| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| |
| #include <assert.h> |
| #include <inttypes.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| |
| #include "util/compress.h" |
| #include "util/crc32.h" |
| #include "util/u_debug.h" |
| #include "util/disk_cache.h" |
| #include "util/disk_cache_os.h" |
| |
| #if DETECT_OS_WINDOWS |
| |
| #include <windows.h> |
| |
| bool |
| disk_cache_get_function_identifier(void *ptr, struct mesa_sha1 *ctx) |
| { |
| HMODULE mod = NULL; |
| GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, |
| (LPCWSTR)ptr, |
| &mod); |
| if (!mod) |
| return false; |
| |
| WCHAR filename[MAX_PATH]; |
| DWORD filename_length = GetModuleFileNameW(mod, filename, ARRAY_SIZE(filename)); |
| |
| if (filename_length == 0 || filename_length == ARRAY_SIZE(filename)) |
| return false; |
| |
| HANDLE mod_as_file = CreateFileW( |
| filename, |
| GENERIC_READ, |
| FILE_SHARE_READ, |
| NULL, |
| OPEN_EXISTING, |
| FILE_ATTRIBUTE_NORMAL, |
| NULL); |
| if (mod_as_file == INVALID_HANDLE_VALUE) |
| return false; |
| |
| FILETIME time; |
| bool ret = GetFileTime(mod_as_file, NULL, NULL, &time); |
| if (ret) |
| _mesa_sha1_update(ctx, &time, sizeof(time)); |
| CloseHandle(mod_as_file); |
| return ret; |
| } |
| |
| #endif |
| |
| #ifdef ENABLE_SHADER_CACHE |
| |
| #if DETECT_OS_WINDOWS |
| /* TODO: implement disk cache support on windows */ |
| |
| #else |
| |
| #include <dirent.h> |
| #include <errno.h> |
| #include <pwd.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/file.h> |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <unistd.h> |
| #include "utime.h" |
| |
| #include "util/blob.h" |
| #include "util/crc32.h" |
| #include "util/u_debug.h" |
| #include "util/ralloc.h" |
| #include "util/rand_xor.h" |
| |
| /* Create a directory named 'path' if it does not already exist. |
| * This is for use by mkdir_with_parents_if_needed(). Use that instead. |
| * |
| * Returns: 0 if path already exists as a directory or if created. |
| * -1 in all other cases. |
| */ |
| static int |
| mkdir_if_needed(const char *path) |
| { |
| struct stat sb; |
| |
| /* If the path exists already, then our work is done if it's a |
| * directory, but it's an error if it is not. |
| */ |
| if (stat(path, &sb) == 0) { |
| if (S_ISDIR(sb.st_mode)) { |
| return 0; |
| } else { |
| fprintf(stderr, "Cannot use %s for shader cache (not a directory)" |
| "---disabling.\n", path); |
| return -1; |
| } |
| } |
| |
| int ret = mkdir(path, 0700); |
| if (ret == 0 || (ret == -1 && errno == EEXIST)) |
| return 0; |
| |
| fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n", |
| path, strerror(errno)); |
| |
| return -1; |
| } |
| |
| /* Create a directory named 'path' if it does not already exist, |
| * including parent directories if required. |
| * |
| * Returns: 0 if path already exists as a directory or if created. |
| * -1 in all other cases. |
| */ |
| static int |
| mkdir_with_parents_if_needed(const char *path) |
| { |
| char *p; |
| const char *end; |
| |
| if (path[0] == '\0') |
| return -1; |
| |
| p = strdup(path); |
| end = p + strlen(p) + 1; /* end points to the \0 terminator */ |
| for (char *q = p; q != end; q++) { |
| if (*q == '/' || q == end - 1) { |
| if (q == p) { |
| /* Skip the first / of an absolute path. */ |
| continue; |
| } |
| |
| *q = '\0'; |
| |
| if (mkdir_if_needed(p) == -1) { |
| free(p); |
| return -1; |
| } |
| |
| *q = '/'; |
| } |
| } |
| free(p); |
| |
| return 0; |
| } |
| |
| /* Concatenate an existing path and a new name to form a new path. If the new |
| * path does not exist as a directory, create it then return the resulting |
| * name of the new path (ralloc'ed off of 'ctx'). |
| * |
| * Returns NULL on any error, such as: |
| * |
| * <path>/<name> exists but is not a directory |
| * <path>/<name> cannot be created as a directory |
| */ |
| static char * |
| concatenate_and_mkdir(void *ctx, const char *path, const char *name) |
| { |
| char *new_path; |
| |
| new_path = ralloc_asprintf(ctx, "%s/%s", path, name); |
| |
| if (mkdir_with_parents_if_needed(new_path) == 0) |
| return new_path; |
| |
| return NULL; |
| } |
| |
| struct lru_file { |
| struct list_head node; |
| char *lru_name; |
| size_t lru_file_size; |
| time_t lru_atime; |
| }; |
| |
| static void |
| free_lru_file_list(struct list_head *lru_file_list) |
| { |
| struct lru_file *e, *next; |
| LIST_FOR_EACH_ENTRY_SAFE(e, next, lru_file_list, node) { |
| free(e->lru_name); |
| free(e); |
| } |
| free(lru_file_list); |
| } |
| |
| /* Given a directory path and predicate function, create a linked list of entrys |
| * with the oldest access time in that directory for which the predicate |
| * returns true. |
| * |
| * Returns: A malloc'ed linkd list for the paths of chosen files, (or |
| * NULL on any error). The caller should free the linked list via |
| * free_lru_file_list() when finished. |
| */ |
| static struct list_head * |
| choose_lru_file_matching(const char *dir_path, |
| bool (*predicate)(const char *dir_path, |
| const struct stat *, |
| const char *, const size_t)) |
| { |
| DIR *dir; |
| struct dirent *dir_ent; |
| |
| dir = opendir(dir_path); |
| if (dir == NULL) |
| return NULL; |
| |
| const int dir_fd = dirfd(dir); |
| |
| /* First count the number of files in the directory */ |
| unsigned total_file_count = 0; |
| while ((dir_ent = readdir(dir)) != NULL) { |
| #ifdef HAVE_DIRENT_D_TYPE |
| if (dir_ent->d_type == DT_REG) { /* If the entry is a regular file */ |
| total_file_count++; |
| } |
| #else |
| struct stat st; |
| |
| if (fstatat(dir_fd, dir_ent->d_name, &st, AT_SYMLINK_NOFOLLOW) == 0) { |
| if (S_ISREG(st.st_mode)) { |
| total_file_count++; |
| } |
| } |
| #endif |
| } |
| |
| /* Reset to the start of the directory */ |
| rewinddir(dir); |
| |
| /* Collect 10% of files in this directory for removal. Note: This should work |
| * out to only be around 0.04% of total cache items. |
| */ |
| unsigned lru_file_count = total_file_count > 10 ? total_file_count / 10 : 1; |
| struct list_head *lru_file_list = malloc(sizeof(struct list_head)); |
| list_inithead(lru_file_list); |
| |
| unsigned processed_files = 0; |
| while (1) { |
| dir_ent = readdir(dir); |
| if (dir_ent == NULL) |
| break; |
| |
| struct stat sb; |
| if (fstatat(dir_fd, dir_ent->d_name, &sb, 0) == 0) { |
| struct lru_file *entry = NULL; |
| if (!list_is_empty(lru_file_list)) |
| entry = list_first_entry(lru_file_list, struct lru_file, node); |
| |
| if (!entry|| sb.st_atime < entry->lru_atime) { |
| size_t len = strlen(dir_ent->d_name); |
| if (!predicate(dir_path, &sb, dir_ent->d_name, len)) |
| continue; |
| |
| bool new_entry = false; |
| if (processed_files < lru_file_count) { |
| entry = calloc(1, sizeof(struct lru_file)); |
| new_entry = true; |
| } |
| processed_files++; |
| |
| char *tmp = realloc(entry->lru_name, len + 1); |
| if (tmp) { |
| /* Find location to insert new lru item. We want to keep the |
| * list ordering from most recently used to least recently used. |
| * This allows us to just evict the head item from the list as |
| * we process the directory and find older entrys. |
| */ |
| struct list_head *list_node = lru_file_list; |
| struct lru_file *e; |
| LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { |
| if (sb.st_atime < entry->lru_atime) { |
| list_node = &e->node; |
| break; |
| } |
| } |
| |
| if (new_entry) { |
| list_addtail(&entry->node, list_node); |
| } else { |
| if (list_node != lru_file_list) { |
| list_del(lru_file_list); |
| list_addtail(lru_file_list, list_node); |
| } |
| } |
| |
| entry->lru_name = tmp; |
| memcpy(entry->lru_name, dir_ent->d_name, len + 1); |
| entry->lru_atime = sb.st_atime; |
| entry->lru_file_size = sb.st_blocks * 512; |
| } |
| } |
| } |
| } |
| |
| if (list_is_empty(lru_file_list)) { |
| closedir(dir); |
| free(lru_file_list); |
| return NULL; |
| } |
| |
| /* Create the full path for the file list we found */ |
| struct lru_file *e; |
| LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { |
| char *filename = e->lru_name; |
| if (asprintf(&e->lru_name, "%s/%s", dir_path, filename) < 0) |
| e->lru_name = NULL; |
| |
| free(filename); |
| } |
| |
| closedir(dir); |
| |
| return lru_file_list; |
| } |
| |
| /* Is entry a regular file, and not having a name with a trailing |
| * ".tmp" |
| */ |
| static bool |
| is_regular_non_tmp_file(const char *path, const struct stat *sb, |
| const char *d_name, const size_t len) |
| { |
| if (!S_ISREG(sb->st_mode)) |
| return false; |
| |
| if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0) |
| return false; |
| |
| return true; |
| } |
| |
| /* Returns the size of the deleted file, (or 0 on any error). */ |
| static size_t |
| unlink_lru_file_from_directory(const char *path) |
| { |
| struct list_head *lru_file_list = |
| choose_lru_file_matching(path, is_regular_non_tmp_file); |
| if (lru_file_list == NULL) |
| return 0; |
| |
| assert(!list_is_empty(lru_file_list)); |
| |
| size_t total_unlinked_size = 0; |
| struct lru_file *e; |
| LIST_FOR_EACH_ENTRY(e, lru_file_list, node) { |
| if (unlink(e->lru_name) == 0) |
| total_unlinked_size += e->lru_file_size; |
| } |
| free_lru_file_list(lru_file_list); |
| |
| return total_unlinked_size; |
| } |
| |
| /* Is entry a directory with a two-character name, (and not the |
| * special name of ".."). We also return false if the dir is empty. |
| */ |
| static bool |
| is_two_character_sub_directory(const char *path, const struct stat *sb, |
| const char *d_name, const size_t len) |
| { |
| if (!S_ISDIR(sb->st_mode)) |
| return false; |
| |
| if (len != 2) |
| return false; |
| |
| if (strcmp(d_name, "..") == 0) |
| return false; |
| |
| char *subdir; |
| if (asprintf(&subdir, "%s/%s", path, d_name) == -1) |
| return false; |
| DIR *dir = opendir(subdir); |
| free(subdir); |
| |
| if (dir == NULL) |
| return false; |
| |
| unsigned subdir_entries = 0; |
| struct dirent *d; |
| while ((d = readdir(dir)) != NULL) { |
| if(++subdir_entries > 2) |
| break; |
| } |
| closedir(dir); |
| |
| /* If dir only contains '.' and '..' it must be empty */ |
| if (subdir_entries <= 2) |
| return false; |
| |
| return true; |
| } |
| |
| /* Create the directory that will be needed for the cache file for \key. |
| * |
| * Obviously, the implementation here must closely match |
| * _get_cache_file above. |
| */ |
| static void |
| make_cache_file_directory(struct disk_cache *cache, const cache_key key) |
| { |
| char *dir; |
| char buf[41]; |
| |
| _mesa_sha1_format(buf, key); |
| if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1) |
| return; |
| |
| mkdir_with_parents_if_needed(dir); |
| free(dir); |
| } |
| |
| static ssize_t |
| read_all(int fd, void *buf, size_t count) |
| { |
| char *in = buf; |
| ssize_t read_ret; |
| size_t done; |
| |
| for (done = 0; done < count; done += read_ret) { |
| read_ret = read(fd, in + done, count - done); |
| if (read_ret == -1 || read_ret == 0) |
| return -1; |
| } |
| return done; |
| } |
| |
| static ssize_t |
| write_all(int fd, const void *buf, size_t count) |
| { |
| const char *out = buf; |
| ssize_t written; |
| size_t done; |
| |
| for (done = 0; done < count; done += written) { |
| written = write(fd, out + done, count - done); |
| if (written == -1) |
| return -1; |
| } |
| return done; |
| } |
| |
| /* Evict least recently used cache item */ |
| void |
| disk_cache_evict_lru_item(struct disk_cache *cache) |
| { |
| char *dir_path; |
| |
| /* With a reasonably-sized, full cache, (and with keys generated |
| * from a cryptographic hash), we can choose two random hex digits |
| * and reasonably expect the directory to exist with a file in it. |
| * Provides pseudo-LRU eviction to reduce checking all cache files. |
| */ |
| uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus); |
| if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0) |
| return; |
| |
| size_t size = unlink_lru_file_from_directory(dir_path); |
| |
| free(dir_path); |
| |
| if (size) { |
| p_atomic_add(&cache->size->value, - (uint64_t)size); |
| return; |
| } |
| |
| /* In the case where the random choice of directory didn't find |
| * something, we choose the least recently accessed from the |
| * existing directories. |
| * |
| * Really, the only reason this code exists is to allow the unit |
| * tests to work, (which use an artificially-small cache to be able |
| * to force a single cached item to be evicted). |
| */ |
| struct list_head *lru_file_list = |
| choose_lru_file_matching(cache->path, is_two_character_sub_directory); |
| if (lru_file_list == NULL) |
| return; |
| |
| assert(!list_is_empty(lru_file_list)); |
| |
| struct lru_file *lru_file_dir = |
| list_first_entry(lru_file_list, struct lru_file, node); |
| |
| size = unlink_lru_file_from_directory(lru_file_dir->lru_name); |
| |
| free_lru_file_list(lru_file_list); |
| |
| if (size) |
| p_atomic_add(&cache->size->value, - (uint64_t)size); |
| } |
| |
| void |
| disk_cache_evict_item(struct disk_cache *cache, char *filename) |
| { |
| struct stat sb; |
| if (stat(filename, &sb) == -1) { |
| free(filename); |
| return; |
| } |
| |
| unlink(filename); |
| free(filename); |
| |
| if (sb.st_blocks) |
| p_atomic_add(&cache->size->value, - (uint64_t)sb.st_blocks * 512); |
| } |
| |
| static void * |
| parse_and_validate_cache_item(struct disk_cache *cache, void *cache_item, |
| size_t cache_item_size, size_t *size) |
| { |
| uint8_t *uncompressed_data = NULL; |
| |
| struct blob_reader ci_blob_reader; |
| blob_reader_init(&ci_blob_reader, cache_item, cache_item_size); |
| |
| size_t header_size = cache->driver_keys_blob_size; |
| const void *keys_blob = blob_read_bytes(&ci_blob_reader, header_size); |
| if (ci_blob_reader.overrun) |
| goto fail; |
| |
| /* Check for extremely unlikely hash collisions */ |
| if (memcmp(cache->driver_keys_blob, keys_blob, header_size) != 0) { |
| assert(!"Mesa cache keys mismatch!"); |
| goto fail; |
| } |
| |
| uint32_t md_type = blob_read_uint32(&ci_blob_reader); |
| if (ci_blob_reader.overrun) |
| goto fail; |
| |
| if (md_type == CACHE_ITEM_TYPE_GLSL) { |
| uint32_t num_keys = blob_read_uint32(&ci_blob_reader); |
| if (ci_blob_reader.overrun) |
| goto fail; |
| |
| /* The cache item metadata is currently just used for distributing |
| * precompiled shaders, they are not used by Mesa so just skip them for |
| * now. |
| * TODO: pass the metadata back to the caller and do some basic |
| * validation. |
| */ |
| const void UNUSED *metadata = |
| blob_read_bytes(&ci_blob_reader, num_keys * sizeof(cache_key)); |
| if (ci_blob_reader.overrun) |
| goto fail; |
| } |
| |
| /* Load the CRC that was created when the file was written. */ |
| struct cache_entry_file_data *cf_data = |
| (struct cache_entry_file_data *) |
| blob_read_bytes(&ci_blob_reader, sizeof(struct cache_entry_file_data)); |
| if (ci_blob_reader.overrun) |
| goto fail; |
| |
| size_t cache_data_size = ci_blob_reader.end - ci_blob_reader.current; |
| const uint8_t *data = (uint8_t *) blob_read_bytes(&ci_blob_reader, cache_data_size); |
| |
| /* Check the data for corruption */ |
| if (cf_data->crc32 != util_hash_crc32(data, cache_data_size)) |
| goto fail; |
| |
| /* Uncompress the cache data */ |
| uncompressed_data = malloc(cf_data->uncompressed_size); |
| if (!uncompressed_data) |
| goto fail; |
| |
| if (cache->compression_disabled) { |
| if (cf_data->uncompressed_size != cache_data_size) |
| goto fail; |
| |
| memcpy(uncompressed_data, data, cache_data_size); |
| } else { |
| if (!util_compress_inflate(data, cache_data_size, uncompressed_data, |
| cf_data->uncompressed_size)) |
| goto fail; |
| } |
| |
| if (size) |
| *size = cf_data->uncompressed_size; |
| |
| return uncompressed_data; |
| |
| fail: |
| if (uncompressed_data) |
| free(uncompressed_data); |
| |
| return NULL; |
| } |
| |
| void * |
| disk_cache_load_item(struct disk_cache *cache, char *filename, size_t *size) |
| { |
| uint8_t *data = NULL; |
| |
| int fd = open(filename, O_RDONLY | O_CLOEXEC); |
| if (fd == -1) |
| goto fail; |
| |
| struct stat sb; |
| if (fstat(fd, &sb) == -1) |
| goto fail; |
| |
| data = malloc(sb.st_size); |
| if (data == NULL) |
| goto fail; |
| |
| /* Read entire file into memory */ |
| int ret = read_all(fd, data, sb.st_size); |
| if (ret == -1) |
| goto fail; |
| |
| uint8_t *uncompressed_data = |
| parse_and_validate_cache_item(cache, data, sb.st_size, size); |
| if (!uncompressed_data) |
| goto fail; |
| |
| free(data); |
| free(filename); |
| close(fd); |
| |
| return uncompressed_data; |
| |
| fail: |
| if (data) |
| free(data); |
| if (filename) |
| free(filename); |
| if (fd != -1) |
| close(fd); |
| |
| return NULL; |
| } |
| |
| /* Return a filename within the cache's directory corresponding to 'key'. |
| * |
| * Returns NULL if out of memory. |
| */ |
| char * |
| disk_cache_get_cache_filename(struct disk_cache *cache, const cache_key key) |
| { |
| char buf[41]; |
| char *filename; |
| |
| if (cache->path_init_failed) |
| return NULL; |
| |
| _mesa_sha1_format(buf, key); |
| if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0], |
| buf[1], buf + 2) == -1) |
| return NULL; |
| |
| return filename; |
| } |
| |
| static bool |
| create_cache_item_header_and_blob(struct disk_cache_put_job *dc_job, |
| struct blob *cache_blob) |
| { |
| |
| /* Compress the cache item data */ |
| size_t max_buf = util_compress_max_compressed_len(dc_job->size); |
| size_t compressed_size; |
| void *compressed_data; |
| |
| if (dc_job->cache->compression_disabled) { |
| compressed_size = dc_job->size; |
| compressed_data = dc_job->data; |
| } else { |
| compressed_data = malloc(max_buf); |
| if (compressed_data == NULL) |
| return false; |
| compressed_size = |
| util_compress_deflate(dc_job->data, dc_job->size, |
| compressed_data, max_buf); |
| if (compressed_size == 0) |
| goto fail; |
| } |
| |
| /* Copy the driver_keys_blob, this can be used find information about the |
| * mesa version that produced the entry or deal with hash collisions, |
| * should that ever become a real problem. |
| */ |
| if (!blob_write_bytes(cache_blob, dc_job->cache->driver_keys_blob, |
| dc_job->cache->driver_keys_blob_size)) |
| goto fail; |
| |
| /* Write the cache item metadata. This data can be used to deal with |
| * hash collisions, as well as providing useful information to 3rd party |
| * tools reading the cache files. |
| */ |
| if (!blob_write_uint32(cache_blob, dc_job->cache_item_metadata.type)) |
| goto fail; |
| |
| if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) { |
| if (!blob_write_uint32(cache_blob, dc_job->cache_item_metadata.num_keys)) |
| goto fail; |
| |
| size_t metadata_keys_size = |
| dc_job->cache_item_metadata.num_keys * sizeof(cache_key); |
| if (!blob_write_bytes(cache_blob, dc_job->cache_item_metadata.keys[0], |
| metadata_keys_size)) |
| goto fail; |
| } |
| |
| /* Create CRC of the compressed data. We will read this when restoring the |
| * cache and use it to check for corruption. |
| */ |
| struct cache_entry_file_data cf_data; |
| cf_data.crc32 = util_hash_crc32(compressed_data, compressed_size); |
| cf_data.uncompressed_size = dc_job->size; |
| |
| if (!blob_write_bytes(cache_blob, &cf_data, sizeof(cf_data))) |
| goto fail; |
| |
| /* Finally copy the compressed cache blob */ |
| if (!blob_write_bytes(cache_blob, compressed_data, compressed_size)) |
| goto fail; |
| |
| if (!dc_job->cache->compression_disabled) |
| free(compressed_data); |
| |
| return true; |
| |
| fail: |
| if (!dc_job->cache->compression_disabled) |
| free(compressed_data); |
| |
| return false; |
| } |
| |
| void |
| disk_cache_write_item_to_disk(struct disk_cache_put_job *dc_job, |
| char *filename) |
| { |
| int fd = -1, fd_final = -1; |
| struct blob cache_blob; |
| blob_init(&cache_blob); |
| |
| /* Write to a temporary file to allow for an atomic rename to the |
| * final destination filename, (to prevent any readers from seeing |
| * a partially written file). |
| */ |
| char *filename_tmp = NULL; |
| if (asprintf(&filename_tmp, "%s.tmp", filename) == -1) |
| goto done; |
| |
| fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); |
| |
| /* Make the two-character subdirectory within the cache as needed. */ |
| if (fd == -1) { |
| if (errno != ENOENT) |
| goto done; |
| |
| make_cache_file_directory(dc_job->cache, dc_job->key); |
| |
| fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); |
| if (fd == -1) |
| goto done; |
| } |
| |
| /* With the temporary file open, we take an exclusive flock on |
| * it. If the flock fails, then another process still has the file |
| * open with the flock held. So just let that file be responsible |
| * for writing the file. |
| */ |
| #ifdef HAVE_FLOCK |
| int err = flock(fd, LOCK_EX | LOCK_NB); |
| #else |
| struct flock lock = { |
| .l_start = 0, |
| .l_len = 0, /* entire file */ |
| .l_type = F_WRLCK, |
| .l_whence = SEEK_SET |
| }; |
| int err = fcntl(fd, F_SETLK, &lock); |
| #endif |
| if (err == -1) |
| goto done; |
| |
| /* Now that we have the lock on the open temporary file, we can |
| * check to see if the destination file already exists. If so, |
| * another process won the race between when we saw that the file |
| * didn't exist and now. In this case, we don't do anything more, |
| * (to ensure the size accounting of the cache doesn't get off). |
| */ |
| fd_final = open(filename, O_RDONLY | O_CLOEXEC); |
| if (fd_final != -1) { |
| unlink(filename_tmp); |
| goto done; |
| } |
| |
| /* OK, we're now on the hook to write out a file that we know is |
| * not in the cache, and is also not being written out to the cache |
| * by some other process. |
| */ |
| if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) { |
| unlink(filename_tmp); |
| goto done; |
| } |
| |
| /* Now, finally, write out the contents to the temporary file, then |
| * rename them atomically to the destination filename, and also |
| * perform an atomic increment of the total cache size. |
| */ |
| int ret = write_all(fd, cache_blob.data, cache_blob.size); |
| if (ret == -1) { |
| unlink(filename_tmp); |
| goto done; |
| } |
| |
| ret = rename(filename_tmp, filename); |
| if (ret == -1) { |
| unlink(filename_tmp); |
| goto done; |
| } |
| |
| struct stat sb; |
| if (stat(filename, &sb) == -1) { |
| /* Something went wrong remove the file */ |
| unlink(filename); |
| goto done; |
| } |
| |
| p_atomic_add(&dc_job->cache->size->value, sb.st_blocks * 512); |
| |
| done: |
| if (fd_final != -1) |
| close(fd_final); |
| /* This close finally releases the flock, (now that the final file |
| * has been renamed into place and the size has been added). |
| */ |
| if (fd != -1) |
| close(fd); |
| free(filename_tmp); |
| blob_finish(&cache_blob); |
| } |
| |
| /* Determine path for cache based on the first defined name as follows: |
| * |
| * $MESA_SHADER_CACHE_DIR |
| * $XDG_CACHE_HOME/mesa_shader_cache |
| * $HOME/.cache/mesa_shader_cache |
| * <pwd.pw_dir>/.cache/mesa_shader_cache |
| */ |
| char * |
| disk_cache_generate_cache_dir(void *mem_ctx, const char *gpu_name, |
| const char *driver_id, |
| enum disk_cache_type cache_type) |
| { |
| char *cache_dir_name = CACHE_DIR_NAME; |
| if (cache_type == DISK_CACHE_SINGLE_FILE) |
| cache_dir_name = CACHE_DIR_NAME_SF; |
| else if (cache_type == DISK_CACHE_DATABASE) |
| cache_dir_name = CACHE_DIR_NAME_DB; |
| |
| char *path = secure_getenv("MESA_SHADER_CACHE_DIR"); |
| |
| if (!path) { |
| path = secure_getenv("MESA_GLSL_CACHE_DIR"); |
| if (path) |
| fprintf(stderr, |
| "*** MESA_GLSL_CACHE_DIR is deprecated; " |
| "use MESA_SHADER_CACHE_DIR instead ***\n"); |
| } |
| |
| if (path) { |
| path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); |
| if (!path) |
| return NULL; |
| } |
| |
| if (path == NULL) { |
| char *xdg_cache_home = secure_getenv("XDG_CACHE_HOME"); |
| |
| if (xdg_cache_home) { |
| path = concatenate_and_mkdir(mem_ctx, xdg_cache_home, cache_dir_name); |
| if (!path) |
| return NULL; |
| } |
| } |
| |
| if (!path) { |
| char *home = getenv("HOME"); |
| |
| if (home) { |
| path = concatenate_and_mkdir(mem_ctx, home, ".cache"); |
| if (!path) |
| return NULL; |
| |
| path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); |
| if (!path) |
| return NULL; |
| } |
| } |
| |
| if (!path) { |
| char *buf; |
| size_t buf_size; |
| struct passwd pwd, *result; |
| |
| buf_size = sysconf(_SC_GETPW_R_SIZE_MAX); |
| if (buf_size == -1) |
| buf_size = 512; |
| |
| /* Loop until buf_size is large enough to query the directory */ |
| while (1) { |
| buf = ralloc_size(mem_ctx, buf_size); |
| |
| getpwuid_r(getuid(), &pwd, buf, buf_size, &result); |
| if (result) |
| break; |
| |
| if (errno == ERANGE) { |
| ralloc_free(buf); |
| buf = NULL; |
| buf_size *= 2; |
| } else { |
| return NULL; |
| } |
| } |
| |
| path = concatenate_and_mkdir(mem_ctx, pwd.pw_dir, ".cache"); |
| if (!path) |
| return NULL; |
| |
| path = concatenate_and_mkdir(mem_ctx, path, cache_dir_name); |
| if (!path) |
| return NULL; |
| } |
| |
| if (cache_type == DISK_CACHE_SINGLE_FILE) { |
| path = concatenate_and_mkdir(mem_ctx, path, driver_id); |
| if (!path) |
| return NULL; |
| |
| path = concatenate_and_mkdir(mem_ctx, path, gpu_name); |
| if (!path) |
| return NULL; |
| } |
| |
| return path; |
| } |
| |
| bool |
| disk_cache_enabled() |
| { |
| /* Disk cache is not enabled for android, but android's EGL layer |
| * uses EGL_ANDROID_blob_cache to manage the cache itself: |
| */ |
| if (DETECT_OS_ANDROID) |
| return false; |
| |
| /* If running as a users other than the real user disable cache */ |
| if (!__normal_user()) |
| return false; |
| |
| /* At user request, disable shader cache entirely. */ |
| #ifdef SHADER_CACHE_DISABLE_BY_DEFAULT |
| bool disable_by_default = true; |
| #else |
| bool disable_by_default = false; |
| #endif |
| char *envvar_name = "MESA_SHADER_CACHE_DISABLE"; |
| if (!getenv(envvar_name)) { |
| envvar_name = "MESA_GLSL_CACHE_DISABLE"; |
| if (getenv(envvar_name)) |
| fprintf(stderr, |
| "*** MESA_GLSL_CACHE_DISABLE is deprecated; " |
| "use MESA_SHADER_CACHE_DISABLE instead ***\n"); |
| } |
| |
| if (debug_get_bool_option(envvar_name, disable_by_default) || |
| /* MESA_GLSL_DISABLE_IO_OPT must disable the cache to get expected |
| * results because it only takes effect on a cache miss. */ |
| debug_get_bool_option("MESA_GLSL_DISABLE_IO_OPT", false)) |
| return false; |
| |
| return true; |
| } |
| |
| void * |
| disk_cache_load_item_foz(struct disk_cache *cache, const cache_key key, |
| size_t *size) |
| { |
| size_t cache_tem_size = 0; |
| void *cache_item = foz_read_entry(&cache->foz_db, key, &cache_tem_size); |
| if (!cache_item) |
| return NULL; |
| |
| uint8_t *uncompressed_data = |
| parse_and_validate_cache_item(cache, cache_item, cache_tem_size, size); |
| free(cache_item); |
| |
| return uncompressed_data; |
| } |
| |
| bool |
| disk_cache_write_item_to_disk_foz(struct disk_cache_put_job *dc_job) |
| { |
| struct blob cache_blob; |
| blob_init(&cache_blob); |
| |
| if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) |
| return false; |
| |
| bool r = foz_write_entry(&dc_job->cache->foz_db, dc_job->key, |
| cache_blob.data, cache_blob.size); |
| |
| blob_finish(&cache_blob); |
| return r; |
| } |
| |
| bool |
| disk_cache_load_cache_index_foz(void *mem_ctx, struct disk_cache *cache) |
| { |
| /* Load cache index into a hash map (from fossilise files) */ |
| return foz_prepare(&cache->foz_db, cache->path); |
| } |
| |
| |
| void |
| disk_cache_touch_cache_user_marker(char *path) |
| { |
| char *marker_path = NULL; |
| UNUSED int _unused = asprintf(&marker_path, "%s/marker", path); |
| if (!marker_path) |
| return; |
| |
| time_t now = time(NULL); |
| |
| struct stat attr; |
| if (stat(marker_path, &attr) == -1) { |
| int fd = open(marker_path, O_WRONLY | O_CREAT | O_CLOEXEC, 0644); |
| if (fd != -1) { |
| close(fd); |
| } |
| } else if (now - attr.st_mtime > 60 * 60 * 24 /* One day */) { |
| (void)utime(marker_path, NULL); |
| } |
| free(marker_path); |
| } |
| |
| bool |
| disk_cache_mmap_cache_index(void *mem_ctx, struct disk_cache *cache, |
| char *path) |
| { |
| int fd = -1; |
| bool mapped = false; |
| |
| path = ralloc_asprintf(mem_ctx, "%s/index", cache->path); |
| if (path == NULL) |
| goto path_fail; |
| |
| fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644); |
| if (fd == -1) |
| goto path_fail; |
| |
| struct stat sb; |
| if (fstat(fd, &sb) == -1) |
| goto path_fail; |
| |
| /* Force the index file to be the expected size. */ |
| size_t size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE; |
| if (sb.st_size != size) { |
| #if HAVE_POSIX_FALLOCATE |
| /* posix_fallocate() ensures disk space is allocated otherwise it |
| * fails if there is not enough space on the disk. |
| */ |
| if (posix_fallocate(fd, 0, size) != 0) |
| goto path_fail; |
| #else |
| /* ftruncate() allocates disk space lazily. If the disk is full |
| * and it is unable to allocate disk space when accessed via |
| * mmap, it will crash with a SIGBUS. |
| */ |
| if (ftruncate(fd, size) == -1) |
| goto path_fail; |
| #endif |
| } |
| |
| /* We map this shared so that other processes see updates that we |
| * make. |
| * |
| * Note: We do use atomic addition to ensure that multiple |
| * processes don't scramble the cache size recorded in the |
| * index. But we don't use any locking to prevent multiple |
| * processes from updating the same entry simultaneously. The idea |
| * is that if either result lands entirely in the index, then |
| * that's equivalent to a well-ordered write followed by an |
| * eviction and a write. On the other hand, if the simultaneous |
| * writes result in a corrupt entry, that's not really any |
| * different than both entries being evicted, (since within the |
| * guarantees of the cryptographic hash, a corrupt entry is |
| * unlikely to ever match a real cache key). |
| */ |
| cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE, |
| MAP_SHARED, fd, 0); |
| if (cache->index_mmap == MAP_FAILED) |
| goto path_fail; |
| cache->index_mmap_size = size; |
| |
| cache->size = (p_atomic_uint64_t *) cache->index_mmap; |
| cache->stored_keys = cache->index_mmap + sizeof(uint64_t); |
| mapped = true; |
| |
| path_fail: |
| if (fd != -1) |
| close(fd); |
| |
| return mapped; |
| } |
| |
| void |
| disk_cache_destroy_mmap(struct disk_cache *cache) |
| { |
| munmap(cache->index_mmap, cache->index_mmap_size); |
| } |
| |
| void * |
| disk_cache_db_load_item(struct disk_cache *cache, const cache_key key, |
| size_t *size) |
| { |
| size_t cache_tem_size = 0; |
| void *cache_item = mesa_cache_db_multipart_read_entry(&cache->cache_db, |
| key, &cache_tem_size); |
| if (!cache_item) |
| return NULL; |
| |
| uint8_t *uncompressed_data = |
| parse_and_validate_cache_item(cache, cache_item, cache_tem_size, size); |
| free(cache_item); |
| |
| return uncompressed_data; |
| } |
| |
| bool |
| disk_cache_db_write_item_to_disk(struct disk_cache_put_job *dc_job) |
| { |
| struct blob cache_blob; |
| blob_init(&cache_blob); |
| |
| if (!create_cache_item_header_and_blob(dc_job, &cache_blob)) |
| return false; |
| |
| bool r = mesa_cache_db_multipart_entry_write(&dc_job->cache->cache_db, |
| dc_job->key, cache_blob.data, |
| cache_blob.size); |
| |
| blob_finish(&cache_blob); |
| return r; |
| } |
| |
| bool |
| disk_cache_db_load_cache_index(void *mem_ctx, struct disk_cache *cache) |
| { |
| return mesa_cache_db_multipart_open(&cache->cache_db, cache->path); |
| } |
| |
| static void |
| delete_dir(const char* path) |
| { |
| DIR *dir = opendir(path); |
| if (!dir) |
| return; |
| |
| struct dirent *p; |
| char *entry_path = NULL; |
| |
| while ((p = readdir(dir)) != NULL) { |
| if (strcmp(p->d_name, ".") == 0 || strcmp(p->d_name, "..") == 0) |
| continue; |
| |
| UNUSED int _unused = asprintf(&entry_path, "%s/%s", path, p->d_name); |
| if (!entry_path) |
| continue; |
| |
| struct stat st; |
| if (stat(entry_path, &st)) { |
| free(entry_path); |
| continue; |
| } |
| if (S_ISDIR(st.st_mode)) |
| delete_dir(entry_path); |
| else |
| unlink(entry_path); |
| |
| free(entry_path); |
| } |
| closedir(dir); |
| rmdir(path); |
| } |
| |
| /* Deletes old multi-file caches, to avoid having two default caches taking up disk space. */ |
| void |
| disk_cache_delete_old_cache(void) |
| { |
| void *ctx = ralloc_context(NULL); |
| char *dirname = disk_cache_generate_cache_dir(ctx, NULL, NULL, DISK_CACHE_MULTI_FILE); |
| if (!dirname) |
| goto finish; |
| |
| /* The directory itself doesn't get updated, so use a marker timestamp */ |
| char *index_path = ralloc_asprintf(ctx, "%s/marker", dirname); |
| |
| struct stat attr; |
| if (stat(index_path, &attr) == -1) |
| goto finish; |
| |
| time_t now = time(NULL); |
| |
| /* Do not delete anything if the cache has been modified in the past week */ |
| if (now - attr.st_mtime < 60 * 60 * 24 * 7) |
| goto finish; |
| |
| delete_dir(dirname); |
| |
| finish: |
| ralloc_free(ctx); |
| } |
| #endif |
| |
| #endif /* ENABLE_SHADER_CACHE */ |