| /* |
| * Copyright 2015 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifdef DRV_MEDIATEK |
| |
| // clang-format off |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #if !defined(ANDROID) || (ANDROID_API_LEVEL >= 31 && defined(HAS_DMABUF_SYSTEM_HEAP)) |
| #include <linux/dma-heap.h> |
| #endif |
| #include <poll.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <unistd.h> |
| #include <xf86drm.h> |
| #include <mediatek_drm.h> |
| // clang-format on |
| |
| #include "drv_helpers.h" |
| #include "drv_priv.h" |
| #include "util.h" |
| |
| #define TILE_TYPE_LINEAR 0 |
| |
| // clang-format off |
| #if defined(MTK_MT8183) || \ |
| defined(MTK_MT8186) |
| // clang-format on |
| #define SUPPORT_YUV422 |
| #endif |
| |
| // All platforms except MT8173 should USE_NV12_FOR_HW_VIDEO_DECODING |
| // and SUPPORT_FP16_AND_10BIT_ABGR |
| // clang-format off |
| #if defined(MTK_MT8183) || \ |
| defined(MTK_MT8186) || \ |
| defined(MTK_MT8188G) || \ |
| defined(MTK_MT8192) || \ |
| defined(MTK_MT8195) || \ |
| defined(MTK_MT8196) |
| // clang-format on |
| #define USE_NV12_FOR_HW_VIDEO_DECODING |
| #define SUPPORT_FP16_AND_10BIT_ABGR |
| #else |
| #define DONT_USE_64_ALIGNMENT_FOR_VIDEO_BUFFERS |
| #endif |
| |
| // Devices newer than MT8186 support AR30 overlays and 10-bit video. |
| // clang-format off |
| #if !defined(MTK_MT8173) && \ |
| !defined(MTK_MT8183) && \ |
| !defined(MTK_MT8186) && \ |
| !defined(MTK_MT8192) |
| // clang-format on |
| #define SUPPORT_P010 |
| #define SUPPORT_AR30_OVERLAYS |
| #endif |
| |
| // For Mali Sigurd based GPUs, the texture unit reads outside the specified texture dimensions. |
| // Therefore, certain formats require extra memory padding to its allocated surface to prevent the |
| // hardware from reading outside an allocation. For YVU420, we need additional padding for the last |
| // chroma plane. |
| #if defined(MTK_MT8186) |
| #define USE_EXTRA_PADDING_FOR_YVU420 |
| #endif |
| |
| struct mediatek_private_drv_data { |
| int dma_heap_fd; |
| }; |
| |
| struct mediatek_private_map_data { |
| void *cached_addr; |
| void *gem_addr; |
| int prime_fd; |
| }; |
| |
| static const uint32_t render_target_formats[] = { DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, |
| DRM_FORMAT_RGB565, DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_XRGB8888 }; |
| |
| // clang-format off |
| static const uint32_t texture_source_formats[] = { |
| #ifdef SUPPORT_YUV422 |
| DRM_FORMAT_NV21, |
| DRM_FORMAT_YUYV, |
| #endif |
| #ifdef SUPPORT_P010 |
| DRM_FORMAT_P010, |
| #endif |
| #ifdef SUPPORT_FP16_AND_10BIT_ABGR |
| DRM_FORMAT_ABGR2101010, |
| DRM_FORMAT_ABGR16161616F, |
| #endif |
| DRM_FORMAT_NV12, |
| DRM_FORMAT_YVU420, |
| DRM_FORMAT_YVU420_ANDROID |
| }; |
| |
| static const uint32_t video_yuv_formats[] = { |
| DRM_FORMAT_NV21, |
| DRM_FORMAT_NV12, |
| #ifdef SUPPORT_P010 |
| DRM_FORMAT_P010, |
| #endif |
| DRM_FORMAT_YUYV, |
| DRM_FORMAT_YVU420, |
| DRM_FORMAT_YVU420_ANDROID |
| }; |
| // clang-format on |
| |
| static bool is_video_yuv_format(uint32_t format) |
| { |
| size_t i; |
| for (i = 0; i < ARRAY_SIZE(video_yuv_formats); ++i) { |
| if (format == video_yuv_formats[i]) |
| return true; |
| } |
| return false; |
| } |
| |
| static int mediatek_init(struct driver *drv) |
| { |
| struct format_metadata metadata; |
| struct mediatek_private_drv_data *priv; |
| |
| priv = calloc(1, sizeof(*priv)); |
| if (!priv) { |
| drv_loge("Failed calloc private data, errno=%d\n", -errno); |
| return -errno; |
| } |
| |
| priv->dma_heap_fd = -1; |
| drv->priv = priv; |
| |
| drv_add_combinations(drv, render_target_formats, ARRAY_SIZE(render_target_formats), |
| &LINEAR_METADATA, |
| BO_USE_RENDER_MASK | BO_USE_SCANOUT | BO_USE_PROTECTED); |
| |
| drv_add_combinations(drv, texture_source_formats, ARRAY_SIZE(texture_source_formats), |
| &LINEAR_METADATA, BO_USE_TEXTURE_MASK | BO_USE_PROTECTED); |
| |
| drv_add_combination(drv, DRM_FORMAT_R8, &LINEAR_METADATA, |
| BO_USE_SW_MASK | BO_USE_LINEAR | BO_USE_PROTECTED); |
| |
| #ifdef SUPPORT_AR30_OVERLAYS |
| drv_add_combination(drv, DRM_FORMAT_ARGB2101010, &LINEAR_METADATA, |
| BO_USE_TEXTURE | BO_USE_SCANOUT | BO_USE_PROTECTED | BO_USE_LINEAR); |
| #endif |
| |
| /* YUYV format for video overlay and camera subsystem. */ |
| drv_add_combination(drv, DRM_FORMAT_YUYV, &LINEAR_METADATA, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_SCANOUT | BO_USE_LINEAR | |
| BO_USE_TEXTURE | BO_USE_PROTECTED); |
| |
| /* Android CTS tests require this. */ |
| drv_add_combination(drv, DRM_FORMAT_BGR888, &LINEAR_METADATA, BO_USE_SW_MASK); |
| |
| /* Support BO_USE_HW_VIDEO_DECODER for protected content minigbm allocations. */ |
| metadata.tiling = TILE_TYPE_LINEAR; |
| metadata.priority = 1; |
| metadata.modifier = DRM_FORMAT_MOD_LINEAR; |
| drv_modify_combination(drv, DRM_FORMAT_YVU420, &metadata, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_PROTECTED); |
| #ifdef MTK_MT8173 |
| /* |
| * b/292507490: The MT8173 decoder can output YUV420 only. Some CTS tests feed the |
| * decoded buffer to the hardware encoder and the tests allocate the buffer with |
| * DRM_FORMAT_FLEX_YCbCr_420_888 with the mask of BO_USE_HW_VIDEO_ENCODER | |
| * BO_USE_HW_VIDEO_DECODER. Therefore, we have to allocate YUV420 in the case. |
| */ |
| drv_modify_combination(drv, DRM_FORMAT_YVU420, &metadata, BO_USE_HW_VIDEO_ENCODER); |
| #endif |
| drv_modify_combination(drv, DRM_FORMAT_YVU420_ANDROID, &metadata, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_PROTECTED); |
| #ifdef USE_NV12_FOR_HW_VIDEO_DECODING |
| // TODO(hiroh): Switch to use NV12 for video decoder on MT8173 as well. |
| drv_modify_combination(drv, DRM_FORMAT_NV12, &metadata, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_PROTECTED); |
| #endif |
| drv_modify_combination(drv, DRM_FORMAT_P010, &metadata, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_PROTECTED); |
| |
| /* |
| * R8 format is used for Android's HAL_PIXEL_FORMAT_BLOB for input/output from |
| * hardware decoder/encoder. |
| */ |
| drv_modify_combination(drv, DRM_FORMAT_R8, &metadata, |
| BO_USE_HW_VIDEO_DECODER | BO_USE_HW_VIDEO_ENCODER | |
| BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE | |
| BO_USE_GPU_DATA_BUFFER | BO_USE_SENSOR_DIRECT_DATA); |
| |
| /* NV12 format for encoding and display. */ |
| drv_modify_combination(drv, DRM_FORMAT_NV12, &metadata, |
| BO_USE_SCANOUT | BO_USE_HW_VIDEO_ENCODER | BO_USE_CAMERA_READ | |
| BO_USE_CAMERA_WRITE); |
| |
| #ifdef MTK_MT8183 |
| /* Only for MT8183 Camera subsystem */ |
| drv_modify_combination(drv, DRM_FORMAT_NV21, &metadata, |
| BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE); |
| drv_modify_combination(drv, DRM_FORMAT_YUYV, &metadata, |
| BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE); |
| drv_modify_combination(drv, DRM_FORMAT_YVU420, &metadata, |
| BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE); |
| /* Private formats for private reprocessing in camera */ |
| drv_add_combination(drv, DRM_FORMAT_MTISP_SXYZW10, &metadata, |
| BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE | BO_USE_SW_MASK); |
| #endif |
| |
| return drv_modify_linear_combinations(drv); |
| } |
| |
| static void mediatek_close(struct driver *drv) |
| { |
| struct mediatek_private_drv_data *priv = (struct mediatek_private_drv_data *)drv->priv; |
| |
| if (priv->dma_heap_fd >= 0) |
| close(priv->dma_heap_fd); |
| |
| free(priv); |
| drv->priv = NULL; |
| } |
| |
| static int mediatek_bo_create_with_modifiers(struct bo *bo, uint32_t width, uint32_t height, |
| uint32_t format, const uint64_t *modifiers, |
| uint32_t count) |
| { |
| int ret; |
| size_t plane; |
| uint32_t stride; |
| struct drm_mtk_gem_create gem_create = { 0 }; |
| |
| const bool is_camera_write = bo->meta.use_flags & BO_USE_CAMERA_WRITE; |
| const bool is_hw_video_encoder = bo->meta.use_flags & BO_USE_HW_VIDEO_ENCODER; |
| const bool is_linear = bo->meta.use_flags & BO_USE_LINEAR; |
| const bool is_protected = bo->meta.use_flags & BO_USE_PROTECTED; |
| const bool is_scanout = bo->meta.use_flags & BO_USE_SCANOUT; |
| /* |
| * We identify the ChromeOS Camera App buffers via these two USE flags. Those buffers need |
| * the same alignment as the video hardware encoding. |
| */ |
| const bool is_camera_preview = is_scanout && is_camera_write; |
| #ifdef MTK_MT8173 |
| const bool is_mt8173_video_decoder = bo->meta.use_flags & BO_USE_HW_VIDEO_DECODER; |
| #else |
| const bool is_mt8173_video_decoder = false; |
| #endif |
| /* |
| * Android sends blobs for encoding in the shape of a single-row pixel buffer. Use R8 + |
| * single row as a proxy for Android HAL_PIXEL_FORMAT_BLOB until a drm equivalent is |
| * defined. |
| */ |
| const bool is_format_blob = format == DRM_FORMAT_R8 && height == 1; |
| |
| if (!drv_has_modifier(modifiers, count, DRM_FORMAT_MOD_LINEAR)) { |
| errno = EINVAL; |
| drv_loge("no usable modifier found\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Since the ARM L1 cache line size is 64 bytes, align to that as a |
| * performance optimization, except for video buffers on certain platforms, |
| * these should only be accessed from the GPU and VCODEC subsystems (maybe |
| * also MDP), so it's better to align to macroblocks. |
| */ |
| stride = drv_stride_from_format(format, width, 0); |
| #ifdef DONT_USE_64_ALIGNMENT_FOR_VIDEO_BUFFERS |
| const uint32_t alignment = is_video_yuv_format(format) ? 16 : 64; |
| stride = ALIGN(stride, alignment); |
| #else |
| stride = ALIGN(stride, 64); |
| #endif |
| |
| /* |
| * The mediatek video decoder requires to align width and height by 64. But this is |
| * the requirement for mediatek tiled format (e.g. MT21 and MM21). The buffers are |
| * not allocated by minigbm. So we don't have to care about it. The tiled buffer is |
| * converted to NV12 or YV12, which is allocated by minigbm. V4L2 MDP doesn't |
| * require any special alignment for them. |
| * On the other hand, the mediatek video encoder reuqires a padding on each plane. |
| * When both video decoder and encoder use flag is masked (in some CTS test), we |
| * align with the encoder alignment. |
| * However, V4L2VideoDecodeAccelerator used on MT8173 fails handling the buffer with |
| * padding, although V4L2VideoDecoder used on MT8183 and later can do. We workaround |
| * this problem to allocate a buffer without padding on MT8173. This works because |
| * MT8173 decoder's output NV12 is converted to YV12 buffer that is allocated with |
| * video encoder usage mask only and thus have padding in Android. |
| * See go/mediatek-video-buffer-alignment-note for detail. |
| */ |
| if ((is_hw_video_encoder && !is_mt8173_video_decoder && !is_format_blob) || |
| is_camera_preview) { |
| uint32_t aligned_height = ALIGN(height, 32); |
| uint32_t padding[DRV_MAX_PLANES] = { 0 }; |
| |
| for (plane = 0; plane < bo->meta.num_planes; ++plane) { |
| uint32_t plane_stride = drv_stride_from_format(format, stride, plane); |
| padding[plane] = plane_stride * |
| (32 / drv_vertical_subsampling_from_format(format, plane)); |
| } |
| |
| drv_bo_from_format_and_padding(bo, stride, 1, aligned_height, format, padding); |
| } else { |
| #ifdef USE_EXTRA_PADDING_FOR_YVU420 |
| /* |
| * Apply extra padding for YV12 if the height does not meet round up requirement and |
| * the image is to be sampled by gpu. |
| */ |
| static const uint32_t required_round_up = 4; |
| const uint32_t height_mod = height % required_round_up; |
| const bool is_texture = bo->meta.use_flags & BO_USE_TEXTURE; |
| /* |
| * YVU420 and YVU420_ANDROID treatments have been aligned in mediatek backend. Check |
| * both since gbm frontend still maps linear YVU420 to YVU420_ANDROID for other hw |
| * backends. |
| */ |
| const bool is_format_yv12 = |
| format == DRM_FORMAT_YVU420 || format == DRM_FORMAT_YVU420_ANDROID; |
| #endif |
| #ifdef SUPPORT_YUV422 |
| /* |
| * JPEG Encoder Accelerator requires 16x16 alignment. We want the buffer |
| * from camera can be put in JEA directly so align the height to 16 |
| * bytes. |
| */ |
| if (format == DRM_FORMAT_NV12) |
| height = ALIGN(height, 16); |
| #endif |
| drv_bo_from_format(bo, stride, 1, height, format); |
| |
| #ifdef USE_EXTRA_PADDING_FOR_YVU420 |
| if (is_format_yv12 && is_texture && height_mod) { |
| const uint32_t height_padding = required_round_up - height_mod; |
| const uint32_t y_padding = |
| drv_size_from_format(format, bo->meta.strides[0], height_padding, 0); |
| const uint32_t u_padding = |
| drv_size_from_format(format, bo->meta.strides[2], height_padding, 2); |
| const uint32_t vu_size = drv_bo_get_plane_size(bo, 2) * 2; |
| |
| bo->meta.total_size += u_padding; |
| |
| /* |
| * Since we are not aligning Y, we must make sure that its padding fits |
| * inside the rest of the space allocated for the V/U planes. |
| */ |
| if (y_padding > vu_size) { |
| /* Align with mali workaround to pad all 3 planes. */ |
| bo->meta.total_size += y_padding + u_padding; |
| } |
| } |
| #endif |
| } |
| |
| /* For protected data buffer needs to allocate from DMA_HEAP directly */ |
| if (is_protected) { |
| #if !defined(ANDROID) || (ANDROID_API_LEVEL >= 31 && defined(HAS_DMABUF_SYSTEM_HEAP)) |
| int ret; |
| struct mediatek_private_drv_data *priv = (struct mediatek_private_drv_data *)bo->drv->priv; |
| struct dma_heap_allocation_data heap_data = { |
| .len = bo->meta.total_size, |
| .fd_flags = O_RDWR | O_CLOEXEC, |
| }; |
| |
| if (format == DRM_FORMAT_P010) { |
| /* |
| * Adjust the size so we don't waste tons of space. This was allocated |
| * with 16 bpp, but we only need 10 bpp. We can safely divide by 8 because |
| * we are aligned at a multiple higher than that. |
| */ |
| bo->meta.strides[0] = bo->meta.strides[0] * 10 / 16; |
| bo->meta.strides[1] = bo->meta.strides[1] * 10 / 16; |
| bo->meta.sizes[0] = bo->meta.sizes[0] * 10 / 16; |
| bo->meta.sizes[1] = bo->meta.sizes[1] * 10 / 16; |
| bo->meta.offsets[1] = bo->meta.sizes[0]; |
| bo->meta.total_size = bo->meta.total_size * 10 / 16; |
| } |
| |
| if (priv->dma_heap_fd < 0) { |
| priv->dma_heap_fd = open("/dev/dma_heap/restricted_mtk_cma", O_RDWR | O_CLOEXEC); |
| if (priv->dma_heap_fd < 0) { |
| drv_loge("Failed opening secure CMA heap errno=%d\n", -errno); |
| return -errno; |
| } |
| } |
| |
| ret = ioctl(priv->dma_heap_fd, DMA_HEAP_IOCTL_ALLOC, &heap_data); |
| if (ret < 0) { |
| drv_loge("Failed allocating CMA buffer ret=%d\n", ret); |
| return ret; |
| } |
| |
| /* Create GEM handle for secure CMA and close FD here */ |
| ret = drmPrimeFDToHandle(bo->drv->fd, heap_data.fd, &bo->handle.u32); |
| close(heap_data.fd); |
| if (ret) { |
| drv_loge("Failed drmPrimeFDToHandle(fd:%d) ret=%d\n", heap_data.fd, ret); |
| return ret; |
| } |
| #else |
| drv_loge("Protected allocation not supported\n"); |
| return -1; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * For linear scanout buffers, the read/write pattern is usually linear i.e. each address is |
| * accessed sequentially, and there are fewer chances that an address will be repeatedly |
| * accessed. |
| * This behavior leads to less TLB dependency and cache misses i.e. no need to translate the |
| * same virtual address to a physical address multiple times. |
| * |
| * With that premise, it's safe to allow the DMA framework to fulfill such allocation |
| * requests with non-continuous smaller chunks of memory (e.g., 4KiB single pages) which |
| * are generally easier to allocate compared to large continuous chunks of memory, improving |
| * memory allocation efficiency and reduce the risk of allocation failures, especially when |
| * available memory budget is low or on memory-constrained devices. |
| */ |
| if (is_linear && is_scanout) |
| gem_create.flags |= DRM_MTK_GEM_CREATE_FLAG_ALLOC_SINGLE_PAGES; |
| |
| gem_create.size = bo->meta.total_size; |
| |
| ret = drmIoctl(bo->drv->fd, DRM_IOCTL_MTK_GEM_CREATE, &gem_create); |
| if (ret) { |
| drv_loge("DRM_IOCTL_MTK_GEM_CREATE failed (size=%" PRIu64 ")\n", gem_create.size); |
| return -errno; |
| } |
| |
| bo->handle.u32 = gem_create.handle; |
| |
| return 0; |
| } |
| |
| static int mediatek_bo_create(struct bo *bo, uint32_t width, uint32_t height, uint32_t format, |
| uint64_t use_flags) |
| { |
| uint64_t modifiers[] = { DRM_FORMAT_MOD_LINEAR }; |
| return mediatek_bo_create_with_modifiers(bo, width, height, format, modifiers, |
| ARRAY_SIZE(modifiers)); |
| } |
| |
| static void *mediatek_bo_map(struct bo *bo, struct vma *vma, uint32_t map_flags) |
| { |
| int ret, prime_fd; |
| struct drm_mtk_gem_map_off gem_map = { 0 }; |
| struct mediatek_private_map_data *priv; |
| void *addr = NULL; |
| |
| gem_map.handle = bo->handle.u32; |
| |
| ret = drmIoctl(bo->drv->fd, DRM_IOCTL_MTK_GEM_MAP_OFFSET, &gem_map); |
| if (ret) { |
| drv_loge("DRM_IOCTL_MTK_GEM_MAP_OFFSET failed\n"); |
| return MAP_FAILED; |
| } |
| |
| prime_fd = drv_bo_get_plane_fd(bo, 0); |
| if (prime_fd < 0) { |
| drv_loge("Failed to get a prime fd\n"); |
| return MAP_FAILED; |
| } |
| |
| addr = mmap(0, bo->meta.total_size, drv_get_prot(map_flags), MAP_SHARED, bo->drv->fd, |
| gem_map.offset); |
| if (addr == MAP_FAILED) |
| goto out_close_prime_fd; |
| |
| vma->length = bo->meta.total_size; |
| |
| priv = calloc(1, sizeof(*priv)); |
| if (!priv) |
| goto out_unmap_addr; |
| |
| if (bo->meta.use_flags & BO_USE_RENDERSCRIPT) { |
| priv->cached_addr = calloc(1, bo->meta.total_size); |
| if (!priv->cached_addr) |
| goto out_free_priv; |
| |
| priv->gem_addr = addr; |
| addr = priv->cached_addr; |
| } |
| |
| priv->prime_fd = prime_fd; |
| vma->priv = priv; |
| |
| return addr; |
| |
| out_free_priv: |
| free(priv); |
| out_unmap_addr: |
| munmap(addr, bo->meta.total_size); |
| out_close_prime_fd: |
| close(prime_fd); |
| return MAP_FAILED; |
| } |
| |
| static int mediatek_bo_unmap(struct bo *bo, struct vma *vma) |
| { |
| if (vma->priv) { |
| struct mediatek_private_map_data *priv = vma->priv; |
| |
| if (priv->cached_addr) { |
| vma->addr = priv->gem_addr; |
| free(priv->cached_addr); |
| } |
| |
| close(priv->prime_fd); |
| free(priv); |
| vma->priv = NULL; |
| } |
| |
| return munmap(vma->addr, vma->length); |
| } |
| |
| static int mediatek_bo_invalidate(struct bo *bo, struct mapping *mapping) |
| { |
| struct mediatek_private_map_data *priv = mapping->vma->priv; |
| |
| if (priv) { |
| struct pollfd fds = { |
| .fd = priv->prime_fd, |
| }; |
| |
| if (mapping->vma->map_flags & BO_MAP_WRITE) |
| fds.events |= POLLOUT; |
| |
| if (mapping->vma->map_flags & BO_MAP_READ) |
| fds.events |= POLLIN; |
| |
| poll(&fds, 1, -1); |
| if (fds.revents != fds.events) |
| drv_loge("poll prime_fd failed\n"); |
| |
| if (priv->cached_addr) |
| memcpy(priv->cached_addr, priv->gem_addr, bo->meta.total_size); |
| } |
| |
| return 0; |
| } |
| |
| static int mediatek_bo_flush(struct bo *bo, struct mapping *mapping) |
| { |
| struct mediatek_private_map_data *priv = mapping->vma->priv; |
| if (priv && priv->cached_addr && (mapping->vma->map_flags & BO_MAP_WRITE)) |
| memcpy(priv->gem_addr, priv->cached_addr, bo->meta.total_size); |
| |
| return 0; |
| } |
| |
| static void mediatek_resolve_format_and_use_flags(struct driver *drv, uint32_t format, |
| uint64_t use_flags, uint32_t *out_format, |
| uint64_t *out_use_flags) |
| { |
| *out_format = format; |
| *out_use_flags = use_flags; |
| switch (format) { |
| case DRM_FORMAT_FLEX_IMPLEMENTATION_DEFINED: |
| #ifdef MTK_MT8183 |
| /* Only MT8183 Camera subsystem offers private reprocessing |
| * capability. CAMERA_READ indicates the buffer is intended for |
| * reprocessing and hence given the private format for MTK. */ |
| if (use_flags & BO_USE_CAMERA_READ) { |
| *out_format = DRM_FORMAT_MTISP_SXYZW10; |
| break; |
| } |
| #endif |
| if (use_flags & BO_USE_CAMERA_WRITE) { |
| *out_format = DRM_FORMAT_NV12; |
| break; |
| } |
| |
| /* HACK: See b/28671744 */ |
| *out_format = DRM_FORMAT_XBGR8888; |
| *out_use_flags &= ~BO_USE_HW_VIDEO_ENCODER; |
| break; |
| case DRM_FORMAT_FLEX_YCbCr_420_888: |
| #ifdef USE_NV12_FOR_HW_VIDEO_DECODING |
| // TODO(hiroh): Switch to use NV12 for video decoder on MT8173 as well. |
| if (use_flags & (BO_USE_HW_VIDEO_DECODER)) { |
| *out_format = DRM_FORMAT_NV12; |
| break; |
| } |
| #endif |
| /* |
| * b/292507490: The MT8173 decoder can output YUV420 only. Some CTS tests feed the |
| * decoded buffer to the hardware encoder and the tests allocate the buffer with |
| * DRM_FORMAT_FLEX_YCbCr_420_888 with the mask of BO_USE_HW_VIDEO_ENCODER | |
| * BO_USE_HW_VIDEO_DECODER. Therefore, we have to allocate YUV420 in the case. |
| */ |
| if (use_flags & |
| (BO_USE_CAMERA_READ | BO_USE_CAMERA_WRITE | BO_USE_HW_VIDEO_ENCODER)) { |
| #ifndef MTK_MT8173 |
| *out_format = DRM_FORMAT_NV12; |
| break; |
| #else |
| if (!(use_flags & BO_USE_HW_VIDEO_DECODER)) { |
| *out_format = DRM_FORMAT_NV12; |
| break; |
| } |
| #endif |
| } |
| /* HACK: See b/139714614 */ |
| *out_format = DRM_FORMAT_YVU420; |
| *out_use_flags &= ~BO_USE_SCANOUT; |
| break; |
| default: |
| break; |
| } |
| /* Mediatek doesn't support YUV overlays */ |
| if (is_video_yuv_format(format)) |
| *out_use_flags &= ~BO_USE_SCANOUT; |
| } |
| |
| const struct backend backend_mediatek = { |
| .name = "mediatek", |
| .init = mediatek_init, |
| .close = mediatek_close, |
| .bo_create = mediatek_bo_create, |
| .bo_create_with_modifiers = mediatek_bo_create_with_modifiers, |
| .bo_destroy = drv_gem_bo_destroy, |
| .bo_import = drv_prime_bo_import, |
| .bo_map = mediatek_bo_map, |
| .bo_unmap = mediatek_bo_unmap, |
| .bo_invalidate = mediatek_bo_invalidate, |
| .bo_flush = mediatek_bo_flush, |
| .resolve_format_and_use_flags = mediatek_resolve_format_and_use_flags, |
| }; |
| |
| #endif |