blob: d5d8393af68e148524763a3cef970d11ef48e18b [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
* Copyright © 2014-2015 Broadcom
* Copyright (C) 2014 Rob Clark <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/glsl/list.h"
#include "main/mtypes.h"
#include "main/shader_types.h"
#include "util/ralloc.h"
#include "prog_to_nir.h"
#include "prog_instruction.h"
#include "prog_parameter.h"
#include "prog_print.h"
#include "program.h"
#include "state_tracker/st_nir.h"
/**
* \file prog_to_nir.c
*
* A translator from Mesa IR (prog_instruction.h) to NIR. This is primarily
* intended to support ARB_vertex_program, ARB_fragment_program, and fixed-function
* vertex processing. Full GLSL support should use glsl_to_nir instead.
*/
struct ptn_compile {
const struct gl_context *ctx;
const struct gl_program *prog;
nir_builder build;
bool error;
nir_variable *parameters;
nir_variable *sampler_vars[32]; /* matches number of bits in TexSrcUnit */
nir_def **output_regs;
nir_def **temp_regs;
nir_def *addr_reg;
};
#define SWIZ(X, Y, Z, W) \
(unsigned[4]){ SWIZZLE_##X, SWIZZLE_##Y, SWIZZLE_##Z, SWIZZLE_##W }
#define ptn_channel(b, src, ch) nir_channel(b, src, SWIZZLE_##ch)
static nir_def *
ptn_get_src(struct ptn_compile *c, const struct prog_src_register *prog_src)
{
nir_builder *b = &c->build;
nir_alu_src src;
memset(&src, 0, sizeof(src));
switch (prog_src->File) {
case PROGRAM_UNDEFINED:
return nir_imm_float(b, 0.0);
case PROGRAM_TEMPORARY:
assert(!prog_src->RelAddr && prog_src->Index >= 0);
src.src = nir_src_for_ssa(nir_load_reg(b, c->temp_regs[prog_src->Index]));
break;
case PROGRAM_INPUT: {
/* ARB_vertex_program doesn't allow relative addressing on vertex
* attributes; ARB_fragment_program has no relative addressing at all.
*/
assert(!prog_src->RelAddr);
assert(prog_src->Index >= 0 && prog_src->Index < VARYING_SLOT_MAX);
unsigned slot = prog_src->Index;
nir_def *input;
if (c->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
if (slot == VARYING_SLOT_POS && c->ctx->Const.GLSLFragCoordIsSysVal) {
nir_variable *pos =
nir_get_variable_with_location(b->shader, nir_var_system_value,
SYSTEM_VALUE_FRAG_COORD,
glsl_vec4_type());
src.src = nir_src_for_ssa(nir_load_var(b, pos));
break;
}
nir_def *baryc = nir_load_barycentric_pixel(b, 32);
if (slot != VARYING_SLOT_COL0 && slot != VARYING_SLOT_COL1) {
nir_intrinsic_set_interp_mode(nir_instr_as_intrinsic(baryc->parent_instr),
INTERP_MODE_SMOOTH);
}
input = nir_load_interpolated_input(b, 4, 32, baryc, nir_imm_int(b, 0),
.io_semantics.location = slot);
/* fogcoord is defined as <f, 0.0, 0.0, 1.0>. Make the actual
* input variable a float, and create a local containing the
* full vec4 value.
*/
if (slot == VARYING_SLOT_FOGC) {
input = nir_vec4(b, nir_channel(b, input, 0),
nir_imm_float(b, 0),
nir_imm_float(b, 0),
nir_imm_float(b, 1));
}
} else {
input = nir_load_input(b, 4, 32, nir_imm_int(b, 0),
.io_semantics.location = slot);
}
src.src = nir_src_for_ssa(input);
break;
}
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT: {
/* We actually want to look at the type in the Parameters list for this,
* because it lets us upload constant builtin uniforms as actual
* constants.
*/
struct gl_program_parameter_list *plist = c->prog->Parameters;
gl_register_file file = prog_src->RelAddr ? prog_src->File :
plist->Parameters[prog_src->Index].Type;
switch (file) {
case PROGRAM_CONSTANT:
if ((c->prog->arb.IndirectRegisterFiles &
(1 << PROGRAM_CONSTANT)) == 0) {
unsigned pvo = plist->Parameters[prog_src->Index].ValueOffset;
float *v = (float *) plist->ParameterValues + pvo;
src.src = nir_src_for_ssa(nir_imm_vec4(b, v[0], v[1], v[2], v[3]));
break;
}
FALLTHROUGH;
case PROGRAM_STATE_VAR: {
assert(c->parameters != NULL);
nir_deref_instr *deref = nir_build_deref_var(b, c->parameters);
nir_def *index = nir_imm_int(b, prog_src->Index);
/* Add the address register. Note this is (uniquely) a scalar, so the
* component sizes match.
*/
if (prog_src->RelAddr)
index = nir_iadd(b, index, nir_load_reg(b, c->addr_reg));
deref = nir_build_deref_array(b, deref, index);
src.src = nir_src_for_ssa(nir_load_deref(b, deref));
break;
}
default:
fprintf(stderr, "bad uniform src register file: %s (%d)\n",
_mesa_register_file_name(file), file);
abort();
}
break;
}
default:
fprintf(stderr, "unknown src register file: %s (%d)\n",
_mesa_register_file_name(prog_src->File), prog_src->File);
abort();
}
nir_def *def;
if (!HAS_EXTENDED_SWIZZLE(prog_src->Swizzle) &&
(prog_src->Negate == NEGATE_NONE || prog_src->Negate == NEGATE_XYZW)) {
/* The simple non-SWZ case. */
for (int i = 0; i < 4; i++)
src.swizzle[i] = GET_SWZ(prog_src->Swizzle, i);
def = nir_mov_alu(b, src, 4);
if (prog_src->Negate)
def = nir_fneg(b, def);
} else {
/* The SWZ instruction allows per-component zero/one swizzles, and also
* per-component negation.
*/
nir_def *chans[4];
for (int i = 0; i < 4; i++) {
int swizzle = GET_SWZ(prog_src->Swizzle, i);
if (swizzle == SWIZZLE_ZERO) {
chans[i] = nir_imm_float(b, 0.0);
} else if (swizzle == SWIZZLE_ONE) {
chans[i] = nir_imm_float(b, 1.0);
} else {
assert(swizzle != SWIZZLE_NIL);
nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
nir_def_init(&mov->instr, &mov->def, 1, 32);
mov->src[0] = src;
mov->src[0].swizzle[0] = swizzle;
nir_builder_instr_insert(b, &mov->instr);
chans[i] = &mov->def;
}
if (prog_src->Negate & (1 << i))
chans[i] = nir_fneg(b, chans[i]);
}
def = nir_vec4(b, chans[0], chans[1], chans[2], chans[3]);
}
return def;
}
/* EXP - Approximate Exponential Base 2
* dst.x = 2^{\lfloor src.x\rfloor}
* dst.y = src.x - \lfloor src.x\rfloor
* dst.z = 2^{src.x}
* dst.w = 1.0
*/
static nir_def *
ptn_exp(nir_builder *b, nir_def **src)
{
nir_def *srcx = ptn_channel(b, src[0], X);
return nir_vec4(b, nir_fexp2(b, nir_ffloor(b, srcx)),
nir_fsub(b, srcx, nir_ffloor(b, srcx)),
nir_fexp2(b, srcx),
nir_imm_float(b, 1.0));
}
/* LOG - Approximate Logarithm Base 2
* dst.x = \lfloor\log_2{|src.x|}\rfloor
* dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
* dst.z = \log_2{|src.x|}
* dst.w = 1.0
*/
static nir_def *
ptn_log(nir_builder *b, nir_def **src)
{
nir_def *abs_srcx = nir_fabs(b, ptn_channel(b, src[0], X));
nir_def *log2 = nir_flog2(b, abs_srcx);
return nir_vec4(b, nir_ffloor(b, log2),
nir_fdiv(b, abs_srcx, nir_fexp2(b, nir_ffloor(b, log2))),
nir_flog2(b, abs_srcx),
nir_imm_float(b, 1.0));
}
/* DST - Distance Vector
* dst.x = 1.0
* dst.y = src0.y \times src1.y
* dst.z = src0.z
* dst.w = src1.w
*/
static nir_def *
ptn_dst(nir_builder *b, nir_def **src)
{
return nir_vec4(b, nir_imm_float(b, 1.0),
nir_fmul(b, ptn_channel(b, src[0], Y),
ptn_channel(b, src[1], Y)),
ptn_channel(b, src[0], Z),
ptn_channel(b, src[1], W));
}
/* LIT - Light Coefficients
* dst.x = 1.0
* dst.y = max(src.x, 0.0)
* dst.z = (src.x > 0.0) ? max(src.y, 0.0)^{clamp(src.w, -128.0, 128.0))} : 0
* dst.w = 1.0
*/
static nir_def *
ptn_lit(nir_builder *b, nir_def **src)
{
nir_def *src0_y = ptn_channel(b, src[0], Y);
nir_def *wclamp = nir_fmax(b, nir_fmin(b, ptn_channel(b, src[0], W),
nir_imm_float(b, 128.0)),
nir_imm_float(b, -128.0));
nir_def *pow = nir_fpow(b, nir_fmax(b, src0_y, nir_imm_float(b, 0.0)),
wclamp);
nir_def *z = nir_bcsel(b, nir_fle_imm(b, ptn_channel(b, src[0], X), 0.0),
nir_imm_float(b, 0.0), pow);
return nir_vec4(b, nir_imm_float(b, 1.0),
nir_fmax(b, ptn_channel(b, src[0], X),
nir_imm_float(b, 0.0)),
z,
nir_imm_float(b, 1.0));
}
/* SCS - Sine Cosine
* dst.x = \cos{src.x}
* dst.y = \sin{src.x}
* dst.z = 0.0
* dst.w = 1.0
*/
static nir_def *
ptn_scs(nir_builder *b, nir_def **src)
{
return nir_vec4(b, nir_fcos(b, ptn_channel(b, src[0], X)),
nir_fsin(b, ptn_channel(b, src[0], X)),
nir_imm_float(b, 0.0),
nir_imm_float(b, 1.0));
}
static nir_def *
ptn_xpd(nir_builder *b, nir_def **src)
{
nir_def *vec =
nir_fsub(b, nir_fmul(b, nir_swizzle(b, src[0], SWIZ(Y, Z, X, W), 3),
nir_swizzle(b, src[1], SWIZ(Z, X, Y, W), 3)),
nir_fmul(b, nir_swizzle(b, src[1], SWIZ(Y, Z, X, W), 3),
nir_swizzle(b, src[0], SWIZ(Z, X, Y, W), 3)));
return nir_vec4(b, nir_channel(b, vec, 0),
nir_channel(b, vec, 1),
nir_channel(b, vec, 2),
nir_imm_float(b, 1.0));
}
static void
ptn_kil(nir_builder *b, nir_def **src)
{
/* flt must be exact, because NaN shouldn't discard. (apps rely on this) */
b->exact = true;
nir_def *cmp = nir_bany(b, nir_flt_imm(b, src[0], 0.0));
b->exact = false;
nir_discard_if(b, cmp);
}
enum glsl_sampler_dim
_mesa_texture_index_to_sampler_dim(gl_texture_index index, bool *is_array)
{
*is_array = false;
switch (index) {
case TEXTURE_2D_MULTISAMPLE_INDEX:
return GLSL_SAMPLER_DIM_MS;
case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
*is_array = true;
return GLSL_SAMPLER_DIM_MS;
case TEXTURE_BUFFER_INDEX:
return GLSL_SAMPLER_DIM_BUF;
case TEXTURE_1D_INDEX:
return GLSL_SAMPLER_DIM_1D;
case TEXTURE_2D_INDEX:
return GLSL_SAMPLER_DIM_2D;
case TEXTURE_3D_INDEX:
return GLSL_SAMPLER_DIM_3D;
case TEXTURE_CUBE_INDEX:
return GLSL_SAMPLER_DIM_CUBE;
case TEXTURE_CUBE_ARRAY_INDEX:
*is_array = true;
return GLSL_SAMPLER_DIM_CUBE;
case TEXTURE_RECT_INDEX:
return GLSL_SAMPLER_DIM_RECT;
case TEXTURE_1D_ARRAY_INDEX:
*is_array = true;
return GLSL_SAMPLER_DIM_1D;
case TEXTURE_2D_ARRAY_INDEX:
*is_array = true;
return GLSL_SAMPLER_DIM_2D;
case TEXTURE_EXTERNAL_INDEX:
return GLSL_SAMPLER_DIM_EXTERNAL;
case NUM_TEXTURE_TARGETS:
break;
}
unreachable("unknown texture target");
}
static nir_def *
ptn_tex(struct ptn_compile *c, nir_def **src,
struct prog_instruction *prog_inst)
{
nir_builder *b = &c->build;
nir_tex_instr *instr;
nir_texop op;
unsigned num_srcs;
switch (prog_inst->Opcode) {
case OPCODE_TEX:
op = nir_texop_tex;
num_srcs = 1;
break;
case OPCODE_TXB:
op = nir_texop_txb;
num_srcs = 2;
break;
case OPCODE_TXD:
op = nir_texop_txd;
num_srcs = 3;
break;
case OPCODE_TXL:
op = nir_texop_txl;
num_srcs = 2;
break;
case OPCODE_TXP:
op = nir_texop_tex;
num_srcs = 2;
break;
default:
fprintf(stderr, "unknown tex op %d\n", prog_inst->Opcode);
abort();
}
/* Deref sources */
num_srcs += 2;
if (prog_inst->TexShadow)
num_srcs++;
instr = nir_tex_instr_create(b->shader, num_srcs);
instr->op = op;
instr->dest_type = nir_type_float32;
instr->is_shadow = prog_inst->TexShadow;
bool is_array;
instr->sampler_dim = _mesa_texture_index_to_sampler_dim(prog_inst->TexSrcTarget, &is_array);
instr->coord_components =
glsl_get_sampler_dim_coordinate_components(instr->sampler_dim);
nir_variable *var = c->sampler_vars[prog_inst->TexSrcUnit];
if (!var) {
const struct glsl_type *type =
glsl_sampler_type(instr->sampler_dim, instr->is_shadow, false, GLSL_TYPE_FLOAT);
char samplerName[20];
snprintf(samplerName, sizeof(samplerName), "sampler_%d", prog_inst->TexSrcUnit);
var = nir_variable_create(b->shader, nir_var_uniform, type, samplerName);
var->data.binding = prog_inst->TexSrcUnit;
var->data.explicit_binding = true;
c->sampler_vars[prog_inst->TexSrcUnit] = var;
}
nir_deref_instr *deref = nir_build_deref_var(b, var);
unsigned src_number = 0;
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_texture_deref,
&deref->def);
src_number++;
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_sampler_deref,
&deref->def);
src_number++;
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_coord,
nir_trim_vector(b, src[0],
instr->coord_components));
src_number++;
if (prog_inst->Opcode == OPCODE_TXP) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_projector,
ptn_channel(b, src[0], W));
src_number++;
}
if (prog_inst->Opcode == OPCODE_TXB) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_bias,
ptn_channel(b, src[0], W));
src_number++;
}
if (prog_inst->Opcode == OPCODE_TXL) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_lod,
ptn_channel(b, src[0], W));
src_number++;
}
if (instr->is_shadow) {
if (instr->coord_components < 3)
instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], Z));
else
instr->src[src_number].src = nir_src_for_ssa(ptn_channel(b, src[0], W));
instr->src[src_number].src_type = nir_tex_src_comparator;
src_number++;
}
assert(src_number == num_srcs);
nir_def_init(&instr->instr, &instr->def, 4, 32);
nir_builder_instr_insert(b, &instr->instr);
return &instr->def;
}
static const nir_op op_trans[MAX_OPCODE] = {
[OPCODE_NOP] = 0,
[OPCODE_ABS] = nir_op_fabs,
[OPCODE_ADD] = nir_op_fadd,
[OPCODE_ARL] = 0,
[OPCODE_CMP] = 0,
[OPCODE_COS] = 0,
[OPCODE_DDX] = 0,
[OPCODE_DDY] = 0,
[OPCODE_DP2] = 0,
[OPCODE_DP3] = 0,
[OPCODE_DP4] = 0,
[OPCODE_DPH] = 0,
[OPCODE_DST] = 0,
[OPCODE_END] = 0,
[OPCODE_EX2] = 0,
[OPCODE_EXP] = 0,
[OPCODE_FLR] = nir_op_ffloor,
[OPCODE_FRC] = nir_op_ffract,
[OPCODE_LG2] = 0,
[OPCODE_LIT] = 0,
[OPCODE_LOG] = 0,
[OPCODE_LRP] = 0,
[OPCODE_MAD] = 0,
[OPCODE_MAX] = nir_op_fmax,
[OPCODE_MIN] = nir_op_fmin,
[OPCODE_MOV] = nir_op_mov,
[OPCODE_MUL] = nir_op_fmul,
[OPCODE_POW] = 0,
[OPCODE_RCP] = 0,
[OPCODE_RSQ] = 0,
[OPCODE_SCS] = 0,
[OPCODE_SGE] = 0,
[OPCODE_SIN] = 0,
[OPCODE_SLT] = 0,
[OPCODE_SSG] = nir_op_fsign,
[OPCODE_SUB] = nir_op_fsub,
[OPCODE_SWZ] = 0,
[OPCODE_TEX] = 0,
[OPCODE_TXB] = 0,
[OPCODE_TXD] = 0,
[OPCODE_TXL] = 0,
[OPCODE_TXP] = 0,
[OPCODE_XPD] = 0,
};
static void
ptn_emit_instruction(struct ptn_compile *c, struct prog_instruction *prog_inst)
{
nir_builder *b = &c->build;
unsigned i;
const unsigned op = prog_inst->Opcode;
if (op == OPCODE_END)
return;
nir_def *src[3];
for (i = 0; i < 3; i++) {
src[i] = ptn_get_src(c, &prog_inst->SrcReg[i]);
}
nir_def *dst = NULL;
if (c->error)
return;
switch (op) {
case OPCODE_DDX:
dst = nir_ddx(b, src[0]);
break;
case OPCODE_DDY:
dst = nir_ddy(b, src[0]);
break;
case OPCODE_RSQ:
dst = nir_frsq(b, nir_fabs(b, ptn_channel(b, src[0], X)));
break;
case OPCODE_RCP:
dst = nir_frcp(b, ptn_channel(b, src[0], X));
break;
case OPCODE_EX2:
dst = nir_fexp2(b, ptn_channel(b, src[0], X));
break;
case OPCODE_LG2:
dst = nir_flog2(b, ptn_channel(b, src[0], X));
break;
case OPCODE_POW:
dst = nir_fpow(b, ptn_channel(b, src[0], X), ptn_channel(b, src[1], X));
break;
case OPCODE_COS:
dst = nir_fcos(b, ptn_channel(b, src[0], X));
break;
case OPCODE_SIN:
dst = nir_fsin(b, ptn_channel(b, src[0], X));
break;
case OPCODE_ARL:
dst = nir_f2i32(b, nir_ffloor(b, src[0]));
break;
case OPCODE_EXP:
dst = ptn_exp(b, src);
break;
case OPCODE_LOG:
dst = ptn_log(b, src);
break;
case OPCODE_LRP:
dst = nir_flrp(b, src[2], src[1], src[0]);
break;
case OPCODE_MAD:
dst = nir_fadd(b, nir_fmul(b, src[0], src[1]), src[2]);
break;
case OPCODE_DST:
dst = ptn_dst(b, src);
break;
case OPCODE_LIT:
dst = ptn_lit(b, src);
break;
case OPCODE_XPD:
dst = ptn_xpd(b, src);
break;
case OPCODE_DP2:
dst = nir_fdot2(b, src[0], src[1]);
break;
case OPCODE_DP3:
dst = nir_fdot3(b, src[0], src[1]);
break;
case OPCODE_DP4:
dst = nir_fdot4(b, src[0], src[1]);
break;
case OPCODE_DPH:
dst = nir_fdph(b, src[0], src[1]);
break;
case OPCODE_KIL:
ptn_kil(b, src);
break;
case OPCODE_CMP:
dst = nir_bcsel(b, nir_flt_imm(b, src[0], 0.0), src[1], src[2]);
break;
case OPCODE_SCS:
dst = ptn_scs(b, src);
break;
case OPCODE_SLT:
dst = nir_slt(b, src[0], src[1]);
break;
case OPCODE_SGE:
dst = nir_sge(b, src[0], src[1]);
break;
case OPCODE_TEX:
case OPCODE_TXB:
case OPCODE_TXD:
case OPCODE_TXL:
case OPCODE_TXP:
dst = ptn_tex(c, src, prog_inst);
break;
case OPCODE_SWZ:
/* Extended swizzles were already handled in ptn_get_src(). */
dst = nir_build_alu_src_arr(b, nir_op_mov, src);
break;
case OPCODE_NOP:
break;
default:
if (op_trans[op] != 0) {
dst = nir_build_alu_src_arr(b, op_trans[op], src);
} else {
fprintf(stderr, "unknown opcode: %s\n", _mesa_opcode_string(op));
abort();
}
break;
}
if (dst == NULL)
return;
if (dst->num_components == 1)
dst = nir_replicate(b, dst, 4);
assert(dst->num_components == 4);
if (prog_inst->Saturate)
dst = nir_fsat(b, dst);
const struct prog_dst_register *prog_dst = &prog_inst->DstReg;
assert(!prog_dst->RelAddr);
nir_def *reg = NULL;
unsigned write_mask = prog_dst->WriteMask;
switch (prog_dst->File) {
case PROGRAM_TEMPORARY:
reg = c->temp_regs[prog_dst->Index];
break;
case PROGRAM_OUTPUT:
reg = c->output_regs[prog_dst->Index];
break;
case PROGRAM_ADDRESS:
assert(prog_dst->Index == 0);
reg = c->addr_reg;
/* The address register (uniquely) is scalar. */
dst = nir_channel(b, dst, 0);
write_mask &= 1;
break;
case PROGRAM_UNDEFINED:
return;
}
/* In case there was some silly .y write to the scalar address reg */
if (write_mask == 0)
return;
assert(reg != NULL);
nir_build_store_reg(b, dst, reg, .write_mask = write_mask);
}
/**
* Puts a NIR intrinsic to store of each PROGRAM_OUTPUT value to the output
* variables at the end of the shader.
*
* We don't generate these incrementally as the PROGRAM_OUTPUT values are
* written, because there's no output load intrinsic, which means we couldn't
* handle writemasks.
*/
static void
ptn_add_output_stores(struct ptn_compile *c)
{
nir_builder *b = &c->build;
u_foreach_bit64(slot, b->shader->info.outputs_written) {
nir_def *src = nir_load_reg(b, c->output_regs[slot]);
if (c->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
slot == FRAG_RESULT_DEPTH) {
/* result.depth has this strange convention of being the .z component of
* a vec4 with undefined .xyw components. We resolve it to a scalar, to
* match GLSL's gl_FragDepth and the expectations of most backends.
*/
src = nir_channel(b, src, 2);
}
if (c->prog->Target == GL_VERTEX_PROGRAM_ARB &&
(slot == VARYING_SLOT_FOGC || slot == VARYING_SLOT_PSIZ)) {
/* result.{fogcoord,psiz} is a single component value */
src = nir_channel(b, src, 0);
}
nir_store_output(b, src, nir_imm_int(b, 0),
.io_semantics.location = slot);
}
}
static void
setup_registers_and_variables(struct ptn_compile *c)
{
nir_builder *b = &c->build;
/* Create output registers. */
int max_outputs = util_last_bit64(c->prog->info.outputs_written);
c->output_regs = rzalloc_array(c, nir_def *, max_outputs);
u_foreach_bit64(i, c->prog->info.outputs_written) {
/* Since we can't load from outputs in the IR, we make temporaries
* for the outputs and emit stores to the real outputs at the end of
* the shader.
*/
c->output_regs[i] = nir_decl_reg(b, 4, 32, 0);
}
/* Create temporary registers. */
c->temp_regs = rzalloc_array(c, nir_def *,
c->prog->arb.NumTemporaries);
for (unsigned i = 0; i < c->prog->arb.NumTemporaries; i++) {
c->temp_regs[i] = nir_decl_reg(b, 4, 32, 0);
}
/* Create the address register (for ARB_vertex_program). This is uniquely a
* scalar, requiring special handling for stores.
*/
c->addr_reg = nir_decl_reg(b, 1, 32, 0);
}
struct nir_shader *
prog_to_nir(const struct gl_context *ctx, const struct gl_program *prog)
{
const struct nir_shader_compiler_options *options =
st_get_nir_compiler_options(ctx->st, prog->info.stage);
struct ptn_compile *c;
struct nir_shader *s;
gl_shader_stage stage = _mesa_program_enum_to_shader_stage(prog->Target);
c = rzalloc(NULL, struct ptn_compile);
if (!c)
return NULL;
c->prog = prog;
c->ctx = ctx;
c->build = nir_builder_init_simple_shader(stage, options, NULL);
/* Copy the shader_info from the gl_program */
c->build.shader->info = prog->info;
s = c->build.shader;
if (prog->Parameters->NumParameters > 0) {
const struct glsl_type *type =
glsl_array_type(glsl_vec4_type(), prog->Parameters->NumParameters, 0);
c->parameters =
nir_variable_create(s, nir_var_uniform, type,
prog->Parameters->Parameters[0].Name);
}
setup_registers_and_variables(c);
if (unlikely(c->error))
goto fail;
for (unsigned int i = 0; i < prog->arb.NumInstructions; i++) {
ptn_emit_instruction(c, &prog->arb.Instructions[i]);
if (unlikely(c->error))
break;
}
ptn_add_output_stores(c);
s->info.name = ralloc_asprintf(s, "ARB%d", prog->Id);
s->info.num_textures = util_last_bit(prog->SamplersUsed);
s->info.num_ubos = 0;
s->info.num_abos = 0;
s->info.num_ssbos = 0;
s->info.num_images = 0;
s->info.uses_texture_gather = false;
s->info.clip_distance_array_size = 0;
s->info.cull_distance_array_size = 0;
s->info.separate_shader = true;
s->info.io_lowered = true;
s->info.internal = false;
/* ARB_vp: */
if (prog->arb.IsPositionInvariant) {
NIR_PASS(_, s, st_nir_lower_position_invariant,
ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
prog->Parameters);
}
/* Add OPTION ARB_fog_exp code */
if (prog->arb.Fog)
NIR_PASS(_, s, st_nir_lower_fog, prog->arb.Fog, prog->Parameters);
fail:
if (c->error) {
ralloc_free(s);
s = NULL;
}
ralloc_free(c);
return s;
}