blob: 43e30a523eb6e04b96e1ead8877e961beb3f5e05 [file] [log] [blame]
/*
* Copyright © Microsoft Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "dxil_nir.h"
#include "dxil_module.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "nir_worklist.h"
#include "nir_to_dxil.h"
#include "util/u_math.h"
#include "vulkan/vulkan_core.h"
static void
cl_type_size_align(const struct glsl_type *type, unsigned *size,
unsigned *align)
{
*size = glsl_get_cl_size(type);
*align = glsl_get_cl_alignment(type);
}
static nir_def *
load_comps_to_vec(nir_builder *b, unsigned src_bit_size,
nir_def **src_comps, unsigned num_src_comps,
unsigned dst_bit_size)
{
if (src_bit_size == dst_bit_size)
return nir_vec(b, src_comps, num_src_comps);
else if (src_bit_size > dst_bit_size)
return nir_extract_bits(b, src_comps, num_src_comps, 0, src_bit_size * num_src_comps / dst_bit_size, dst_bit_size);
unsigned num_dst_comps = DIV_ROUND_UP(num_src_comps * src_bit_size, dst_bit_size);
unsigned comps_per_dst = dst_bit_size / src_bit_size;
nir_def *dst_comps[4];
for (unsigned i = 0; i < num_dst_comps; i++) {
unsigned src_offs = i * comps_per_dst;
dst_comps[i] = nir_u2uN(b, src_comps[src_offs], dst_bit_size);
for (unsigned j = 1; j < comps_per_dst && src_offs + j < num_src_comps; j++) {
nir_def *tmp = nir_ishl_imm(b, nir_u2uN(b, src_comps[src_offs + j], dst_bit_size),
j * src_bit_size);
dst_comps[i] = nir_ior(b, dst_comps[i], tmp);
}
}
return nir_vec(b, dst_comps, num_dst_comps);
}
static bool
lower_32b_offset_load(nir_builder *b, nir_intrinsic_instr *intr, nir_variable *var)
{
unsigned bit_size = intr->def.bit_size;
unsigned num_components = intr->def.num_components;
unsigned num_bits = num_components * bit_size;
b->cursor = nir_before_instr(&intr->instr);
nir_def *offset = intr->src[0].ssa;
if (intr->intrinsic == nir_intrinsic_load_shared)
offset = nir_iadd_imm(b, offset, nir_intrinsic_base(intr));
else
offset = nir_u2u32(b, offset);
nir_def *index = nir_ushr_imm(b, offset, 2);
nir_def *comps[NIR_MAX_VEC_COMPONENTS];
nir_def *comps_32bit[NIR_MAX_VEC_COMPONENTS * 2];
/* We need to split loads in 32-bit accesses because the buffer
* is an i32 array and DXIL does not support type casts.
*/
unsigned num_32bit_comps = DIV_ROUND_UP(num_bits, 32);
for (unsigned i = 0; i < num_32bit_comps; i++)
comps_32bit[i] = nir_load_array_var(b, var, nir_iadd_imm(b, index, i));
unsigned num_comps_per_pass = MIN2(num_32bit_comps, 4);
for (unsigned i = 0; i < num_32bit_comps; i += num_comps_per_pass) {
unsigned num_vec32_comps = MIN2(num_32bit_comps - i, 4);
unsigned num_dest_comps = num_vec32_comps * 32 / bit_size;
nir_def *vec32 = nir_vec(b, &comps_32bit[i], num_vec32_comps);
/* If we have 16 bits or less to load we need to adjust the u32 value so
* we can always extract the LSB.
*/
if (num_bits <= 16) {
nir_def *shift =
nir_imul_imm(b, nir_iand_imm(b, offset, 3), 8);
vec32 = nir_ushr(b, vec32, shift);
}
/* And now comes the pack/unpack step to match the original type. */
unsigned dest_index = i * 32 / bit_size;
nir_def *temp_vec = nir_extract_bits(b, &vec32, 1, 0, num_dest_comps, bit_size);
for (unsigned comp = 0; comp < num_dest_comps; ++comp, ++dest_index)
comps[dest_index] = nir_channel(b, temp_vec, comp);
}
nir_def *result = nir_vec(b, comps, num_components);
nir_def_replace(&intr->def, result);
return true;
}
static void
lower_masked_store_vec32(nir_builder *b, nir_def *offset, nir_def *index,
nir_def *vec32, unsigned num_bits, nir_variable *var, unsigned alignment)
{
nir_def *mask = nir_imm_int(b, (1 << num_bits) - 1);
/* If we have small alignments, we need to place them correctly in the u32 component. */
if (alignment <= 2) {
nir_def *shift =
nir_imul_imm(b, nir_iand_imm(b, offset, 3), 8);
vec32 = nir_ishl(b, vec32, shift);
mask = nir_ishl(b, mask, shift);
}
if (var->data.mode == nir_var_mem_shared) {
/* Use the dedicated masked intrinsic */
nir_deref_instr *deref = nir_build_deref_array(b, nir_build_deref_var(b, var), index);
nir_deref_atomic(b, 32, &deref->def, nir_inot(b, mask), .atomic_op = nir_atomic_op_iand);
nir_deref_atomic(b, 32, &deref->def, vec32, .atomic_op = nir_atomic_op_ior);
} else {
/* For scratch, since we don't need atomics, just generate the read-modify-write in NIR */
nir_def *load = nir_load_array_var(b, var, index);
nir_def *new_val = nir_ior(b, vec32,
nir_iand(b,
nir_inot(b, mask),
load));
nir_store_array_var(b, var, index, new_val, 1);
}
}
static bool
lower_32b_offset_store(nir_builder *b, nir_intrinsic_instr *intr, nir_variable *var)
{
unsigned num_components = nir_src_num_components(intr->src[0]);
unsigned bit_size = nir_src_bit_size(intr->src[0]);
unsigned num_bits = num_components * bit_size;
b->cursor = nir_before_instr(&intr->instr);
nir_def *offset = intr->src[1].ssa;
if (intr->intrinsic == nir_intrinsic_store_shared)
offset = nir_iadd_imm(b, offset, nir_intrinsic_base(intr));
else
offset = nir_u2u32(b, offset);
nir_def *comps[NIR_MAX_VEC_COMPONENTS];
unsigned comp_idx = 0;
for (unsigned i = 0; i < num_components; i++)
comps[i] = nir_channel(b, intr->src[0].ssa, i);
unsigned step = MAX2(bit_size, 32);
for (unsigned i = 0; i < num_bits; i += step) {
/* For each 4byte chunk (or smaller) we generate a 32bit scalar store. */
unsigned substore_num_bits = MIN2(num_bits - i, step);
nir_def *local_offset = nir_iadd_imm(b, offset, i / 8);
nir_def *vec32 = load_comps_to_vec(b, bit_size, &comps[comp_idx],
substore_num_bits / bit_size, 32);
nir_def *index = nir_ushr_imm(b, local_offset, 2);
/* For anything less than 32bits we need to use the masked version of the
* intrinsic to preserve data living in the same 32bit slot. */
if (substore_num_bits < 32) {
lower_masked_store_vec32(b, local_offset, index, vec32, num_bits, var, nir_intrinsic_align(intr));
} else {
for (unsigned i = 0; i < vec32->num_components; ++i)
nir_store_array_var(b, var, nir_iadd_imm(b, index, i), nir_channel(b, vec32, i), 1);
}
comp_idx += substore_num_bits / bit_size;
}
nir_instr_remove(&intr->instr);
return true;
}
#define CONSTANT_LOCATION_UNVISITED 0
#define CONSTANT_LOCATION_VALID 1
#define CONSTANT_LOCATION_INVALID 2
bool
dxil_nir_lower_constant_to_temp(nir_shader *nir)
{
bool progress = false;
nir_foreach_variable_with_modes(var, nir, nir_var_mem_constant)
var->data.location = var->constant_initializer ?
CONSTANT_LOCATION_UNVISITED : CONSTANT_LOCATION_INVALID;
/* First pass: collect all UBO accesses that could be turned into
* shader temp accesses.
*/
nir_foreach_function(func, nir) {
if (!func->is_entrypoint)
continue;
assert(func->impl);
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (!nir_deref_mode_is(deref, nir_var_mem_constant) ||
deref->deref_type != nir_deref_type_var ||
deref->var->data.location == CONSTANT_LOCATION_INVALID)
continue;
deref->var->data.location = nir_deref_instr_has_complex_use(deref, 0) ?
CONSTANT_LOCATION_INVALID : CONSTANT_LOCATION_VALID;
}
}
}
nir_foreach_variable_with_modes(var, nir, nir_var_mem_constant) {
if (var->data.location != CONSTANT_LOCATION_VALID)
continue;
/* Change the variable mode. */
var->data.mode = nir_var_shader_temp;
progress = true;
}
/* Second pass: patch all derefs that were accessing the converted UBOs
* variables.
*/
nir_foreach_function(func, nir) {
if (!func->is_entrypoint)
continue;
assert(func->impl);
nir_builder b = nir_builder_create(func->impl);
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (nir_deref_mode_is(deref, nir_var_mem_constant)) {
nir_deref_instr *parent = deref;
while (parent && parent->deref_type != nir_deref_type_var)
parent = nir_src_as_deref(parent->parent);
if (parent && parent->var->data.mode != nir_var_mem_constant) {
deref->modes = parent->var->data.mode;
/* Also change "pointer" size to 32-bit since this is now a logical pointer */
deref->def.bit_size = 32;
if (deref->deref_type == nir_deref_type_array) {
b.cursor = nir_before_instr(instr);
nir_src_rewrite(&deref->arr.index, nir_u2u32(&b, deref->arr.index.ssa));
}
}
}
}
}
}
return progress;
}
static bool
flatten_var_arrays(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_deref_atomic:
case nir_intrinsic_deref_atomic_swap:
break;
default:
return false;
}
nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
nir_variable *var = NULL;
for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
if (d->deref_type == nir_deref_type_cast)
return false;
if (d->deref_type == nir_deref_type_var) {
var = d->var;
if (d->type == var->type)
return false;
}
}
if (!var)
return false;
nir_deref_path path;
nir_deref_path_init(&path, deref, NULL);
assert(path.path[0]->deref_type == nir_deref_type_var);
b->cursor = nir_before_instr(&path.path[0]->instr);
nir_deref_instr *new_var_deref = nir_build_deref_var(b, var);
nir_def *index = NULL;
for (unsigned level = 1; path.path[level]; ++level) {
nir_deref_instr *arr_deref = path.path[level];
assert(arr_deref->deref_type == nir_deref_type_array);
b->cursor = nir_before_instr(&arr_deref->instr);
nir_def *val = nir_imul_imm(b, arr_deref->arr.index.ssa,
glsl_get_component_slots(arr_deref->type));
if (index) {
index = nir_iadd(b, index, val);
} else {
index = val;
}
}
unsigned vector_comps = intr->num_components;
if (vector_comps > 1) {
b->cursor = nir_before_instr(&intr->instr);
if (intr->intrinsic == nir_intrinsic_load_deref) {
nir_def *components[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < vector_comps; ++i) {
nir_def *final_index = index ? nir_iadd_imm(b, index, i) : nir_imm_int(b, i);
nir_deref_instr *comp_deref = nir_build_deref_array(b, new_var_deref, final_index);
components[i] = nir_load_deref(b, comp_deref);
}
nir_def_rewrite_uses(&intr->def, nir_vec(b, components, vector_comps));
} else if (intr->intrinsic == nir_intrinsic_store_deref) {
for (unsigned i = 0; i < vector_comps; ++i) {
if (((1 << i) & nir_intrinsic_write_mask(intr)) == 0)
continue;
nir_def *final_index = index ? nir_iadd_imm(b, index, i) : nir_imm_int(b, i);
nir_deref_instr *comp_deref = nir_build_deref_array(b, new_var_deref, final_index);
nir_store_deref(b, comp_deref, nir_channel(b, intr->src[1].ssa, i), 1);
}
}
nir_instr_remove(&intr->instr);
} else {
nir_src_rewrite(&intr->src[0], &nir_build_deref_array(b, new_var_deref, index)->def);
}
nir_deref_path_finish(&path);
return true;
}
static void
flatten_constant_initializer(nir_variable *var, nir_constant *src, nir_constant ***dest, unsigned vector_elements)
{
if (src->num_elements == 0) {
for (unsigned i = 0; i < vector_elements; ++i) {
nir_constant *new_scalar = rzalloc(var, nir_constant);
memcpy(&new_scalar->values[0], &src->values[i], sizeof(src->values[0]));
new_scalar->is_null_constant = src->values[i].u64 == 0;
nir_constant **array_entry = (*dest)++;
*array_entry = new_scalar;
}
} else {
for (unsigned i = 0; i < src->num_elements; ++i)
flatten_constant_initializer(var, src->elements[i], dest, vector_elements);
}
}
static bool
flatten_var_array_types(nir_variable *var)
{
assert(!glsl_type_is_struct(glsl_without_array(var->type)));
const struct glsl_type *matrix_type = glsl_without_array(var->type);
if (!glsl_type_is_array_of_arrays(var->type) && glsl_get_components(matrix_type) == 1)
return false;
enum glsl_base_type base_type = glsl_get_base_type(matrix_type);
const struct glsl_type *flattened_type = glsl_array_type(glsl_scalar_type(base_type),
glsl_get_component_slots(var->type), 0);
var->type = flattened_type;
if (var->constant_initializer) {
nir_constant **new_elements = ralloc_array(var, nir_constant *, glsl_get_length(flattened_type));
nir_constant **temp = new_elements;
flatten_constant_initializer(var, var->constant_initializer, &temp, glsl_get_vector_elements(matrix_type));
var->constant_initializer->num_elements = glsl_get_length(flattened_type);
var->constant_initializer->elements = new_elements;
}
return true;
}
bool
dxil_nir_flatten_var_arrays(nir_shader *shader, nir_variable_mode modes)
{
bool progress = false;
nir_foreach_variable_with_modes(var, shader, modes & ~nir_var_function_temp)
progress |= flatten_var_array_types(var);
if (modes & nir_var_function_temp) {
nir_foreach_function_impl(impl, shader) {
nir_foreach_function_temp_variable(var, impl)
progress |= flatten_var_array_types(var);
}
}
if (!progress)
return false;
nir_shader_intrinsics_pass(shader, flatten_var_arrays,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
NULL);
nir_remove_dead_derefs(shader);
return true;
}
static bool
lower_deref_bit_size(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
break;
default:
/* Atomics can't be smaller than 32-bit */
return false;
}
nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
/* Only interested in full deref chains */
if (!var)
return false;
const struct glsl_type *var_scalar_type = glsl_without_array(var->type);
if (deref->type == var_scalar_type || !glsl_type_is_scalar(var_scalar_type))
return false;
assert(deref->deref_type == nir_deref_type_var || deref->deref_type == nir_deref_type_array);
const struct glsl_type *old_glsl_type = deref->type;
nir_alu_type old_type = nir_get_nir_type_for_glsl_type(old_glsl_type);
nir_alu_type new_type = nir_get_nir_type_for_glsl_type(var_scalar_type);
if (glsl_get_bit_size(old_glsl_type) < glsl_get_bit_size(var_scalar_type)) {
deref->type = var_scalar_type;
if (intr->intrinsic == nir_intrinsic_load_deref) {
intr->def.bit_size = glsl_get_bit_size(var_scalar_type);
b->cursor = nir_after_instr(&intr->instr);
nir_def *downcast = nir_type_convert(b, &intr->def, new_type, old_type, nir_rounding_mode_undef);
nir_def_rewrite_uses_after(&intr->def, downcast, downcast->parent_instr);
}
else {
b->cursor = nir_before_instr(&intr->instr);
nir_def *upcast = nir_type_convert(b, intr->src[1].ssa, old_type, new_type, nir_rounding_mode_undef);
nir_src_rewrite(&intr->src[1], upcast);
}
while (deref->deref_type == nir_deref_type_array) {
nir_deref_instr *parent = nir_deref_instr_parent(deref);
parent->type = glsl_type_wrap_in_arrays(deref->type, parent->type);
deref = parent;
}
} else {
/* Assumed arrays are already flattened */
b->cursor = nir_before_instr(&deref->instr);
nir_deref_instr *parent = nir_build_deref_var(b, var);
if (deref->deref_type == nir_deref_type_array)
deref = nir_build_deref_array(b, parent, nir_imul_imm(b, deref->arr.index.ssa, 2));
else
deref = nir_build_deref_array_imm(b, parent, 0);
nir_deref_instr *deref2 = nir_build_deref_array(b, parent,
nir_iadd_imm(b, deref->arr.index.ssa, 1));
b->cursor = nir_before_instr(&intr->instr);
if (intr->intrinsic == nir_intrinsic_load_deref) {
nir_def *src1 = nir_load_deref(b, deref);
nir_def *src2 = nir_load_deref(b, deref2);
nir_def_rewrite_uses(&intr->def, nir_pack_64_2x32_split(b, src1, src2));
} else {
nir_def *src1 = nir_unpack_64_2x32_split_x(b, intr->src[1].ssa);
nir_def *src2 = nir_unpack_64_2x32_split_y(b, intr->src[1].ssa);
nir_store_deref(b, deref, src1, 1);
nir_store_deref(b, deref, src2, 1);
}
nir_instr_remove(&intr->instr);
}
return true;
}
static bool
lower_var_bit_size_types(nir_variable *var, unsigned min_bit_size, unsigned max_bit_size)
{
assert(!glsl_type_is_array_of_arrays(var->type) && !glsl_type_is_struct(var->type));
const struct glsl_type *type = glsl_without_array(var->type);
assert(glsl_type_is_scalar(type));
enum glsl_base_type base_type = glsl_get_base_type(type);
if (glsl_base_type_get_bit_size(base_type) < min_bit_size) {
switch (min_bit_size) {
case 16:
switch (base_type) {
case GLSL_TYPE_BOOL:
base_type = GLSL_TYPE_UINT16;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].u16 = var->constant_initializer->elements[i]->values[0].b ? 0xffff : 0;
break;
case GLSL_TYPE_INT8:
base_type = GLSL_TYPE_INT16;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].i16 = var->constant_initializer->elements[i]->values[0].i8;
break;
case GLSL_TYPE_UINT8: base_type = GLSL_TYPE_UINT16; break;
default: unreachable("Unexpected base type");
}
break;
case 32:
switch (base_type) {
case GLSL_TYPE_BOOL:
base_type = GLSL_TYPE_UINT;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].u32 = var->constant_initializer->elements[i]->values[0].b ? 0xffffffff : 0;
break;
case GLSL_TYPE_INT8:
base_type = GLSL_TYPE_INT;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].i32 = var->constant_initializer->elements[i]->values[0].i8;
break;
case GLSL_TYPE_INT16:
base_type = GLSL_TYPE_INT;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].i32 = var->constant_initializer->elements[i]->values[0].i16;
break;
case GLSL_TYPE_FLOAT16:
base_type = GLSL_TYPE_FLOAT;
for (unsigned i = 0; i < (var->constant_initializer ? var->constant_initializer->num_elements : 0); ++i)
var->constant_initializer->elements[i]->values[0].f32 = _mesa_half_to_float(var->constant_initializer->elements[i]->values[0].u16);
break;
case GLSL_TYPE_UINT8: base_type = GLSL_TYPE_UINT; break;
case GLSL_TYPE_UINT16: base_type = GLSL_TYPE_UINT; break;
default: unreachable("Unexpected base type");
}
break;
default: unreachable("Unexpected min bit size");
}
var->type = glsl_type_wrap_in_arrays(glsl_scalar_type(base_type), var->type);
return true;
}
if (glsl_base_type_bit_size(base_type) > max_bit_size) {
assert(!glsl_type_is_array_of_arrays(var->type));
var->type = glsl_array_type(glsl_scalar_type(GLSL_TYPE_UINT),
glsl_type_is_array(var->type) ? glsl_get_length(var->type) * 2 : 2,
0);
if (var->constant_initializer) {
unsigned num_elements = var->constant_initializer->num_elements ?
var->constant_initializer->num_elements * 2 : 2;
nir_constant **element_arr = ralloc_array(var, nir_constant *, num_elements);
nir_constant *elements = rzalloc_array(var, nir_constant, num_elements);
for (unsigned i = 0; i < var->constant_initializer->num_elements; ++i) {
element_arr[i*2] = &elements[i*2];
element_arr[i*2+1] = &elements[i*2+1];
const nir_const_value *src = var->constant_initializer->num_elements ?
var->constant_initializer->elements[i]->values : var->constant_initializer->values;
elements[i*2].values[0].u32 = (uint32_t)src->u64;
elements[i*2].is_null_constant = (uint32_t)src->u64 == 0;
elements[i*2+1].values[0].u32 = (uint32_t)(src->u64 >> 32);
elements[i*2+1].is_null_constant = (uint32_t)(src->u64 >> 32) == 0;
}
var->constant_initializer->num_elements = num_elements;
var->constant_initializer->elements = element_arr;
}
return true;
}
return false;
}
bool
dxil_nir_lower_var_bit_size(nir_shader *shader, nir_variable_mode modes,
unsigned min_bit_size, unsigned max_bit_size)
{
bool progress = false;
nir_foreach_variable_with_modes(var, shader, modes & ~nir_var_function_temp)
progress |= lower_var_bit_size_types(var, min_bit_size, max_bit_size);
if (modes & nir_var_function_temp) {
nir_foreach_function_impl(impl, shader) {
nir_foreach_function_temp_variable(var, impl)
progress |= lower_var_bit_size_types(var, min_bit_size, max_bit_size);
}
}
if (!progress)
return false;
nir_shader_intrinsics_pass(shader, lower_deref_bit_size,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
NULL);
nir_remove_dead_derefs(shader);
return true;
}
static bool
remove_oob_array_access(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
uint32_t num_derefs = 1;
switch (intr->intrinsic) {
case nir_intrinsic_copy_deref:
num_derefs = 2;
FALLTHROUGH;
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_deref_atomic:
case nir_intrinsic_deref_atomic_swap:
break;
default:
return false;
}
for (uint32_t i = 0; i < num_derefs; ++i) {
if (nir_deref_instr_is_known_out_of_bounds(nir_src_as_deref(intr->src[i]))) {
switch (intr->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_deref_atomic:
case nir_intrinsic_deref_atomic_swap:
b->cursor = nir_before_instr(&intr->instr);
nir_def *undef = nir_undef(b, intr->def.num_components, intr->def.bit_size);
nir_def_rewrite_uses(&intr->def, undef);
break;
default:
break;
}
nir_instr_remove(&intr->instr);
return true;
}
}
return false;
}
bool
dxil_nir_remove_oob_array_accesses(nir_shader *shader)
{
return nir_shader_intrinsics_pass(shader, remove_oob_array_access,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
NULL);
}
static bool
lower_shared_atomic(nir_builder *b, nir_intrinsic_instr *intr, nir_variable *var)
{
b->cursor = nir_before_instr(&intr->instr);
nir_def *offset =
nir_iadd_imm(b, intr->src[0].ssa, nir_intrinsic_base(intr));
nir_def *index = nir_ushr_imm(b, offset, 2);
nir_deref_instr *deref = nir_build_deref_array(b, nir_build_deref_var(b, var), index);
nir_def *result;
if (intr->intrinsic == nir_intrinsic_shared_atomic_swap)
result = nir_deref_atomic_swap(b, 32, &deref->def, intr->src[1].ssa, intr->src[2].ssa,
.atomic_op = nir_intrinsic_atomic_op(intr));
else
result = nir_deref_atomic(b, 32, &deref->def, intr->src[1].ssa,
.atomic_op = nir_intrinsic_atomic_op(intr));
nir_def_replace(&intr->def, result);
return true;
}
bool
dxil_nir_lower_loads_stores_to_dxil(nir_shader *nir,
const struct dxil_nir_lower_loads_stores_options *options)
{
bool progress = nir_remove_dead_variables(nir, nir_var_function_temp | nir_var_mem_shared, NULL);
nir_variable *shared_var = NULL;
if (nir->info.shared_size) {
shared_var = nir_variable_create(nir, nir_var_mem_shared,
glsl_array_type(glsl_uint_type(), DIV_ROUND_UP(nir->info.shared_size, 4), 4),
"lowered_shared_mem");
}
unsigned ptr_size = nir->info.cs.ptr_size;
if (nir->info.stage == MESA_SHADER_KERNEL) {
/* All the derefs created here will be used as GEP indices so force 32-bit */
nir->info.cs.ptr_size = 32;
}
nir_foreach_function_impl(impl, nir) {
nir_builder b = nir_builder_create(impl);
nir_variable *scratch_var = NULL;
if (nir->scratch_size) {
const struct glsl_type *scratch_type = glsl_array_type(glsl_uint_type(), DIV_ROUND_UP(nir->scratch_size, 4), 4);
scratch_var = nir_local_variable_create(impl, scratch_type, "lowered_scratch_mem");
}
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_shared:
progress |= lower_32b_offset_load(&b, intr, shared_var);
break;
case nir_intrinsic_load_scratch:
progress |= lower_32b_offset_load(&b, intr, scratch_var);
break;
case nir_intrinsic_store_shared:
progress |= lower_32b_offset_store(&b, intr, shared_var);
break;
case nir_intrinsic_store_scratch:
progress |= lower_32b_offset_store(&b, intr, scratch_var);
break;
case nir_intrinsic_shared_atomic:
case nir_intrinsic_shared_atomic_swap:
progress |= lower_shared_atomic(&b, intr, shared_var);
break;
default:
break;
}
}
}
}
if (nir->info.stage == MESA_SHADER_KERNEL) {
nir->info.cs.ptr_size = ptr_size;
}
return progress;
}
static bool
lower_deref_ssbo(nir_builder *b, nir_deref_instr *deref)
{
assert(nir_deref_mode_is(deref, nir_var_mem_ssbo));
assert(deref->deref_type == nir_deref_type_var ||
deref->deref_type == nir_deref_type_cast);
nir_variable *var = deref->var;
b->cursor = nir_before_instr(&deref->instr);
if (deref->deref_type == nir_deref_type_var) {
/* We turn all deref_var into deref_cast and build a pointer value based on
* the var binding which encodes the UAV id.
*/
nir_def *ptr = nir_imm_int64(b, (uint64_t)var->data.binding << 32);
nir_deref_instr *deref_cast =
nir_build_deref_cast(b, ptr, nir_var_mem_ssbo, deref->type,
glsl_get_explicit_stride(var->type));
nir_def_replace(&deref->def, &deref_cast->def);
deref = deref_cast;
return true;
}
return false;
}
bool
dxil_nir_lower_deref_ssbo(nir_shader *nir)
{
bool progress = false;
foreach_list_typed(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
continue;
assert(func->impl);
nir_builder b = nir_builder_create(func->impl);
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (!nir_deref_mode_is(deref, nir_var_mem_ssbo) ||
(deref->deref_type != nir_deref_type_var &&
deref->deref_type != nir_deref_type_cast))
continue;
progress |= lower_deref_ssbo(&b, deref);
}
}
}
return progress;
}
static bool
lower_alu_deref_srcs(nir_builder *b, nir_alu_instr *alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
bool progress = false;
b->cursor = nir_before_instr(&alu->instr);
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_deref_instr *deref = nir_src_as_deref(alu->src[i].src);
if (!deref)
continue;
nir_deref_path path;
nir_deref_path_init(&path, deref, NULL);
nir_deref_instr *root_deref = path.path[0];
nir_deref_path_finish(&path);
if (root_deref->deref_type != nir_deref_type_cast)
continue;
nir_def *ptr =
nir_iadd(b, root_deref->parent.ssa,
nir_build_deref_offset(b, deref, cl_type_size_align));
nir_src_rewrite(&alu->src[i].src, ptr);
progress = true;
}
return progress;
}
bool
dxil_nir_opt_alu_deref_srcs(nir_shader *nir)
{
bool progress = false;
foreach_list_typed(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
continue;
assert(func->impl);
nir_builder b = nir_builder_create(func->impl);
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
progress |= lower_alu_deref_srcs(&b, alu);
}
}
}
return progress;
}
static void
cast_phi(nir_builder *b, nir_phi_instr *phi, unsigned new_bit_size)
{
nir_phi_instr *lowered = nir_phi_instr_create(b->shader);
int num_components = 0;
int old_bit_size = phi->def.bit_size;
nir_foreach_phi_src(src, phi) {
assert(num_components == 0 || num_components == src->src.ssa->num_components);
num_components = src->src.ssa->num_components;
b->cursor = nir_after_instr_and_phis(src->src.ssa->parent_instr);
nir_def *cast = nir_u2uN(b, src->src.ssa, new_bit_size);
nir_phi_instr_add_src(lowered, src->pred, cast);
}
nir_def_init(&lowered->instr, &lowered->def, num_components,
new_bit_size);
b->cursor = nir_before_instr(&phi->instr);
nir_builder_instr_insert(b, &lowered->instr);
b->cursor = nir_after_phis(nir_cursor_current_block(b->cursor));
nir_def *result = nir_u2uN(b, &lowered->def, old_bit_size);
nir_def_replace(&phi->def, result);
}
static bool
upcast_phi_impl(nir_function_impl *impl, unsigned min_bit_size)
{
nir_builder b = nir_builder_create(impl);
bool progress = false;
nir_foreach_block_reverse(block, impl) {
nir_foreach_phi_safe(phi, block) {
if (phi->def.bit_size == 1 ||
phi->def.bit_size >= min_bit_size)
continue;
cast_phi(&b, phi, min_bit_size);
progress = true;
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_control_flow);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
bool
dxil_nir_lower_upcast_phis(nir_shader *shader, unsigned min_bit_size)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
progress |= upcast_phi_impl(impl, min_bit_size);
}
return progress;
}
struct dxil_nir_split_clip_cull_distance_params {
nir_variable *new_var[2];
nir_shader *shader;
};
/* In GLSL and SPIR-V, clip and cull distance are arrays of floats (with a limit of 8).
* In DXIL, clip and cull distances are up to 2 float4s combined.
* Coming from GLSL, we can request this 2 float4 format, but coming from SPIR-V,
* we can't, and have to accept a "compact" array of scalar floats.
*
* To help emitting a valid input signature for this case, split the variables so that they
* match what we need to put in the signature (e.g. { float clip[4]; float clip1; float cull[3]; })
*
* This pass can deal with splitting across two axes:
* 1. Given { float clip[5]; float cull[3]; }, split clip into clip[4] and clip1[1]. This is
* what's produced by nir_lower_clip_cull_distance_arrays.
* 2. Given { float clip[4]; float clipcull[4]; }, split clipcull into clip1[1] and cull[3].
* This is what's produced by the sequence of nir_lower_clip_cull_distance_arrays, then
* I/O lowering, vectorization, optimization, and I/O un-lowering.
*/
static bool
dxil_nir_split_clip_cull_distance_instr(nir_builder *b,
nir_instr *instr,
void *cb_data)
{
struct dxil_nir_split_clip_cull_distance_params *params = cb_data;
if (instr->type != nir_instr_type_deref)
return false;
nir_deref_instr *deref = nir_instr_as_deref(instr);
nir_variable *var = nir_deref_instr_get_variable(deref);
if (!var ||
var->data.location < VARYING_SLOT_CLIP_DIST0 ||
var->data.location > VARYING_SLOT_CULL_DIST1 ||
!var->data.compact)
return false;
unsigned new_var_idx = var->data.mode == nir_var_shader_in ? 0 : 1;
nir_variable *new_var = params->new_var[new_var_idx];
/* The location should only be inside clip distance, because clip
* and cull should've been merged by nir_lower_clip_cull_distance_arrays()
*/
assert(var->data.location == VARYING_SLOT_CLIP_DIST0 ||
var->data.location == VARYING_SLOT_CLIP_DIST1);
/* The deref chain to the clip/cull variables should be simple, just the
* var and an array with a constant index, otherwise more lowering/optimization
* might be needed before this pass, e.g. copy prop, lower_io_to_temporaries,
* split_var_copies, and/or lower_var_copies. In the case of arrayed I/O like
* inputs to the tessellation or geometry stages, there might be a second level
* of array index.
*/
assert(deref->deref_type == nir_deref_type_var ||
deref->deref_type == nir_deref_type_array);
bool clip_size_accurate = var->data.mode == nir_var_shader_out || b->shader->info.stage == MESA_SHADER_FRAGMENT;
bool is_clip_cull_split = false;
b->cursor = nir_before_instr(instr);
unsigned arrayed_io_length = 0;
const struct glsl_type *old_type = var->type;
if (nir_is_arrayed_io(var, b->shader->info.stage)) {
arrayed_io_length = glsl_array_size(old_type);
old_type = glsl_get_array_element(old_type);
}
int old_length = glsl_array_size(old_type);
if (!new_var) {
/* Update lengths for new and old vars */
int new_length = (old_length + var->data.location_frac) - 4;
/* The existing variable fits in the float4 */
if (new_length <= 0) {
/* If we don't have an accurate clip size in the shader info, then we're in case 1 (only
* lowered clip_cull, not lowered+unlowered I/O), since I/O optimization moves these varyings
* out of sysval locations and into generic locations. */
if (!clip_size_accurate)
return false;
assert(old_length <= 4);
unsigned start = (var->data.location - VARYING_SLOT_CLIP_DIST0) * 4;
unsigned end = start + old_length;
/* If it doesn't straddle the clip array size, then it's either just clip or cull, not both. */
if (start >= b->shader->info.clip_distance_array_size ||
end <= b->shader->info.clip_distance_array_size)
return false;
new_length = end - b->shader->info.clip_distance_array_size;
is_clip_cull_split = true;
}
old_length -= new_length;
new_var = nir_variable_clone(var, params->shader);
nir_shader_add_variable(params->shader, new_var);
assert(glsl_get_base_type(glsl_get_array_element(old_type)) == GLSL_TYPE_FLOAT);
var->type = glsl_array_type(glsl_float_type(), old_length, 0);
new_var->type = glsl_array_type(glsl_float_type(), new_length, 0);
if (arrayed_io_length) {
var->type = glsl_array_type(var->type, arrayed_io_length, 0);
new_var->type = glsl_array_type(new_var->type, arrayed_io_length, 0);
}
if (is_clip_cull_split) {
new_var->data.location_frac = old_length;
} else {
new_var->data.location++;
new_var->data.location_frac = 0;
}
params->new_var[new_var_idx] = new_var;
}
/* Update the type for derefs of the old var */
if (deref->deref_type == nir_deref_type_var) {
deref->type = var->type;
return false;
}
if (glsl_type_is_array(deref->type)) {
assert(arrayed_io_length > 0);
deref->type = glsl_get_array_element(var->type);
return false;
}
assert(glsl_get_base_type(deref->type) == GLSL_TYPE_FLOAT);
nir_const_value *index = nir_src_as_const_value(deref->arr.index);
assert(index);
/* If we're indexing out-of-bounds of the old variable, then adjust to point
* to the new variable with a smaller index.
*/
if (index->u32 < old_length)
return false;
nir_deref_instr *new_var_deref = nir_build_deref_var(b, new_var);
nir_deref_instr *new_intermediate_deref = new_var_deref;
if (arrayed_io_length) {
nir_deref_instr *parent = nir_src_as_deref(deref->parent);
assert(parent->deref_type == nir_deref_type_array);
new_intermediate_deref = nir_build_deref_array(b, new_intermediate_deref, parent->arr.index.ssa);
}
nir_deref_instr *new_array_deref = nir_build_deref_array(b, new_intermediate_deref, nir_imm_int(b, index->u32 - old_length));
nir_def_rewrite_uses(&deref->def, &new_array_deref->def);
return true;
}
bool
dxil_nir_split_clip_cull_distance(nir_shader *shader)
{
struct dxil_nir_split_clip_cull_distance_params params = {
.new_var = { NULL, NULL },
.shader = shader,
};
nir_shader_instructions_pass(shader,
dxil_nir_split_clip_cull_distance_instr,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
&params);
return params.new_var[0] != NULL || params.new_var[1] != NULL;
}
static bool
dxil_nir_lower_double_math_instr(nir_builder *b,
nir_instr *instr,
UNUSED void *cb_data)
{
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_reduce:
case nir_intrinsic_exclusive_scan:
case nir_intrinsic_inclusive_scan:
break;
default:
return false;
}
if (intr->def.bit_size != 64)
return false;
nir_op reduction = nir_intrinsic_reduction_op(intr);
switch (reduction) {
case nir_op_fmul:
case nir_op_fadd:
case nir_op_fmin:
case nir_op_fmax:
break;
default:
return false;
}
b->cursor = nir_before_instr(instr);
nir_src_rewrite(&intr->src[0], nir_pack_double_2x32_dxil(b, nir_unpack_64_2x32(b, intr->src[0].ssa)));
b->cursor = nir_after_instr(instr);
nir_def *result = nir_pack_64_2x32(b, nir_unpack_double_2x32_dxil(b, &intr->def));
nir_def_rewrite_uses_after(&intr->def, result, result->parent_instr);
return true;
}
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* TODO: See if we can apply this explicitly to packs/unpacks that are then
* used as a double. As-is, if we had an app explicitly do a 64bit integer op,
* then try to bitcast to double (not expressible in HLSL, but it is in other
* source languages), this would unpack the integer and repack as a double, when
* we probably want to just send the bitcast through to the backend.
*/
b->cursor = nir_before_instr(&alu->instr);
bool progress = false;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; ++i) {
if (nir_alu_type_get_base_type(nir_op_infos[alu->op].input_types[i]) == nir_type_float &&
alu->src[i].src.ssa->bit_size == 64) {
unsigned num_components = nir_op_infos[alu->op].input_sizes[i];
if (!num_components)
num_components = alu->def.num_components;
nir_def *components[NIR_MAX_VEC_COMPONENTS];
for (unsigned c = 0; c < num_components; ++c) {
nir_def *packed_double = nir_channel(b, alu->src[i].src.ssa, alu->src[i].swizzle[c]);
nir_def *unpacked_double = nir_unpack_64_2x32(b, packed_double);
components[c] = nir_pack_double_2x32_dxil(b, unpacked_double);
alu->src[i].swizzle[c] = c;
}
nir_src_rewrite(&alu->src[i].src,
nir_vec(b, components, num_components));
progress = true;
}
}
if (nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) == nir_type_float &&
alu->def.bit_size == 64) {
b->cursor = nir_after_instr(&alu->instr);
nir_def *components[NIR_MAX_VEC_COMPONENTS];
for (unsigned c = 0; c < alu->def.num_components; ++c) {
nir_def *packed_double = nir_channel(b, &alu->def, c);
nir_def *unpacked_double = nir_unpack_double_2x32_dxil(b, packed_double);
components[c] = nir_pack_64_2x32(b, unpacked_double);
}
nir_def *repacked_dvec = nir_vec(b, components, alu->def.num_components);
nir_def_rewrite_uses_after(&alu->def, repacked_dvec, repacked_dvec->parent_instr);
progress = true;
}
return progress;
}
bool
dxil_nir_lower_double_math(nir_shader *shader)
{
return nir_shader_instructions_pass(shader,
dxil_nir_lower_double_math_instr,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
NULL);
}
typedef struct {
gl_system_value *values;
uint32_t count;
} zero_system_values_state;
static bool
lower_system_value_to_zero_filter(const nir_instr* instr, const void* cb_state)
{
if (instr->type != nir_instr_type_intrinsic) {
return false;
}
nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(instr);
/* All the intrinsics we care about are loads */
if (!nir_intrinsic_infos[intrin->intrinsic].has_dest)
return false;
zero_system_values_state* state = (zero_system_values_state*)cb_state;
for (uint32_t i = 0; i < state->count; ++i) {
gl_system_value value = state->values[i];
nir_intrinsic_op value_op = nir_intrinsic_from_system_value(value);
if (intrin->intrinsic == value_op) {
return true;
} else if (intrin->intrinsic == nir_intrinsic_load_deref) {
nir_deref_instr* deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is(deref, nir_var_system_value))
return false;
nir_variable* var = deref->var;
if (var->data.location == value) {
return true;
}
}
}
return false;
}
static nir_def*
lower_system_value_to_zero_instr(nir_builder* b, nir_instr* instr, void* _state)
{
return nir_imm_int(b, 0);
}
bool
dxil_nir_lower_system_values_to_zero(nir_shader* shader,
gl_system_value* system_values,
uint32_t count)
{
zero_system_values_state state = { system_values, count };
return nir_shader_lower_instructions(shader,
lower_system_value_to_zero_filter,
lower_system_value_to_zero_instr,
&state);
}
static void
lower_load_local_group_size(nir_builder *b, nir_intrinsic_instr *intr)
{
b->cursor = nir_after_instr(&intr->instr);
nir_const_value v[3] = {
nir_const_value_for_int(b->shader->info.workgroup_size[0], 32),
nir_const_value_for_int(b->shader->info.workgroup_size[1], 32),
nir_const_value_for_int(b->shader->info.workgroup_size[2], 32)
};
nir_def *size = nir_build_imm(b, 3, 32, v);
nir_def_replace(&intr->def, size);
}
static bool
lower_system_values_impl(nir_builder *b, nir_intrinsic_instr *intr,
void *_state)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_workgroup_size:
lower_load_local_group_size(b, intr);
return true;
default:
return false;
}
}
bool
dxil_nir_lower_system_values(nir_shader *shader)
{
return nir_shader_intrinsics_pass(shader, lower_system_values_impl,
nir_metadata_control_flow | nir_metadata_loop_analysis,
NULL);
}
static const struct glsl_type *
get_bare_samplers_for_type(const struct glsl_type *type, bool is_shadow)
{
const struct glsl_type *base_sampler_type =
is_shadow ?
glsl_bare_shadow_sampler_type() : glsl_bare_sampler_type();
return glsl_type_wrap_in_arrays(base_sampler_type, type);
}
static const struct glsl_type *
get_textures_for_sampler_type(const struct glsl_type *type)
{
return glsl_type_wrap_in_arrays(
glsl_sampler_type_to_texture(
glsl_without_array(type)), type);
}
static bool
redirect_sampler_derefs(struct nir_builder *b, nir_instr *instr, void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_deref);
if (sampler_idx == -1) {
/* No sampler deref - does this instruction even need a sampler? If not,
* sampler_index doesn't necessarily point to a sampler, so early-out.
*/
if (!nir_tex_instr_need_sampler(tex))
return false;
/* No derefs but needs a sampler, must be using indices */
nir_variable *bare_sampler = _mesa_hash_table_u64_search(data, tex->sampler_index);
/* Already have a bare sampler here */
if (bare_sampler)
return false;
nir_variable *old_sampler = NULL;
nir_foreach_variable_with_modes(var, b->shader, nir_var_uniform) {
if (var->data.binding <= tex->sampler_index &&
var->data.binding + glsl_type_get_sampler_count(var->type) >
tex->sampler_index) {
/* Already have a bare sampler for this binding and it is of the
* correct type, add it to the table */
if (glsl_type_is_bare_sampler(glsl_without_array(var->type)) &&
glsl_sampler_type_is_shadow(glsl_without_array(var->type)) ==
tex->is_shadow) {
_mesa_hash_table_u64_insert(data, tex->sampler_index, var);
return false;
}
old_sampler = var;
}
}
assert(old_sampler);
/* Clone the original sampler to a bare sampler of the correct type */
bare_sampler = nir_variable_clone(old_sampler, b->shader);
nir_shader_add_variable(b->shader, bare_sampler);
bare_sampler->type =
get_bare_samplers_for_type(old_sampler->type, tex->is_shadow);
_mesa_hash_table_u64_insert(data, tex->sampler_index, bare_sampler);
return true;
}
/* Using derefs, means we have to rewrite the deref chain in addition to cloning */
nir_deref_instr *final_deref = nir_src_as_deref(tex->src[sampler_idx].src);
nir_deref_path path;
nir_deref_path_init(&path, final_deref, NULL);
nir_deref_instr *old_tail = path.path[0];
assert(old_tail->deref_type == nir_deref_type_var);
nir_variable *old_var = old_tail->var;
if (glsl_type_is_bare_sampler(glsl_without_array(old_var->type)) &&
glsl_sampler_type_is_shadow(glsl_without_array(old_var->type)) ==
tex->is_shadow) {
nir_deref_path_finish(&path);
return false;
}
uint64_t var_key = ((uint64_t)old_var->data.descriptor_set << 32) |
old_var->data.binding;
nir_variable *new_var = _mesa_hash_table_u64_search(data, var_key);
if (!new_var) {
new_var = nir_variable_clone(old_var, b->shader);
nir_shader_add_variable(b->shader, new_var);
new_var->type =
get_bare_samplers_for_type(old_var->type, tex->is_shadow);
_mesa_hash_table_u64_insert(data, var_key, new_var);
}
b->cursor = nir_after_instr(&old_tail->instr);
nir_deref_instr *new_tail = nir_build_deref_var(b, new_var);
for (unsigned i = 1; path.path[i]; ++i) {
b->cursor = nir_after_instr(&path.path[i]->instr);
new_tail = nir_build_deref_follower(b, new_tail, path.path[i]);
}
nir_deref_path_finish(&path);
nir_src_rewrite(&tex->src[sampler_idx].src, &new_tail->def);
return true;
}
static bool
redirect_texture_derefs(struct nir_builder *b, nir_instr *instr, void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref);
if (texture_idx == -1) {
/* No derefs, must be using indices */
nir_variable *bare_sampler = _mesa_hash_table_u64_search(data, tex->texture_index);
/* Already have a texture here */
if (bare_sampler)
return false;
nir_variable *typed_sampler = NULL;
nir_foreach_variable_with_modes(var, b->shader, nir_var_uniform) {
if (var->data.binding <= tex->texture_index &&
var->data.binding + glsl_type_get_texture_count(var->type) > tex->texture_index) {
/* Already have a texture for this binding, add it to the table */
_mesa_hash_table_u64_insert(data, tex->texture_index, var);
return false;
}
if (var->data.binding <= tex->texture_index &&
var->data.binding + glsl_type_get_sampler_count(var->type) > tex->texture_index &&
!glsl_type_is_bare_sampler(glsl_without_array(var->type))) {
typed_sampler = var;
}
}
/* Clone the typed sampler to a texture and we're done */
assert(typed_sampler);
bare_sampler = nir_variable_clone(typed_sampler, b->shader);
bare_sampler->type = get_textures_for_sampler_type(typed_sampler->type);
nir_shader_add_variable(b->shader, bare_sampler);
_mesa_hash_table_u64_insert(data, tex->texture_index, bare_sampler);
return true;
}
/* Using derefs, means we have to rewrite the deref chain in addition to cloning */
nir_deref_instr *final_deref = nir_src_as_deref(tex->src[texture_idx].src);
nir_deref_path path;
nir_deref_path_init(&path, final_deref, NULL);
nir_deref_instr *old_tail = path.path[0];
assert(old_tail->deref_type == nir_deref_type_var);
nir_variable *old_var = old_tail->var;
if (glsl_type_is_texture(glsl_without_array(old_var->type)) ||
glsl_type_is_image(glsl_without_array(old_var->type))) {
nir_deref_path_finish(&path);
return false;
}
uint64_t var_key = ((uint64_t)old_var->data.descriptor_set << 32) |
old_var->data.binding;
nir_variable *new_var = _mesa_hash_table_u64_search(data, var_key);
if (!new_var) {
new_var = nir_variable_clone(old_var, b->shader);
new_var->type = get_textures_for_sampler_type(old_var->type);
nir_shader_add_variable(b->shader, new_var);
_mesa_hash_table_u64_insert(data, var_key, new_var);
}
b->cursor = nir_after_instr(&old_tail->instr);
nir_deref_instr *new_tail = nir_build_deref_var(b, new_var);
for (unsigned i = 1; path.path[i]; ++i) {
b->cursor = nir_after_instr(&path.path[i]->instr);
new_tail = nir_build_deref_follower(b, new_tail, path.path[i]);
}
nir_deref_path_finish(&path);
nir_src_rewrite(&tex->src[texture_idx].src, &new_tail->def);
return true;
}
bool
dxil_nir_split_typed_samplers(nir_shader *nir)
{
struct hash_table_u64 *hash_table = _mesa_hash_table_u64_create(NULL);
bool progress = nir_shader_instructions_pass(nir, redirect_sampler_derefs,
nir_metadata_control_flow | nir_metadata_loop_analysis, hash_table);
_mesa_hash_table_u64_clear(hash_table);
progress |= nir_shader_instructions_pass(nir, redirect_texture_derefs,
nir_metadata_control_flow | nir_metadata_loop_analysis, hash_table);
_mesa_hash_table_u64_destroy(hash_table);
return progress;
}
static bool
lower_sysval_to_load_input_impl(nir_builder *b, nir_intrinsic_instr *intr,
void *data)
{
gl_system_value sysval = SYSTEM_VALUE_MAX;
switch (intr->intrinsic) {
case nir_intrinsic_load_instance_id:
sysval = SYSTEM_VALUE_INSTANCE_ID;
break;
case nir_intrinsic_load_vertex_id_zero_base:
sysval = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
break;
default:
return false;
}
nir_variable **sysval_vars = (nir_variable **)data;
nir_variable *var = sysval_vars[sysval];
assert(var);
const nir_alu_type dest_type = nir_get_nir_type_for_glsl_type(var->type);
const unsigned bit_size = intr->def.bit_size;
b->cursor = nir_before_instr(&intr->instr);
nir_def *result = nir_load_input(b, intr->def.num_components, bit_size, nir_imm_int(b, 0),
.base = var->data.driver_location, .dest_type = dest_type);
nir_def_rewrite_uses(&intr->def, result);
return true;
}
bool
dxil_nir_lower_sysval_to_load_input(nir_shader *s, nir_variable **sysval_vars)
{
return nir_shader_intrinsics_pass(s, lower_sysval_to_load_input_impl,
nir_metadata_control_flow,
sysval_vars);
}
/* Comparison function to sort io values so that first come normal varyings,
* then system values, and then system generated values.
*/
static int
variable_location_cmp(const nir_variable* a, const nir_variable* b)
{
// Sort by stream, driver_location, location, location_frac, then index
// If all else is equal, sort full vectors before partial ones
unsigned a_location = a->data.location;
if (a_location >= VARYING_SLOT_PATCH0)
a_location -= VARYING_SLOT_PATCH0;
unsigned b_location = b->data.location;
if (b_location >= VARYING_SLOT_PATCH0)
b_location -= VARYING_SLOT_PATCH0;
unsigned a_stream = a->data.stream & ~NIR_STREAM_PACKED;
unsigned b_stream = b->data.stream & ~NIR_STREAM_PACKED;
return a_stream != b_stream ?
a_stream - b_stream :
a->data.driver_location != b->data.driver_location ?
a->data.driver_location - b->data.driver_location :
a_location != b_location ?
a_location - b_location :
a->data.location_frac != b->data.location_frac ?
a->data.location_frac - b->data.location_frac :
a->data.index != b->data.index ?
a->data.index - b->data.index :
glsl_get_component_slots(b->type) - glsl_get_component_slots(a->type);
}
/* Order varyings according to driver location */
void
dxil_sort_by_driver_location(nir_shader* s, nir_variable_mode modes)
{
nir_sort_variables_with_modes(s, variable_location_cmp, modes);
}
/* Sort PS outputs so that color outputs come first */
void
dxil_sort_ps_outputs(nir_shader* s)
{
nir_foreach_variable_with_modes_safe(var, s, nir_var_shader_out) {
/* We use the driver_location here to avoid introducing a new
* struct or member variable here. The true, updated driver location
* will be written below, after sorting */
switch (var->data.location) {
case FRAG_RESULT_DEPTH:
var->data.driver_location = 1;
break;
case FRAG_RESULT_STENCIL:
var->data.driver_location = 2;
break;
case FRAG_RESULT_SAMPLE_MASK:
var->data.driver_location = 3;
break;
default:
var->data.driver_location = 0;
}
}
nir_sort_variables_with_modes(s, variable_location_cmp,
nir_var_shader_out);
unsigned driver_loc = 0;
nir_foreach_variable_with_modes(var, s, nir_var_shader_out) {
/* Fractional vars should use the same driver_location as the base. These will
* get fully merged during signature processing.
*/
var->data.driver_location = var->data.location_frac ? driver_loc - 1 : driver_loc++;
}
}
enum dxil_sysvalue_type {
DXIL_NO_SYSVALUE = 0,
DXIL_USED_SYSVALUE,
DXIL_UNUSED_NO_SYSVALUE,
DXIL_SYSVALUE,
DXIL_GENERATED_SYSVALUE,
};
static enum dxil_sysvalue_type
nir_var_to_dxil_sysvalue_type(nir_variable *var, uint64_t other_stage_mask,
const BITSET_WORD *other_stage_frac_mask)
{
switch (var->data.location) {
case VARYING_SLOT_FACE:
return DXIL_GENERATED_SYSVALUE;
case VARYING_SLOT_POS:
case VARYING_SLOT_PRIMITIVE_ID:
case VARYING_SLOT_CLIP_DIST0:
case VARYING_SLOT_CLIP_DIST1:
case VARYING_SLOT_PSIZ:
case VARYING_SLOT_TESS_LEVEL_INNER:
case VARYING_SLOT_TESS_LEVEL_OUTER:
case VARYING_SLOT_VIEWPORT:
case VARYING_SLOT_LAYER:
case VARYING_SLOT_VIEW_INDEX:
if (!((1ull << var->data.location) & other_stage_mask))
return DXIL_SYSVALUE;
return DXIL_USED_SYSVALUE;
default:
if (var->data.location < VARYING_SLOT_PATCH0 &&
!((1ull << var->data.location) & other_stage_mask))
return DXIL_UNUSED_NO_SYSVALUE;
if (var->data.location_frac && other_stage_frac_mask &&
var->data.location >= VARYING_SLOT_VAR0 &&
!BITSET_TEST(other_stage_frac_mask, ((var->data.location - VARYING_SLOT_VAR0) * 4 + var->data.location_frac)))
return DXIL_UNUSED_NO_SYSVALUE;
return DXIL_NO_SYSVALUE;
}
}
/* Order between stage values so that normal varyings come first,
* then sysvalues and then system generated values.
*/
void
dxil_reassign_driver_locations(nir_shader* s, nir_variable_mode modes,
uint64_t other_stage_mask, const BITSET_WORD *other_stage_frac_mask)
{
nir_foreach_variable_with_modes_safe(var, s, modes) {
/* We use the driver_location here to avoid introducing a new
* struct or member variable here. The true, updated driver location
* will be written below, after sorting */
var->data.driver_location = nir_var_to_dxil_sysvalue_type(var, other_stage_mask, other_stage_frac_mask);
}
nir_sort_variables_with_modes(s, variable_location_cmp, modes);
unsigned driver_loc = 0, driver_patch_loc = 0;
nir_foreach_variable_with_modes(var, s, modes) {
/* Overlap patches with non-patch */
unsigned *loc = var->data.patch ? &driver_patch_loc : &driver_loc;
var->data.driver_location = *loc;
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, s->info.stage) && glsl_type_is_array(type))
type = glsl_get_array_element(type);
*loc += glsl_count_vec4_slots(type, false, false);
}
}
static bool
lower_ubo_array_one_to_static(struct nir_builder *b,
nir_intrinsic_instr *intrin,
void *cb_data)
{
if (intrin->intrinsic != nir_intrinsic_load_vulkan_descriptor)
return false;
nir_variable *var =
nir_get_binding_variable(b->shader, nir_chase_binding(intrin->src[0]));
if (!var)
return false;
if (!glsl_type_is_array(var->type) || glsl_array_size(var->type) != 1)
return false;
nir_intrinsic_instr *index = nir_src_as_intrinsic(intrin->src[0]);
/* We currently do not support reindex */
assert(index && index->intrinsic == nir_intrinsic_vulkan_resource_index);
if (nir_src_is_const(index->src[0]) && nir_src_as_uint(index->src[0]) == 0)
return false;
if (nir_intrinsic_desc_type(index) != VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
return false;
b->cursor = nir_instr_remove(&index->instr);
// Indexing out of bounds on array of UBOs is considered undefined
// behavior. Therefore, we just hardcode all the index to 0.
uint8_t bit_size = index->def.bit_size;
nir_def *zero = nir_imm_intN_t(b, 0, bit_size);
nir_def *dest =
nir_vulkan_resource_index(b, index->num_components, bit_size, zero,
.desc_set = nir_intrinsic_desc_set(index),
.binding = nir_intrinsic_binding(index),
.desc_type = nir_intrinsic_desc_type(index));
nir_def_rewrite_uses(&index->def, dest);
return true;
}
bool
dxil_nir_lower_ubo_array_one_to_static(nir_shader *s)
{
bool progress = nir_shader_intrinsics_pass(s,
lower_ubo_array_one_to_static,
nir_metadata_none, NULL);
return progress;
}
static bool
is_fquantize2f16(const nir_instr *instr, const void *data)
{
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
return alu->op == nir_op_fquantize2f16;
}
static nir_def *
lower_fquantize2f16(struct nir_builder *b, nir_instr *instr, void *data)
{
/*
* SpvOpQuantizeToF16 documentation says:
*
* "
* If Value is an infinity, the result is the same infinity.
* If Value is a NaN, the result is a NaN, but not necessarily the same NaN.
* If Value is positive with a magnitude too large to represent as a 16-bit
* floating-point value, the result is positive infinity. If Value is negative
* with a magnitude too large to represent as a 16-bit floating-point value,
* the result is negative infinity. If the magnitude of Value is too small to
* represent as a normalized 16-bit floating-point value, the result may be
* either +0 or -0.
* "
*
* which we turn into:
*
* if (val < MIN_FLOAT16)
* return -INFINITY;
* else if (val > MAX_FLOAT16)
* return -INFINITY;
* else if (fabs(val) < SMALLEST_NORMALIZED_FLOAT16 && sign(val) != 0)
* return -0.0f;
* else if (fabs(val) < SMALLEST_NORMALIZED_FLOAT16 && sign(val) == 0)
* return +0.0f;
* else
* return round(val);
*/
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_def *src =
alu->src[0].src.ssa;
nir_def *neg_inf_cond =
nir_flt_imm(b, src, -65504.0f);
nir_def *pos_inf_cond =
nir_fgt_imm(b, src, 65504.0f);
nir_def *zero_cond =
nir_flt_imm(b, nir_fabs(b, src), ldexpf(1.0, -14));
nir_def *zero = nir_iand_imm(b, src, 1 << 31);
nir_def *round = nir_iand_imm(b, src, ~BITFIELD_MASK(13));
nir_def *res =
nir_bcsel(b, neg_inf_cond, nir_imm_float(b, -INFINITY), round);
res = nir_bcsel(b, pos_inf_cond, nir_imm_float(b, INFINITY), res);
res = nir_bcsel(b, zero_cond, zero, res);
return res;
}
bool
dxil_nir_lower_fquantize2f16(nir_shader *s)
{
return nir_shader_lower_instructions(s, is_fquantize2f16, lower_fquantize2f16, NULL);
}
static bool
fix_io_uint_deref_types(struct nir_builder *builder, nir_instr *instr, void *data)
{
if (instr->type != nir_instr_type_deref)
return false;
nir_deref_instr *deref = nir_instr_as_deref(instr);
nir_variable *var = nir_deref_instr_get_variable(deref);
if (var == data) {
deref->type = glsl_type_wrap_in_arrays(glsl_uint_type(), deref->type);
return true;
}
return false;
}
static bool
fix_io_uint_type(nir_shader *s, nir_variable_mode modes, int slot)
{
nir_variable *fixed_var = NULL;
nir_foreach_variable_with_modes(var, s, modes) {
if (var->data.location == slot) {
const struct glsl_type *plain_type = glsl_without_array(var->type);
if (plain_type == glsl_uint_type())
return false;
assert(plain_type == glsl_int_type());
var->type = glsl_type_wrap_in_arrays(glsl_uint_type(), var->type);
fixed_var = var;
break;
}
}
assert(fixed_var);
return nir_shader_instructions_pass(s, fix_io_uint_deref_types,
nir_metadata_all, fixed_var);
}
bool
dxil_nir_fix_io_uint_type(nir_shader *s, uint64_t in_mask, uint64_t out_mask)
{
if (!(s->info.outputs_written & out_mask) &&
!(s->info.inputs_read & in_mask))
return false;
bool progress = false;
while (in_mask) {
int slot = u_bit_scan64(&in_mask);
progress |= (s->info.inputs_read & (1ull << slot)) &&
fix_io_uint_type(s, nir_var_shader_in, slot);
}
while (out_mask) {
int slot = u_bit_scan64(&out_mask);
progress |= (s->info.outputs_written & (1ull << slot)) &&
fix_io_uint_type(s, nir_var_shader_out, slot);
}
return progress;
}
static bool
lower_kill(struct nir_builder *builder, nir_intrinsic_instr *intr,
void *_cb_data)
{
if (intr->intrinsic != nir_intrinsic_terminate &&
intr->intrinsic != nir_intrinsic_terminate_if)
return false;
builder->cursor = nir_instr_remove(&intr->instr);
nir_def *condition;
if (intr->intrinsic == nir_intrinsic_terminate) {
nir_demote(builder);
condition = nir_imm_true(builder);
} else {
nir_demote_if(builder, intr->src[0].ssa);
condition = intr->src[0].ssa;
}
/* Create a new block by branching on the discard condition so that this return
* is definitely the last instruction in its own block */
nir_if *nif = nir_push_if(builder, condition);
nir_jump(builder, nir_jump_return);
nir_pop_if(builder, nif);
return true;
}
bool
dxil_nir_lower_discard_and_terminate(nir_shader *s)
{
if (s->info.stage != MESA_SHADER_FRAGMENT)
return false;
// This pass only works if all functions have been inlined
assert(exec_list_length(&s->functions) == 1);
return nir_shader_intrinsics_pass(s, lower_kill, nir_metadata_none, NULL);
}
static bool
update_writes(struct nir_builder *b, nir_intrinsic_instr *intr, void *_state)
{
if (intr->intrinsic != nir_intrinsic_store_output)
return false;
nir_io_semantics io = nir_intrinsic_io_semantics(intr);
if (io.location != VARYING_SLOT_POS)
return false;
nir_def *src = intr->src[0].ssa;
unsigned write_mask = nir_intrinsic_write_mask(intr);
if (src->num_components == 4 && write_mask == 0xf)
return false;
b->cursor = nir_before_instr(&intr->instr);
unsigned first_comp = nir_intrinsic_component(intr);
nir_def *channels[4] = { NULL, NULL, NULL, NULL };
assert(first_comp + src->num_components <= ARRAY_SIZE(channels));
for (unsigned i = 0; i < src->num_components; ++i)
if (write_mask & (1 << i))
channels[i + first_comp] = nir_channel(b, src, i);
for (unsigned i = 0; i < 4; ++i)
if (!channels[i])
channels[i] = nir_imm_intN_t(b, 0, src->bit_size);
intr->num_components = 4;
nir_src_rewrite(&intr->src[0], nir_vec(b, channels, 4));
nir_intrinsic_set_component(intr, 0);
nir_intrinsic_set_write_mask(intr, 0xf);
return true;
}
bool
dxil_nir_ensure_position_writes(nir_shader *s)
{
if (s->info.stage != MESA_SHADER_VERTEX &&
s->info.stage != MESA_SHADER_GEOMETRY &&
s->info.stage != MESA_SHADER_TESS_EVAL)
return false;
if ((s->info.outputs_written & VARYING_BIT_POS) == 0)
return false;
return nir_shader_intrinsics_pass(s, update_writes,
nir_metadata_control_flow,
NULL);
}
static bool
is_sample_pos(const nir_instr *instr, const void *_data)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
return intr->intrinsic == nir_intrinsic_load_sample_pos;
}
static nir_def *
lower_sample_pos(nir_builder *b, nir_instr *instr, void *_data)
{
return nir_load_sample_pos_from_id(b, 32, nir_load_sample_id(b));
}
bool
dxil_nir_lower_sample_pos(nir_shader *s)
{
return nir_shader_lower_instructions(s, is_sample_pos, lower_sample_pos, NULL);
}
static bool
lower_subgroup_id(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
if (intr->intrinsic != nir_intrinsic_load_subgroup_id)
return false;
b->cursor = nir_before_impl(b->impl);
if (b->shader->info.stage == MESA_SHADER_COMPUTE &&
b->shader->info.workgroup_size[1] == 1 &&
b->shader->info.workgroup_size[2] == 1) {
/* When using Nx1x1 groups, use a simple stable algorithm
* which is almost guaranteed to be correct. */
nir_def *subgroup_id = nir_udiv(b, nir_load_local_invocation_index(b), nir_load_subgroup_size(b));
nir_def_rewrite_uses(&intr->def, subgroup_id);
return true;
}
nir_def **subgroup_id = (nir_def **)data;
if (*subgroup_id == NULL) {
nir_variable *subgroup_id_counter = nir_variable_create(b->shader, nir_var_mem_shared, glsl_uint_type(), "dxil_SubgroupID_counter");
nir_variable *subgroup_id_local = nir_local_variable_create(b->impl, glsl_uint_type(), "dxil_SubgroupID_local");
nir_store_var(b, subgroup_id_local, nir_imm_int(b, 0), 1);
nir_deref_instr *counter_deref = nir_build_deref_var(b, subgroup_id_counter);
nir_def *tid = nir_load_local_invocation_index(b);
nir_if *nif = nir_push_if(b, nir_ieq_imm(b, tid, 0));
nir_store_deref(b, counter_deref, nir_imm_int(b, 0), 1);
nir_pop_if(b, nif);
nir_barrier(b,
.execution_scope = SCOPE_WORKGROUP,
.memory_scope = SCOPE_WORKGROUP,
.memory_semantics = NIR_MEMORY_ACQ_REL,
.memory_modes = nir_var_mem_shared);
nif = nir_push_if(b, nir_elect(b, 1));
nir_def *subgroup_id_first_thread = nir_deref_atomic(b, 32, &counter_deref->def, nir_imm_int(b, 1),
.atomic_op = nir_atomic_op_iadd);
nir_store_var(b, subgroup_id_local, subgroup_id_first_thread, 1);
nir_pop_if(b, nif);
nir_def *subgroup_id_loaded = nir_load_var(b, subgroup_id_local);
*subgroup_id = nir_read_first_invocation(b, subgroup_id_loaded);
}
nir_def_rewrite_uses(&intr->def, *subgroup_id);
return true;
}
bool
dxil_nir_lower_subgroup_id(nir_shader *s)
{
nir_def *subgroup_id = NULL;
return nir_shader_intrinsics_pass(s, lower_subgroup_id, nir_metadata_none,
&subgroup_id);
}
static bool
lower_num_subgroups(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
if (intr->intrinsic != nir_intrinsic_load_num_subgroups)
return false;
b->cursor = nir_before_instr(&intr->instr);
nir_def *subgroup_size = nir_load_subgroup_size(b);
nir_def *size_minus_one = nir_iadd_imm(b, subgroup_size, -1);
nir_def *workgroup_size_vec = nir_load_workgroup_size(b);
nir_def *workgroup_size = nir_imul(b, nir_channel(b, workgroup_size_vec, 0),
nir_imul(b, nir_channel(b, workgroup_size_vec, 1),
nir_channel(b, workgroup_size_vec, 2)));
nir_def *ret = nir_idiv(b, nir_iadd(b, workgroup_size, size_minus_one), subgroup_size);
nir_def_rewrite_uses(&intr->def, ret);
return true;
}
bool
dxil_nir_lower_num_subgroups(nir_shader *s)
{
return nir_shader_intrinsics_pass(s, lower_num_subgroups,
nir_metadata_control_flow |
nir_metadata_loop_analysis, NULL);
}
static const struct glsl_type *
get_cast_type(unsigned bit_size)
{
switch (bit_size) {
case 64:
return glsl_int64_t_type();
case 32:
return glsl_int_type();
case 16:
return glsl_int16_t_type();
case 8:
return glsl_int8_t_type();
}
unreachable("Invalid bit_size");
}
static void
split_unaligned_load(nir_builder *b, nir_intrinsic_instr *intrin, unsigned alignment)
{
enum gl_access_qualifier access = nir_intrinsic_access(intrin);
nir_def *srcs[NIR_MAX_VEC_COMPONENTS * NIR_MAX_VEC_COMPONENTS * sizeof(int64_t) / 8];
unsigned comp_size = intrin->def.bit_size / 8;
unsigned num_comps = intrin->def.num_components;
b->cursor = nir_before_instr(&intrin->instr);
nir_deref_instr *ptr = nir_src_as_deref(intrin->src[0]);
const struct glsl_type *cast_type = get_cast_type(alignment * 8);
nir_deref_instr *cast = nir_build_deref_cast(b, &ptr->def, ptr->modes, cast_type, alignment);
unsigned num_loads = DIV_ROUND_UP(comp_size * num_comps, alignment);
for (unsigned i = 0; i < num_loads; ++i) {
nir_deref_instr *elem = nir_build_deref_ptr_as_array(b, cast, nir_imm_intN_t(b, i, cast->def.bit_size));
srcs[i] = nir_load_deref_with_access(b, elem, access);
}
nir_def *new_dest = nir_extract_bits(b, srcs, num_loads, 0, num_comps, intrin->def.bit_size);
nir_def_replace(&intrin->def, new_dest);
}
static void
split_unaligned_store(nir_builder *b, nir_intrinsic_instr *intrin, unsigned alignment)
{
enum gl_access_qualifier access = nir_intrinsic_access(intrin);
nir_def *value = intrin->src[1].ssa;
unsigned comp_size = value->bit_size / 8;
unsigned num_comps = value->num_components;
b->cursor = nir_before_instr(&intrin->instr);
nir_deref_instr *ptr = nir_src_as_deref(intrin->src[0]);
const struct glsl_type *cast_type = get_cast_type(alignment * 8);
nir_deref_instr *cast = nir_build_deref_cast(b, &ptr->def, ptr->modes, cast_type, alignment);
unsigned num_stores = DIV_ROUND_UP(comp_size * num_comps, alignment);
for (unsigned i = 0; i < num_stores; ++i) {
nir_def *substore_val = nir_extract_bits(b, &value, 1, i * alignment * 8, 1, alignment * 8);
nir_deref_instr *elem = nir_build_deref_ptr_as_array(b, cast, nir_imm_intN_t(b, i, cast->def.bit_size));
nir_store_deref_with_access(b, elem, substore_val, ~0, access);
}
nir_instr_remove(&intrin->instr);
}
bool
dxil_nir_split_unaligned_loads_stores(nir_shader *shader, nir_variable_mode modes)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
nir_builder b = nir_builder_create(impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_deref &&
intrin->intrinsic != nir_intrinsic_store_deref)
continue;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_may_be(deref, modes))
continue;
unsigned align_mul = 0, align_offset = 0;
nir_get_explicit_deref_align(deref, true, &align_mul, &align_offset);
unsigned alignment = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
/* We can load anything at 4-byte alignment, except for
* UBOs (AKA CBs where the granularity is 16 bytes).
*/
unsigned req_align = (nir_deref_mode_is_one_of(deref, nir_var_mem_ubo | nir_var_mem_push_const) ? 16 : 4);
if (alignment >= req_align)
continue;
nir_def *val;
if (intrin->intrinsic == nir_intrinsic_load_deref) {
val = &intrin->def;
} else {
val = intrin->src[1].ssa;
}
unsigned scalar_byte_size = glsl_type_is_boolean(deref->type) ? 4 : glsl_get_bit_size(deref->type) / 8;
unsigned num_components =
/* If the vector stride is larger than the scalar size, lower_explicit_io will
* turn this into multiple scalar loads anyway, so we don't have to split it here. */
glsl_get_explicit_stride(deref->type) > scalar_byte_size ? 1 :
(val->num_components == 3 ? 4 : val->num_components);
unsigned natural_alignment = scalar_byte_size * num_components;
if (alignment >= natural_alignment)
continue;
if (intrin->intrinsic == nir_intrinsic_load_deref)
split_unaligned_load(&b, intrin, alignment);
else
split_unaligned_store(&b, intrin, alignment);
progress = true;
}
}
}
return progress;
}
static void
lower_inclusive_to_exclusive(nir_builder *b, nir_intrinsic_instr *intr)
{
b->cursor = nir_after_instr(&intr->instr);
nir_op op = nir_intrinsic_reduction_op(intr);
intr->intrinsic = nir_intrinsic_exclusive_scan;
nir_intrinsic_set_reduction_op(intr, op);
nir_def *final_val = nir_build_alu2(b, nir_intrinsic_reduction_op(intr),
&intr->def, intr->src[0].ssa);
nir_def_rewrite_uses_after(&intr->def, final_val, final_val->parent_instr);
}
static bool
lower_subgroup_scan(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
switch (intr->intrinsic) {
case nir_intrinsic_exclusive_scan:
case nir_intrinsic_inclusive_scan:
switch ((nir_op)nir_intrinsic_reduction_op(intr)) {
case nir_op_iadd:
case nir_op_fadd:
case nir_op_imul:
case nir_op_fmul:
if (intr->intrinsic == nir_intrinsic_exclusive_scan)
return false;
lower_inclusive_to_exclusive(b, intr);
return true;
default:
break;
}
break;
default:
return false;
}
b->cursor = nir_before_instr(&intr->instr);
nir_op op = nir_intrinsic_reduction_op(intr);
nir_def *subgroup_id = nir_load_subgroup_invocation(b);
nir_def *subgroup_size = nir_load_subgroup_size(b);
nir_def *active_threads = nir_ballot(b, 4, 32, nir_imm_true(b));
nir_def *base_value;
uint32_t bit_size = intr->def.bit_size;
if (op == nir_op_iand || op == nir_op_umin)
base_value = nir_imm_intN_t(b, ~0ull, bit_size);
else if (op == nir_op_imin)
base_value = nir_imm_intN_t(b, (1ull << (bit_size - 1)) - 1, bit_size);
else if (op == nir_op_imax)
base_value = nir_imm_intN_t(b, 1ull << (bit_size - 1), bit_size);
else if (op == nir_op_fmax)
base_value = nir_imm_floatN_t(b, -INFINITY, bit_size);
else if (op == nir_op_fmin)
base_value = nir_imm_floatN_t(b, INFINITY, bit_size);
else
base_value = nir_imm_intN_t(b, 0, bit_size);
nir_variable *loop_counter_var = nir_local_variable_create(b->impl, glsl_uint_type(), "subgroup_loop_counter");
nir_variable *result_var = nir_local_variable_create(b->impl,
glsl_vector_type(nir_get_glsl_base_type_for_nir_type(
nir_op_infos[op].input_types[0] | bit_size), 1),
"subgroup_loop_result");
nir_store_var(b, loop_counter_var, nir_imm_int(b, 0), 1);
nir_store_var(b, result_var, base_value, 1);
nir_loop *loop = nir_push_loop(b);
nir_def *loop_counter = nir_load_var(b, loop_counter_var);
nir_if *nif = nir_push_if(b, nir_ilt(b, loop_counter, subgroup_size));
nir_def *other_thread_val = nir_read_invocation(b, intr->src[0].ssa, loop_counter);
nir_def *thread_in_range = intr->intrinsic == nir_intrinsic_inclusive_scan ?
nir_ige(b, subgroup_id, loop_counter) :
nir_ilt(b, loop_counter, subgroup_id);
nir_def *thread_active = nir_ballot_bitfield_extract(b, 1, active_threads, loop_counter);
nir_if *if_active_thread = nir_push_if(b, nir_iand(b, thread_in_range, thread_active));
nir_def *result = nir_build_alu2(b, op, nir_load_var(b, result_var), other_thread_val);
nir_store_var(b, result_var, result, 1);
nir_pop_if(b, if_active_thread);
nir_store_var(b, loop_counter_var, nir_iadd_imm(b, loop_counter, 1), 1);
nir_jump(b, nir_jump_continue);
nir_pop_if(b, nif);
nir_jump(b, nir_jump_break);
nir_pop_loop(b, loop);
result = nir_load_var(b, result_var);
nir_def_rewrite_uses(&intr->def, result);
return true;
}
bool
dxil_nir_lower_unsupported_subgroup_scan(nir_shader *s)
{
bool ret = nir_shader_intrinsics_pass(s, lower_subgroup_scan,
nir_metadata_none, NULL);
if (ret) {
/* Lower the ballot bitfield tests */
nir_lower_subgroups_options options = { .ballot_bit_size = 32, .ballot_components = 4 };
nir_lower_subgroups(s, &options);
}
return ret;
}
bool
dxil_nir_forward_front_face(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_FRAGMENT);
nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_in, VARYING_SLOT_FACE);
if (var) {
var->data.location = VARYING_SLOT_VAR12;
return true;
}
return false;
}
static bool
move_consts(nir_builder *b, nir_instr *instr, void *data)
{
bool progress = false;
switch (instr->type) {
case nir_instr_type_load_const: {
/* Sink load_const to their uses if there's multiple */
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
if (!list_is_singular(&load_const->def.uses)) {
nir_foreach_use_safe(src, &load_const->def) {
b->cursor = nir_before_src(src);
nir_load_const_instr *new_load = nir_load_const_instr_create(b->shader,
load_const->def.num_components,
load_const->def.bit_size);
memcpy(new_load->value, load_const->value, sizeof(load_const->value[0]) * load_const->def.num_components);
nir_builder_instr_insert(b, &new_load->instr);
nir_src_rewrite(src, &new_load->def);
progress = true;
}
}
return progress;
}
default:
return false;
}
}
/* Sink all consts so that they have only have a single use.
* The DXIL backend will already de-dupe the constants to the
* same dxil_value if they have the same type, but this allows a single constant
* to have different types without bitcasts. */
bool
dxil_nir_move_consts(nir_shader *s)
{
return nir_shader_instructions_pass(s, move_consts,
nir_metadata_control_flow,
NULL);
}
static void
clear_pass_flags(nir_function_impl *impl)
{
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
instr->pass_flags = 0;
}
}
}
static bool
add_def_to_worklist(nir_def *def, void *state)
{
nir_foreach_use_including_if(src, def) {
if (nir_src_is_if(src)) {
nir_if *nif = nir_src_parent_if(src);
nir_foreach_block_in_cf_node(block, &nif->cf_node) {
nir_foreach_instr(instr, block)
nir_instr_worklist_push_tail(state, instr);
}
} else
nir_instr_worklist_push_tail(state, nir_src_parent_instr(src));
}
return true;
}
static bool
set_input_bits(struct dxil_module *mod, nir_intrinsic_instr *intr, BITSET_WORD *input_bits, uint32_t ***tables, const uint32_t **table_sizes)
{
if (intr->intrinsic == nir_intrinsic_load_view_index) {
BITSET_SET(input_bits, 0);
return true;
}
bool any_bits_set = false;
nir_src *row_src = intr->intrinsic == nir_intrinsic_load_per_vertex_input ? &intr->src[1] : &intr->src[0];
bool is_patch_constant = mod->shader_kind == DXIL_DOMAIN_SHADER && intr->intrinsic == nir_intrinsic_load_input;
const struct dxil_signature_record *sig_rec = is_patch_constant ?
&mod->patch_consts[mod->patch_mappings[nir_intrinsic_base(intr)]] :
&mod->inputs[mod->input_mappings[nir_intrinsic_base(intr)]];
if (is_patch_constant) {
/* Redirect to the second I/O table */
*tables = *tables + 1;
*table_sizes = *table_sizes + 1;
}
for (uint32_t component = 0; component < intr->num_components; ++component) {
uint32_t base_element = 0;
uint32_t num_elements = sig_rec->num_elements;
if (nir_src_is_const(*row_src)) {
base_element = (uint32_t)nir_src_as_uint(*row_src);
num_elements = 1;
}
for (uint32_t element = 0; element < num_elements; ++element) {
uint32_t row = sig_rec->elements[element + base_element].reg;
if (row == 0xffffffff)
continue;
BITSET_SET(input_bits, row * 4 + component + nir_intrinsic_component(intr));
any_bits_set = true;
}
}
return any_bits_set;
}
static bool
set_output_bits(struct dxil_module *mod, nir_intrinsic_instr *intr, BITSET_WORD *input_bits, uint32_t **tables, const uint32_t *table_sizes)
{
bool any_bits_set = false;
nir_src *row_src = intr->intrinsic == nir_intrinsic_store_per_vertex_output ? &intr->src[2] : &intr->src[1];
bool is_patch_constant = mod->shader_kind == DXIL_HULL_SHADER && intr->intrinsic == nir_intrinsic_store_output;
const struct dxil_signature_record *sig_rec = is_patch_constant ?
&mod->patch_consts[mod->patch_mappings[nir_intrinsic_base(intr)]] :
&mod->outputs[mod->output_mappings[nir_intrinsic_base(intr)]];
for (uint32_t component = 0; component < intr->num_components; ++component) {
uint32_t base_element = 0;
uint32_t num_elements = sig_rec->num_elements;
if (nir_src_is_const(*row_src)) {
base_element = (uint32_t)nir_src_as_uint(*row_src);
num_elements = 1;
}
for (uint32_t element = 0; element < num_elements; ++element) {
uint32_t row = sig_rec->elements[element + base_element].reg;
if (row == 0xffffffff)
continue;
uint32_t stream = sig_rec->elements[element + base_element].stream;
uint32_t table_idx = is_patch_constant ? 1 : stream;
uint32_t *table = tables[table_idx];
uint32_t output_component = component + nir_intrinsic_component(intr);
uint32_t input_component;
BITSET_FOREACH_SET(input_component, input_bits, 32 * 4) {
uint32_t *table_for_input_component = table + table_sizes[table_idx] * input_component;
BITSET_SET(table_for_input_component, row * 4 + output_component);
any_bits_set = true;
}
}
}
return any_bits_set;
}
static bool
propagate_input_to_output_dependencies(struct dxil_module *mod, nir_intrinsic_instr *load_intr, uint32_t **tables, const uint32_t *table_sizes)
{
/* Which input components are being loaded by this instruction */
BITSET_DECLARE(input_bits, 32 * 4) = { 0 };
if (!set_input_bits(mod, load_intr, input_bits, &tables, &table_sizes))
return false;
nir_instr_worklist *worklist = nir_instr_worklist_create();
nir_instr_worklist_push_tail(worklist, &load_intr->instr);
bool any_bits_set = false;
nir_foreach_instr_in_worklist(instr, worklist) {
if (instr->pass_flags)
continue;
instr->pass_flags = 1;
nir_foreach_def(instr, add_def_to_worklist, worklist);
switch (instr->type) {
case nir_instr_type_jump: {
nir_jump_instr *jump = nir_instr_as_jump(instr);
switch (jump->type) {
case nir_jump_break:
case nir_jump_continue: {
nir_cf_node *parent = &instr->block->cf_node;
while (parent->type != nir_cf_node_loop)
parent = parent->parent;
nir_foreach_block_in_cf_node(block, parent)
nir_foreach_instr(i, block)
nir_instr_worklist_push_tail(worklist, i);
}
break;
default:
unreachable("Don't expect any other jumps");
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output:
any_bits_set |= set_output_bits(mod, intr, input_bits, tables, table_sizes);
break;
/* TODO: Memory writes */
default:
break;
}
break;
}
default:
break;
}
}
nir_instr_worklist_destroy(worklist);
return any_bits_set;
}
/* For every input load, compute the set of output stores that it can contribute to.
* If it contributes to a store to memory, If it's used for control flow, then any
* instruction in the CFG that it impacts is considered to contribute.
* Ideally, we should also handle stores to outputs/memory and then loads from that
* output/memory, but this is non-trivial and unclear how much impact that would have. */
bool
dxil_nir_analyze_io_dependencies(struct dxil_module *mod, nir_shader *s)
{
bool any_outputs = false;
for (uint32_t i = 0; i < 4; ++i)
any_outputs |= mod->num_psv_outputs[i] > 0;
if (mod->shader_kind == DXIL_HULL_SHADER)
any_outputs |= mod->num_psv_patch_consts > 0;
if (!any_outputs)
return false;
bool any_bits_set = false;
nir_foreach_function(func, s) {
assert(func->impl);
/* Hull shaders have a patch constant function */
assert(func->is_entrypoint || s->info.stage == MESA_SHADER_TESS_CTRL);
/* Pass 1: input/view ID -> output dependencies */
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
uint32_t **tables = mod->io_dependency_table;
const uint32_t *table_sizes = mod->dependency_table_dwords_per_input;
switch (intr->intrinsic) {
case nir_intrinsic_load_view_index:
tables = mod->viewid_dependency_table;
FALLTHROUGH;
case nir_intrinsic_load_input:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_interpolated_input:
break;
default:
continue;
}
clear_pass_flags(func->impl);
any_bits_set |= propagate_input_to_output_dependencies(mod, intr, tables, table_sizes);
}
}
/* Pass 2: output -> output dependencies */
/* TODO */
}
return any_bits_set;
}
static enum pipe_format
get_format_for_var(unsigned num_comps, enum glsl_base_type sampled_type)
{
switch (sampled_type) {
case GLSL_TYPE_INT:
case GLSL_TYPE_INT64:
case GLSL_TYPE_INT16:
switch (num_comps) {
case 1: return PIPE_FORMAT_R32_SINT;
case 2: return PIPE_FORMAT_R32G32_SINT;
case 3: return PIPE_FORMAT_R32G32B32_SINT;
case 4: return PIPE_FORMAT_R32G32B32A32_SINT;
default: unreachable("Invalid num_comps");
}
case GLSL_TYPE_UINT:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_UINT16:
switch (num_comps) {
case 1: return PIPE_FORMAT_R32_UINT;
case 2: return PIPE_FORMAT_R32G32_UINT;
case 3: return PIPE_FORMAT_R32G32B32_UINT;
case 4: return PIPE_FORMAT_R32G32B32A32_UINT;
default: unreachable("Invalid num_comps");
}
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
switch (num_comps) {
case 1: return PIPE_FORMAT_R32_FLOAT;
case 2: return PIPE_FORMAT_R32G32_FLOAT;
case 3: return PIPE_FORMAT_R32G32B32_FLOAT;
case 4: return PIPE_FORMAT_R32G32B32A32_FLOAT;
default: unreachable("Invalid num_comps");
}
default: unreachable("Invalid sampler return type");
}
}
static unsigned
aoa_size(const struct glsl_type *type)
{
return glsl_type_is_array(type) ? glsl_get_aoa_size(type) : 1;
}
static bool
guess_image_format_for_var(nir_shader *s, nir_variable *var)
{
const struct glsl_type *base_type = glsl_without_array(var->type);
if (!glsl_type_is_image(base_type))
return false;
if (var->data.image.format != PIPE_FORMAT_NONE)
return false;
nir_foreach_function_impl(impl, s) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic:
case nir_intrinsic_image_deref_atomic_swap:
if (nir_intrinsic_get_var(intr, 0) != var)
continue;
break;
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic:
case nir_intrinsic_image_atomic_swap: {
unsigned binding = nir_src_as_uint(intr->src[0]);
if (binding < var->data.binding ||
binding >= var->data.binding + aoa_size(var->type))
continue;
break;
}
default:
continue;
}
break;
switch (intr->intrinsic) {
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_store:
/* Increase unknown formats up to 4 components if a 4-component accessor is used */
if (intr->num_components > util_format_get_nr_components(var->data.image.format))
var->data.image.format = get_format_for_var(intr->num_components, glsl_get_sampler_result_type(base_type));
break;
default:
/* If an atomic is used, the image format must be 1-component; return immediately */
var->data.image.format = get_format_for_var(1, glsl_get_sampler_result_type(base_type));
return true;
}
}
}
}
/* Dunno what it is, assume 4-component */
if (var->data.image.format == PIPE_FORMAT_NONE)
var->data.image.format = get_format_for_var(4, glsl_get_sampler_result_type(base_type));
return true;
}
static void
update_intrinsic_format_and_type(nir_intrinsic_instr *intr, nir_variable *var)
{
nir_intrinsic_set_format(intr, var->data.image.format);
nir_alu_type alu_type =
nir_get_nir_type_for_glsl_base_type(glsl_get_sampler_result_type(glsl_without_array(var->type)));
if (nir_intrinsic_has_src_type(intr))
nir_intrinsic_set_src_type(intr, alu_type);
else if (nir_intrinsic_has_dest_type(intr))
nir_intrinsic_set_dest_type(intr, alu_type);
}
static bool
update_intrinsic_formats(nir_builder *b, nir_intrinsic_instr *intr,
void *data)
{
if (!nir_intrinsic_has_format(intr))
return false;
nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
if (deref) {
nir_variable *var = nir_deref_instr_get_variable(deref);
if (var)
update_intrinsic_format_and_type(intr, var);
return var != NULL;
}
if (!nir_intrinsic_has_range_base(intr))
return false;
unsigned binding = nir_src_as_uint(intr->src[0]);
nir_foreach_variable_with_modes(var, b->shader, nir_var_image) {
if (var->data.binding <= binding &&
var->data.binding + aoa_size(var->type) > binding) {
update_intrinsic_format_and_type(intr, var);
return true;
}
}
return false;
}
bool
dxil_nir_guess_image_formats(nir_shader *s)
{
bool progress = false;
nir_foreach_variable_with_modes(var, s, nir_var_image) {
progress |= guess_image_format_for_var(s, var);
}
nir_shader_intrinsics_pass(s, update_intrinsic_formats, nir_metadata_all,
NULL);
return progress;
}
static void
set_binding_variables_coherent(nir_shader *s, nir_binding binding, nir_variable_mode modes)
{
nir_foreach_variable_with_modes(var, s, modes) {
if (var->data.binding == binding.binding &&
var->data.descriptor_set == binding.desc_set) {
var->data.access |= ACCESS_COHERENT;
}
}
}
static void
set_deref_variables_coherent(nir_shader *s, nir_deref_instr *deref)
{
while (deref->deref_type != nir_deref_type_var &&
deref->deref_type != nir_deref_type_cast) {
deref = nir_deref_instr_parent(deref);
}
if (deref->deref_type == nir_deref_type_var) {
deref->var->data.access |= ACCESS_COHERENT;
return;
}
/* For derefs with casts, we only support pre-lowered Vulkan accesses */
assert(deref->deref_type == nir_deref_type_cast);
nir_intrinsic_instr *cast_src = nir_instr_as_intrinsic(deref->parent.ssa->parent_instr);
assert(cast_src->intrinsic == nir_intrinsic_load_vulkan_descriptor);
nir_binding binding = nir_chase_binding(cast_src->src[0]);
set_binding_variables_coherent(s, binding, nir_var_mem_ssbo);
}
static nir_def *
get_atomic_for_load_store(nir_builder *b, nir_intrinsic_instr *intr, unsigned bit_size)
{
nir_def *zero = nir_imm_intN_t(b, 0, bit_size);
switch (intr->intrinsic) {
case nir_intrinsic_load_deref:
return nir_deref_atomic(b, bit_size, intr->src[0].ssa, zero, .atomic_op = nir_atomic_op_iadd);
case nir_intrinsic_load_ssbo:
return nir_ssbo_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, zero, .atomic_op = nir_atomic_op_iadd);
case nir_intrinsic_image_deref_load:
return nir_image_deref_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, intr->src[2].ssa, zero, .atomic_op = nir_atomic_op_iadd);
case nir_intrinsic_image_load:
return nir_image_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, intr->src[2].ssa, zero, .atomic_op = nir_atomic_op_iadd);
case nir_intrinsic_store_deref:
return nir_deref_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, .atomic_op = nir_atomic_op_xchg);
case nir_intrinsic_store_ssbo:
return nir_ssbo_atomic(b, bit_size, intr->src[1].ssa, intr->src[2].ssa, intr->src[0].ssa, .atomic_op = nir_atomic_op_xchg);
case nir_intrinsic_image_deref_store:
return nir_image_deref_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, intr->src[2].ssa, intr->src[3].ssa, .atomic_op = nir_atomic_op_xchg);
case nir_intrinsic_image_store:
return nir_image_atomic(b, bit_size, intr->src[0].ssa, intr->src[1].ssa, intr->src[2].ssa, intr->src[3].ssa, .atomic_op = nir_atomic_op_xchg);
default:
return NULL;
}
}
static bool
lower_coherent_load_store(nir_builder *b, nir_intrinsic_instr *intr, void *context)
{
if (!nir_intrinsic_has_access(intr) || (nir_intrinsic_access(intr) & ACCESS_COHERENT) == 0)
return false;
nir_def *atomic_def = NULL;
b->cursor = nir_before_instr(&intr->instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_load: {
if (intr->def.bit_size < 32 || intr->def.num_components > 1) {
if (intr->intrinsic == nir_intrinsic_load_deref)
set_deref_variables_coherent(b->shader, nir_src_as_deref(intr->src[0]));
else {
nir_binding binding = {0};
if (nir_src_is_const(intr->src[0]))
binding.binding = nir_src_as_uint(intr->src[0]);
set_binding_variables_coherent(b->shader, binding,
intr->intrinsic == nir_intrinsic_load_ssbo ? nir_var_mem_ssbo : nir_var_image);
}
return false;
}
atomic_def = get_atomic_for_load_store(b, intr, intr->def.bit_size);
nir_def_rewrite_uses(&intr->def, atomic_def);
break;
}
case nir_intrinsic_store_deref:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_store: {
int resource_idx = intr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
int value_idx = intr->intrinsic == nir_intrinsic_store_ssbo ? 0 :
intr->intrinsic == nir_intrinsic_store_deref ? 1 : 3;
unsigned num_components = nir_intrinsic_has_write_mask(intr) ?
util_bitcount(nir_intrinsic_write_mask(intr)) : intr->src[value_idx].ssa->num_components;
if (intr->src[value_idx].ssa->bit_size < 32 || num_components > 1) {
if (intr->intrinsic == nir_intrinsic_store_deref)
set_deref_variables_coherent(b->shader, nir_src_as_deref(intr->src[resource_idx]));
else {
nir_binding binding = {0};
if (nir_src_is_const(intr->src[resource_idx]))
binding.binding = nir_src_as_uint(intr->src[resource_idx]);
set_binding_variables_coherent(b->shader, binding,
intr->intrinsic == nir_intrinsic_store_ssbo ? nir_var_mem_ssbo : nir_var_image);
}
return false;
}
atomic_def = get_atomic_for_load_store(b, intr, intr->src[value_idx].ssa->bit_size);
break;
}
default:
return false;
}
nir_intrinsic_instr *atomic = nir_instr_as_intrinsic(atomic_def->parent_instr);
nir_intrinsic_set_access(atomic, nir_intrinsic_access(intr));
if (nir_intrinsic_has_image_dim(intr))
nir_intrinsic_set_image_dim(atomic, nir_intrinsic_image_dim(intr));
if (nir_intrinsic_has_image_array(intr))
nir_intrinsic_set_image_array(atomic, nir_intrinsic_image_array(intr));
if (nir_intrinsic_has_format(intr))
nir_intrinsic_set_format(atomic, nir_intrinsic_format(intr));
if (nir_intrinsic_has_range_base(intr))
nir_intrinsic_set_range_base(atomic, nir_intrinsic_range_base(intr));
nir_instr_remove(&intr->instr);
return true;
}
bool
dxil_nir_lower_coherent_loads_and_stores(nir_shader *s)
{
return nir_shader_intrinsics_pass(s, lower_coherent_load_store,
nir_metadata_control_flow | nir_metadata_loop_analysis,
NULL);
}
struct undefined_varying_masks {
uint64_t io_mask;
uint32_t patch_io_mask;
const BITSET_WORD *frac_io_mask;
};
static bool
is_dead_in_variable(nir_variable *var, void *data)
{
switch (var->data.location) {
/* Only these values can be system generated values in addition to varyings */
case VARYING_SLOT_PRIMITIVE_ID:
case VARYING_SLOT_FACE:
case VARYING_SLOT_VIEW_INDEX:
return false;
/* Tessellation input vars must remain untouched */
case VARYING_SLOT_TESS_LEVEL_INNER:
case VARYING_SLOT_TESS_LEVEL_OUTER:
return false;
default:
return true;
}
}
static bool
kill_undefined_varyings(struct nir_builder *b,
nir_instr *instr,
void *data)
{
const struct undefined_varying_masks *masks = data;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_load_deref)
return false;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (!var || var->data.mode != nir_var_shader_in)
return false;
if (!is_dead_in_variable(var, NULL))
return false;
uint32_t loc = var->data.patch && var->data.location >= VARYING_SLOT_PATCH0 ?
var->data.location - VARYING_SLOT_PATCH0 :
var->data.location;
uint64_t written = var->data.patch && var->data.location >= VARYING_SLOT_PATCH0 ?
masks->patch_io_mask : masks->io_mask;
if (BITFIELD64_RANGE(loc, glsl_varying_count(var->type)) & written) {
if (!masks->frac_io_mask || !var->data.location_frac ||
var->data.location < VARYING_SLOT_VAR0 ||
BITSET_TEST(masks->frac_io_mask, (var->data.location - VARYING_SLOT_VAR0) * 4 + var->data.location_frac))
return false;
}
b->cursor = nir_after_instr(instr);
/* Note: zero is used instead of undef, because optimization is not run here, but is
* run later on. If we load an undef here, and that undef ends up being used to store
* to position later on, that can cause some or all of the components in that position
* write to be removed, which is problematic especially in the case of all components,
* since that would remove the store instruction, and would make it tricky to satisfy
* the DXIL requirements of writing all position components.
*/
nir_def *zero = nir_imm_zero(b, intr->def.num_components,
intr->def.bit_size);
nir_def_replace(&intr->def, zero);
return true;
}
bool
dxil_nir_kill_undefined_varyings(nir_shader *shader, uint64_t prev_stage_written_mask, uint32_t prev_stage_patch_written_mask,
const BITSET_WORD *prev_stage_frac_output_mask)
{
struct undefined_varying_masks masks = {
.io_mask = prev_stage_written_mask,
.patch_io_mask = prev_stage_patch_written_mask,
.frac_io_mask = prev_stage_frac_output_mask
};
bool progress = nir_shader_instructions_pass(shader,
kill_undefined_varyings,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
(void *)&masks);
if (progress) {
nir_opt_dce(shader);
nir_remove_dead_derefs(shader);
}
const struct nir_remove_dead_variables_options options = {
.can_remove_var = is_dead_in_variable,
.can_remove_var_data = &masks,
};
progress |= nir_remove_dead_variables(shader, nir_var_shader_in, &options);
return progress;
}
static bool
is_dead_out_variable(nir_variable *var, void *data)
{
return !nir_slot_is_sysval_output(var->data.location, MESA_SHADER_NONE);
}
static bool
kill_unused_outputs(struct nir_builder *b,
nir_instr *instr,
void *data)
{
const struct undefined_varying_masks *masks = data;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_deref &&
intr->intrinsic != nir_intrinsic_load_deref)
return false;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (!var || var->data.mode != nir_var_shader_out ||
/* always_active_io can mean two things: xfb or GL separable shaders. We can't delete
* varyings that are used for xfb (we'll just sort them last), but we must delete varyings
* that are mismatching between TCS and TES. Fortunately TCS can't do xfb, so we can ignore
the always_active_io bit for TCS outputs. */
(b->shader->info.stage != MESA_SHADER_TESS_CTRL && var->data.always_active_io))
return false;
if (!is_dead_out_variable(var, NULL))
return false;
unsigned loc = var->data.patch && var->data.location >= VARYING_SLOT_PATCH0 ?
var->data.location - VARYING_SLOT_PATCH0 :
var->data.location;
uint64_t read = var->data.patch && var->data.location >= VARYING_SLOT_PATCH0 ?
masks->patch_io_mask : masks->io_mask;
if (BITFIELD64_RANGE(loc, glsl_varying_count(var->type)) & read) {
if (!masks->frac_io_mask || !var->data.location_frac ||
var->data.location < VARYING_SLOT_VAR0 ||
BITSET_TEST(masks->frac_io_mask, (var->data.location - VARYING_SLOT_VAR0) * 4 + var->data.location_frac))
return false;
}
if (intr->intrinsic == nir_intrinsic_load_deref) {
b->cursor = nir_after_instr(&intr->instr);
nir_def *zero = nir_imm_zero(b, intr->def.num_components, intr->def.bit_size);
nir_def_rewrite_uses(&intr->def, zero);
}
nir_instr_remove(instr);
return true;
}
bool
dxil_nir_kill_unused_outputs(nir_shader *shader, uint64_t next_stage_read_mask, uint32_t next_stage_patch_read_mask,
const BITSET_WORD *next_stage_frac_input_mask)
{
struct undefined_varying_masks masks = {
.io_mask = next_stage_read_mask,
.patch_io_mask = next_stage_patch_read_mask,
.frac_io_mask = next_stage_frac_input_mask
};
bool progress = nir_shader_instructions_pass(shader,
kill_unused_outputs,
nir_metadata_control_flow |
nir_metadata_loop_analysis,
(void *)&masks);
if (progress) {
nir_opt_dce(shader);
nir_remove_dead_derefs(shader);
}
const struct nir_remove_dead_variables_options options = {
.can_remove_var = is_dead_out_variable,
.can_remove_var_data = &masks,
};
progress |= nir_remove_dead_variables(shader, nir_var_shader_out, &options);
return progress;
}