cu) / bs, 1 << cv, 1, a) |
| #define tile_extent3d(bs, cr, cv, cu) \ |
| isl_extent4d((1 << cu) / bs, 1 << cv, 1 << cr, 1) |
| |
| if (dim == ISL_SURF_DIM_3D) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent3d(bs, 4, 4, 8); break; |
| case 64: logical_el = tile_extent3d(bs, 4, 4, 8); break; |
| case 32: logical_el = tile_extent3d(bs, 4, 5, 7); break; |
| case 16: logical_el = tile_extent3d(bs, 5, 5, 6); break; |
| case 8: logical_el = tile_extent3d(bs, 5, 5, 6); break; |
| default: unreachable("Unsupported format size for 3D"); |
| } |
| } else { |
| if (samples == 1 || msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 6, 10, 1); break; |
| case 64: logical_el = tile_extent2d(bs, 6, 10, 1); break; |
| case 32: logical_el = tile_extent2d(bs, 7, 9, 1); break; |
| case 16: logical_el = tile_extent2d(bs, 7, 9, 1); break; |
| case 8: logical_el = tile_extent2d(bs, 8, 8, 1); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else if (samples == 2) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 6, 9, 2); break; |
| case 64: logical_el = tile_extent2d(bs, 6, 9, 2); break; |
| case 32: logical_el = tile_extent2d(bs, 7, 8, 2); break; |
| case 16: logical_el = tile_extent2d(bs, 7, 8, 2); break; |
| case 8: logical_el = tile_extent2d(bs, 8, 7, 2); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 5, 9, 4); break; |
| case 64: logical_el = tile_extent2d(bs, 5, 9, 4); break; |
| case 32: logical_el = tile_extent2d(bs, 6, 8, 4); break; |
| case 16: logical_el = tile_extent2d(bs, 6, 8, 4); break; |
| case 8: logical_el = tile_extent2d(bs, 7, 7, 4); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } |
| } |
| |
| #undef tile_extent2d |
| #undef tile_extent3d |
| |
| phys_B.w = logical_el.w * bs; |
| phys_B.h = 64 * 1024 / phys_B.w; |
| break; |
| |
| case ISL_TILING_64_XE2: |
| /* The tables below are taken from BSpec 58767 which are formulated in |
| * terms of the Cv and Cu constants. This is different from the tables in |
| * the "Tile64 Format" page which should be equivalent but are usually in |
| * terms of pixels. |
| * |
| * Also note that Cv and Cu are HxW order to match the Bspec table, not |
| * WxH order like you might expect. |
| */ |
| #define tile_extent2d(bs, cv, cu, a) \ |
| isl_extent4d((1 << cu) / bs, 1 << cv, 1, a) |
| #define tile_extent3d(bs, cr, cv, cu) \ |
| isl_extent4d((1 << cu) / bs, 1 << cv, 1 << cr, 1) |
| |
| if (dim == ISL_SURF_DIM_3D) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent3d(bs, 4, 4, 8); break; |
| case 64: logical_el = tile_extent3d(bs, 4, 4, 8); break; |
| case 32: logical_el = tile_extent3d(bs, 4, 5, 7); break; |
| case 16: logical_el = tile_extent3d(bs, 5, 5, 6); break; |
| case 8: logical_el = tile_extent3d(bs, 5, 5, 6); break; |
| default: unreachable("Unsupported format size for 3D"); |
| } |
| } else { |
| if (samples == 1 || msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 6, 10, 1); break; |
| case 64: logical_el = tile_extent2d(bs, 6, 10, 1); break; |
| case 32: logical_el = tile_extent2d(bs, 7, 9, 1); break; |
| case 16: logical_el = tile_extent2d(bs, 7, 9, 1); break; |
| case 8: logical_el = tile_extent2d(bs, 8, 8, 1); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else if (samples == 2) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 5, 10, 2); break; |
| case 64: logical_el = tile_extent2d(bs, 6, 9, 2); break; |
| case 32: logical_el = tile_extent2d(bs, 7, 8, 2); break; |
| case 16: logical_el = tile_extent2d(bs, 7, 8, 2); break; |
| case 8: logical_el = tile_extent2d(bs, 8, 7, 2); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else if (samples == 4) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 5, 9, 4); break; |
| case 64: logical_el = tile_extent2d(bs, 5, 9, 4); break; |
| case 32: logical_el = tile_extent2d(bs, 6, 8, 4); break; |
| case 16: logical_el = tile_extent2d(bs, 6, 8, 4); break; |
| case 8: logical_el = tile_extent2d(bs, 7, 7, 4); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else if (samples == 8) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 5, 8, 8); break; |
| case 64: logical_el = tile_extent2d(bs, 5, 8, 8); break; |
| case 32: logical_el = tile_extent2d(bs, 5, 8, 8); break; |
| case 16: logical_el = tile_extent2d(bs, 6, 7, 8); break; |
| case 8: logical_el = tile_extent2d(bs, 6, 7, 8); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } else if (samples == 16) { |
| switch (format_bpb) { |
| case 128: logical_el = tile_extent2d(bs, 4, 8, 16); break; |
| case 64: logical_el = tile_extent2d(bs, 5, 7, 16); break; |
| case 32: logical_el = tile_extent2d(bs, 5, 7, 16); break; |
| case 16: logical_el = tile_extent2d(bs, 5, 7, 16); break; |
| case 8: logical_el = tile_extent2d(bs, 6, 6, 16); break; |
| default: unreachable("Unsupported format size."); |
| } |
| } |
| } |
| |
| #undef tile_extent2d |
| #undef tile_extent3d |
| |
| phys_B.w = logical_el.w * bs; |
| phys_B.h = 64 * 1024 / phys_B.w; |
| break; |
| |
| case ISL_TILING_HIZ: |
| /* HiZ buffers are required to have a 128bpb HiZ format. The tiling has |
| * the same physical dimensions as Y-tiling but actually has two HiZ |
| * columns per Y-tiled column. |
| */ |
| assert(bs == 16); |
| logical_el = isl_extent4d(16, 16, 1, 1); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| case ISL_TILING_CCS: |
| /* CCS surfaces are required to have one of the GENX_CCS_* formats which |
| * have a block size of 1 or 2 bits per block and each CCS element |
| * corresponds to one cache-line pair in the main surface. From the Sky |
| * Lake PRM Vol. 12 in the section on planes: |
| * |
| * "The Color Control Surface (CCS) contains the compression status |
| * of the cache-line pairs. The compression state of the cache-line |
| * pair is specified by 2 bits in the CCS. Each CCS cache-line |
| * represents an area on the main surface of 16x16 sets of 128 byte |
| * Y-tiled cache-line-pairs. CCS is always Y tiled." |
| * |
| * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines. |
| * Since each cache line corresponds to a 16x16 set of cache-line pairs, |
| * that yields total tile area of 128x128 cache-line pairs or CCS |
| * elements. On older hardware, each CCS element is 1 bit and the tile |
| * is 128x256 elements. |
| */ |
| assert(format_bpb == 1 || format_bpb == 2); |
| logical_el = isl_extent4d(128, 256 / format_bpb, 1, 1); |
| phys_B = isl_extent2d(128, 32); |
| break; |
| |
| default: |
| unreachable("not reached"); |
| } /* end switch */ |
| |
| *tile_info = (struct isl_tile_info) { |
| .tiling = tiling, |
| .format_bpb = format_bpb, |
| .logical_extent_el = logical_el, |
| .phys_extent_B = phys_B, |
| .max_miptail_levels = tiling_max_mip_tail(tiling, dim, samples), |
| }; |
| } |
| |
| bool |
| isl_color_value_is_zero(union isl_color_value value, |
| enum isl_format format) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| #define RETURN_FALSE_IF_NOT_0(c, i) \ |
| if (fmtl->channels.c.bits && value.u32[i] != 0) \ |
| return false |
| |
| RETURN_FALSE_IF_NOT_0(r, 0); |
| RETURN_FALSE_IF_NOT_0(g, 1); |
| RETURN_FALSE_IF_NOT_0(b, 2); |
| RETURN_FALSE_IF_NOT_0(a, 3); |
| |
| #undef RETURN_FALSE_IF_NOT_0 |
| |
| return true; |
| } |
| |
| bool |
| isl_color_value_is_zero_one(union isl_color_value value, |
| enum isl_format format) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \ |
| if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \ |
| return false |
| |
| if (isl_format_has_int_channel(format)) { |
| RETURN_FALSE_IF_NOT_0_1(r, 0, u32); |
| RETURN_FALSE_IF_NOT_0_1(g, 1, u32); |
| RETURN_FALSE_IF_NOT_0_1(b, 2, u32); |
| RETURN_FALSE_IF_NOT_0_1(a, 3, u32); |
| } else { |
| RETURN_FALSE_IF_NOT_0_1(r, 0, f32); |
| RETURN_FALSE_IF_NOT_0_1(g, 1, f32); |
| RETURN_FALSE_IF_NOT_0_1(b, 2, f32); |
| RETURN_FALSE_IF_NOT_0_1(a, 3, f32); |
| } |
| |
| #undef RETURN_FALSE_IF_NOT_0_1 |
| |
| return true; |
| } |
| |
| /** |
| * @param[out] tiling is set only on success |
| */ |
| static bool |
| isl_surf_choose_tiling(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_tiling *tiling) |
| { |
| isl_tiling_flags_t tiling_flags = info->tiling_flags; |
| |
| /* HiZ surfaces always use the HiZ tiling */ |
| if (info->usage & ISL_SURF_USAGE_HIZ_BIT) { |
| assert(isl_format_is_hiz(info->format)); |
| assert(tiling_flags == ISL_TILING_HIZ_BIT); |
| *tiling = isl_tiling_flag_to_enum(tiling_flags); |
| return true; |
| } |
| |
| /* CCS surfaces always use the CCS tiling */ |
| if (info->usage & ISL_SURF_USAGE_CCS_BIT) { |
| assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS); |
| assert(tiling_flags == ISL_TILING_CCS_BIT); |
| *tiling = isl_tiling_flag_to_enum(tiling_flags); |
| return true; |
| } |
| |
| if (ISL_GFX_VERX10(dev) >= 200) { |
| isl_gfx20_filter_tiling(dev, info, &tiling_flags); |
| } else if (ISL_GFX_VERX10(dev) >= 125) { |
| isl_gfx125_filter_tiling(dev, info, &tiling_flags); |
| } else if (ISL_GFX_VER(dev) >= 6) { |
| isl_gfx6_filter_tiling(dev, info, &tiling_flags); |
| } else { |
| isl_gfx4_filter_tiling(dev, info, &tiling_flags); |
| } |
| |
| #define CHOOSE(__tiling) \ |
| do { \ |
| if (tiling_flags & (1u << (__tiling))) { \ |
| *tiling = (__tiling); \ |
| return true; \ |
| } \ |
| } while (0) |
| |
| /* Of the tiling modes remaining, choose the one that offers the best |
| * performance. |
| */ |
| |
| if (info->dim == ISL_SURF_DIM_1D) { |
| /* Prefer linear for 1D surfaces because they do not benefit from |
| * tiling. To the contrary, tiling leads to wasted memory and poor |
| * memory locality due to the swizzling and alignment restrictions |
| * required in tiled surfaces. |
| */ |
| CHOOSE(ISL_TILING_LINEAR); |
| } |
| |
| if (intel_needs_workaround(dev->info, 22015614752) && |
| _isl_surf_info_supports_ccs(dev, info->format, info->usage) && |
| (info->usage & ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT) && |
| (info->levels > 1 || info->depth > 1 || info->array_len > 1)) { |
| /* There are issues with multiple engines accessing the same CCS |
| * cacheline in parallel. This can happen if this image has multiple |
| * subresources. If possible, avoid such conflicts by picking a tiling |
| * that will increase the subresource alignment to 64k. If we can't use |
| * such a tiling, we'll prevent CCS from being enabled later on via |
| * isl_surf_supports_ccs. |
| */ |
| CHOOSE(ISL_TILING_64); |
| } |
| |
| /* For sparse images, prefer the formats that use the standard block |
| * shapes. |
| */ |
| if (info->usage & ISL_SURF_USAGE_SPARSE_BIT) { |
| CHOOSE(ISL_TILING_64_XE2); |
| CHOOSE(ISL_TILING_64); |
| CHOOSE(ISL_TILING_ICL_Ys); |
| CHOOSE(ISL_TILING_SKL_Ys); |
| } |
| |
| /* Choose suggested 4K tilings first, then 64K tilings: |
| * |
| * Then following quotes can be found in the SKL PRMs, |
| * Volume 5: Memory Views, Address Tiling Function Introduction |
| * and from the ATS-M PRMs, |
| * Volume 5: Memory Data Formats, Address Tiling Function Introduction |
| * |
| * "TileY: Used for most tiled surfaces when TR_MODE=TR_NONE." |
| * "Tile4: 4KB tiling mode based on previously-supported TileY" |
| * "TileYF: 4KB tiling mode based on TileY" |
| * "TileYS: 64KB tiling mode based on TileY" |
| * "Tile64: 64KB tiling mode which support standard-tiling including |
| * Mip Tails" |
| * |
| * When TileYF and TileYS are used TR_MODE != TR_NONE. |
| */ |
| CHOOSE(ISL_TILING_Y0); |
| CHOOSE(ISL_TILING_4); |
| CHOOSE(ISL_TILING_SKL_Yf); |
| CHOOSE(ISL_TILING_ICL_Yf); |
| CHOOSE(ISL_TILING_SKL_Ys); |
| CHOOSE(ISL_TILING_ICL_Ys); |
| CHOOSE(ISL_TILING_64); |
| CHOOSE(ISL_TILING_64_XE2); |
| |
| CHOOSE(ISL_TILING_X); |
| CHOOSE(ISL_TILING_W); |
| CHOOSE(ISL_TILING_LINEAR); |
| |
| #undef CHOOSE |
| |
| /* No tiling mode accommodates the inputs. */ |
| assert(tiling_flags == 0); |
| return notify_failure(info, "no supported tiling"); |
| } |
| |
| static bool |
| isl_choose_msaa_layout(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| enum isl_tiling tiling, |
| enum isl_msaa_layout *msaa_layout) |
| { |
| if (ISL_GFX_VER(dev) >= 8) { |
| return isl_gfx8_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else if (ISL_GFX_VER(dev) >= 7) { |
| return isl_gfx7_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else if (ISL_GFX_VER(dev) >= 6) { |
| return isl_gfx6_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } else { |
| return isl_gfx4_choose_msaa_layout(dev, info, tiling, msaa_layout); |
| } |
| } |
| |
| struct isl_extent2d |
| isl_get_interleaved_msaa_px_size_sa(uint32_t samples) |
| { |
| assert(isl_is_pow2(samples)); |
| |
| /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level |
| * Sizes (p133): |
| * |
| * If the surface is multisampled and it is a depth or stencil surface |
| * or Multisampled Surface StorageFormat in SURFACE_STATE is |
| * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before |
| * proceeding: [...] |
| */ |
| return (struct isl_extent2d) { |
| .width = 1 << ((ffs(samples) - 0) / 2), |
| .height = 1 << ((ffs(samples) - 1) / 2), |
| }; |
| } |
| |
| static void |
| isl_msaa_interleaved_scale_px_to_sa(uint32_t samples, |
| uint32_t *width, uint32_t *height) |
| { |
| const struct isl_extent2d px_size_sa = |
| isl_get_interleaved_msaa_px_size_sa(samples); |
| |
| if (width) |
| *width = isl_align(*width, 2) * px_size_sa.width; |
| if (height) |
| *height = isl_align(*height, 2) * px_size_sa.height; |
| } |
| |
| static enum isl_array_pitch_span |
| isl_choose_array_pitch_span(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_dim_layout dim_layout, |
| const struct isl_extent4d *phys_level0_sa) |
| { |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GFX9_1D: |
| case ISL_DIM_LAYOUT_GFX4_2D: |
| if (ISL_GFX_VER(dev) >= 8) { |
| /* QPitch becomes programmable in Broadwell. So choose the |
| * most compact QPitch possible in order to conserve memory. |
| * |
| * From the Broadwell PRM >> Volume 2d: Command Reference: Structures |
| * >> RENDER_SURFACE_STATE Surface QPitch (p325): |
| * |
| * - Software must ensure that this field is set to a value |
| * sufficiently large such that the array slices in the surface |
| * do not overlap. Refer to the Memory Data Formats section for |
| * information on how surfaces are stored in memory. |
| * |
| * - This field specifies the distance in rows between array |
| * slices. It is used only in the following cases: |
| * |
| * - Surface Array is enabled OR |
| * - Number of Mulitsamples is not NUMSAMPLES_1 and |
| * Multisampled Surface Storage Format set to MSFMT_MSS OR |
| * - Surface Type is SURFTYPE_CUBE |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } else if (ISL_GFX_VER(dev) >= 7) { |
| /* Note that Ivybridge introduces |
| * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the |
| * driver more control over the QPitch. |
| */ |
| |
| if (phys_level0_sa->array_len == 1) { |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| if (isl_surf_usage_is_depth_or_stencil(info->usage) || |
| (info->usage & ISL_SURF_USAGE_HIZ_BIT)) { |
| /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >> |
| * Section 6.18.4.7: Surface Arrays (p112): |
| * |
| * If Surface Array Spacing is set to ARYSPC_FULL (note that |
| * the depth buffer and stencil buffer have an implied value of |
| * ARYSPC_FULL): |
| */ |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| if (info->levels == 1) { |
| /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing |
| * to ARYSPC_LOD0. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } else if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) && |
| ISL_DEV_USE_SEPARATE_STENCIL(dev) && |
| isl_surf_usage_is_stencil(info->usage)) { |
| /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * The separate stencil buffer does not support mip mapping, thus |
| * the storage for LODs other than LOD 0 is not needed. |
| */ |
| assert(info->levels == 1); |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } else { |
| if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) && |
| ISL_DEV_USE_SEPARATE_STENCIL(dev) && |
| isl_surf_usage_is_stencil(info->usage)) { |
| /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * The separate stencil buffer does not support mip mapping, |
| * thus the storage for LODs other than LOD 0 is not needed. |
| */ |
| assert(info->levels == 1); |
| assert(phys_level0_sa->array_len == 1); |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| if (phys_level0_sa->array_len == 1) { |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| case ISL_DIM_LAYOUT_GFX4_3D: |
| /* The hardware will never use the QPitch. So choose the most |
| * compact QPitch possible in order to conserve memory. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| |
| case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ: |
| /* Each array image in the gfx6 stencil of HiZ surface is compact in the |
| * sense that every LOD is a compact array of the same size as LOD0. |
| */ |
| return ISL_ARRAY_PITCH_SPAN_COMPACT; |
| } |
| |
| unreachable("bad isl_dim_layout"); |
| return ISL_ARRAY_PITCH_SPAN_FULL; |
| } |
| |
| static void |
| isl_choose_image_alignment_el(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_dim_layout dim_layout, |
| enum isl_msaa_layout msaa_layout, |
| struct isl_extent3d *image_align_el) |
| { |
| enum isl_tiling tiling = tile_info->tiling; |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| if (fmtl->txc == ISL_TXC_MCS) { |
| /* |
| * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)": |
| * |
| * Height, width, and layout of MCS buffer in this case must match with |
| * Render Target height, width, and layout. MCS buffer is tiledY. |
| * |
| * Pick a vertical and horizontal alignment that matches the main render |
| * target. Vertical alignment is important for properly spacing an array |
| * of MCS images. Horizontal alignment is not expected to matter because |
| * MCS is not mipmapped. Regardless, we pick a valid value here. |
| */ |
| if (ISL_GFX_VERX10(dev) >= 125) { |
| *image_align_el = isl_extent3d(128 * 8 / fmtl->bpb, 4, 1); |
| } else if (ISL_GFX_VER(dev) >= 8) { |
| *image_align_el = isl_extent3d(16, 4, 1); |
| } else { |
| *image_align_el = isl_extent3d(4, 4, 1); |
| } |
| return; |
| } else if (fmtl->txc == ISL_TXC_HIZ) { |
| assert(ISL_GFX_VER(dev) >= 6); |
| if (ISL_GFX_VER(dev) == 6) { |
| /* HiZ surfaces on Sandy Bridge are packed tightly. */ |
| *image_align_el = isl_extent3d(1, 1, 1); |
| } else if (ISL_GFX_VER(dev) < 12) { |
| /* On gfx7+, HiZ surfaces are always aligned to 16x8 pixels in the |
| * primary surface which works out to 2x2 HiZ elements. |
| */ |
| *image_align_el = isl_extent3d(2, 2, 1); |
| } else { |
| /* We choose the alignments based on the docs and what we've seen on |
| * prior platforms. From the TGL PRM Vol. 9, "Hierarchical Depth |
| * Buffer": |
| * |
| * The height and width of the hierarchical depth buffer that must |
| * be allocated are computed by the following formulas, where HZ |
| * is the hierarchical depth buffer and Z is the depth buffer. The |
| * Z_Height, Z_Width, and Z_Depth values given in these formulas |
| * are those present in 3DSTATE_DEPTH_BUFFER incremented by one. |
| * |
| * The note about 3DSTATE_DEPTH_BUFFER tells us that the dimensions |
| * in the following formula refers to the base level. The key formula |
| * for the horizontal alignment is: |
| * |
| * HZ_Width (bytes) [=] |
| * ceiling(Z_Width / 16) * 16 |
| * |
| * This type of formula is used when sizing compression blocks. So, |
| * the docs seem to say that the HiZ format has a block width of 16, |
| * and thus, the surface has a minimum horizontal alignment of 16 |
| * pixels. This formula hasn't changed from prior platforms (where |
| * we've chosen a horizontal alignment of 16), so we should be on the |
| * right track. As for the vertical alignment, we're told: |
| * |
| * To compute the minimum QPitch for the HZ surface, the height of |
| * each LOD in pixels is determined using the equations for hL in |
| * the GPU Overview volume, using a vertical alignment j=16. |
| * |
| * We're not calculating the QPitch right now, but the vertical |
| * alignment is plainly given as 16 rows in the depth buffer. |
| * |
| * As a result, we believe that HiZ surfaces are aligned to 16x16 |
| * pixels in the primary surface. We divide this area by the HiZ |
| * block dimensions to get the alignment in terms of HiZ blocks. |
| */ |
| *image_align_el = isl_extent3d(16 / fmtl->bw, 16 / fmtl->bh, 1); |
| } |
| return; |
| } |
| |
| if (ISL_GFX_VERX10(dev) >= 200) { |
| isl_gfx20_choose_image_alignment_el(dev, info, tile_info, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VERX10(dev) >= 125) { |
| isl_gfx125_choose_image_alignment_el(dev, info, tile_info, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VER(dev) >= 12) { |
| isl_gfx12_choose_image_alignment_el(dev, info, tile_info, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VER(dev) >= 9) { |
| isl_gfx9_choose_image_alignment_el(dev, info, tile_info, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VER(dev) >= 8) { |
| isl_gfx8_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VER(dev) >= 7) { |
| isl_gfx7_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else if (ISL_GFX_VER(dev) >= 6) { |
| isl_gfx6_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } else { |
| isl_gfx4_choose_image_alignment_el(dev, info, tiling, dim_layout, |
| msaa_layout, image_align_el); |
| } |
| } |
| |
| static enum isl_dim_layout |
| isl_surf_choose_dim_layout(const struct isl_device *dev, |
| enum isl_surf_dim logical_dim, |
| enum isl_tiling tiling, |
| isl_surf_usage_flags_t usage) |
| { |
| /* Sandy bridge needs a special layout for HiZ and stencil. */ |
| if (ISL_GFX_VER(dev) == 6 && |
| (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ)) |
| return ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ; |
| |
| if (ISL_GFX_VER(dev) >= 9) { |
| switch (logical_dim) { |
| case ISL_SURF_DIM_1D: |
| /* From the Sky Lake PRM Vol. 5, "1D Surfaces": |
| * |
| * One-dimensional surfaces use a tiling mode of linear. |
| * Technically, they are not tiled resources, but the Tiled |
| * Resource Mode field in RENDER_SURFACE_STATE is still used to |
| * indicate the alignment requirements for this linear surface |
| * (See 1D Alignment requirements for how 4K and 64KB Tiled |
| * Resource Modes impact alignment). Alternatively, a 1D surface |
| * can be defined as a 2D tiled surface (e.g. TileY or TileX) with |
| * a height of 0. |
| * |
| * In other words, ISL_DIM_LAYOUT_GFX9_1D is only used for linear |
| * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GFX4_2D is used. |
| */ |
| if (tiling == ISL_TILING_LINEAR) |
| return ISL_DIM_LAYOUT_GFX9_1D; |
| else |
| return ISL_DIM_LAYOUT_GFX4_2D; |
| case ISL_SURF_DIM_2D: |
| case ISL_SURF_DIM_3D: |
| return ISL_DIM_LAYOUT_GFX4_2D; |
| } |
| } else { |
| switch (logical_dim) { |
| case ISL_SURF_DIM_1D: |
| case ISL_SURF_DIM_2D: |
| /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout": |
| * |
| * The cube face textures are stored in the same way as 3D surfaces |
| * are stored (see section 6.17.5 for details). For cube surfaces, |
| * however, the depth is equal to the number of faces (always 6) and |
| * is not reduced for each MIP. |
| */ |
| if (ISL_GFX_VER(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT)) |
| return ISL_DIM_LAYOUT_GFX4_3D; |
| |
| return ISL_DIM_LAYOUT_GFX4_2D; |
| case ISL_SURF_DIM_3D: |
| return ISL_DIM_LAYOUT_GFX4_3D; |
| } |
| } |
| |
| unreachable("bad isl_surf_dim"); |
| return ISL_DIM_LAYOUT_GFX4_2D; |
| } |
| |
| /** |
| * Calculate the physical extent of the surface's first level, in units of |
| * surface samples. |
| */ |
| static void |
| isl_calc_phys_level0_extent_sa(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| enum isl_dim_layout dim_layout, |
| enum isl_tiling tiling, |
| enum isl_msaa_layout msaa_layout, |
| struct isl_extent4d *phys_level0_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| if (isl_format_is_planar(info->format)) |
| unreachable("Planar formats unsupported"); |
| |
| switch (info->dim) { |
| case ISL_SURF_DIM_1D: |
| assert(info->height == 1); |
| assert(info->depth == 1); |
| assert(info->samples == 1); |
| |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GFX4_3D: |
| unreachable("bad isl_dim_layout"); |
| |
| case ISL_DIM_LAYOUT_GFX9_1D: |
| case ISL_DIM_LAYOUT_GFX4_2D: |
| case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ: |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = 1, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| break; |
| } |
| break; |
| |
| case ISL_SURF_DIM_2D: |
| if (ISL_GFX_VER(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT)) |
| assert(dim_layout == ISL_DIM_LAYOUT_GFX4_3D); |
| else |
| assert(dim_layout == ISL_DIM_LAYOUT_GFX4_2D || |
| dim_layout == ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ); |
| |
| switch (msaa_layout) { |
| case ISL_MSAA_LAYOUT_NONE: |
| assert(info->depth == 1); |
| assert(info->samples == 1); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| break; |
| |
| case ISL_MSAA_LAYOUT_ARRAY: |
| assert(info->depth == 1); |
| assert(info->levels == 1); |
| assert(isl_format_supports_multisampling(dev->info, info->format)); |
| assert(fmtl->bw == 1 && fmtl->bh == 1); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len * info->samples, |
| }; |
| break; |
| |
| case ISL_MSAA_LAYOUT_INTERLEAVED: |
| assert(info->depth == 1); |
| assert(info->levels == 1); |
| assert(isl_format_supports_multisampling(dev->info, info->format)); |
| |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = 1, |
| .a = info->array_len, |
| }; |
| |
| isl_msaa_interleaved_scale_px_to_sa(info->samples, |
| &phys_level0_sa->w, |
| &phys_level0_sa->h); |
| break; |
| } |
| break; |
| |
| case ISL_SURF_DIM_3D: |
| assert(info->array_len == 1); |
| assert(info->samples == 1); |
| |
| if (fmtl->bd > 1) { |
| isl_finishme("%s:%s: compression block with depth > 1", |
| __FILE__, __func__); |
| } |
| |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GFX9_1D: |
| case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ: |
| unreachable("bad isl_dim_layout"); |
| |
| case ISL_DIM_LAYOUT_GFX4_2D: |
| case ISL_DIM_LAYOUT_GFX4_3D: |
| *phys_level0_sa = (struct isl_extent4d) { |
| .w = info->width, |
| .h = info->height, |
| .d = info->depth, |
| .a = 1, |
| }; |
| break; |
| } |
| break; |
| } |
| } |
| |
| static void |
| isl_get_miptail_level_offset_el(enum isl_tiling tiling, |
| enum isl_surf_dim dim, |
| uint32_t format_bpb, |
| uint32_t level, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el, |
| uint32_t *z_offset_el) |
| { |
| uint32_t row = isl_get_miptail_base_row(tiling) + level; |
| uint32_t col = 8 - ffs(format_bpb); |
| |
| switch (dim) { |
| case ISL_SURF_DIM_2D: |
| switch (tiling) { |
| case ISL_TILING_64: |
| case ISL_TILING_64_XE2: |
| case ISL_TILING_ICL_Yf: |
| case ISL_TILING_ICL_Ys: |
| assert(row < ARRAY_SIZE(icl_std_y_2d_miptail_offset_el)); |
| assert(col < ARRAY_SIZE(icl_std_y_2d_miptail_offset_el[0])); |
| *x_offset_el = icl_std_y_2d_miptail_offset_el[row][col][0]; |
| *y_offset_el = icl_std_y_2d_miptail_offset_el[row][col][1]; |
| break; |
| case ISL_TILING_SKL_Yf: |
| case ISL_TILING_SKL_Ys: |
| assert(row < ARRAY_SIZE(skl_std_y_2d_miptail_offset_el)); |
| assert(col < ARRAY_SIZE(skl_std_y_2d_miptail_offset_el[0])); |
| *x_offset_el = skl_std_y_2d_miptail_offset_el[row][col][0]; |
| *y_offset_el = skl_std_y_2d_miptail_offset_el[row][col][1]; |
| break; |
| default: |
| unreachable("invalid tiling"); |
| } |
| *z_offset_el = 0; |
| break; |
| |
| case ISL_SURF_DIM_3D: |
| switch (tiling) { |
| case ISL_TILING_64: |
| case ISL_TILING_64_XE2: |
| assert(row < ARRAY_SIZE(acm_tile64_3d_miptail_offset_el)); |
| assert(col < ARRAY_SIZE(acm_tile64_3d_miptail_offset_el[0])); |
| *x_offset_el = acm_tile64_3d_miptail_offset_el[row][col][0]; |
| *y_offset_el = acm_tile64_3d_miptail_offset_el[row][col][1]; |
| *z_offset_el = acm_tile64_3d_miptail_offset_el[row][col][2]; |
| break; |
| case ISL_TILING_ICL_Yf: |
| case ISL_TILING_ICL_Ys: |
| assert(row < ARRAY_SIZE(icl_std_y_3d_miptail_offset_el)); |
| assert(col < ARRAY_SIZE(icl_std_y_3d_miptail_offset_el[0])); |
| *x_offset_el = icl_std_y_3d_miptail_offset_el[row][col][0]; |
| *y_offset_el = icl_std_y_3d_miptail_offset_el[row][col][1]; |
| *z_offset_el = icl_std_y_3d_miptail_offset_el[row][col][2]; |
| break; |
| case ISL_TILING_SKL_Yf: |
| case ISL_TILING_SKL_Ys: |
| assert(row < ARRAY_SIZE(skl_std_y_3d_miptail_offset_el)); |
| assert(col < ARRAY_SIZE(skl_std_y_3d_miptail_offset_el[0])); |
| *x_offset_el = skl_std_y_3d_miptail_offset_el[row][col][0]; |
| *y_offset_el = skl_std_y_3d_miptail_offset_el[row][col][1]; |
| *z_offset_el = skl_std_y_3d_miptail_offset_el[row][col][2]; |
| break; |
| default: |
| unreachable("invalid tiling"); |
| } |
| break; |
| |
| case ISL_SURF_DIM_1D: |
| unreachable("invalid dimension"); |
| } |
| } |
| |
| static uint32_t |
| isl_choose_miptail_start_level(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| if (tile_info->max_miptail_levels == 0) |
| return info->levels; |
| |
| /* SKL PRMs, Volume 5: Memory Views, YUV 4:2:0 Format Memory Organization : |
| * |
| * "Planar YUV does not support MIP Tails as part of Standard Tiling. |
| * The MIP Tail Start field in RENDER_SURFACE_STATE must be programmed |
| * to 15." |
| */ |
| if (isl_format_is_planar(info->format)) |
| return 15; |
| |
| /* TODO: figure out why having YUV formats in the miptail on Gfx12 does not |
| * work. |
| */ |
| if (ISL_GFX_VER(dev) == 12 && isl_format_is_yuv(info->format)) |
| return 15; |
| |
| if (intel_needs_workaround(dev->info, 22015614752) && |
| (info->usage & ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT) && |
| _isl_surf_info_supports_ccs(dev, info->format, info->usage)) { |
| /* There are issues with multiple engines accessing the same CCS |
| * cacheline in parallel. If we're here, Tile64 is use, providing enough |
| * spacing between each miplevel. We must disable miptails to maintain |
| * the necessary alignment between miplevels. |
| */ |
| assert(tile_info->tiling == ISL_TILING_64); |
| return 15; |
| } |
| |
| if (info->dim == ISL_SURF_DIM_3D && |
| isl_tiling_is_std_y(tile_info->tiling) && |
| _isl_surf_info_supports_ccs(dev, info->format, info->usage)) { |
| /* From the workarounds section in the SKL PRM: |
| * |
| * "RCC cacheline is composed of X-adjacent 64B fragments instead of |
| * memory adjacent. This causes a single 128B cacheline to straddle |
| * multiple LODs inside the TYF MIPtail for 3D surfaces (beyond a |
| * certain slot number), leading to corruption when CCS is enabled |
| * for these LODs and RT is later bound as texture. WA: If |
| * RENDER_SURFACE_STATE.Surface Type = 3D and |
| * RENDER_SURFACE_STATE.Auxiliary Surface Mode != AUX_NONE and |
| * RENDER_SURFACE_STATE.Tiled ResourceMode is TYF or TYS, Set the |
| * value of RENDER_SURFACE_STATE.Mip Tail Start LOD to a mip that |
| * larger than those present in the surface (i.e. 15)" |
| * |
| * Referred to as Wa_1207137018 on ICL+. Disable miptails as suggested. |
| */ |
| return 15; |
| } |
| |
| assert(isl_tiling_is_64(tile_info->tiling) || |
| isl_tiling_is_std_y(tile_info->tiling)); |
| assert(info->samples == 1); |
| |
| uint32_t max_miptail_levels = tile_info->max_miptail_levels; |
| |
| if (max_miptail_levels > 11 && |
| _isl_surf_info_supports_ccs(dev, info->format, info->usage)) { |
| /* SKL PRMs, Volume 5: Memory Views, Tiling and Mip Tails for 2D |
| * Surfaces: |
| * |
| * "Lossless compression must not be used on surfaces which have MIP |
| * Tail which contains MIPs for Slots greater than 11." |
| * |
| * Reduce the slot consumption to keep compression enabled. |
| */ |
| max_miptail_levels = 11; |
| } |
| |
| /* Start with the minimum number of levels that will fit in the tile */ |
| uint32_t min_miptail_start = |
| info->levels > max_miptail_levels ? info->levels - max_miptail_levels : 0; |
| |
| /* Account for the specified minimum */ |
| min_miptail_start = MAX(min_miptail_start, info->min_miptail_start_level); |
| |
| struct isl_extent3d level0_extent_el = { |
| .w = isl_align_div_npot(info->width, fmtl->bw), |
| .h = isl_align_div_npot(info->height, fmtl->bh), |
| .d = isl_align_div_npot(info->depth, fmtl->bd), |
| }; |
| |
| /* The first miptail slot takes up the entire right side of the tile. So, |
| * the extent is just the distance from the offset of the first level to |
| * the corner of the tile. |
| */ |
| uint32_t level0_x_offset_el, level0_y_offset_el, level0_z_offset_el; |
| isl_get_miptail_level_offset_el(tile_info->tiling, info->dim, |
| fmtl->bpb, 0, /* level */ |
| &level0_x_offset_el, |
| &level0_y_offset_el, |
| &level0_z_offset_el); |
| struct isl_extent3d miptail_level0_extent_el = { |
| .w = tile_info->logical_extent_el.w - level0_x_offset_el, |
| .h = tile_info->logical_extent_el.h - level0_y_offset_el, |
| .d = tile_info->logical_extent_el.d - level0_z_offset_el, |
| }; |
| |
| /* Now find the first level that fits the maximum miptail size requirement. |
| */ |
| for (uint32_t s = min_miptail_start; s < info->levels; s++) { |
| if (isl_minify(level0_extent_el.w, s) <= miptail_level0_extent_el.w && |
| isl_minify(level0_extent_el.h, s) <= miptail_level0_extent_el.h && |
| isl_minify(level0_extent_el.d, s) <= miptail_level0_extent_el.d) |
| return s; |
| } |
| |
| return info->levels; |
| } |
| |
| /** |
| * Calculate the pitch between physical array slices, in units of rows of |
| * surface elements. |
| */ |
| static uint32_t |
| isl_calc_array_pitch_el_rows_gfx4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| const struct isl_extent2d *phys_slice0_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| uint32_t pitch_sa_rows = 0; |
| |
| switch (array_pitch_span) { |
| case ISL_ARRAY_PITCH_SPAN_COMPACT: |
| pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h); |
| break; |
| case ISL_ARRAY_PITCH_SPAN_FULL: { |
| /* The QPitch equation is found in the Broadwell PRM >> Volume 5: |
| * Memory Views >> Common Surface Formats >> Surface Layout >> 2D |
| * Surfaces >> Surface Arrays. |
| */ |
| uint32_t H0_sa = phys_level0_sa->h; |
| uint32_t H1_sa = isl_minify(H0_sa, 1); |
| |
| uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h); |
| uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h); |
| |
| uint32_t m; |
| if (ISL_GFX_VER(dev) >= 7) { |
| /* The QPitch equation changed slightly in Ivybridge. */ |
| m = 12; |
| } else { |
| m = 11; |
| } |
| |
| pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h); |
| |
| if (ISL_GFX_VER(dev) == 6 && info->samples > 1 && |
| (info->height % 4 == 1)) { |
| /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: |
| * Graphics Core >> Section 7.18.3.7: Surface Arrays: |
| * |
| * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than |
| * the value calculated in the equation above , for every |
| * other odd Surface Height starting from 1 i.e. 1,5,9,13. |
| * |
| * XXX(chadv): Is the errata natural corollary of the physical |
| * layout of interleaved samples? |
| */ |
| pitch_sa_rows += 4; |
| } |
| |
| pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh); |
| } /* end case */ |
| break; |
| } |
| |
| assert(pitch_sa_rows % fmtl->bh == 0); |
| uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh; |
| |
| if (ISL_GFX_VER(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) { |
| /* |
| * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632): |
| * |
| * "Mip-mapped and arrayed surfaces are supported with MCS buffer |
| * layout with these alignments in the RT space: Horizontal |
| * Alignment = 128 and Vertical Alignment = 64." |
| * |
| * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435): |
| * |
| * "For non-multisampled render target's CCS auxiliary surface, |
| * QPitch must be computed with Horizontal Alignment = 128 and |
| * Surface Vertical Alignment = 256. These alignments are only for |
| * CCS buffer and not for associated render target." |
| * |
| * The first restriction is already handled by isl_choose_image_alignment_el |
| * but the second restriction, which is an extension of the first, only |
| * applies to qpitch and must be applied here. |
| */ |
| assert(fmtl->bh == 4); |
| pitch_el_rows = isl_align(pitch_el_rows, 256 / 4); |
| } |
| |
| if (ISL_GFX_VER(dev) >= 9 && |
| info->dim == ISL_SURF_DIM_3D && |
| tile_info->tiling != ISL_TILING_LINEAR) { |
| /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch: |
| * |
| * Tile Mode != Linear: This field must be set to an integer multiple |
| * of the tile height |
| */ |
| pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height); |
| } |
| |
| if (isl_surf_usage_is_depth(info->usage) && |
| _isl_surf_info_supports_ccs(dev, info->format, info->usage)) { |
| /* From the TGL PRM, Vol 9, "Compressed Depth Buffers" (under the |
| * "Texture performant" and "ZCS" columns): |
| * |
| * Update with clear at either 16x8 or 8x4 granularity, based on |
| * fs_clr or otherwise. |
| * |
| * When fast-clearing, hardware behaves in unexpected ways if the clear |
| * rectangle, aligned to 16x8, could cover neighboring LODs. Align the |
| * array pitch to 8 in order to increase the number of aligned LODs. |
| */ |
| pitch_el_rows = isl_align(pitch_el_rows, 8); |
| } |
| |
| return pitch_el_rows; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GFX4_2D. |
| */ |
| static void |
| isl_calc_phys_slice0_extent_sa_gfx4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t miptail_start_level, |
| struct isl_extent2d *phys_slice0_sa) |
| { |
| ASSERTED const struct isl_format_layout *fmtl = |
| isl_format_get_layout(info->format); |
| |
| if (info->levels == 1 && miptail_start_level > 0) { |
| /* Do not pad the surface to the image alignment. |
| * |
| * For tiled surfaces, using a reduced alignment here avoids wasting CPU |
| * cycles on the below mipmap layout caluclations. Reducing the |
| * alignment here is safe because we later align the row pitch and array |
| * pitch to the tile boundary. It is safe even for |
| * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled |
| * to accommodate the interleaved samples. |
| * |
| * For linear surfaces, reducing the alignment here permits us to later |
| * choose an arbitrary, non-aligned row pitch. If the surface backs |
| * a VkBuffer, then an arbitrary pitch may be needed to accommodate |
| * VkBufferImageCopy::bufferRowLength. |
| */ |
| *phys_slice0_sa = (struct isl_extent2d) { |
| .w = phys_level0_sa->w, |
| .h = phys_level0_sa->h, |
| }; |
| return; |
| } |
| |
| uint32_t slice_top_w = 0; |
| uint32_t slice_bottom_w = 0; |
| uint32_t slice_left_h = 0; |
| uint32_t slice_right_h = 0; |
| |
| uint32_t W0 = phys_level0_sa->w; |
| uint32_t H0 = phys_level0_sa->h; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t H = isl_minify(H0, l); |
| |
| uint32_t w = isl_align_npot(W, image_align_sa->w); |
| uint32_t h = isl_align_npot(H, image_align_sa->h); |
| |
| if (l == 0) { |
| slice_top_w = w; |
| slice_left_h = h; |
| slice_right_h = h; |
| } else if (l == 1) { |
| slice_bottom_w = w; |
| slice_left_h += h; |
| } else if (l == 2) { |
| slice_bottom_w += w; |
| slice_right_h += h; |
| } else { |
| slice_right_h += h; |
| } |
| |
| if (l >= miptail_start_level) { |
| assert(l == miptail_start_level); |
| assert(isl_tiling_is_64(tile_info->tiling) || |
| isl_tiling_is_std_y(tile_info->tiling)); |
| assert(w == tile_info->logical_extent_el.w * fmtl->bw); |
| assert(h == tile_info->logical_extent_el.h * fmtl->bh); |
| /* If we've gone into the miptail, we're done. All higher miplevels |
| * will be tucked into the same tile as this one. |
| */ |
| break; |
| } |
| } |
| |
| *phys_slice0_sa = (struct isl_extent2d) { |
| .w = MAX(slice_top_w, slice_bottom_w), |
| .h = MAX(slice_left_h, slice_right_h), |
| }; |
| } |
| |
| static void |
| isl_calc_phys_total_extent_el_gfx4_2d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| uint32_t miptail_start_level, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent4d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| struct isl_extent2d phys_slice0_sa; |
| isl_calc_phys_slice0_extent_sa_gfx4_2d(dev, info, tile_info, msaa_layout, |
| image_align_sa, phys_level0_sa, |
| miptail_start_level, |
| &phys_slice0_sa); |
| *array_pitch_el_rows = |
| isl_calc_array_pitch_el_rows_gfx4_2d(dev, info, tile_info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_span, |
| &phys_slice0_sa); |
| |
| if (isl_tiling_is_64(tile_info->tiling) || |
| isl_tiling_is_std_y(tile_info->tiling)) { |
| *phys_total_el = (struct isl_extent4d) { |
| .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw), |
| .h = isl_align_div_npot(phys_slice0_sa.h, fmtl->bh), |
| .d = isl_align_div_npot(phys_level0_sa->d, fmtl->bd), |
| .a = phys_level0_sa->array_len, |
| }; |
| } else { |
| uint32_t array_len = MAX(phys_level0_sa->d, phys_level0_sa->a); |
| *phys_total_el = (struct isl_extent4d) { |
| .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw), |
| .h = *array_pitch_el_rows * (array_len - 1) + |
| isl_align_div_npot(phys_slice0_sa.h, fmtl->bh), |
| .d = 1, |
| .a = 1, |
| }; |
| } |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GFX4_3D. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gfx4_3d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent4d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| assert(info->samples == 1); |
| |
| if (info->dim != ISL_SURF_DIM_3D) { |
| /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout": |
| * |
| * The cube face textures are stored in the same way as 3D surfaces |
| * are stored (see section 6.17.5 for details). For cube surfaces, |
| * however, the depth is equal to the number of faces (always 6) and |
| * is not reduced for each MIP. |
| */ |
| assert(ISL_GFX_VER(dev) == 4); |
| assert(info->usage & ISL_SURF_USAGE_CUBE_BIT); |
| assert(phys_level0_sa->array_len == 6); |
| } else { |
| assert(phys_level0_sa->array_len == 1); |
| } |
| |
| uint32_t total_w = 0; |
| uint32_t total_h = 0; |
| |
| uint32_t W0 = phys_level0_sa->w; |
| uint32_t H0 = phys_level0_sa->h; |
| uint32_t D0 = phys_level0_sa->d; |
| uint32_t A0 = phys_level0_sa->a; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w); |
| uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h); |
| uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0; |
| |
| uint32_t max_layers_horiz = MIN(level_d, 1u << l); |
| uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); |
| |
| total_w = MAX(total_w, level_w * max_layers_horiz); |
| total_h += level_h * max_layers_vert; |
| } |
| |
| /* GFX4_3D layouts don't really have an array pitch since each LOD has a |
| * different number of horizontal and vertical layers. We have to set it |
| * to something, so at least make it true for LOD0. |
| */ |
| *array_pitch_el_rows = |
| isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw; |
| *phys_total_el = (struct isl_extent4d) { |
| .w = isl_assert_div(total_w, fmtl->bw), |
| .h = isl_assert_div(total_h, fmtl->bh), |
| .d = 1, |
| .a = 1, |
| }; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gfx6_stencil_hiz( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent4d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| const struct isl_extent2d tile_extent_sa = { |
| .w = tile_info->logical_extent_el.w * fmtl->bw, |
| .h = tile_info->logical_extent_el.h * fmtl->bh, |
| }; |
| /* Tile size is a multiple of image alignment */ |
| assert(tile_extent_sa.w % image_align_sa->w == 0); |
| assert(tile_extent_sa.h % image_align_sa->h == 0); |
| |
| const uint32_t W0 = phys_level0_sa->w; |
| const uint32_t H0 = phys_level0_sa->h; |
| |
| /* Each image has the same height as LOD0 because the hardware thinks |
| * everything is LOD0 |
| */ |
| const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a; |
| |
| uint32_t total_top_w = 0; |
| uint32_t total_bottom_w = 0; |
| uint32_t total_h = 0; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| const uint32_t W = isl_minify(W0, l); |
| |
| const uint32_t w = isl_align(W, tile_extent_sa.w); |
| const uint32_t h = isl_align(H, tile_extent_sa.h); |
| |
| if (l == 0) { |
| total_top_w = w; |
| total_h = h; |
| } else if (l == 1) { |
| total_bottom_w = w; |
| total_h += h; |
| } else { |
| total_bottom_w += w; |
| } |
| } |
| |
| *array_pitch_el_rows = |
| isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh); |
| *phys_total_el = (struct isl_extent4d) { |
| .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw), |
| .h = isl_assert_div(total_h, fmtl->bh), |
| .d = 1, |
| .a = 1, |
| }; |
| } |
| |
| /** |
| * A variant of isl_calc_phys_slice0_extent_sa() specific to |
| * ISL_DIM_LAYOUT_GFX9_1D. |
| */ |
| static void |
| isl_calc_phys_total_extent_el_gfx9_1d( |
| const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent4d *phys_total_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| assert(phys_level0_sa->height == 1); |
| assert(phys_level0_sa->depth == 1); |
| assert(info->samples == 1); |
| assert(image_align_sa->w >= fmtl->bw); |
| |
| uint32_t slice_w = 0; |
| const uint32_t W0 = phys_level0_sa->w; |
| |
| for (uint32_t l = 0; l < info->levels; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t w = isl_align_npot(W, image_align_sa->w); |
| |
| slice_w += w; |
| } |
| |
| *array_pitch_el_rows = 1; |
| *phys_total_el = (struct isl_extent4d) { |
| .w = isl_assert_div(slice_w, fmtl->bw), |
| .h = phys_level0_sa->array_len, |
| .d = 1, |
| .a = 1, |
| }; |
| } |
| |
| /** |
| * Calculate the two-dimensional total physical extent of the surface, in |
| * units of surface elements. |
| */ |
| static void |
| isl_calc_phys_total_extent_el(const struct isl_device *dev, |
| const struct isl_surf_init_info *restrict info, |
| const struct isl_tile_info *tile_info, |
| enum isl_dim_layout dim_layout, |
| enum isl_msaa_layout msaa_layout, |
| const struct isl_extent3d *image_align_sa, |
| const struct isl_extent4d *phys_level0_sa, |
| enum isl_array_pitch_span array_pitch_span, |
| uint32_t miptail_start_level, |
| uint32_t *array_pitch_el_rows, |
| struct isl_extent4d *phys_total_el) |
| { |
| switch (dim_layout) { |
| case ISL_DIM_LAYOUT_GFX9_1D: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gfx9_1d(dev, info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_el_rows, |
| phys_total_el); |
| return; |
| case ISL_DIM_LAYOUT_GFX4_2D: |
| isl_calc_phys_total_extent_el_gfx4_2d(dev, info, tile_info, msaa_layout, |
| image_align_sa, phys_level0_sa, |
| array_pitch_span, |
| miptail_start_level, |
| array_pitch_el_rows, |
| phys_total_el); |
| return; |
| case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gfx6_stencil_hiz(dev, info, tile_info, |
| image_align_sa, |
| phys_level0_sa, |
| array_pitch_el_rows, |
| phys_total_el); |
| return; |
| case ISL_DIM_LAYOUT_GFX4_3D: |
| assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); |
| isl_calc_phys_total_extent_el_gfx4_3d(dev, info, |
| image_align_sa, phys_level0_sa, |
| array_pitch_el_rows, |
| phys_total_el); |
| return; |
| } |
| |
| unreachable("invalid value for dim_layout"); |
| } |
| |
| static uint32_t |
| isl_calc_row_pitch_alignment(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info) |
| { |
| if (tile_info->tiling != ISL_TILING_LINEAR) { |
| |
| /* On gfx12, aligning to 512B may be wanted or needed for CCS_E. */ |
| if (ISL_GFX_VER(dev) == 12 && surf_info->samples == 1 && |
| !isl_surf_usage_is_depth_or_stencil(surf_info->usage) && |
| _isl_surf_info_supports_ccs(dev, surf_info->format, |
| surf_info->usage) && |
| tile_info->tiling != ISL_TILING_X && |
| surf_info->row_pitch_B == 0) { |
| |
| /* From Bspec 49252, Render Decompression: |
| * |
| * "Compressed displayable surfaces must be 16KB aligned and have |
| * pitches padded to multiple of 4 tiles." |
| * |
| * Only consider padding the pitch when the caller has specified no |
| * pitch. isl_surf_supports_ccs() will confirm that the main surface |
| * pitch matches CCS expectations. |
| */ |
| if (isl_surf_usage_is_display(surf_info->usage)) { |
| assert(tile_info->phys_extent_B.width == 128); |
| return 512; |
| } |
| |
| /* On gfx12.0, CCS fast clears don't seem to cover the correct |
| * portion of the aux buffer when the pitch is not 512B-aligned. Pad |
| * the pitch unless Wa_18020603990 applies (slow clear surfaces up |
| * to 256x256, 32bpp). isl_surf_supports_ccs() won't confirm this |
| * alignment, so drivers must fall back to slow clears as needed. |
| */ |
| if (ISL_GFX_VERX10(dev) == 120) { |
| assert(intel_needs_workaround(dev->info, 18020603990)); |
| if (tile_info->format_bpb > 32 || |
| surf_info->width > 256 || |
| surf_info->height > 256) { |
| assert(tile_info->phys_extent_B.width == 128); |
| return 512; |
| } |
| } |
| } |
| |
| return tile_info->phys_extent_B.width; |
| } |
| |
| /* We only support tiled fragment shading rate buffers. */ |
| assert((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) == 0); |
| |
| /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >> |
| * RENDER_SURFACE_STATE Surface Pitch (p349): |
| * |
| * - For linear render target surfaces and surfaces accessed with the |
| * typed data port messages, the pitch must be a multiple of the |
| * element size for non-YUV surface formats. Pitch must be |
| * a multiple of 2 * element size for YUV surface formats. |
| * |
| * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we |
| * ignore because isl doesn't do buffers.] |
| * |
| * - For other linear surfaces, the pitch can be any multiple of |
| * bytes. |
| */ |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format); |
| const uint32_t bs = fmtl->bpb / 8; |
| uint32_t alignment; |
| |
| if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) { |
| if (isl_format_is_yuv(surf_info->format)) { |
| alignment = 2 * bs; |
| } else { |
| alignment = bs; |
| } |
| } else { |
| alignment = 1; |
| } |
| |
| /* From the Broadwell PRM >> Volume 2c: Command Reference: Registers >> |
| * PRI_STRIDE Stride (p1254): |
| * |
| * "When using linear memory, this must be at least 64 byte aligned." |
| * |
| * However, when displaying on NVIDIA and recent AMD GPUs via PRIME, |
| * we need a larger pitch of 256 bytes. |
| * |
| * If the ISL caller didn't specify a row_pitch_B, then we should assume |
| * the NVIDIA/AMD requirements. Otherwise, if we have a specified |
| * row_pitch_B, this is probably because the caller is trying to import a |
| * buffer. In that case we limit the minimum row pitch to the Intel HW |
| * requirement. |
| */ |
| if (surf_info->usage & ISL_SURF_USAGE_DISPLAY_BIT) { |
| if (surf_info->row_pitch_B == 0) |
| alignment = isl_align(alignment, 256); |
| else |
| alignment = isl_align(alignment, 64); |
| } |
| |
| return alignment; |
| } |
| |
| static uint32_t |
| isl_calc_linear_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| const struct isl_extent4d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| const uint32_t bs = fmtl->bpb / 8; |
| |
| return isl_align_npot(bs * phys_total_el->w, alignment_B); |
| } |
| |
| static uint32_t |
| isl_calc_tiled_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent4d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format); |
| |
| assert(fmtl->bpb % tile_info->format_bpb == 0); |
| |
| const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb; |
| const uint32_t total_w_tl = |
| isl_align_div(phys_total_el->w * tile_el_scale, |
| tile_info->logical_extent_el.width); |
| |
| /* In some cases the alignment of the pitch might be > to the tile size |
| * (for example Gfx12 CCS requires 512B alignment while the tile's width |
| * can be 128B), so align the row pitch to the alignment. |
| */ |
| assert(alignment_B >= tile_info->phys_extent_B.width); |
| return isl_align(total_w_tl * tile_info->phys_extent_B.width, alignment_B); |
| } |
| |
| static uint32_t |
| isl_calc_min_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent4d *phys_total_el, |
| uint32_t alignment_B) |
| { |
| if (tile_info->tiling == ISL_TILING_LINEAR) { |
| return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el, |
| alignment_B); |
| } else { |
| return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info, |
| phys_total_el, alignment_B); |
| } |
| } |
| |
| /** |
| * Is ``pitch`` in the valid range for a hardware bitfield, if the bitfield's |
| * size is ``bits`` bits? |
| * |
| * Hardware pitch fields are offset by 1. For example, if the size of |
| * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid |
| * pitches is [1, 2^b] inclusive. If the surface pitch is N, then |
| * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1. |
| */ |
| static bool |
| pitch_in_range(uint32_t n, uint32_t bits) |
| { |
| assert(n != 0); |
| return likely(bits != 0 && 1 <= n && n <= (1 << bits)); |
| } |
| |
| void PRINTFLIKE(4, 5) |
| _isl_notify_failure(const struct isl_surf_init_info *surf_info, |
| const char *file, int line, const char *fmt, ...) |
| { |
| if (!INTEL_DEBUG(DEBUG_ISL)) |
| return; |
| |
| char msg[512]; |
| va_list ap; |
| va_start(ap, fmt); |
| int ret = vsnprintf(msg, sizeof(msg), fmt, ap); |
| assert(ret < sizeof(msg)); |
| va_end(ap); |
| |
| #define PRINT_USAGE(bit, str) \ |
| (surf_info->usage & ISL_SURF_USAGE_##bit##_BIT) ? ("+"str) : "" |
| #define PRINT_TILING(bit, str) \ |
| (surf_info->tiling_flags & ISL_TILING_##bit##_BIT) ? ("+"str) : "" |
| |
| snprintf(msg + ret, sizeof(msg) - ret, |
| " extent=%ux%ux%u dim=%s msaa=%ux levels=%u rpitch=%u fmt=%s " |
| "usages=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s " |
| "tiling_flags=%s%s%s%s%s%s%s%s%s%s%s%s", |
| surf_info->width, surf_info->height, |
| surf_info->dim == ISL_SURF_DIM_3D ? |
| surf_info->depth : surf_info->array_len, |
| surf_info->dim == ISL_SURF_DIM_1D ? "1d" : |
| surf_info->dim == ISL_SURF_DIM_2D ? "2d" : "3d", |
| surf_info->samples, surf_info->levels, |
| surf_info->row_pitch_B, |
| isl_format_get_name(surf_info->format) + strlen("ISL_FORMAT_"), |
| |
| PRINT_USAGE(RENDER_TARGET, "rt"), |
| PRINT_USAGE(DEPTH, "depth"), |
| PRINT_USAGE(STENCIL, "stenc"), |
| PRINT_USAGE(TEXTURE, "tex"), |
| PRINT_USAGE(CUBE, "cube"), |
| PRINT_USAGE(DISABLE_AUX, "noaux"), |
| PRINT_USAGE(DISPLAY, "disp"), |
| PRINT_USAGE(HIZ, "hiz"), |
| PRINT_USAGE(MCS, "mcs"), |
| PRINT_USAGE(CCS, "ccs"), |
| PRINT_USAGE(VERTEX_BUFFER, "vb"), |
| PRINT_USAGE(INDEX_BUFFER, "ib"), |
| PRINT_USAGE(CONSTANT_BUFFER, "const"), |
| PRINT_USAGE(STAGING, "stage"), |
| PRINT_USAGE(SPARSE, "sparse"), |
| PRINT_USAGE(NO_AUX_TT_ALIGNMENT, "no-aux-align"), |
| |
| PRINT_TILING(LINEAR, "linear"), |
| PRINT_TILING(W, "W"), |
| PRINT_TILING(X, "X"), |
| PRINT_TILING(Y0, "Y0"), |
| PRINT_TILING(SKL_Yf, "skl-Yf"), |
| PRINT_TILING(SKL_Ys, "skl-Ys"), |
| PRINT_TILING(ICL_Yf, "icl-Yf"), |
| PRINT_TILING(ICL_Ys, "icl-Ys"), |
| PRINT_TILING(4, "4"), |
| PRINT_TILING(64, "64"), |
| PRINT_TILING(HIZ, "hiz"), |
| PRINT_TILING(CCS, "ccs")); |
| |
| #undef PRINT_USAGE |
| #undef PRINT_TILING |
| |
| mesa_logd("%s:%i: %s", file, line, msg); |
| } |
| |
| static bool |
| isl_calc_row_pitch(const struct isl_device *dev, |
| const struct isl_surf_init_info *surf_info, |
| const struct isl_tile_info *tile_info, |
| enum isl_dim_layout dim_layout, |
| const struct isl_extent4d *phys_total_el, |
| uint32_t *out_row_pitch_B) |
| { |
| uint32_t alignment_B = |
| isl_calc_row_pitch_alignment(dev, surf_info, tile_info); |
| |
| const uint32_t min_row_pitch_B = |
| isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el, |
| alignment_B); |
| |
| if (surf_info->row_pitch_B != 0) { |
| if (surf_info->row_pitch_B < min_row_pitch_B) { |
| return notify_failure(surf_info, |
| "requested row pitch (%uB) less than minimum " |
| "allowed (%uB)", |
| surf_info->row_pitch_B, min_row_pitch_B); |
| } |
| |
| if (surf_info->row_pitch_B % alignment_B != 0) { |
| return notify_failure(surf_info, |
| "requested row pitch (%uB) doesn't satisfy the " |
| "minimum alignment requirement (%uB)", |
| surf_info->row_pitch_B, alignment_B); |
| } |
| } |
| |
| const uint32_t row_pitch_B = |
| surf_info->row_pitch_B != 0 ? surf_info->row_pitch_B : min_row_pitch_B; |
| |
| const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width; |
| |
| if (row_pitch_B == 0) |
| return notify_failure(surf_info, "calculated row pitch is zero"); |
| |
| if (dim_layout == ISL_DIM_LAYOUT_GFX9_1D) { |
| /* SurfacePitch is ignored for this layout. */ |
| goto done; |
| } |
| |
| if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT | |
| ISL_SURF_USAGE_TEXTURE_BIT | |
| ISL_SURF_USAGE_STORAGE_BIT)) && |
| !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info))) { |
| return notify_failure(surf_info, |
| "row pitch (%uB) not in range of " |
| "RENDER_SURFACE_STATE::SurfacePitch", |
| row_pitch_B); |
| } |
| |
| if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT | |
| ISL_SURF_USAGE_MCS_BIT)) && |
| !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info))) { |
| return notify_failure(surf_info, |
| "row_pitch_tl=%u not in range of " |
| "RENDER_SURFACE_STATE::AuxiliarySurfacePitch", |
| row_pitch_tl); |
| } |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) { |
| return notify_failure(surf_info, |
| "row pitch (%uB) not in range of " |
| "3DSTATE_DEPTH_BUFFER::SurfacePitch", |
| row_pitch_B); |
| } |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) && |
| !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info))) { |
| return notify_failure(surf_info, |
| "row pitch (%uB) not in range of " |
| "3DSTATE_HIER_DEPTH_BUFFER::SurfacePitch", |
| row_pitch_B); |
| } |
| |
| const uint32_t stencil_pitch_bits = dev->use_separate_stencil ? |
| _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) : |
| _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info); |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) && |
| !pitch_in_range(row_pitch_B, stencil_pitch_bits)) { |
| return notify_failure(surf_info, |
| "row pitch (%uB) not in range of " |
| "3DSTATE_STENCIL_BUFFER/3DSTATE_DEPTH_BUFFER::SurfacePitch", |
| row_pitch_B); |
| } |
| |
| if ((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) && |
| !pitch_in_range(row_pitch_B, _3DSTATE_CPSIZE_CONTROL_BUFFER_SurfacePitch_bits(dev->info))) |
| return false; |
| |
| done: |
| *out_row_pitch_B = row_pitch_B; |
| return true; |
| } |
| |
| static bool |
| isl_calc_size(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| const struct isl_tile_info *tile_info, |
| const struct isl_extent4d *phys_total_el, |
| uint32_t array_pitch_el_rows, |
| uint32_t row_pitch_B, |
| uint64_t *out_size_B) |
| { |
| uint64_t size_B; |
| if (tile_info->tiling == ISL_TILING_LINEAR) { |
| /* LINEAR tiling has no concept of intra-tile arrays */ |
| assert(phys_total_el->d == 1 && phys_total_el->a == 1); |
| |
| size_B = (uint64_t) row_pitch_B * phys_total_el->h; |
| |
| } else { |
| /* Pitches must make sense with the tiling */ |
| assert(row_pitch_B % tile_info->phys_extent_B.width == 0); |
| |
| uint32_t array_slices, array_pitch_tl_rows; |
| if (phys_total_el->d > 1) { |
| assert(phys_total_el->a == 1); |
| array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows, |
| tile_info->logical_extent_el.h); |
| array_slices = isl_align_div(phys_total_el->d, |
| tile_info->logical_extent_el.d); |
| } else if (phys_total_el->a > 1) { |
| assert(phys_total_el->d == 1); |
| array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows, |
| tile_info->logical_extent_el.h); |
| array_slices = isl_align_div(phys_total_el->a, |
| tile_info->logical_extent_el.a); |
| } else { |
| assert(phys_total_el->d == 1 && phys_total_el->a == 1); |
| array_pitch_tl_rows = 0; |
| array_slices = 1; |
| } |
| |
| const uint32_t total_h_tl = |
| (array_slices - 1) * array_pitch_tl_rows + |
| isl_align_div(phys_total_el->h, tile_info->logical_extent_el.height); |
| |
| size_B = (uint64_t) total_h_tl * tile_info->phys_extent_B.height * |
| row_pitch_B; |
| |
| /* Bspec 57340 (r59562): |
| * |
| * When allocating memory, MCS buffer size is extended by 4KB over |
| * its original calculated size. First 4KB page of the MCS is |
| * reserved for internal HW usage. |
| * |
| * Allocate an extra 4KB page reserved for hardware at the beginning of |
| * MCS buffer on Xe2. The start address of MCS is the head of the 4KB |
| * page. Any manipulation on the content of MCS should start after 4KB |
| * from the start address. |
| */ |
| if (dev->info->ver >= 20 && info->usage & ISL_SURF_USAGE_MCS_BIT) |
| size_B += 4096; |
| } |
| |
| /* If for some reason we can't support the appropriate tiling format and |
| * end up falling to linear or some other format, make sure the image size |
| * and alignment are aligned to the expected block size so we can at least |
| * do opaque binds. |
| */ |
| if (info->usage & ISL_SURF_USAGE_SPARSE_BIT) |
| size_B = isl_align(size_B, 64 * 1024); |
| |
| /* Pre-gfx9: from the Broadwell PRM Vol 5, Surface Layout: |
| * "In addition to restrictions on maximum height, width, and depth, |
| * surfaces are also restricted to a maximum size in bytes. This |
| * maximum is 2 GB for all products and all surface types." |
| * |
| * gfx9-10: from the Skylake PRM Vol 5, Maximum Surface Size in Bytes: |
| * "In addition to restrictions on maximum height, width, and depth, |
| * surfaces are also restricted to a maximum size of 2^38 bytes. |
| * All pixels within the surface must be contained within 2^38 bytes |
| * of the base address." |
| * |
| * gfx11+ platforms raised this limit to 2^44 bytes. |
| */ |
| uint64_t max_surface_B = 1ull << (ISL_GFX_VER(dev) >= 11 ? 44 : |
| ISL_GFX_VER(dev) >= 9 ? 38 : 31); |
| if (size_B > max_surface_B) { |
| return notify_failure( |
| info, |
| "calculated size (%"PRIu64"B) exceeds platform limit of %"PRIu64"B", |
| size_B, max_surface_B); |
| } |
| |
| *out_size_B = size_B; |
| return true; |
| } |
| |
| static uint32_t |
| isl_calc_base_alignment(const struct isl_device *dev, |
| const struct isl_surf_init_info *info, |
| const struct isl_tile_info *tile_info) |
| { |
| uint32_t base_alignment_B; |
| if (tile_info->tiling == ISL_TILING_LINEAR) { |
| /* From the Broadwell PRM Vol 2d, |
| * RENDER_SURFACE_STATE::SurfaceBaseAddress: |
| * |
| * "The Base Address for linear render target surfaces and surfaces |
| * accessed with the typed surface read/write data port messages must |
| * be element-size aligned, for non-YUV surface formats, or a |
| * multiple of 2 element-sizes for YUV surface formats. Other linear |
| * surfaces have no alignment requirements (byte alignment is |
| * sufficient.)" |
| */ |
| base_alignment_B = MAX(1, info->min_alignment_B); |
| if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) { |
| if (isl_format_is_yuv(info->format)) { |
| base_alignment_B = |
| MAX(base_alignment_B, tile_info->format_bpb / 4); |
| } else { |
| base_alignment_B = |
| MAX(base_alignment_B, tile_info->format_bpb / 8); |
| } |
| } |
| base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B); |
| |
| /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride: |
| * |
| * "For Linear memory, this field specifies the stride in chunks of |
| * 64 bytes (1 cache line)." |
| */ |
| if (isl_surf_usage_is_display(info->usage)) |
| base_alignment_B = MAX(base_alignment_B, 64); |
| } else { |
| const uint32_t tile_size_B = tile_info->phys_extent_B.width * |
| tile_info->phys_extent_B.height; |
| assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B)); |
| base_alignment_B = MAX(info->min_alignment_B, tile_size_B); |
| |
| if (_isl_surf_info_supports_ccs(dev, info->format, info->usage)) { |
| /* Wa_22015614752: |
| * |
| * Due to L3 cache being tagged with (engineID, vaID) and the CCS |
| * block/cacheline being 256 bytes, 2 engines accessing a 64Kb range |
| * with compression will generate 2 different CCS cacheline entries |
| * in L3, this will lead to corruptions. To avoid this, we need to |
| * ensure 2 images do not share a 256 bytes CCS cacheline. With a |
| * ratio of compression of 1/256, this is 64Kb alignment (even for |
| * Tile4...) |
| * |
| * ATS-M PRMS, Vol 2a: Command Reference: Instructions, |
| * XY_CTRL_SURF_COPY_BLT, "Size of Control Surface Copy" field, the |
| * CCS blocks are 256 bytes : |
| * |
| * "This field indicates size of the Control Surface or CCS copy. |
| * It is expressed in terms of number of 256B block of CCS, where |
| * each 256B block of CCS corresponds to 64KB of main surface." |
| */ |
| if (intel_needs_workaround(dev->info, 22015614752) && |
| (info->usage & (ISL_SURF_USAGE_MULTI_ENGINE_SEQ_BIT | |
| ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT))) { |
| base_alignment_B = MAX(base_alignment_B, |
| 256 /* cacheline */ * 256 /* AUX ratio */); |
| } |
| |
| /* Platforms using an aux map require that images be |
| * granularity-aligned if they're going to used with CCS. This is |
| * because the Aux translation table maps main surface addresses to |
| * aux addresses at a granularity in the main surface. Because we |
| * don't know for sure in ISL if a surface will use CCS, we have to |
| * guess based on the DISABLE_AUX usage bit. The one thing we do know |
| * is that we haven't enable CCS on linear images yet so we can avoid |
| * the extra alignment there. |
| */ |
| if (dev->info->has_aux_map && |
| !(info->usage & ISL_SURF_USAGE_NO_AUX_TT_ALIGNMENT_BIT)) { |
| base_alignment_B = MAX(base_alignment_B, dev->info->verx10 >= 125 ? |
| 1024 * 1024 : 64 * 1024); |
| } |
| } |
| } |
| |
| /* If for some reason we can't support the appropriate tiling format and |
| * end up falling to linear or some other format, make sure the image size |
| * and alignment are aligned to the expected block size so we can at least |
| * do opaque binds. |
| */ |
| if (info->usage & ISL_SURF_USAGE_SPARSE_BIT) |
| base_alignment_B = MAX(base_alignment_B, 64 * 1024); |
| |
| return base_alignment_B; |
| } |
| |
| bool |
| isl_surf_init_s(const struct isl_device *dev, |
| struct isl_surf *surf, |
| const struct isl_surf_init_info *restrict info) |
| { |
| /* Some sanity checks */ |
| assert(!(info->usage & ISL_SURF_USAGE_CPB_BIT) || |
| dev->info->has_coarse_pixel_primitive_and_cb); |
| |
| const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); |
| |
| const struct isl_extent4d logical_level0_px = { |
| .w = info->width, |
| .h = info->height, |
| .d = info->depth, |
| .a = info->array_len, |
| }; |
| |
| enum isl_tiling tiling; |
| if (!isl_surf_choose_tiling(dev, info, &tiling)) |
| return false; |
| |
| const enum isl_dim_layout dim_layout = |
| isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage); |
| |
| enum isl_msaa_layout msaa_layout; |
| if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout)) |
| return false; |
| |
| struct isl_tile_info tile_info; |
| isl_tiling_get_info(tiling, info->dim, msaa_layout, fmtl->bpb, |
| info->samples, &tile_info); |
| |
| struct isl_extent3d image_align_el; |
| isl_choose_image_alignment_el(dev, info, &tile_info, dim_layout, |
| msaa_layout, &image_align_el); |
| |
| struct isl_extent3d image_align_sa = |
| isl_extent3d_el_to_sa(info->format, image_align_el); |
| |
| struct isl_extent4d phys_level0_sa; |
| isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout, |
| &phys_level0_sa); |
| |
| enum isl_array_pitch_span array_pitch_span = |
| isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa); |
| |
| uint32_t miptail_start_level = |
| isl_choose_miptail_start_level(dev, info, &tile_info); |
| |
| uint32_t array_pitch_el_rows; |
| struct isl_extent4d phys_total_el; |
| isl_calc_phys_total_extent_el(dev, info, &tile_info, |
| dim_layout, msaa_layout, |
| &image_align_sa, &phys_level0_sa, |
| array_pitch_span, miptail_start_level, |
| &array_pitch_el_rows, |
| &phys_total_el); |
| |
| uint32_t row_pitch_B; |
| if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout, |
| &phys_total_el, &row_pitch_B)) |
| return false; |
| |
| uint64_t size_B; |
| if (!isl_calc_size(dev, info, &tile_info, &phys_total_el, |
| array_pitch_el_rows, row_pitch_B, &size_B)) |
| return false; |
| |
| const uint32_t base_alignment_B = |
| isl_calc_base_alignment(dev, info, &tile_info); |
| |
| *surf = (struct isl_surf) { |
| .dim = info->dim, |
| .dim_layout = dim_layout, |
| .msaa_layout = msaa_layout, |
| .tiling = tiling, |
| .format = info->format, |
| |
| .levels = info->levels, |
| .samples = info->samples, |
| |
| .image_alignment_el = image_align_el, |
| .logical_level0_px = logical_level0_px, |
| .phys_level0_sa = phys_level0_sa, |
| |
| .size_B = size_B, |
| .alignment_B = base_alignment_B, |
| .row_pitch_B = row_pitch_B, |
| .array_pitch_el_rows = array_pitch_el_rows, |
| .array_pitch_span = array_pitch_span, |
| .miptail_start_level = miptail_start_level, |
| |
| .usage = info->usage, |
| }; |
| |
| return true; |
| } |
| |
| void |
| isl_surf_get_tile_info(const struct isl_surf *surf, |
| struct isl_tile_info *tile_info) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| isl_tiling_get_info(surf->tiling, surf->dim, surf->msaa_layout, fmtl->bpb, |
| surf->samples, tile_info); |
| } |
| |
| bool |
| isl_surf_get_hiz_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *hiz_surf) |
| { |
| if (INTEL_DEBUG(DEBUG_NO_HIZ)) |
| return false; |
| |
| if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) |
| return false; |
| |
| /* HiZ support does not exist prior to Gfx5 */ |
| if (ISL_GFX_VER(dev) < 5) |
| return false; |
| |
| if (!isl_surf_usage_is_depth(surf->usage)) |
| return false; |
| |
| /* From the Sandy Bridge PRM, Vol 2 Part 1, |
| * 3DSTATE_DEPTH_BUFFER::Hierarchical Depth Buffer Enable, |
| * |
| * If this field is enabled, the Surface Format of the depth buffer |
| * cannot be D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT. Use of stencil |
| * requires the separate stencil buffer. |
| * |
| * On SNB+, HiZ can't be used with combined depth-stencil buffers. |
| */ |
| if (isl_surf_usage_is_stencil(surf->usage)) |
| return false; |
| |
| /* Multisampled depth is always interleaved */ |
| assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE || |
| surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED); |
| |
| /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer": |
| * |
| * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render |
| * Target View Extent, and Depth Coordinate Offset X/Y of the |
| * hierarchical depth buffer are inherited from the depth buffer. The |
| * height and width of the hierarchical depth buffer that must be |
| * allocated are computed by the following formulas, where HZ is the |
| * hierarchical depth buffer and Z is the depth buffer. The Z_Height, |
| * Z_Width, and Z_Depth values given in these formulas are those present |
| * in 3DSTATE_DEPTH_BUFFER incremented by one. |
| * |
| * "The value of Z_Height and Z_Width must each be multiplied by 2 before |
| * being applied to the table below if Number of Multisamples is set to |
| * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and |
| * Z_Width must be multiplied by 4 before being applied to the table |
| * below if Number of Multisamples is set to NUMSAMPLES_8." |
| * |
| * In the Sky Lake PRM, the second paragraph is gone. This means that, |
| * from Sandy Bridge through Broadwell, HiZ compresses samples in the |
| * primary depth surface. On Sky Lake and onward, HiZ compresses pixels. |
| * |
| * There are a number of different ways that this discrepancy could be |
| * handled. The way we have chosen is to simply make MSAA HiZ have the |
| * same number of samples as the parent surface pre-Sky Lake and always be |
| * single-sampled on Sky Lake and above. Since the block sizes of |
| * compressed formats are given in samples, this neatly handles everything |
| * without the need for additional HiZ formats with different block sizes |
| * on SKL+. |
| */ |
| const unsigned samples = ISL_GFX_VER(dev) >= 9 ? 1 : surf->samples; |
| |
| const enum isl_format format = |
| ISL_GFX_VERX10(dev) >= 125 ? ISL_FORMAT_GFX125_HIZ : ISL_FORMAT_HIZ; |
| |
| return isl_surf_init(dev, hiz_surf, |
| .dim = surf->dim, |
| .format = format, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = surf->logical_level0_px.depth, |
| .levels = surf->levels, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = samples, |
| .usage = ISL_SURF_USAGE_HIZ_BIT, |
| .tiling_flags = ISL_TILING_HIZ_BIT); |
| } |
| |
| bool |
| isl_surf_get_mcs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *mcs_surf) |
| { |
| /* It must be multisampled with an array layout */ |
| if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY) |
| return false; |
| |
| /* On Gfx12+ this format is not listed in TGL PRMs, Volume 2b: Command |
| * Reference: Enumerations, RenderCompressionFormat |
| */ |
| if (ISL_GFX_VER(dev) >= 12 && |
| surf->format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) |
| return false; |
| |
| /* The following are true of all multisampled surfaces */ |
| assert(surf->samples > 1); |
| assert(surf->dim == ISL_SURF_DIM_2D); |
| assert(surf->levels == 1); |
| assert(surf->logical_level0_px.depth == 1); |
| assert(isl_format_supports_multisampling(dev->info, surf->format)); |
| |
| enum isl_format mcs_format; |
| switch (surf->samples) { |
| case 2: mcs_format = ISL_FORMAT_MCS_2X; break; |
| case 4: mcs_format = ISL_FORMAT_MCS_4X; break; |
| case 8: mcs_format = ISL_FORMAT_MCS_8X; break; |
| case 16: mcs_format = ISL_FORMAT_MCS_16X; break; |
| default: |
| unreachable("Invalid sample count"); |
| } |
| |
| return isl_surf_init(dev, mcs_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = mcs_format, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = 1, |
| .levels = 1, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = 1, /* MCS surfaces are really single-sampled */ |
| .usage = ISL_SURF_USAGE_MCS_BIT, |
| .tiling_flags = ISL_TILING_ANY_MASK); |
| } |
| |
| bool |
| _isl_surf_info_supports_ccs(const struct isl_device *dev, |
| enum isl_format format, |
| isl_surf_usage_flags_t usage) |
| { |
| if (!isl_format_supports_ccs_d(dev->info, format) && |
| !isl_format_supports_ccs_e(dev->info, format)) |
| return false; |
| |
| /* CCS is only for color images on Gfx7-11 */ |
| if (ISL_GFX_VER(dev) <= 11 && isl_surf_usage_is_depth_or_stencil(usage)) |
| return false; |
| |
| if (usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) |
| return false; |
| |
| /* TODO: Disable for now, as we're not sure about the meaning of |
| * 3DSTATE_CPSIZE_CONTROL_BUFFER::CPCBCompressionEnable |
| */ |
| if (isl_surf_usage_is_cpb(usage) && dev->info->ver < 20) |
| return false; |
| |
| if (INTEL_DEBUG(DEBUG_NO_CCS)) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| isl_surf_supports_ccs(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| const struct isl_surf *hiz_or_mcs_surf) |
| { |
| if (!_isl_surf_info_supports_ccs(dev, surf->format, surf->usage)) |
| return false; |
| |
| /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render |
| * Target(s)", beneath the "Fast Color Clear" bullet (p326): |
| * |
| * - Support is limited to tiled render targets. |
| * |
| * From the BSpec (44930) for Gfx12: |
| * |
| * Linear CCS is only allowed for Untyped Buffers but only via HDC |
| * Data-Port messages. |
| * |
| * We never use untyped messages on surfaces created by ISL on Gfx9+ so |
| * this means linear is out on Gfx12+ as well. |
| */ |
| if (surf->tiling == ISL_TILING_LINEAR) |
| return false; |
| |
| /* From the SKL PRMs, Volume 7: MCS Buffer for Render Target(s), |
| * |
| * - Note: Lossless Color Compression can only be applied to Surfaces |
| * which are TileY, TileYs, or TileYf. |
| * |
| * From the ACM PRMs, Volume 9: MCS/CCS Buffers for Render Target(s), |
| * |
| * - Note: Lossless Color Compression can only be applied to Surfaces |
| * which are Linear, Tile4, or Tile64. (TileY/TileYF/TileYS on older |
| * devices) |
| * |
| * It is made clear that X-tiling is no longer supported on SKL+. |
| */ |
| if (ISL_GFX_VER(dev) >= 9 && surf->tiling == ISL_TILING_X) |
| return false; |
| |
| /* TODO: add CCS support for Ys/Yf */ |
| if (isl_tiling_is_std_y(surf->tiling)) |
| return false; |
| |
| /* Wa_22015614752: There are issues with multiple engines accessing |
| * the same CCS cacheline in parallel. This can happen if this image |
| * has multiple subresources. Such conflicts can be avoided with |
| * tilings that set the subresource alignment to 64K and with miptails |
| * disabled. If we aren't using such a configuration, disable CCS. |
| */ |
| if (intel_needs_workaround(dev->info, 22015614752) && |
| (surf->usage & ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT) && |
| (surf->levels > 1 || |
| surf->logical_level0_px.depth > 1 || |
| surf->logical_level0_px.array_len > 1)) { |
| assert(surf->miptail_start_level >= surf->levels); |
| if (surf->tiling != ISL_TILING_64) { |
| assert(surf->tiling == ISL_TILING_4); |
| return false; |
| } |
| } |
| |
| if (ISL_GFX_VER(dev) == 12) { |
| if (isl_surf_usage_is_stencil(surf->usage)) { |
| /* HiZ and MCS aren't allowed with stencil */ |
| assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0); |
| |
| /* Multi-sampled stencil cannot have CCS */ |
| if (surf->samples > 1) |
| return false; |
| } else if (isl_surf_usage_is_depth(surf->usage)) { |
| const struct isl_surf *hiz_surf = hiz_or_mcs_surf; |
| |
| /* With depth surfaces, HIZ is required for CCS. */ |
| if (hiz_surf == NULL || hiz_surf->size_B == 0) |
| return false; |
| |
| assert(hiz_surf->usage & ISL_SURF_USAGE_HIZ_BIT); |
| assert(hiz_surf->tiling == ISL_TILING_HIZ); |
| assert(isl_format_is_hiz(hiz_surf->format)); |
| } else if (surf->samples > 1) { |
| const struct isl_surf *mcs_surf = hiz_or_mcs_surf; |
| |
| /* With multisampled color, CCS requires MCS */ |
| if (mcs_surf == NULL || mcs_surf->size_B == 0) |
| return false; |
| |
| assert(mcs_surf->usage & ISL_SURF_USAGE_MCS_BIT); |
| assert(isl_format_is_mcs(mcs_surf->format)); |
| } else { |
| /* Single-sampled color can't have MCS or HiZ */ |
| assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0); |
| |
| /* From Bspec 49252, Render Decompression: |
| * |
| * "Compressed displayable surfaces must be 16KB aligned and have |
| * pitches padded to multiple of 4 tiles." |
| * |
| * The drm_fourcc.h header doesn't require the aligned address for |
| * compressed dmabufs, but it does require the aligned pitch. |
| */ |
| if (isl_surf_usage_is_display(surf->usage)) { |
| assert(surf->tiling == ISL_TILING_4 || |
| surf->tiling == ISL_TILING_Y0); |
| if (surf->row_pitch_B % 512 != 0) |
| return false; |
| } |
| |
| /* From BSpec 44930, |
| * |
| * "Compression of 3D Ys surfaces with 64 or 128 bpp is not |
| * supported in Gen12. Moreover, "Render Target Fast-clear Enable" |
| * command is not supported for any 3D Ys surfaces. except when |
| * Surface is a Procdural Texture." |
| * |
| * It's not clear where the exception applies, but either way, we |
| * don't support Procedural Textures. |
| */ |
| if (surf->dim == ISL_SURF_DIM_3D && |
| surf->tiling == ISL_TILING_ICL_Ys && |
| isl_format_get_layout(surf->format)->bpb >= 64) |
| return false; |
| } |
| } else if (ISL_GFX_VER(dev) < 12) { |
| if (surf->samples > 1) |
| return false; |
| |
| /* CCS is only for color images on Gfx7-11 */ |
| assert(!isl_surf_usage_is_depth_or_stencil(surf->usage)); |
| |
| /* We're single-sampled color so having HiZ or MCS makes no sense */ |
| assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0); |
| |
| /* The PRM doesn't say this explicitly, but fast-clears don't appear to |
| * work for 3D textures until gfx9 where the layout of 3D textures |
| * changes to match 2D array textures. |
| */ |
| if (ISL_GFX_VER(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D) |
| return false; |
| |
| /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of |
| * Non-MultiSampler Render Target Restrictions): |
| * |
| * "Support is for non-mip-mapped and non-array surface types only." |
| * |
| * This restriction is lifted on gfx8+. Technically, it may be possible |
| * to create a CCS for an arrayed or mipmapped image and only enable |
| * CCS_D when rendering to the base slice. However, there is no |
| * documentation tell us what the hardware would do in that case or what |
| * it does if you walk off the bases slice. (Does it ignore CCS or does |
| * it start scribbling over random memory?) We play it safe and just |
| * follow the docs and don't allow CCS_D for arrayed or mip-mapped |
| * surfaces. |
| */ |
| if (ISL_GFX_VER(dev) <= 7 && |
| (surf->levels > 1 || surf->logical_level0_px.array_len > 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| isl_surf_get_ccs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *ccs_surf, |
| uint32_t row_pitch_B) |
| { |
| if (!isl_surf_supports_ccs(dev, surf, NULL)) |
| return false; |
| |
| enum isl_format ccs_format; |
| if (ISL_GFX_VER(dev) >= 9 && ISL_GFX_VER(dev) <= 11) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GFX9_CCS_32BPP; break; |
| case 64: ccs_format = ISL_FORMAT_GFX9_CCS_64BPP; break; |
| case 128: ccs_format = ISL_FORMAT_GFX9_CCS_128BPP; break; |
| default: unreachable("Unsupported CCS format"); |
| } |
| } else if (surf->tiling == ISL_TILING_Y0) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_Y; break; |
| case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_Y; break; |
| case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_Y; break; |
| default: unreachable("Unsupported CCS format"); |
| } |
| } else if (surf->tiling == ISL_TILING_X) { |
| switch (isl_format_get_layout(surf->format)->bpb) { |
| case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_X; break; |
| case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_X; break; |
| case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_X; break; |
| default: unreachable("Unsupported CCS format"); |
| } |
| } else { |
| unreachable("Invalid tiling format"); |
| } |
| |
| return isl_surf_init(dev, ccs_surf, |
| .dim = surf->dim, |
| .format = ccs_format, |
| .width = surf->logical_level0_px.width, |
| .height = surf->logical_level0_px.height, |
| .depth = surf->logical_level0_px.depth, |
| .levels = surf->levels, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = 1, |
| .row_pitch_B = row_pitch_B, |
| .usage = ISL_SURF_USAGE_CCS_BIT, |
| .tiling_flags = ISL_TILING_CCS_BIT); |
| } |
| |
| #define isl_genX_call(dev, func, ...) \ |
| switch (ISL_GFX_VERX10(dev)) { \ |
| case 40: \ |
| isl_gfx4_##func(__VA_ARGS__); \ |
| break; \ |
| case 45: \ |
| /* G45 surface state is the same as gfx5 */ \ |
| case 50: \ |
| isl_gfx5_##func(__VA_ARGS__); \ |
| break; \ |
| case 60: \ |
| isl_gfx6_##func(__VA_ARGS__); \ |
| break; \ |
| case 70: \ |
| isl_gfx7_##func(__VA_ARGS__); \ |
| break; \ |
| case 75: \ |
| isl_gfx75_##func(__VA_ARGS__); \ |
| break; \ |
| case 80: \ |
| isl_gfx8_##func(__VA_ARGS__); \ |
| break; \ |
| case 90: \ |
| isl_gfx9_##func(__VA_ARGS__); \ |
| break; \ |
| case 110: \ |
| isl_gfx11_##func(__VA_ARGS__); \ |
| break; \ |
| case 120: \ |
| isl_gfx12_##func(__VA_ARGS__); \ |
| break; \ |
| case 125: \ |
| isl_gfx125_##func(__VA_ARGS__); \ |
| break; \ |
| case 200: \ |
| isl_gfx20_##func(__VA_ARGS__); \ |
| break; \ |
| case 300: \ |
| isl_gfx30_##func(__VA_ARGS__); \ |
| break; \ |
| default: \ |
| assert(!"Unknown hardware generation"); \ |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GFX4_2D. |
| */ |
| static void |
| get_image_offset_sa_gfx4_2d(const struct isl_surf *surf, |
| uint32_t level, uint32_t logical_array_layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa, |
| uint32_t *z_offset_sa, |
| uint32_t *array_offset) |
| { |
| assert(level < surf->levels); |
| if (surf->dim == ISL_SURF_DIM_3D) |
| assert(logical_array_layer < surf->logical_level0_px.depth); |
| else |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const uint32_t H0 = surf->phys_level0_sa.height; |
| |
| const uint32_t phys_layer = logical_array_layer * |
| (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1); |
| |
| uint32_t x = 0, y; |
| if (isl_tiling_is_std_y(surf->tiling) || |
| isl_tiling_is_64(surf->tiling)) { |
| y = 0; |
| if (surf->dim == ISL_SURF_DIM_3D) { |
| *z_offset_sa = logical_array_layer; |
| *array_offset = 0; |
| } else { |
| *z_offset_sa = 0; |
| *array_offset = phys_layer; |
| } |
| } else { |
| y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf); |
| *z_offset_sa = 0; |
| *array_offset = 0; |
| } |
| |
| for (uint32_t l = 0; l < MIN(level, surf->miptail_start_level); ++l) { |
| if (l == 1) { |
| uint32_t W = isl_minify(W0, l); |
| x += isl_align_npot(W, image_align_sa.w); |
| } else { |
| uint32_t H = isl_minify(H0, l); |
| y += isl_align_npot(H, image_align_sa.h); |
| } |
| } |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| |
| if (level >= surf->miptail_start_level) { |
| const struct isl_format_layout *fmtl = |
| isl_format_get_layout(surf->format); |
| |
| uint32_t tail_offset_x_el, tail_offset_y_el, tail_offset_z_el; |
| isl_get_miptail_level_offset_el(surf->tiling, surf->dim, |
| fmtl->bpb, |
| level - surf->miptail_start_level, |
| &tail_offset_x_el, |
| &tail_offset_y_el, |
| &tail_offset_z_el); |
| *x_offset_sa += tail_offset_x_el * fmtl->bw; |
| *y_offset_sa += tail_offset_y_el * fmtl->bh; |
| *z_offset_sa += tail_offset_z_el * fmtl->bd; |
| } |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GFX4_3D. |
| */ |
| static void |
| get_image_offset_sa_gfx4_3d(const struct isl_surf *surf, |
| uint32_t level, uint32_t logical_z_offset_px, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| if (surf->dim == ISL_SURF_DIM_3D) { |
| assert(surf->phys_level0_sa.array_len == 1); |
| assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level)); |
| } else { |
| assert(surf->dim == ISL_SURF_DIM_2D); |
| assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT); |
| assert(surf->phys_level0_sa.array_len == 6); |
| assert(logical_z_offset_px < surf->phys_level0_sa.array_len); |
| } |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const uint32_t H0 = surf->phys_level0_sa.height; |
| const uint32_t D0 = surf->phys_level0_sa.depth; |
| const uint32_t AL = surf->phys_level0_sa.array_len; |
| |
| uint32_t x = 0; |
| uint32_t y = 0; |
| |
| for (uint32_t l = 0; l < level; ++l) { |
| const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h); |
| const uint32_t level_d = |
| isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL, |
| image_align_sa.d); |
| const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); |
| |
| y += level_h * max_layers_vert; |
| } |
| |
| const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w); |
| const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h); |
| const uint32_t level_d = |
| isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL, |
| image_align_sa.d); |
| |
| const uint32_t max_layers_horiz = MIN(level_d, 1u << level); |
| |
| x += level_w * (logical_z_offset_px % max_layers_horiz); |
| y += level_h * (logical_z_offset_px / max_layers_horiz); |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| } |
| |
| static void |
| get_image_offset_sa_gfx6_stencil_hiz(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| assert(surf->logical_level0_px.depth == 1); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| struct isl_tile_info tile_info; |
| isl_surf_get_tile_info(surf, &tile_info); |
| const struct isl_extent2d tile_extent_sa = { |
| .w = tile_info.logical_extent_el.w * fmtl->bw, |
| .h = tile_info.logical_extent_el.h * fmtl->bh, |
| }; |
| /* Tile size is a multiple of image alignment */ |
| assert(tile_extent_sa.w % image_align_sa.w == 0); |
| assert(tile_extent_sa.h % image_align_sa.h == 0); |
| |
| const uint32_t W0 = surf->phys_level0_sa.w; |
| const uint32_t H0 = surf->phys_level0_sa.h; |
| |
| /* Each image has the same height as LOD0 because the hardware thinks |
| * everything is LOD0 |
| */ |
| const uint32_t H = isl_align(H0, image_align_sa.h); |
| |
| /* Quick sanity check for consistency */ |
| if (surf->phys_level0_sa.array_len > 1) |
| assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh)); |
| |
| uint32_t x = 0, y = 0; |
| for (uint32_t l = 0; l < level; ++l) { |
| const uint32_t W = isl_minify(W0, l); |
| |
| const uint32_t w = isl_align(W, tile_extent_sa.w); |
| const uint32_t h = isl_align(H * surf->phys_level0_sa.a, |
| tile_extent_sa.h); |
| |
| if (l == 0) { |
| y += h; |
| } else { |
| x += w; |
| } |
| } |
| |
| y += H * logical_array_layer; |
| |
| *x_offset_sa = x; |
| *y_offset_sa = y; |
| } |
| |
| /** |
| * A variant of isl_surf_get_image_offset_sa() specific to |
| * ISL_DIM_LAYOUT_GFX9_1D. |
| */ |
| static void |
| get_image_offset_sa_gfx9_1d(const struct isl_surf *surf, |
| uint32_t level, uint32_t layer, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| assert(level < surf->levels); |
| assert(layer < surf->phys_level0_sa.array_len); |
| assert(surf->phys_level0_sa.height == 1); |
| assert(surf->phys_level0_sa.depth == 1); |
| assert(surf->samples == 1); |
| |
| const uint32_t W0 = surf->phys_level0_sa.width; |
| const struct isl_extent3d image_align_sa = |
| isl_surf_get_image_alignment_sa(surf); |
| |
| uint32_t x = 0; |
| |
| for (uint32_t l = 0; l < level; ++l) { |
| uint32_t W = isl_minify(W0, l); |
| uint32_t w = isl_align_npot(W, image_align_sa.w); |
| |
| x += w; |
| } |
| |
| *x_offset_sa = x; |
| *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf); |
| } |
| |
| /** |
| * Calculate the offset, in units of surface samples, to a subimage in the |
| * surface. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_offset_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa, |
| uint32_t *z_offset_sa, |
| uint32_t *array_offset) |
| { |
| assert(level < surf->levels); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| assert(logical_z_offset_px |
| < isl_minify(surf->logical_level0_px.depth, level)); |
| |
| switch (surf->dim_layout) { |
| case ISL_DIM_LAYOUT_GFX9_1D: |
| get_image_offset_sa_gfx9_1d(surf, level, logical_array_layer, |
| x_offset_sa, y_offset_sa); |
| *z_offset_sa = 0; |
| *array_offset = 0; |
| break; |
| case ISL_DIM_LAYOUT_GFX4_2D: |
| get_image_offset_sa_gfx4_2d(surf, level, logical_array_layer |
| + logical_z_offset_px, |
| x_offset_sa, y_offset_sa, |
| z_offset_sa, array_offset); |
| break; |
| case ISL_DIM_LAYOUT_GFX4_3D: |
| get_image_offset_sa_gfx4_3d(surf, level, logical_array_layer + |
| logical_z_offset_px, |
| x_offset_sa, y_offset_sa); |
| *z_offset_sa = 0; |
| *array_offset = 0; |
| break; |
| case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ: |
| get_image_offset_sa_gfx6_stencil_hiz(surf, level, logical_array_layer + |
| logical_z_offset_px, |
| x_offset_sa, y_offset_sa); |
| *z_offset_sa = 0; |
| *array_offset = 0; |
| break; |
| |
| default: |
| unreachable("not reached"); |
| } |
| } |
| |
| void |
| isl_surf_get_image_offset_el(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el, |
| uint32_t *z_offset_el, |
| uint32_t *array_offset) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| assert(level < surf->levels); |
| assert(logical_array_layer < surf->logical_level0_px.array_len); |
| assert(logical_z_offset_px |
| < isl_minify(surf->logical_level0_px.depth, level)); |
| |
| uint32_t x_offset_sa, y_offset_sa, z_offset_sa; |
| isl_surf_get_image_offset_sa(surf, level, |
| logical_array_layer, |
| logical_z_offset_px, |
| &x_offset_sa, |
| &y_offset_sa, |
| &z_offset_sa, |
| array_offset); |
| |
| *x_offset_el = x_offset_sa / fmtl->bw; |
| *y_offset_el = y_offset_sa / fmtl->bh; |
| *z_offset_el = z_offset_sa / fmtl->bd; |
| } |
| |
| void |
| isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint64_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| uint32_t x_offset_el, y_offset_el; |
| isl_surf_get_image_offset_B_tile_el(surf, level, |
| logical_array_layer, |
| logical_z_offset_px, |
| offset_B, |
| &x_offset_el, |
| &y_offset_el); |
| |
| if (x_offset_sa) { |
| *x_offset_sa = x_offset_el * fmtl->bw; |
| } else { |
| assert(x_offset_el == 0); |
| } |
| |
| if (y_offset_sa) { |
| *y_offset_sa = y_offset_el * fmtl->bh; |
| } else { |
| assert(y_offset_el == 0); |
| } |
| } |
| |
| void |
| isl_surf_get_image_offset_B_tile_el(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint64_t *offset_B, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| uint32_t total_x_offset_el, total_y_offset_el; |
| uint32_t total_z_offset_el, total_array_offset; |
| isl_surf_get_image_offset_el(surf, level, logical_array_layer, |
| logical_z_offset_px, |
| &total_x_offset_el, |
| &total_y_offset_el, |
| &total_z_offset_el, |
| &total_array_offset); |
| |
| uint32_t z_offset_el, array_offset; |
| isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim, |
| surf->msaa_layout, fmtl->bpb, |
| surf->samples, |
| surf->row_pitch_B, |
| surf->array_pitch_el_rows, |
| total_x_offset_el, |
| total_y_offset_el, |
| total_z_offset_el, |
| total_array_offset, |
| offset_B, |
| x_offset_el, |
| y_offset_el, |
| &z_offset_el, |
| &array_offset); |
| if (level >= surf->miptail_start_level) { |
| /* We can do a byte offset to the first level of a miptail but we cannot |
| * offset into a miptail. |
| */ |
| assert(level == surf->miptail_start_level); |
| |
| /* The byte offset will get us to the miptail page. The other offsets |
| * are to the actual level within the miptail. It is assumed that the |
| * caller will set up a texture with a miptail and use the hardware to |
| * handle offseting inside the miptail. |
| */ |
| *x_offset_el = 0; |
| *y_offset_el = 0; |
| } else { |
| assert(z_offset_el == 0); |
| assert(array_offset == 0); |
| } |
| } |
| |
| void |
| isl_surf_get_image_range_B_tile(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint64_t *start_tile_B, |
| uint64_t *end_tile_B) |
| { |
| uint32_t start_x_offset_el, start_y_offset_el; |
| uint32_t start_z_offset_el, start_array_slice; |
| isl_surf_get_image_offset_el(surf, level, logical_array_layer, |
| logical_z_offset_px, |
| &start_x_offset_el, |
| &start_y_offset_el, |
| &start_z_offset_el, |
| &start_array_slice); |
| |
| /* Compute the size of the subimage in surface elements */ |
| const uint32_t subimage_w_sa = isl_minify(surf->phys_level0_sa.w, level); |
| const uint32_t subimage_h_sa = isl_minify(surf->phys_level0_sa.h, level); |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| const uint32_t subimage_w_el = isl_align_div_npot(subimage_w_sa, fmtl->bw); |
| const uint32_t subimage_h_el = isl_align_div_npot(subimage_h_sa, fmtl->bh); |
| |
| /* Find the last pixel */ |
| uint32_t end_x_offset_el = start_x_offset_el + subimage_w_el - 1; |
| uint32_t end_y_offset_el = start_y_offset_el + subimage_h_el - 1; |
| |
| /* We only consider one Z or array slice */ |
| const uint32_t end_z_offset_el = start_z_offset_el; |
| const uint32_t end_array_slice = start_array_slice; |
| |
| UNUSED uint32_t x_offset_el, y_offset_el, z_offset_el, array_slice; |
| isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim, |
| surf->msaa_layout, fmtl->bpb, |
| surf->samples, |
| surf->row_pitch_B, |
| surf->array_pitch_el_rows, |
| start_x_offset_el, |
| start_y_offset_el, |
| start_z_offset_el, |
| start_array_slice, |
| start_tile_B, |
| &x_offset_el, |
| &y_offset_el, |
| &z_offset_el, |
| &array_slice); |
| |
| isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim, |
| surf->msaa_layout, fmtl->bpb, |
| surf->samples, |
| surf->row_pitch_B, |
| surf->array_pitch_el_rows, |
| end_x_offset_el, |
| end_y_offset_el, |
| end_z_offset_el, |
| end_array_slice, |
| end_tile_B, |
| &x_offset_el, |
| &y_offset_el, |
| &z_offset_el, |
| &array_slice); |
| |
| struct isl_tile_info tile_info; |
| isl_surf_get_tile_info(surf, &tile_info); |
| |
| /* We want the range we return to be exclusive but the tile containing the |
| * last pixel (what we just calculated) is inclusive. Add one and round up |
| * to the tile size. |
| */ |
| *end_tile_B = ALIGN_NPOT(*end_tile_B + 1, tile_info.phys_extent_B.w * |
| tile_info.phys_extent_B.h); |
| |
| assert(*end_tile_B <= surf->size_B); |
| } |
| |
| void |
| isl_surf_get_image_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| struct isl_surf *image_surf, |
| uint64_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| isl_surf_get_image_offset_B_tile_sa(surf, |
| level, |
| logical_array_layer, |
| logical_z_offset_px, |
| offset_B, |
| x_offset_sa, |
| y_offset_sa); |
| |
| /* Even for cube maps there will be only single face, therefore drop the |
| * corresponding flag if present. |
| */ |
| const isl_surf_usage_flags_t usage = |
| surf->usage & (~ISL_SURF_USAGE_CUBE_BIT); |
| |
| bool ok UNUSED; |
| ok = isl_surf_init(dev, image_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = surf->format, |
| .width = isl_minify(surf->logical_level0_px.w, level), |
| .height = isl_minify(surf->logical_level0_px.h, level), |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = surf->samples, |
| .row_pitch_B = surf->row_pitch_B, |
| .usage = usage, |
| .tiling_flags = (1 << surf->tiling)); |
| assert(ok); |
| } |
| |
| bool |
| isl_surf_get_uncompressed_surf(const struct isl_device *dev, |
| const struct isl_surf *_surf, |
| const struct isl_view *_view, |
| struct isl_surf *ucompr_surf, |
| struct isl_view *ucompr_view, |
| uint64_t *offset_B, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el) |
| { |
| /* Input and output pointers may be the same, save the input contents now. */ |
| const struct isl_surf __surf = *_surf, *surf = &__surf; |
| const struct isl_view __view = *_view, *view = &__view; |
| const struct isl_format_layout *fmtl = |
| isl_format_get_layout(surf->format); |
| const enum isl_format view_format = view->format; |
| |
| assert(fmtl->bw > 1 || fmtl->bh > 1 || fmtl->bd > 1); |
| assert(isl_format_is_compressed(surf->format)); |
| assert(!isl_format_is_compressed(view->format)); |
| assert(isl_format_get_layout(view->format)->bpb == fmtl->bpb); |
| assert(view->levels == 1); |
| |
| const uint32_t view_width_px = |
| isl_minify(surf->logical_level0_px.width, view->base_level); |
| const uint32_t view_height_px = |
| isl_minify(surf->logical_level0_px.height, view->base_level); |
| |
| assert(surf->samples == 1); |
| const uint32_t view_width_el = isl_align_div_npot(view_width_px, fmtl->bw); |
| const uint32_t view_height_el = isl_align_div_npot(view_height_px, fmtl->bh); |
| |
| /* If we ever enable 3D block formats, we'll need to re-think this */ |
| assert(fmtl->bd == 1); |
| |
| if (isl_tiling_is_std_y(surf->tiling) || |
| isl_tiling_is_64(surf->tiling)) { |
| /* If the requested level is not part of the miptail, we just offset to |
| * the requested level. Because we're using standard tilings and aren't |
| * in the miptail, arrays and 3D textures should just work so long as we |
| * have the right array stride in the end. |
| * |
| * If the requested level is in the miptail, we instead offset to the |
| * base of the miptail. Because offsets into the miptail are fixed by |
| * the tiling and don't depend on the actual size of the image, we can |
| * set the level in the view to offset into the miptail regardless of |
| * the fact minification yields different results for the compressed and |
| * uncompressed surface. |
| */ |
| const uint32_t base_level = |
| MIN(view->base_level, surf->miptail_start_level); |
| |
| isl_surf_get_image_offset_B_tile_el(surf, base_level, 0, 0, |
| offset_B, x_offset_el, y_offset_el); |
| /* Tile64, Ys and Yf should have no intratile X or Y offset */ |
| assert(*x_offset_el == 0 && *y_offset_el == 0); |
| |
| /* Save off the array pitch */ |
| const uint32_t array_pitch_el_rows = surf->array_pitch_el_rows; |
| |
| const uint32_t view_depth_px = |
| isl_minify(surf->logical_level0_px.depth, view->base_level); |
| const uint32_t view_depth_el = |
| isl_align_div_npot(view_depth_px, fmtl->bd); |
| |
| /* We need to compute the size of the uncompressed surface we will |
| * create. If we're not in the miptail, it is just the view size in |
| * surface elements. If we are in a miptail, we need a size that will |
| * minify to the view size in surface elements. This may not be the same |
| * as the size of base_level, but that's not a problem. Slot offsets are |
| * fixed in HW (see the tables used in isl_get_miptail_level_offset_el). |
| */ |
| const uint32_t ucompr_level = view->base_level - base_level; |
| |
| /* The > 1 check is here to prevent a change in the surface's overall |
| * dimension (e.g. 2D->3D). |
| * |
| * Also having a base_level dimension = 1 doesn´t mean the HW will |
| * ignore higher mip level. Once the dimension has reached 1, it'll stay |
| * at 1 in the higher mip levels. |
| */ |
| struct isl_extent3d ucompr_surf_extent_el = { |
| .w = view_width_el > 1 ? view_width_el << ucompr_level : 1, |
| .h = view_height_el > 1 ? view_height_el << ucompr_level : 1, |
| .d = view_depth_el > 1 ? view_depth_el << ucompr_level : 1, |
| }; |
| |
| isl_surf_usage_flags_t usage = surf->usage; |
| /* CCS-enabled surfaces can have different layout requirements than |
| * surfaces without CCS support. So, for accuracy, disable CCS |
| * support if the original surface lacked it. |
| */ |
| if (_isl_surf_info_supports_ccs(dev, surf->format, surf->usage) != |
| _isl_surf_info_supports_ccs(dev, view_format, usage)) { |
| assert(_isl_surf_info_supports_ccs(dev, view_format, usage)); |
| usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| } |
| |
| bool ok UNUSED; |
| ok = isl_surf_init(dev, ucompr_surf, |
| .dim = surf->dim, |
| .format = view->format, |
| .width = ucompr_surf_extent_el.width, |
| .height = ucompr_surf_extent_el.height, |
| .depth = ucompr_surf_extent_el.depth, |
| .levels = ucompr_level + 1, |
| .array_len = surf->logical_level0_px.array_len, |
| .samples = surf->samples, |
| .min_miptail_start_level = |
| (int) (view->base_level < surf->miptail_start_level), |
| .row_pitch_B = surf->row_pitch_B, |
| .usage = usage, |
| .tiling_flags = (1u << surf->tiling)); |
| assert(ok); |
| |
| /* Use the array pitch from the original surface. This way 2D arrays |
| * and 3D textures should work properly, just with one LOD. |
| */ |
| assert(ucompr_surf->array_pitch_el_rows <= array_pitch_el_rows); |
| ucompr_surf->array_pitch_el_rows = array_pitch_el_rows; |
| |
| /* The newly created image represents only the one miplevel so we |
| * need to adjust the view accordingly. Because we offset it to |
| * miplevel but used a Z and array slice of 0, the array range can be |
| * left alone. |
| */ |
| *ucompr_view = *view; |
| ucompr_view->base_level -= base_level; |
| } else { |
| if (view->array_len > 1) { |
| /* The Skylake PRM Vol. 2d, "RENDER_SURFACE_STATE::X Offset" says: |
| * |
| * "If Surface Array is enabled, this field must be zero." |
| * |
| * The PRMs for other hardware have similar text. This is also tricky |
| * to handle with things like BLORP's SW offsetting because the |
| * increased surface size required for the offset may result in an |
| * image height greater than qpitch. |
| */ |
| if (view->base_level > 0) |
| return false; |
| |
| /* On Haswell and earlier, RENDER_SURFACE_STATE doesn't have a QPitch |
| * field; it only has "array pitch span" which means the QPitch is |
| * automatically calculated. Since we're smashing the surface format |
| * (block formats are subtly different) and the number of miplevels, |
| * that calculation will get thrown off. This means we can't do |
| * arrays even at LOD0 |
| * |
| * On Broadwell, we do have a QPitch field which we can control. |
| * However, HALIGN and VALIGN are specified in pixels and are |
| * hard-coded to align to exactly the block size of the compressed |
| * texture. This means that, when reinterpreted as a non-compressed |
| * the QPitch may be anything but the HW requires it to be properly |
| * aligned. |
| */ |
| if (ISL_GFX_VER(dev) < 9) |
| return false; |
| |
| *ucompr_surf = *surf; |
| ucompr_surf->levels = 1; |
| ucompr_surf->format = view_format; |
| |
| /* We're making an uncompressed view here. The image dimensions need |
| * to be scaled down by the block size. |
| */ |
| assert(ucompr_surf->logical_level0_px.width == view_width_px); |
| assert(ucompr_surf->logical_level0_px.height == view_height_px); |
| ucompr_surf->logical_level0_px.width = view_width_el; |
| ucompr_surf->logical_level0_px.height = view_height_el; |
| ucompr_surf->phys_level0_sa = isl_surf_get_phys_level0_el(surf); |
| |
| /* The surface mostly stays as-is; there is no offset */ |
| *offset_B = 0; |
| *x_offset_el = 0; |
| *y_offset_el = 0; |
| |
| /* The view remains the same */ |
| *ucompr_view = *view; |
| } else { |
| /* If only one array slice is requested, directly offset to that |
| * slice. We could, in theory, still use arrays in some cases but |
| * BLORP isn't prepared for this and everyone who calls this function |
| * should be prepared to handle an X/Y offset. |
| */ |
| isl_surf_get_image_offset_B_tile_el(surf, |
| view->base_level, |
| surf->dim == ISL_SURF_DIM_3D ? |
| 0 : view->base_array_layer, |
| surf->dim == ISL_SURF_DIM_3D ? |
| view->base_array_layer : 0, |
| offset_B, |
| x_offset_el, |
| y_offset_el); |
| |
| isl_surf_usage_flags_t usage = surf->usage; |
| |
| /* Even for cube maps there will be only single face, therefore drop |
| * the corresponding flag if present. |
| */ |
| usage &= ~ISL_SURF_USAGE_CUBE_BIT; |
| |
| /* CCS-enabled surfaces can have different layout requirements than |
| * surfaces without CCS support. So, for accuracy, disable CCS |
| * support if the original surface lacked it. |
| */ |
| if (_isl_surf_info_supports_ccs(dev, surf->format, surf->usage) != |
| _isl_surf_info_supports_ccs(dev, view_format, usage)) { |
| assert(_isl_surf_info_supports_ccs(dev, view_format, usage)); |
| usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT; |
| } |
| |
| bool ok UNUSED; |
| ok = isl_surf_init(dev, ucompr_surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = view_format, |
| .width = view_width_el, |
| .height = view_height_el, |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = 1, |
| .row_pitch_B = surf->row_pitch_B, |
| .usage = usage, |
| .tiling_flags = (1 << surf->tiling)); |
| assert(ok); |
| |
| /* The newly created image represents the one subimage we're |
| * referencing with this view so it only has one array slice and |
| * miplevel. |
| */ |
| *ucompr_view = *view; |
| ucompr_view->base_array_layer = 0; |
| ucompr_view->base_level = 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| void |
| isl_tiling_get_intratile_offset_el(enum isl_tiling tiling, |
| enum isl_surf_dim dim, |
| enum isl_msaa_layout msaa_layout, |
| uint32_t bpb, |
| uint32_t samples, |
| uint32_t row_pitch_B, |
| uint32_t array_pitch_el_rows, |
| uint32_t total_x_offset_el, |
| uint32_t total_y_offset_el, |
| uint32_t total_z_offset_el, |
| uint32_t total_array_offset, |
| uint64_t *tile_offset_B, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el, |
| uint32_t *z_offset_el, |
| uint32_t *array_offset) |
| { |
| if (tiling == ISL_TILING_LINEAR) { |
| assert(bpb % 8 == 0); |
| assert(samples == 1); |
| assert(total_z_offset_el == 0 && total_array_offset == 0); |
| *tile_offset_B = (uint64_t)total_y_offset_el * row_pitch_B + |
| (uint64_t)total_x_offset_el * (bpb / 8); |
| *x_offset_el = 0; |
| *y_offset_el = 0; |
| *z_offset_el = 0; |
| *array_offset = 0; |
| return; |
| } |
| |
| struct isl_tile_info tile_info; |
| isl_tiling_get_info(tiling, dim, msaa_layout, bpb, samples, &tile_info); |
| |
| /* Pitches must make sense with the tiling */ |
| assert(row_pitch_B % tile_info.phys_extent_B.width == 0); |
| if (tile_info.logical_extent_el.d > 1 || tile_info.logical_extent_el.a > 1) |
| assert(array_pitch_el_rows % tile_info.logical_extent_el.h == 0); |
| |
| /* For non-power-of-two formats, we need the address to be both tile and |
| * element-aligned. The easiest way to achieve this is to work with a tile |
| * that is three times as wide as the regular tile. |
| * |
| * The tile info returned by get_tile_info has a logical size that is an |
| * integer number of tile_info.format_bpb size elements. To scale the |
| * tile, we scale up the physical width and then treat the logical tile |
| * size as if it has bpb size elements. |
| */ |
| const uint32_t tile_el_scale = bpb / tile_info.format_bpb; |
| tile_info.phys_extent_B.width *= tile_el_scale; |
| |
| /* Compute the offset into the tile */ |
| *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w; |
| *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h; |
| *z_offset_el = total_z_offset_el % tile_info.logical_extent_el.d; |
| *array_offset = total_array_offset % tile_info.logical_extent_el.a; |
| |
| /* Compute the offset of the tile in units of whole tiles */ |
| uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w; |
| uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h; |
| uint32_t z_offset_tl = total_z_offset_el / tile_info.logical_extent_el.d; |
| uint32_t a_offset_tl = total_array_offset / tile_info.logical_extent_el.a; |
| |
| /* Compute an array pitch in number of tiles */ |
| uint32_t array_pitch_tl_rows = |
| array_pitch_el_rows / tile_info.logical_extent_el.h; |
| |
| /* Add the Z and array offset to the Y offset to get a 2D offset */ |
| y_offset_tl += (z_offset_tl + a_offset_tl) * array_pitch_tl_rows; |
| |
| *tile_offset_B = |
| (uint64_t)y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B + |
| (uint64_t)x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w; |
| } |
| |
| uint32_t |
| isl_surf_get_depth_format(const struct isl_device *dev, |
| const struct isl_surf *surf) |
| { |
| /* Support for separate stencil buffers began in gfx5. Support for |
| * interleaved depthstencil buffers ceased in gfx7. The intermediate gens, |
| * those that supported separate and interleaved stencil, were gfx5 and |
| * gfx6. |
| * |
| * For a list of all available formats, see the Sandybridge PRM >> Volume |
| * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface |
| * Format (p321). |
| */ |
| |
| bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT; |
| |
| assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT); |
| |
| if (has_stencil) |
| assert(ISL_GFX_VER(dev) < 7); |
| |
| switch (surf->format) { |
| default: |
| unreachable("bad isl depth format"); |
| case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS: |
| assert(ISL_GFX_VER(dev) < 7); |
| return 0; /* D32_FLOAT_S8X24_UINT */ |
| case ISL_FORMAT_R32_FLOAT: |
| assert(!has_stencil); |
| return 1; /* D32_FLOAT */ |
| case ISL_FORMAT_R24_UNORM_X8_TYPELESS: |
| if (has_stencil) { |
| assert(ISL_GFX_VER(dev) < 7); |
| return 2; /* D24_UNORM_S8_UINT */ |
| } else { |
| assert(ISL_GFX_VER(dev) >= 5); |
| return 3; /* D24_UNORM_X8_UINT */ |
| } |
| case ISL_FORMAT_R16_UNORM: |
| assert(!has_stencil); |
| return 5; /* D16_UNORM */ |
| } |
| } |
| |
| bool |
| isl_swizzle_supports_rendering(const struct intel_device_info *devinfo, |
| struct isl_swizzle swizzle) |
| { |
| if (devinfo->platform == INTEL_PLATFORM_HSW) { |
| /* From the Haswell PRM, |
| * RENDER_SURFACE_STATE::Shader Channel Select Red |
| * |
| * "The Shader channel selects also define which shader channels are |
| * written to which surface channel. If the Shader channel select is |
| * SCS_ZERO or SCS_ONE then it is not written to the surface. If the |
| * shader channel select is SCS_RED it is written to the surface red |
| * channel and so on. If more than one shader channel select is set |
| * to the same surface channel only the first shader channel in RGBA |
| * order will be written." |
| */ |
| return true; |
| } else if (devinfo->ver <= 7) { |
| /* Ivy Bridge and early doesn't have any swizzling */ |
| return isl_swizzle_is_identity(swizzle); |
| } else { |
| /* From the Sky Lake PRM Vol. 2d, |
| * RENDER_SURFACE_STATE::Shader Channel Select Red |
| * |
| * "For Render Target, Red, Green and Blue Shader Channel Selects |
| * MUST be such that only valid components can be swapped i.e. only |
| * change the order of components in the pixel. Any other values for |
| * these Shader Channel Select fields are not valid for Render |
| * Targets. This also means that there MUST not be multiple shader |
| * channels mapped to the same RT channel." |
| * |
| * From the Sky Lake PRM Vol. 2d, |
| * RENDER_SURFACE_STATE::Shader Channel Select Alpha |
| * |
| * "For Render Target, this field MUST be programmed to |
| * value = SCS_ALPHA." |
| * |
| * Bspec 57023: RENDER_SURFACE_STATE:: Shader Channel Select Red |
| * |
| * "Render Target messages do not support swapping of colors with |
| * alpha. The Red, Green, or Blue Shader Channel Selects do not |
| * support SCS_ALPHA. The Shader Channel Select Alpha does not support |
| * SCS_RED, SCS_GREEN, or SCS_BLUE." |
| */ |
| return (swizzle.r == ISL_CHANNEL_SELECT_RED || |
| swizzle.r == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.r == ISL_CHANNEL_SELECT_BLUE) && |
| (swizzle.g == ISL_CHANNEL_SELECT_RED || |
| swizzle.g == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.g == ISL_CHANNEL_SELECT_BLUE) && |
| (swizzle.b == ISL_CHANNEL_SELECT_RED || |
| swizzle.b == ISL_CHANNEL_SELECT_GREEN || |
| swizzle.b == ISL_CHANNEL_SELECT_BLUE) && |
| swizzle.r != swizzle.g && |
| swizzle.r != swizzle.b && |
| swizzle.g != swizzle.b && |
| swizzle.a == ISL_CHANNEL_SELECT_ALPHA; |
| } |
| } |
| |
| static enum isl_channel_select |
| swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle) |
| { |
| switch (chan) { |
| case ISL_CHANNEL_SELECT_ZERO: |
| case ISL_CHANNEL_SELECT_ONE: |
| return chan; |
| case ISL_CHANNEL_SELECT_RED: |
| return swizzle.r; |
| case ISL_CHANNEL_SELECT_GREEN: |
| return swizzle.g; |
| case ISL_CHANNEL_SELECT_BLUE: |
| return swizzle.b; |
| case ISL_CHANNEL_SELECT_ALPHA: |
| return swizzle.a; |
| default: |
| unreachable("Invalid swizzle component"); |
| } |
| } |
| |
| /** |
| * Returns the single swizzle that is equivalent to applying the two given |
| * swizzles in sequence. |
| */ |
| struct isl_swizzle |
| isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second) |
| { |
| return (struct isl_swizzle) { |
| .r = swizzle_select(first.r, second), |
| .g = swizzle_select(first.g, second), |
| .b = swizzle_select(first.b, second), |
| .a = swizzle_select(first.a, second), |
| }; |
| } |
| |
| /** |
| * Returns a swizzle that is the pseudo-inverse of this swizzle. |
| */ |
| struct isl_swizzle |
| isl_swizzle_invert(struct isl_swizzle swizzle) |
| { |
| /* Default to zero for channels which do not show up in the swizzle */ |
| enum isl_channel_select chans[4] = { |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| ISL_CHANNEL_SELECT_ZERO, |
| }; |
| |
| /* We go in ABGR order so that, if there are any duplicates, the first one |
| * is taken if you look at it in RGBA order. This is what Haswell hardware |
| * does for render target swizzles. |
| */ |
| if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA; |
| if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE; |
| if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN; |
| if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4) |
| chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED; |
| |
| return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] }; |
| } |
| |
| static uint32_t |
| isl_color_value_channel(union isl_color_value src, |
| enum isl_channel_select chan, |
| uint32_t one) |
| { |
| if (chan == ISL_CHANNEL_SELECT_ZERO) |
| return 0; |
| if (chan == ISL_CHANNEL_SELECT_ONE) |
| return one; |
| |
| assert(chan >= ISL_CHANNEL_SELECT_RED); |
| assert(chan < ISL_CHANNEL_SELECT_RED + 4); |
| |
| return src.u32[chan - ISL_CHANNEL_SELECT_RED]; |
| } |
| |
| /** Applies an inverse swizzle to a color value */ |
| union isl_color_value |
| isl_color_value_swizzle(union isl_color_value src, |
| struct isl_swizzle swizzle, |
| bool is_float) |
| { |
| uint32_t one = is_float ? 0x3f800000 : 1; |
| |
| return (union isl_color_value) { .u32 = { |
| isl_color_value_channel(src, swizzle.r, one), |
| isl_color_value_channel(src, swizzle.g, one), |
| isl_color_value_channel(src, swizzle.b, one), |
| isl_color_value_channel(src, swizzle.a, one), |
| } }; |
| } |
| |
| /** Applies an inverse swizzle to a color value */ |
| union isl_color_value |
| isl_color_value_swizzle_inv(union isl_color_value src, |
| struct isl_swizzle swizzle) |
| { |
| union isl_color_value dst = { .u32 = { 0, } }; |
| |
| /* We assign colors in ABGR order so that the first one will be taken in |
| * RGBA precedence order. According to the PRM docs for shader channel |
| * select, this matches Haswell hardware behavior. |
| */ |
| if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3]; |
| if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2]; |
| if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1]; |
| if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4) |
| dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0]; |
| |
| return dst; |
| } |
| |
| uint8_t |
| isl_format_get_aux_map_encoding(enum isl_format format) |
| { |
| switch(format) { |
| case ISL_FORMAT_R32G32B32A32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32B32X32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32B32A32_SINT: return 0x12; |
| case ISL_FORMAT_R32G32B32A32_UINT: return 0x13; |
| case ISL_FORMAT_R16G16B16A16_UNORM: return 0x14; |
| case ISL_FORMAT_R16G16B16A16_SNORM: return 0x15; |
| case ISL_FORMAT_R16G16B16A16_SINT: return 0x16; |
| case ISL_FORMAT_R16G16B16A16_UINT: return 0x17; |
| case ISL_FORMAT_R16G16B16A16_FLOAT: return 0x10; |
| case ISL_FORMAT_R16G16B16X16_FLOAT: return 0x10; |
| case ISL_FORMAT_R32G32_FLOAT: return 0x11; |
| case ISL_FORMAT_R32G32_SINT: return 0x12; |
| case ISL_FORMAT_R32G32_UINT: return 0x13; |
| case ISL_FORMAT_B8G8R8A8_UNORM: return 0xA; |
| case ISL_FORMAT_B8G8R8X8_UNORM: return 0xA; |
| case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R10G10B10A2_UNORM: return 0x18; |
| case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: return 0x18; |
| case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: return 0x19; |
| case ISL_FORMAT_R10G10B10A2_UINT: return 0x1A; |
| case ISL_FORMAT_R8G8B8A8_UNORM: return 0xA; |
| case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R8G8B8A8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8G8B8A8_SINT: return 0x1C; |
| case ISL_FORMAT_R8G8B8A8_UINT: return 0x1D; |
| case ISL_FORMAT_R16G16_UNORM: return 0x14; |
| case ISL_FORMAT_R16G16_SNORM: return 0x15; |
| case ISL_FORMAT_R16G16_SINT: return 0x16; |
| case ISL_FORMAT_R16G16_UINT: return 0x17; |
| case ISL_FORMAT_R16G16_FLOAT: return 0x10; |
| case ISL_FORMAT_B10G10R10A2_UNORM: return 0x18; |
| case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: return 0x18; |
| case ISL_FORMAT_R11G11B10_FLOAT: return 0x1E; |
| case ISL_FORMAT_R32_SINT: return 0x12; |
| case ISL_FORMAT_R32_UINT: return 0x13; |
| case ISL_FORMAT_R32_FLOAT: return 0x11; |
| case ISL_FORMAT_R24_UNORM_X8_TYPELESS: return 0x13; |
| case ISL_FORMAT_B5G6R5_UNORM: return 0xA; |
| case ISL_FORMAT_B5G6R5_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B5G5R5A1_UNORM: return 0xA; |
| case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_B4G4R4A4_UNORM: return 0xA; |
| case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_R8G8_UNORM: return 0xA; |
| case ISL_FORMAT_R8G8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8G8_SINT: return 0x1C; |
| case ISL_FORMAT_R8G8_UINT: return 0x1D; |
| case ISL_FORMAT_R16_UNORM: return 0x14; |
| case ISL_FORMAT_R16_SNORM: return 0x15; |
| case ISL_FORMAT_R16_SINT: return 0x16; |
| case ISL_FORMAT_R16_UINT: return 0x17; |
| case ISL_FORMAT_R16_FLOAT: return 0x10; |
| case ISL_FORMAT_B5G5R5X1_UNORM: return 0xA; |
| case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: return 0xA; |
| case ISL_FORMAT_A1B5G5R5_UNORM: return 0xA; |
| case ISL_FORMAT_A4B4G4R4_UNORM: return 0xA; |
| case ISL_FORMAT_R8_UNORM: return 0xA; |
| case ISL_FORMAT_R8_SNORM: return 0x1B; |
| case ISL_FORMAT_R8_SINT: return 0x1C; |
| case ISL_FORMAT_R8_UINT: return 0x1D; |
| case ISL_FORMAT_A8_UNORM: return 0xA; |
| case ISL_FORMAT_PLANAR_420_8: return 0xF; |
| case ISL_FORMAT_PLANAR_420_10: return 0x7; |
| case ISL_FORMAT_PLANAR_420_12: return 0x8; |
| case ISL_FORMAT_PLANAR_420_16: return 0x8; |
| case ISL_FORMAT_YCRCB_NORMAL: return 0x3; |
| case ISL_FORMAT_YCRCB_SWAPY: return 0xB; |
| default: |
| unreachable("Unsupported aux-map format!"); |
| return 0; |
| } |
| } |
| |
| const char * |
| isl_aux_op_to_name(enum isl_aux_op op) |
| { |
| static const char *names[] = { |
| [ISL_AUX_OP_NONE] = "none", |
| [ISL_AUX_OP_FAST_CLEAR] = "fast-clear", |
| [ISL_AUX_OP_FULL_RESOLVE] = "full-resolve", |
| [ISL_AUX_OP_PARTIAL_RESOLVE] = "partial-resolve", |
| [ISL_AUX_OP_AMBIGUATE] = "ambiguate", |
| }; |
| assert(op < ARRAY_SIZE(names)); |
| return names[op]; |
| } |
| |
| const char * |
| isl_tiling_to_name(enum isl_tiling tiling) |
| { |
| static const char *names[] = { |
| [ISL_TILING_LINEAR] = "linear", |
| [ISL_TILING_W] = "W", |
| [ISL_TILING_X] = "X", |
| [ISL_TILING_Y0] = "Y0", |
| [ISL_TILING_SKL_Yf] = "SKL-Yf", |
| [ISL_TILING_SKL_Ys] = "SKL-Ys", |
| [ISL_TILING_ICL_Yf] = "ICL-Yf", |
| [ISL_TILING_ICL_Ys] = "ICL-Ys", |
| [ISL_TILING_4] = "4", |
| [ISL_TILING_64] = "64", |
| [ISL_TILING_64_XE2] = "64-Xe2", |
| [ISL_TILING_HIZ] = "hiz", |
| [ISL_TILING_CCS] = "ccs", |
| }; |
| assert(tiling < ARRAY_SIZE(names)); |
| return names[tiling]; |
| } |
| |
| const char * |
| isl_aux_usage_to_name(enum isl_aux_usage usage) |
| { |
| static const char *names[] = { |
| [ISL_AUX_USAGE_NONE] = "none", |
| [ISL_AUX_USAGE_HIZ] = "hiz", |
| [ISL_AUX_USAGE_MCS] = "mcs", |
| [ISL_AUX_USAGE_CCS_D] = "ccs-d", |
| [ISL_AUX_USAGE_CCS_E] = "ccs-e", |
| [ISL_AUX_USAGE_FCV_CCS_E] = "fcv-ccs-e", |
| [ISL_AUX_USAGE_MC] = "mc", |
| [ISL_AUX_USAGE_HIZ_CCS_WT] = "hiz-ccs-wt", |
| [ISL_AUX_USAGE_HIZ_CCS] = "hiz-ccs", |
| [ISL_AUX_USAGE_MCS_CCS] = "mcs-ccs", |
| [ISL_AUX_USAGE_STC_CCS] = "stc-ccs", |
| }; |
| assert(usage < ARRAY_SIZE(names)); |
| return names[usage]; |
| } |
| |
| const char * |
| isl_aux_state_to_name(enum isl_aux_state state) |
| { |
| static const char *names[] = { |
| [ISL_AUX_STATE_CLEAR] = "clear", |
| [ISL_AUX_STATE_PARTIAL_CLEAR] = "partial_clear", |
| [ISL_AUX_STATE_COMPRESSED_CLEAR] = "compressed_clear", |
| [ISL_AUX_STATE_COMPRESSED_NO_CLEAR] = "compressed_no_clear", |
| [ISL_AUX_STATE_RESOLVED] = "resolved", |
| [ISL_AUX_STATE_PASS_THROUGH] = "pass-through", |
| [ISL_AUX_STATE_AUX_INVALID] = "invalid", |
| }; |
| assert(state < ARRAY_SIZE(names)); |
| return names[state]; |
| } |