blob: ab5ffed366b8b8543fd5749f30ad13c6aab96a90 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_private.h"
#include "anv_measure.h"
#include "common/intel_compute_slm.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "genxml/genX_rt_pack.h"
#include "common/intel_genX_state_brw.h"
#include "ds/intel_tracepoints.h"
#include "genX_mi_builder.h"
void
genX(cmd_buffer_ensure_cfe_state)(struct anv_cmd_buffer *cmd_buffer,
uint32_t total_scratch)
{
#if GFX_VERx10 >= 125
assert(cmd_buffer->state.current_pipeline == GPGPU);
struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
if (total_scratch <= comp_state->scratch_size)
return;
const struct intel_device_info *devinfo = cmd_buffer->device->info;
anv_batch_emit(&cmd_buffer->batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads = devinfo->max_cs_threads * devinfo->subslice_total;
uint32_t scratch_surf;
struct anv_scratch_pool *scratch_pool =
(cmd_buffer->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT) ?
&cmd_buffer->device->protected_scratch_pool :
&cmd_buffer->device->scratch_pool;
struct anv_bo *scratch_bo =
anv_scratch_pool_alloc(cmd_buffer->device, scratch_pool,
MESA_SHADER_COMPUTE,
total_scratch);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs, scratch_bo);
scratch_surf = anv_scratch_pool_get_surf(cmd_buffer->device, scratch_pool,
total_scratch);
cfe.ScratchSpaceBuffer = scratch_surf >> ANV_SCRATCH_SPACE_SHIFT(GFX_VER);
#if GFX_VER >= 20
switch (cmd_buffer->device->physical->instance->stack_ids) {
case 256: cfe.StackIDControl = StackIDs256; break;
case 512: cfe.StackIDControl = StackIDs512; break;
case 1024: cfe.StackIDControl = StackIDs1024; break;
case 2048: cfe.StackIDControl = StackIDs2048; break;
default: unreachable("invalid stack_ids value");
}
#if INTEL_WA_14021821874_GFX_VER || INTEL_WA_14018813551_GFX_VER
/* Wa_14021821874, Wa_14018813551:
*
* "StackIDControlOverride_RTGlobals = 0 (i.e. 2k)". We
* already set stack size per ray to 64 in brw_nir_lower_rt_intrinsics
* as the workaround also requires.
*/
if (intel_needs_workaround(cmd_buffer->device->info, 14021821874) ||
intel_needs_workaround(cmd_buffer->device->info, 14018813551))
cfe.StackIDControl = StackIDs2048;
#endif
#endif
cfe.OverDispatchControl = 2; /* 50% overdispatch */
}
comp_state->scratch_size = total_scratch;
#else
unreachable("Invalid call");
#endif
}
static void
genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(comp_state->base.pipeline);
const UNUSED struct intel_device_info *devinfo = cmd_buffer->device->info;
assert(pipeline->cs);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
genX(cmd_buffer_update_color_aux_op(cmd_buffer, ISL_AUX_OP_NONE));
genX(flush_descriptor_buffers)(cmd_buffer, &comp_state->base);
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
/* Apply any pending pipeline flushes we may have. We want to apply them
* now because, if any of those flushes are for things like push constants,
* the GPU will read the state at weird times.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
if (cmd_buffer->state.compute.pipeline_dirty) {
#if GFX_VERx10 < 125
/* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT,
"flush compute state");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
#endif
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
#if GFX_VERx10 >= 125
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
genX(cmd_buffer_ensure_cfe_state)(cmd_buffer, prog_data->base.total_scratch);
#endif
/* Changing the pipeline affects the push constants layout (different
* amount of cross/per thread allocations). The allocation is also
* bounded to just the amount consummed by the pipeline (see
* anv_cmd_buffer_cs_push_constants). So we force the reallocation for
* every pipeline change.
*
* On Gfx12.0 we're also seeing failures in the dEQP-VK.memory_model.*
* tests when run in parallel. This is likely a HW issue with push
* constants & context save/restore.
*
* TODO: optimize this on Gfx12.5+ where the shader is not using per
* thread allocations and is also pulling the data using SEND messages.
* We should be able to limit reallocations only the data actually
* changes.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
comp_state->base.push_constants_data_dirty = true;
}
cmd_buffer->state.descriptors_dirty |=
genX(cmd_buffer_flush_push_descriptors)(cmd_buffer,
&cmd_buffer->state.compute.base,
&pipeline->base);
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
cmd_buffer->state.compute.pipeline_dirty) {
genX(cmd_buffer_flush_descriptor_sets)(cmd_buffer,
&cmd_buffer->state.compute.base,
VK_SHADER_STAGE_COMPUTE_BIT,
&pipeline->cs, 1);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
#if GFX_VERx10 < 125
uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
.BindingTablePointer =
cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
.SamplerStatePointer =
cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
};
GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
struct anv_state state =
anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
pipeline->interface_descriptor_data,
GENX(INTERFACE_DESCRIPTOR_DATA_length),
64);
uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
anv_batch_emit(&cmd_buffer->batch,
GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
mid.InterfaceDescriptorTotalLength = size;
mid.InterfaceDescriptorDataStartAddress = state.offset;
}
#endif
}
if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
if (comp_state->base.push_constants_state.alloc_size == 0 ||
comp_state->base.push_constants_data_dirty) {
comp_state->base.push_constants_state =
anv_cmd_buffer_cs_push_constants(cmd_buffer);
comp_state->base.push_constants_data_dirty = false;
}
#if GFX_VERx10 < 125
if (comp_state->base.push_constants_state.alloc_size) {
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = comp_state->base.push_constants_state.alloc_size;
curbe.CURBEDataStartAddress = comp_state->base.push_constants_state.offset;
}
}
#endif
cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
}
cmd_buffer->state.compute.pipeline_dirty = false;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
static void
anv_cmd_buffer_push_workgroups(struct anv_cmd_buffer *cmd_buffer,
const struct brw_cs_prog_data *prog_data,
uint32_t baseGroupX,
uint32_t baseGroupY,
uint32_t baseGroupZ,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ,
struct anv_address indirect_group)
{
if (anv_batch_has_error(&cmd_buffer->batch))
return;
struct anv_push_constants *push =
&cmd_buffer->state.compute.base.push_constants;
bool updated = false;
if (push->cs.base_work_group_id[0] != baseGroupX ||
push->cs.base_work_group_id[1] != baseGroupY ||
push->cs.base_work_group_id[2] != baseGroupZ) {
push->cs.base_work_group_id[0] = baseGroupX;
push->cs.base_work_group_id[1] = baseGroupY;
push->cs.base_work_group_id[2] = baseGroupZ;
updated = true;
}
/* On Gfx12.5+ this value goes into the inline parameter register */
if (GFX_VERx10 < 125 && prog_data->uses_num_work_groups) {
if (anv_address_is_null(indirect_group)) {
if (push->cs.num_work_groups[0] != groupCountX ||
push->cs.num_work_groups[1] != groupCountY ||
push->cs.num_work_groups[2] != groupCountZ) {
push->cs.num_work_groups[0] = groupCountX;
push->cs.num_work_groups[1] = groupCountY;
push->cs.num_work_groups[2] = groupCountZ;
updated = true;
}
} else {
uint64_t addr64 = anv_address_physical(indirect_group);
uint32_t lower_addr32 = addr64 & 0xffffffff;
uint32_t upper_addr32 = addr64 >> 32;
if (push->cs.num_work_groups[0] != UINT32_MAX ||
push->cs.num_work_groups[1] != lower_addr32 ||
push->cs.num_work_groups[2] != upper_addr32) {
push->cs.num_work_groups[0] = UINT32_MAX;
push->cs.num_work_groups[1] = lower_addr32;
push->cs.num_work_groups[2] = upper_addr32;
updated = true;
}
}
}
if (updated) {
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
cmd_buffer->state.compute.base.push_constants_data_dirty = true;
}
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
static void
compute_load_indirect_params(struct anv_cmd_buffer *cmd_buffer,
const struct anv_address indirect_addr,
bool is_unaligned_size_x)
{
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value size_x = mi_mem32(anv_address_add(indirect_addr, 0));
/* Convert unaligned thread invocations to aligned thread group in X
* dimension for unaligned shader dispatches during ray tracing phase.
*/
if (is_unaligned_size_x) {
const uint32_t mocs = isl_mocs(&cmd_buffer->device->isl_dev, 0, false);
mi_builder_set_mocs(&b, mocs);
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(cmd_buffer->state.compute.base.pipeline);
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
assert(util_is_power_of_two_or_zero(prog_data->local_size[0]));
size_x = mi_udiv32_imm(&b, size_x, prog_data->local_size[0]);
size_x = mi_iadd(&b, size_x, mi_imm(1));
}
struct mi_value size_y = mi_mem32(anv_address_add(indirect_addr, 4));
struct mi_value size_z = mi_mem32(anv_address_add(indirect_addr, 8));
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
}
static void
compute_store_indirect_params(struct anv_cmd_buffer *cmd_buffer,
const struct anv_address indirect_addr)
{
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
struct mi_value size_x = mi_mem32(anv_address_add(indirect_addr, 0));
struct mi_value size_y = mi_mem32(anv_address_add(indirect_addr, 4));
struct mi_value size_z = mi_mem32(anv_address_add(indirect_addr, 8));
mi_store(&b, size_x, mi_reg32(GPGPU_DISPATCHDIMX));
mi_store(&b, size_y, mi_reg32(GPGPU_DISPATCHDIMY));
mi_store(&b, size_z, mi_reg32(GPGPU_DISPATCHDIMZ));
}
#if GFX_VERx10 >= 125
static inline struct GENX(INTERFACE_DESCRIPTOR_DATA)
get_interface_descriptor_data(struct anv_cmd_buffer *cmd_buffer,
const struct anv_shader_bin *shader,
const struct brw_cs_prog_data *prog_data,
const struct intel_cs_dispatch_info *dispatch)
{
const struct intel_device_info *devinfo = cmd_buffer->device->info;
return (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
.SamplerCount = DIV_ROUND_UP(CLAMP(shader->bind_map.sampler_count, 0, 16), 4),
.KernelStartPointer = shader->kernel.offset,
.SamplerStatePointer = cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
.BindingTablePointer = cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
/* Typically set to 0 to avoid prefetching on every thread dispatch. */
.BindingTableEntryCount = devinfo->verx10 == 125 ?
0 : MIN2(shader->bind_map.surface_count, 30),
.NumberofThreadsinGPGPUThreadGroup = dispatch->threads,
.SharedLocalMemorySize = intel_compute_slm_encode_size(GFX_VER, prog_data->base.total_shared),
.PreferredSLMAllocationSize =
intel_compute_preferred_slm_calc_encode_size(devinfo,
prog_data->base.total_shared,
dispatch->group_size,
dispatch->simd_size),
.NumberOfBarriers = prog_data->uses_barrier,
};
}
static inline void
emit_indirect_compute_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_shader_bin *shader,
const struct brw_cs_prog_data *prog_data,
struct anv_address indirect_addr)
{
const struct intel_device_info *devinfo = cmd_buffer->device->info;
assert(devinfo->has_indirect_unroll);
struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
bool predicate = cmd_buffer->state.conditional_render_enabled;
const struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
const int dispatch_size = dispatch.simd_size / 16;
uint64_t indirect_addr64 = anv_address_physical(indirect_addr);
struct GENX(COMPUTE_WALKER_BODY) body = {
.SIMDSize = dispatch_size,
/* HSD 14016252163: Use of Morton walk order (and batching using a batch
* size of 4) is expected to increase sampler cache hit rates by
* increasing sample address locality within a subslice.
*/
#if GFX_VER >= 30
.DispatchWalkOrder = prog_data->uses_sampler ?
MortonWalk :
LinearWalk,
.ThreadGroupBatchSize = prog_data->uses_sampler ? TG_BATCH_4 :
TG_BATCH_1,
#endif
.MessageSIMD = dispatch_size,
.IndirectDataStartAddress = comp_state->base.push_constants_state.offset,
.IndirectDataLength = comp_state->base.push_constants_state.alloc_size,
.GenerateLocalID = prog_data->generate_local_id != 0,
.EmitLocal = prog_data->generate_local_id,
.WalkOrder = prog_data->walk_order,
.TileLayout = prog_data->walk_order == INTEL_WALK_ORDER_YXZ ?
TileY32bpe : Linear,
.LocalXMaximum = prog_data->local_size[0] - 1,
.LocalYMaximum = prog_data->local_size[1] - 1,
.LocalZMaximum = prog_data->local_size[2] - 1,
.ExecutionMask = dispatch.right_mask,
.PostSync.MOCS = anv_mocs(cmd_buffer->device, NULL, 0),
.InterfaceDescriptor =
get_interface_descriptor_data(cmd_buffer, shader, prog_data,
&dispatch),
.EmitInlineParameter = prog_data->uses_inline_data,
.InlineData = {
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 0] = UINT32_MAX,
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 1] = indirect_addr64 & 0xffffffff,
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 2] = indirect_addr64 >> 32,
},
};
cmd_buffer->state.last_indirect_dispatch =
anv_batch_emitn(
&cmd_buffer->batch,
GENX(EXECUTE_INDIRECT_DISPATCH_length),
GENX(EXECUTE_INDIRECT_DISPATCH),
.PredicateEnable = predicate,
.MaxCount = 1,
.COMPUTE_WALKER_BODY = body,
.ArgumentBufferStartAddress = indirect_addr,
.MOCS = anv_mocs(cmd_buffer->device,
indirect_addr.bo, 0),
);
}
static inline void
emit_compute_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline,
struct anv_address indirect_addr,
const struct brw_cs_prog_data *prog_data,
struct intel_cs_dispatch_info dispatch,
uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ)
{
const struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
const bool predicate = cmd_buffer->state.conditional_render_enabled;
uint32_t num_workgroup_data[3];
if (!anv_address_is_null(indirect_addr)) {
uint64_t indirect_addr64 = anv_address_physical(indirect_addr);
num_workgroup_data[0] = UINT32_MAX;
num_workgroup_data[1] = indirect_addr64 & 0xffffffff;
num_workgroup_data[2] = indirect_addr64 >> 32;
} else {
num_workgroup_data[0] = groupCountX;
num_workgroup_data[1] = groupCountY;
num_workgroup_data[2] = groupCountZ;
}
struct GENX(COMPUTE_WALKER_BODY) body = {
.SIMDSize = dispatch.simd_size / 16,
.MessageSIMD = dispatch.simd_size / 16,
.IndirectDataStartAddress = comp_state->base.push_constants_state.offset,
.IndirectDataLength = comp_state->base.push_constants_state.alloc_size,
.GenerateLocalID = prog_data->generate_local_id != 0,
.EmitLocal = prog_data->generate_local_id,
.WalkOrder = prog_data->walk_order,
.TileLayout = prog_data->walk_order == INTEL_WALK_ORDER_YXZ ?
TileY32bpe : Linear,
.LocalXMaximum = prog_data->local_size[0] - 1,
.LocalYMaximum = prog_data->local_size[1] - 1,
.LocalZMaximum = prog_data->local_size[2] - 1,
.ThreadGroupIDXDimension = groupCountX,
.ThreadGroupIDYDimension = groupCountY,
.ThreadGroupIDZDimension = groupCountZ,
.ExecutionMask = dispatch.right_mask,
.PostSync = {
.MOCS = anv_mocs(pipeline->base.device, NULL, 0),
},
.InterfaceDescriptor =
get_interface_descriptor_data(cmd_buffer, pipeline->cs,
prog_data, &dispatch),
.EmitInlineParameter = prog_data->uses_inline_data,
.InlineData = {
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 0] = num_workgroup_data[0],
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 1] = num_workgroup_data[1],
[ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET / 4 + 2] = num_workgroup_data[2],
}
};
cmd_buffer->state.last_compute_walker =
anv_batch_emitn(
&cmd_buffer->batch,
GENX(COMPUTE_WALKER_length),
GENX(COMPUTE_WALKER),
.IndirectParameterEnable = !anv_address_is_null(indirect_addr),
.PredicateEnable = predicate,
.body = body,
#if GFX_VERx10 == 125
.SystolicModeEnable = prog_data->uses_systolic,
#endif
);
}
#else /* #if GFX_VERx10 >= 125 */
static inline void
emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline, bool indirect,
const struct brw_cs_prog_data *prog_data,
uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ)
{
const bool predicate = cmd_buffer->state.conditional_render_enabled;
const struct intel_device_info *devinfo = pipeline->base.device->info;
const struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = indirect;
ggw.PredicateEnable = predicate;
ggw.SIMDSize = dispatch.simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
ggw.ThreadGroupIDXDimension = groupCountX;
ggw.ThreadGroupIDYDimension = groupCountY;
ggw.ThreadGroupIDZDimension = groupCountZ;
ggw.RightExecutionMask = dispatch.right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
}
#endif /* #if GFX_VERx10 >= 125 */
static inline void
emit_cs_walker(struct anv_cmd_buffer *cmd_buffer,
const struct anv_compute_pipeline *pipeline,
const struct brw_cs_prog_data *prog_data,
struct intel_cs_dispatch_info dispatch,
struct anv_address indirect_addr,
uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ,
bool is_unaligned_size_x)
{
bool is_indirect = !anv_address_is_null(indirect_addr);
#if GFX_VERx10 >= 125
/* For unaligned dispatch, we need to tweak the dispatch value with
* MI_MATH, so we can't use indirect HW instructions.
*/
if (is_indirect && !is_unaligned_size_x &&
cmd_buffer->device->info->has_indirect_unroll) {
emit_indirect_compute_walker(cmd_buffer, pipeline->cs, prog_data,
indirect_addr);
return;
}
#endif
if (is_indirect)
compute_load_indirect_params(cmd_buffer, indirect_addr,
is_unaligned_size_x);
#if GFX_VERx10 >= 125
emit_compute_walker(cmd_buffer, pipeline, indirect_addr, prog_data,
dispatch, groupCountX, groupCountY, groupCountZ);
#else
emit_gpgpu_walker(cmd_buffer, pipeline, is_indirect, prog_data,
groupCountX, groupCountY, groupCountZ);
#endif
}
void genX(CmdDispatchBase)(
VkCommandBuffer commandBuffer,
uint32_t baseGroupX,
uint32_t baseGroupY,
uint32_t baseGroupZ,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(cmd_buffer->state.compute.base.pipeline);
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(cmd_buffer->device->info, prog_data, NULL);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_cmd_buffer_push_workgroups(cmd_buffer, prog_data,
baseGroupX, baseGroupY, baseGroupZ,
groupCountX, groupCountY, groupCountZ,
ANV_NULL_ADDRESS);
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_COMPUTE,
"compute",
groupCountX * groupCountY * groupCountZ *
prog_data->local_size[0] * prog_data->local_size[1] *
prog_data->local_size[2]);
if (cmd_buffer->state.rt.debug_marker_count == 0)
trace_intel_begin_compute(&cmd_buffer->trace);
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
emit_cs_walker(cmd_buffer, pipeline, prog_data, dispatch,
ANV_NULL_ADDRESS /* no indirect data */,
groupCountX, groupCountY, groupCountZ,
false);
if (cmd_buffer->state.rt.debug_marker_count == 0) {
trace_intel_end_compute(&cmd_buffer->trace,
groupCountX, groupCountY, groupCountZ,
pipeline->source_hash);
}
}
static void
emit_unaligned_cs_walker(
VkCommandBuffer commandBuffer,
uint32_t baseGroupX,
uint32_t baseGroupY,
uint32_t baseGroupZ,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ,
struct intel_cs_dispatch_info dispatch)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(cmd_buffer->state.compute.base.pipeline);
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_cmd_buffer_push_workgroups(cmd_buffer, prog_data,
baseGroupX, baseGroupY, baseGroupZ,
groupCountX, groupCountY, groupCountZ,
ANV_NULL_ADDRESS);
/* RT shaders have Y and Z local size set to 1 always. */
assert(prog_data->local_size[1] == 1 && prog_data->local_size[2] == 1);
/* RT shaders dispatched with group Y and Z set to 1 always. */
assert(groupCountY == 1 && groupCountZ == 1);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_COMPUTE,
"compute-unaligned-cs-walker",
groupCountX * groupCountY * groupCountZ *
prog_data->local_size[0] * prog_data->local_size[1] *
prog_data->local_size[2]);
if (cmd_buffer->state.rt.debug_marker_count == 0)
trace_intel_begin_compute(&cmd_buffer->trace);
assert(!prog_data->uses_num_work_groups);
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
#if GFX_VERx10 >= 125
emit_compute_walker(cmd_buffer, pipeline, ANV_NULL_ADDRESS, prog_data,
dispatch, groupCountX, groupCountY, groupCountZ);
#endif
if (cmd_buffer->state.rt.debug_marker_count == 0) {
trace_intel_end_compute(&cmd_buffer->trace,
groupCountX, groupCountY, groupCountZ,
pipeline->source_hash);
}
}
/*
* Dispatch compute work item with unaligned thread invocations.
*
* This helper takes unaligned thread invocations, convert it into aligned
* thread group count and dispatch compute work items.
*
* We launch two CS walker, one with aligned part and another CS walker
* with single group for remaining thread invocations.
*
* This function is now specifically for BVH building.
*/
void
genX(cmd_dispatch_unaligned)(
VkCommandBuffer commandBuffer,
uint32_t invocations_x,
uint32_t invocations_y,
uint32_t invocations_z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(cmd_buffer->state.compute.base.pipeline);
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
/* Group X can be unaligned for RT dispatches. */
uint32_t groupCountX = invocations_x / prog_data->local_size[0];
uint32_t groupCountY = invocations_y;
uint32_t groupCountZ = invocations_z;
struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(cmd_buffer->device->info, prog_data, NULL);
/* Launch first CS walker with aligned group count X. */
if (groupCountX) {
emit_unaligned_cs_walker(commandBuffer, 0, 0, 0, groupCountX,
groupCountY, groupCountZ, dispatch);
}
uint32_t unaligned_invocations_x = invocations_x % prog_data->local_size[0];
if (unaligned_invocations_x) {
dispatch.threads = DIV_ROUND_UP(unaligned_invocations_x,
dispatch.simd_size);
/* Make sure the 2nd walker has the same amount of invocations per
* workgroup as the 1st walker, so that gl_GlobalInvocationsID can be
* calculated correctly with baseGroup.
*/
assert(dispatch.threads * dispatch.simd_size == prog_data->local_size[0]);
const uint32_t remainder = unaligned_invocations_x & (dispatch.simd_size - 1);
if (remainder > 0) {
dispatch.right_mask = ~0u >> (32 - remainder);
} else {
dispatch.right_mask = ~0u >> (32 - dispatch.simd_size);
}
/* Launch second CS walker for unaligned part. */
emit_unaligned_cs_walker(commandBuffer, groupCountX, 0, 0, 1, 1, 1,
dispatch);
}
}
/*
* This dispatches compute work item with indirect parameters.
* Helper also makes the unaligned thread invocations aligned.
*/
void
genX(cmd_buffer_dispatch_indirect)(struct anv_cmd_buffer *cmd_buffer,
struct anv_address indirect_addr,
bool is_unaligned_size_x)
{
struct anv_compute_pipeline *pipeline =
anv_pipeline_to_compute(cmd_buffer->state.compute.base.pipeline);
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
UNUSED struct anv_batch *batch = &cmd_buffer->batch;
struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(cmd_buffer->device->info, prog_data, NULL);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
anv_cmd_buffer_push_workgroups(cmd_buffer, prog_data,
0, 0, 0, 0, 0, 0, indirect_addr);
anv_measure_snapshot(cmd_buffer,
INTEL_SNAPSHOT_COMPUTE,
"compute indirect",
0);
if (cmd_buffer->state.rt.debug_marker_count == 0)
trace_intel_begin_compute_indirect(&cmd_buffer->trace);
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
if (cmd_buffer->state.conditional_render_enabled)
genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
emit_cs_walker(cmd_buffer, pipeline, prog_data, dispatch, indirect_addr, 0,
0, 0, is_unaligned_size_x);
if (cmd_buffer->state.rt.debug_marker_count == 0) {
trace_intel_end_compute_indirect(&cmd_buffer->trace,
anv_address_utrace(indirect_addr),
pipeline->source_hash);
}
}
void genX(CmdDispatchIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_address addr = anv_address_add(buffer->address, offset);
genX(cmd_buffer_dispatch_indirect)(cmd_buffer, addr, false);
}
struct anv_address
genX(cmd_buffer_ray_query_globals)(struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VERx10 >= 125
struct anv_device *device = cmd_buffer->device;
struct anv_state state =
anv_cmd_buffer_alloc_temporary_state(cmd_buffer,
BRW_RT_DISPATCH_GLOBALS_SIZE, 64);
struct brw_rt_scratch_layout layout;
uint32_t stack_ids_per_dss = 2048; /* TODO: can we use a lower value in
* some cases?
*/
brw_rt_compute_scratch_layout(&layout, device->info,
stack_ids_per_dss, 1 << 10);
uint8_t idx = anv_get_ray_query_bo_index(cmd_buffer);
const struct GENX(RT_DISPATCH_GLOBALS) rtdg = {
.MemBaseAddress = (struct anv_address) {
/* The ray query HW computes offsets from the top of the buffer, so
* let the address at the end of the buffer.
*/
.bo = device->ray_query_bo[idx],
.offset = device->ray_query_bo[idx]->size
},
.AsyncRTStackSize = layout.ray_stack_stride / 64,
.NumDSSRTStacks = layout.stack_ids_per_dss,
.MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
.Flags = RT_DEPTH_TEST_LESS_EQUAL,
.ResumeShaderTable = (struct anv_address) {
.bo = cmd_buffer->state.ray_query_shadow_bo,
},
};
GENX(RT_DISPATCH_GLOBALS_pack)(NULL, state.map, &rtdg);
return anv_cmd_buffer_temporary_state_address(cmd_buffer, state);
#else
unreachable("Not supported");
#endif
}
#if GFX_VERx10 >= 125
void
genX(cmd_buffer_dispatch_kernel)(struct anv_cmd_buffer *cmd_buffer,
struct anv_kernel *kernel,
const uint32_t *global_size,
uint32_t arg_count,
const struct anv_kernel_arg *args)
{
const struct intel_device_info *devinfo = cmd_buffer->device->info;
const struct brw_cs_prog_data *cs_prog_data =
brw_cs_prog_data_const(kernel->bin->prog_data);
genX(cmd_buffer_config_l3)(cmd_buffer, kernel->l3_config);
genX(cmd_buffer_update_color_aux_op(cmd_buffer, ISL_AUX_OP_NONE));
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
/* Apply any pending pipeline flushes we may have. We want to apply them
* now because, if any of those flushes are for things like push constants,
* the GPU will read the state at weird times.
*/
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
uint32_t indirect_data_size = sizeof(struct brw_kernel_sysvals);
indirect_data_size += kernel->bin->bind_map.kernel_args_size;
indirect_data_size = ALIGN(indirect_data_size, 64);
struct anv_state indirect_data =
anv_cmd_buffer_alloc_general_state(cmd_buffer,
indirect_data_size, 64);
memset(indirect_data.map, 0, indirect_data.alloc_size);
struct brw_kernel_sysvals sysvals = {};
if (global_size != NULL) {
for (unsigned i = 0; i < 3; i++)
sysvals.num_work_groups[i] = global_size[i];
memcpy(indirect_data.map, &sysvals, sizeof(sysvals));
} else {
struct anv_address sysvals_addr = {
.bo = NULL, /* General state buffer is always 0. */
.offset = indirect_data.offset,
};
compute_store_indirect_params(cmd_buffer, sysvals_addr);
}
void *args_map = indirect_data.map + sizeof(sysvals);
for (unsigned i = 0; i < kernel->bin->bind_map.kernel_arg_count; i++) {
struct brw_kernel_arg_desc *arg_desc =
&kernel->bin->bind_map.kernel_args[i];
assert(i < arg_count);
const struct anv_kernel_arg *arg = &args[i];
if (arg->is_ptr) {
memcpy(args_map + arg_desc->offset, arg->ptr, arg_desc->size);
} else {
assert(arg_desc->size <= sizeof(arg->u64));
memcpy(args_map + arg_desc->offset, &arg->u64, arg_desc->size);
}
}
struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(devinfo, cs_prog_data, NULL);
struct GENX(COMPUTE_WALKER_BODY) body = {
.SIMDSize = dispatch.simd_size / 16,
.MessageSIMD = dispatch.simd_size / 16,
.IndirectDataStartAddress = indirect_data.offset,
.IndirectDataLength = indirect_data.alloc_size,
.LocalXMaximum = cs_prog_data->local_size[0] - 1,
.LocalYMaximum = cs_prog_data->local_size[1] - 1,
.LocalZMaximum = cs_prog_data->local_size[2] - 1,
.ExecutionMask = dispatch.right_mask,
.PostSync.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
.InterfaceDescriptor =
get_interface_descriptor_data(cmd_buffer,
kernel->bin,
cs_prog_data,
&dispatch),
};
if (global_size != NULL) {
body.ThreadGroupIDXDimension = global_size[0];
body.ThreadGroupIDYDimension = global_size[1];
body.ThreadGroupIDZDimension = global_size[2];
}
cmd_buffer->state.last_compute_walker =
anv_batch_emitn(
&cmd_buffer->batch,
GENX(COMPUTE_WALKER_length),
GENX(COMPUTE_WALKER),
.IndirectParameterEnable = global_size == NULL,
.PredicateEnable = false,
.body = body,
);
/* We just blew away the compute pipeline state */
cmd_buffer->state.compute.pipeline_dirty = true;
}
static void
calc_local_trace_size(uint8_t local_shift[3], const uint32_t global[3])
{
unsigned total_shift = 0;
memset(local_shift, 0, 3);
bool progress;
do {
progress = false;
for (unsigned i = 0; i < 3; i++) {
assert(global[i] > 0);
if ((1 << local_shift[i]) < global[i]) {
progress = true;
local_shift[i]++;
total_shift++;
}
if (total_shift == 3)
return;
}
} while(progress);
/* Assign whatever's left to x */
local_shift[0] += 3 - total_shift;
}
static struct GENX(RT_SHADER_TABLE)
vk_sdar_to_shader_table(const VkStridedDeviceAddressRegionKHR *region)
{
return (struct GENX(RT_SHADER_TABLE)) {
.BaseAddress = anv_address_from_u64(region->deviceAddress),
.Stride = region->stride,
};
}
struct trace_params {
/* If is_sbt_indirect, use indirect_sbts_addr to build RT_DISPATCH_GLOBALS
* with mi_builder.
*/
bool is_sbt_indirect;
const VkStridedDeviceAddressRegionKHR *raygen_sbt;
const VkStridedDeviceAddressRegionKHR *miss_sbt;
const VkStridedDeviceAddressRegionKHR *hit_sbt;
const VkStridedDeviceAddressRegionKHR *callable_sbt;
/* A pointer to a VkTraceRaysIndirectCommand2KHR structure */
uint64_t indirect_sbts_addr;
/* If is_indirect, use launch_size_addr to program the dispatch size. */
bool is_launch_size_indirect;
uint32_t launch_size[3];
/* A pointer a uint32_t[3] */
uint64_t launch_size_addr;
};
static struct anv_state
cmd_buffer_emit_rt_dispatch_globals(struct anv_cmd_buffer *cmd_buffer,
struct trace_params *params)
{
assert(!params->is_sbt_indirect);
assert(params->miss_sbt != NULL);
assert(params->hit_sbt != NULL);
assert(params->callable_sbt != NULL);
struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt;
struct anv_state rtdg_state =
anv_cmd_buffer_alloc_temporary_state(cmd_buffer,
BRW_RT_PUSH_CONST_OFFSET +
sizeof(struct anv_push_constants),
64);
struct GENX(RT_DISPATCH_GLOBALS) rtdg = {
.MemBaseAddress = (struct anv_address) {
.bo = rt->scratch.bo,
.offset = rt->scratch.layout.ray_stack_start,
},
.CallStackHandler = anv_shader_bin_get_bsr(
cmd_buffer->device->rt_trivial_return, 0),
.AsyncRTStackSize = rt->scratch.layout.ray_stack_stride / 64,
.NumDSSRTStacks = rt->scratch.layout.stack_ids_per_dss,
.MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
.Flags = RT_DEPTH_TEST_LESS_EQUAL,
.HitGroupTable = vk_sdar_to_shader_table(params->hit_sbt),
.MissGroupTable = vk_sdar_to_shader_table(params->miss_sbt),
.SWStackSize = rt->scratch.layout.sw_stack_size / 64,
.LaunchWidth = params->launch_size[0],
.LaunchHeight = params->launch_size[1],
.LaunchDepth = params->launch_size[2],
.CallableGroupTable = vk_sdar_to_shader_table(params->callable_sbt),
};
GENX(RT_DISPATCH_GLOBALS_pack)(NULL, rtdg_state.map, &rtdg);
return rtdg_state;
}
static struct mi_value
mi_build_sbt_entry(struct mi_builder *b,
uint64_t addr_field_addr,
uint64_t stride_field_addr)
{
return mi_ior(b,
mi_iand(b, mi_mem64(anv_address_from_u64(addr_field_addr)),
mi_imm(BITFIELD64_BIT(49) - 1)),
mi_ishl_imm(b, mi_mem32(anv_address_from_u64(stride_field_addr)),
48));
}
static struct anv_state
cmd_buffer_emit_rt_dispatch_globals_indirect(struct anv_cmd_buffer *cmd_buffer,
struct trace_params *params)
{
struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt;
struct anv_state rtdg_state =
anv_cmd_buffer_alloc_temporary_state(cmd_buffer,
BRW_RT_PUSH_CONST_OFFSET +
sizeof(struct anv_push_constants),
64);
struct GENX(RT_DISPATCH_GLOBALS) rtdg = {
.MemBaseAddress = (struct anv_address) {
.bo = rt->scratch.bo,
.offset = rt->scratch.layout.ray_stack_start,
},
.CallStackHandler = anv_shader_bin_get_bsr(
cmd_buffer->device->rt_trivial_return, 0),
.AsyncRTStackSize = rt->scratch.layout.ray_stack_stride / 64,
.NumDSSRTStacks = rt->scratch.layout.stack_ids_per_dss,
.MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
.Flags = RT_DEPTH_TEST_LESS_EQUAL,
.SWStackSize = rt->scratch.layout.sw_stack_size / 64,
};
GENX(RT_DISPATCH_GLOBALS_pack)(NULL, rtdg_state.map, &rtdg);
struct anv_address rtdg_addr =
anv_cmd_buffer_temporary_state_address(cmd_buffer, rtdg_state);
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
const uint32_t mocs = anv_mocs_for_address(cmd_buffer->device, &rtdg_addr);
mi_builder_set_mocs(&b, mocs);
mi_builder_set_write_check(&b, true);
/* Fill the MissGroupTable, HitGroupTable & CallableGroupTable fields of
* RT_DISPATCH_GLOBALS using the mi_builder.
*/
mi_store(&b,
mi_mem64(
anv_address_add(
rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_MissGroupTable_start) / 8)),
mi_build_sbt_entry(&b,
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
missShaderBindingTableAddress),
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
missShaderBindingTableStride)));
mi_store(&b,
mi_mem64(
anv_address_add(
rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_HitGroupTable_start) / 8)),
mi_build_sbt_entry(&b,
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
hitShaderBindingTableAddress),
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
hitShaderBindingTableStride)));
mi_store(&b,
mi_mem64(
anv_address_add(
rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_CallableGroupTable_start) / 8)),
mi_build_sbt_entry(&b,
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
callableShaderBindingTableAddress),
params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
callableShaderBindingTableStride)));
return rtdg_state;
}
static void
cmd_buffer_trace_rays(struct anv_cmd_buffer *cmd_buffer,
struct trace_params *params)
{
struct anv_device *device = cmd_buffer->device;
struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt;
struct anv_ray_tracing_pipeline *pipeline =
anv_pipeline_to_ray_tracing(rt->base.pipeline);
if (anv_batch_has_error(&cmd_buffer->batch))
return;
/* If we have a known degenerate launch size, just bail */
if (!params->is_launch_size_indirect &&
(params->launch_size[0] == 0 ||
params->launch_size[1] == 0 ||
params->launch_size[2] == 0))
return;
trace_intel_begin_rays(&cmd_buffer->trace);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
genX(cmd_buffer_update_color_aux_op(cmd_buffer, ISL_AUX_OP_NONE));
genX(flush_descriptor_buffers)(cmd_buffer, &rt->base);
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
cmd_buffer->state.rt.pipeline_dirty = false;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
genX(cmd_buffer_flush_push_descriptors)(cmd_buffer,
&cmd_buffer->state.rt.base,
&pipeline->base);
/* Add these to the reloc list as they're internal buffers that don't
* actually have relocs to pick them up manually.
*
* TODO(RT): This is a bit of a hack
*/
anv_reloc_list_add_bo(cmd_buffer->batch.relocs,
rt->scratch.bo);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs,
cmd_buffer->device->btd_fifo_bo);
/* Allocate and set up our RT_DISPATCH_GLOBALS */
struct anv_state rtdg_state =
params->is_sbt_indirect ?
cmd_buffer_emit_rt_dispatch_globals_indirect(cmd_buffer, params) :
cmd_buffer_emit_rt_dispatch_globals(cmd_buffer, params);
assert(rtdg_state.alloc_size >= (BRW_RT_PUSH_CONST_OFFSET +
sizeof(struct anv_push_constants)));
assert(GENX(RT_DISPATCH_GLOBALS_length) * 4 <= BRW_RT_PUSH_CONST_OFFSET);
/* Push constants go after the RT_DISPATCH_GLOBALS */
memcpy(rtdg_state.map + BRW_RT_PUSH_CONST_OFFSET,
&cmd_buffer->state.rt.base.push_constants,
sizeof(struct anv_push_constants));
struct anv_address rtdg_addr =
anv_cmd_buffer_temporary_state_address(cmd_buffer, rtdg_state);
uint8_t local_size_log2[3];
uint32_t global_size[3] = {};
if (params->is_launch_size_indirect) {
/* Pick a local size that's probably ok. We assume most TraceRays calls
* will use a two-dimensional dispatch size. Worst case, our initial
* dispatch will be a little slower than it has to be.
*/
local_size_log2[0] = 2;
local_size_log2[1] = 1;
local_size_log2[2] = 0;
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
const uint32_t mocs = anv_mocs_for_address(cmd_buffer->device, &rtdg_addr);
mi_builder_set_mocs(&b, mocs);
mi_builder_set_write_check(&b, true);
struct mi_value launch_size[3] = {
mi_mem32(anv_address_from_u64(params->launch_size_addr + 0)),
mi_mem32(anv_address_from_u64(params->launch_size_addr + 4)),
mi_mem32(anv_address_from_u64(params->launch_size_addr + 8)),
};
/* Store the original launch size into RT_DISPATCH_GLOBALS */
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_LaunchWidth_start) / 8)),
mi_value_ref(&b, launch_size[0]));
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_LaunchHeight_start) / 8)),
mi_value_ref(&b, launch_size[1]));
mi_store(&b, mi_mem32(anv_address_add(rtdg_addr,
GENX(RT_DISPATCH_GLOBALS_LaunchDepth_start) / 8)),
mi_value_ref(&b, launch_size[2]));
/* Compute the global dispatch size */
for (unsigned i = 0; i < 3; i++) {
if (local_size_log2[i] == 0)
continue;
/* global_size = DIV_ROUND_UP(launch_size, local_size)
*
* Fortunately for us MI_ALU math is 64-bit and , mi_ushr32_imm
* has the semantics of shifting the enture 64-bit value and taking
* the bottom 32 so we don't have to worry about roll-over.
*/
uint32_t local_size = 1 << local_size_log2[i];
launch_size[i] = mi_iadd(&b, launch_size[i],
mi_imm(local_size - 1));
launch_size[i] = mi_ushr32_imm(&b, launch_size[i],
local_size_log2[i]);
}
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), launch_size[0]);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), launch_size[1]);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), launch_size[2]);
} else {
calc_local_trace_size(local_size_log2, params->launch_size);
for (unsigned i = 0; i < 3; i++) {
/* We have to be a bit careful here because DIV_ROUND_UP adds to the
* numerator value may overflow. Cast to uint64_t to avoid this.
*/
uint32_t local_size = 1 << local_size_log2[i];
global_size[i] = DIV_ROUND_UP((uint64_t)params->launch_size[i], local_size);
}
}
#if GFX_VERx10 == 125
/* Wa_14014427904 - We need additional invalidate/flush when
* emitting NP state commands with ATS-M in compute mode.
*/
if (intel_device_info_is_atsm(device->info) &&
cmd_buffer->queue_family->engine_class == INTEL_ENGINE_CLASS_COMPUTE) {
genx_batch_emit_pipe_control(&cmd_buffer->batch,
cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT);
}
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BTD), btd) {
/* TODO: This is the timeout after which the bucketed thread dispatcher
* will kick off a wave of threads. We go with the lowest value
* for now. It could be tweaked on a per application basis
* (drirc).
*/
btd.DispatchTimeoutCounter = _64clocks;
/* BSpec 43851: "This field must be programmed to 6h i.e. memory backed
* buffer must be 128KB."
*/
btd.PerDSSMemoryBackedBufferSize = 6;
btd.MemoryBackedBufferBasePointer = (struct anv_address) { .bo = device->btd_fifo_bo };
if (pipeline->base.scratch_size > 0) {
struct anv_bo *scratch_bo =
anv_scratch_pool_alloc(device,
&device->scratch_pool,
MESA_SHADER_COMPUTE,
pipeline->base.scratch_size);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs,
scratch_bo);
uint32_t scratch_surf =
anv_scratch_pool_get_surf(cmd_buffer->device,
&device->scratch_pool,
pipeline->base.scratch_size);
btd.ScratchSpaceBuffer = scratch_surf >> ANV_SCRATCH_SPACE_SHIFT(GFX_VER);
}
#if INTEL_NEEDS_WA_14017794102 || INTEL_NEEDS_WA_14023061436
btd.BTDMidthreadpreemption = false;
#endif
}
genX(cmd_buffer_ensure_cfe_state)(cmd_buffer, pipeline->base.scratch_size);
const struct brw_cs_prog_data *cs_prog_data =
brw_cs_prog_data_const(device->rt_trampoline->prog_data);
struct intel_cs_dispatch_info dispatch =
brw_cs_get_dispatch_info(device->info, cs_prog_data, NULL);
const gl_shader_stage s = MESA_SHADER_RAYGEN;
struct anv_state *surfaces = &cmd_buffer->state.binding_tables[s];
struct anv_state *samplers = &cmd_buffer->state.samplers[s];
struct brw_rt_raygen_trampoline_params trampoline_params = {
.rt_disp_globals_addr = anv_address_physical(rtdg_addr),
.raygen_bsr_addr =
params->is_sbt_indirect ?
(params->indirect_sbts_addr +
offsetof(VkTraceRaysIndirectCommand2KHR,
raygenShaderRecordAddress)) :
params->raygen_sbt->deviceAddress,
.is_indirect = params->is_sbt_indirect,
.local_group_size_log2 = {
local_size_log2[0],
local_size_log2[1],
local_size_log2[2],
},
};
struct GENX(COMPUTE_WALKER_BODY) body = {
.SIMDSize = dispatch.simd_size / 16,
.MessageSIMD = dispatch.simd_size / 16,
.LocalXMaximum = (1 << local_size_log2[0]) - 1,
.LocalYMaximum = (1 << local_size_log2[1]) - 1,
.LocalZMaximum = (1 << local_size_log2[2]) - 1,
.ThreadGroupIDXDimension = global_size[0],
.ThreadGroupIDYDimension = global_size[1],
.ThreadGroupIDZDimension = global_size[2],
.ExecutionMask = 0xff,
.EmitInlineParameter = true,
.PostSync.MOCS = anv_mocs(pipeline->base.device, NULL, 0),
.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
.KernelStartPointer = device->rt_trampoline->kernel.offset,
.SamplerStatePointer = samplers->offset,
/* i965: DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4), */
.SamplerCount = 0,
.BindingTablePointer = surfaces->offset,
.NumberofThreadsinGPGPUThreadGroup = 1,
.BTDMode = true,
#if INTEL_NEEDS_WA_14017794102 || INTEL_NEEDS_WA_14023061436
.ThreadPreemption = false,
#endif
},
};
STATIC_ASSERT(sizeof(trampoline_params) == 32);
memcpy(body.InlineData, &trampoline_params, sizeof(trampoline_params));
cmd_buffer->state.last_compute_walker =
anv_batch_emitn(
&cmd_buffer->batch,
GENX(COMPUTE_WALKER_length),
GENX(COMPUTE_WALKER),
.IndirectParameterEnable = params->is_launch_size_indirect,
.PredicateEnable = cmd_buffer->state.conditional_render_enabled,
.body = body,
);
trace_intel_end_rays(&cmd_buffer->trace,
params->launch_size[0],
params->launch_size[1],
params->launch_size[2]);
}
void
genX(CmdTraceRaysKHR)(
VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
uint32_t width,
uint32_t height,
uint32_t depth)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct trace_params params = {
.is_sbt_indirect = false,
.raygen_sbt = pRaygenShaderBindingTable,
.miss_sbt = pMissShaderBindingTable,
.hit_sbt = pHitShaderBindingTable,
.callable_sbt = pCallableShaderBindingTable,
.is_launch_size_indirect = false,
.launch_size = {
width,
height,
depth,
},
};
cmd_buffer_trace_rays(cmd_buffer, &params);
}
void
genX(CmdTraceRaysIndirectKHR)(
VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR* pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR* pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct trace_params params = {
.is_sbt_indirect = false,
.raygen_sbt = pRaygenShaderBindingTable,
.miss_sbt = pMissShaderBindingTable,
.hit_sbt = pHitShaderBindingTable,
.callable_sbt = pCallableShaderBindingTable,
.is_launch_size_indirect = true,
.launch_size_addr = indirectDeviceAddress,
};
cmd_buffer_trace_rays(cmd_buffer, &params);
}
void
genX(CmdTraceRaysIndirect2KHR)(
VkCommandBuffer commandBuffer,
VkDeviceAddress indirectDeviceAddress)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct trace_params params = {
.is_sbt_indirect = true,
.indirect_sbts_addr = indirectDeviceAddress,
.is_launch_size_indirect = true,
.launch_size_addr = indirectDeviceAddress +
offsetof(VkTraceRaysIndirectCommand2KHR, width),
};
cmd_buffer_trace_rays(cmd_buffer, &params);
}
#endif /* GFX_VERx10 >= 125 */