| /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #define _BSD_SOURCE |
| #define _DEFAULT_SOURCE |
| #define _GNU_SOURCE |
| |
| #include <asm/unistd.h> |
| #include <assert.h> |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <grp.h> |
| #include <linux/capability.h> |
| #include <linux/filter.h> |
| #include <sched.h> |
| #include <signal.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/capability.h> |
| #include <sys/mount.h> |
| #include <sys/param.h> |
| #include <sys/prctl.h> |
| #include <sys/resource.h> |
| #include <sys/select.h> |
| #include <sys/stat.h> |
| #include <sys/sysmacros.h> |
| #include <sys/types.h> |
| #include <sys/user.h> |
| #include <sys/wait.h> |
| #include <syscall.h> |
| #include <unistd.h> |
| |
| #include "libminijail.h" |
| #include "libminijail-private.h" |
| |
| #include "signal_handler.h" |
| #include "syscall_filter.h" |
| #include "syscall_wrapper.h" |
| #include "system.h" |
| #include "util.h" |
| |
| /* Until these are reliably available in linux/prctl.h. */ |
| #ifndef PR_ALT_SYSCALL |
| # define PR_ALT_SYSCALL 0x43724f53 |
| #endif |
| |
| /* New cgroup namespace might not be in linux-headers yet. */ |
| #ifndef CLONE_NEWCGROUP |
| # define CLONE_NEWCGROUP 0x02000000 |
| #endif |
| |
| #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */ |
| |
| #define MAX_RLIMITS 32 /* Currently there are 15 supported by Linux. */ |
| |
| #define MAX_PRESERVED_FDS 32U |
| |
| /* Keyctl commands. */ |
| #define KEYCTL_JOIN_SESSION_KEYRING 1 |
| |
| /* |
| * The userspace equivalent of MNT_USER_SETTABLE_MASK, which is the mask of all |
| * flags that can be modified by MS_REMOUNT. |
| */ |
| #define MS_USER_SETTABLE_MASK \ |
| (MS_NOSUID | MS_NODEV | MS_NOEXEC | MS_NOATIME | MS_NODIRATIME | \ |
| MS_RELATIME | MS_RDONLY) |
| |
| struct minijail_rlimit { |
| int type; |
| rlim_t cur; |
| rlim_t max; |
| }; |
| |
| struct mountpoint { |
| char *src; |
| char *dest; |
| char *type; |
| char *data; |
| int has_data; |
| unsigned long flags; |
| struct mountpoint *next; |
| }; |
| |
| struct minijail_remount { |
| unsigned long remount_mode; |
| char *mount_name; |
| struct minijail_remount *next; |
| }; |
| |
| struct hook { |
| minijail_hook_t hook; |
| void *payload; |
| minijail_hook_event_t event; |
| struct hook *next; |
| }; |
| |
| struct preserved_fd { |
| int parent_fd; |
| int child_fd; |
| }; |
| |
| struct minijail { |
| /* |
| * WARNING: if you add a flag here you need to make sure it's |
| * accounted for in minijail_pre{enter|exec}() below. |
| */ |
| struct { |
| int uid : 1; |
| int gid : 1; |
| int inherit_suppl_gids : 1; |
| int set_suppl_gids : 1; |
| int keep_suppl_gids : 1; |
| int use_caps : 1; |
| int capbset_drop : 1; |
| int set_ambient_caps : 1; |
| int vfs : 1; |
| int enter_vfs : 1; |
| int pids : 1; |
| int ipc : 1; |
| int uts : 1; |
| int net : 1; |
| int enter_net : 1; |
| int ns_cgroups : 1; |
| int userns : 1; |
| int disable_setgroups : 1; |
| int seccomp : 1; |
| int remount_proc_ro : 1; |
| int no_new_privs : 1; |
| int seccomp_filter : 1; |
| int seccomp_filter_tsync : 1; |
| int seccomp_filter_logging : 1; |
| int seccomp_filter_allow_speculation : 1; |
| int chroot : 1; |
| int pivot_root : 1; |
| int mount_dev : 1; |
| int mount_tmp : 1; |
| int do_init : 1; |
| int run_as_init : 1; |
| int pid_file : 1; |
| int cgroups : 1; |
| int alt_syscall : 1; |
| int reset_signal_mask : 1; |
| int reset_signal_handlers : 1; |
| int close_open_fds : 1; |
| int new_session_keyring : 1; |
| int forward_signals : 1; |
| int setsid : 1; |
| } flags; |
| uid_t uid; |
| gid_t gid; |
| gid_t usergid; |
| char *user; |
| size_t suppl_gid_count; |
| gid_t *suppl_gid_list; |
| uint64_t caps; |
| uint64_t cap_bset; |
| pid_t initpid; |
| int mountns_fd; |
| int netns_fd; |
| char *chrootdir; |
| char *pid_file_path; |
| char *uidmap; |
| char *gidmap; |
| char *hostname; |
| char *preload_path; |
| size_t filter_len; |
| struct sock_fprog *filter_prog; |
| char *alt_syscall_table; |
| struct mountpoint *mounts_head; |
| struct mountpoint *mounts_tail; |
| size_t mounts_count; |
| unsigned long remount_mode; |
| struct minijail_remount *remounts_head; |
| struct minijail_remount *remounts_tail; |
| size_t tmpfs_size; |
| char *cgroups[MAX_CGROUPS]; |
| size_t cgroup_count; |
| struct minijail_rlimit rlimits[MAX_RLIMITS]; |
| size_t rlimit_count; |
| uint64_t securebits_skip_mask; |
| struct hook *hooks_head; |
| struct hook *hooks_tail; |
| struct preserved_fd preserved_fds[MAX_PRESERVED_FDS]; |
| size_t preserved_fd_count; |
| }; |
| |
| static void run_hooks_or_die(const struct minijail *j, |
| minijail_hook_event_t event); |
| |
| static void free_mounts_list(struct minijail *j) |
| { |
| while (j->mounts_head) { |
| struct mountpoint *m = j->mounts_head; |
| j->mounts_head = j->mounts_head->next; |
| free(m->data); |
| free(m->type); |
| free(m->dest); |
| free(m->src); |
| free(m); |
| } |
| // No need to clear mounts_head as we know it's NULL after the loop. |
| j->mounts_tail = NULL; |
| } |
| |
| static void free_remounts_list(struct minijail *j) |
| { |
| while (j->remounts_head) { |
| struct minijail_remount *m = j->remounts_head; |
| j->remounts_head = j->remounts_head->next; |
| free(m->mount_name); |
| free(m); |
| } |
| // No need to clear remounts_head as we know it's NULL after the loop. |
| j->remounts_tail = NULL; |
| } |
| |
| /* |
| * Writes exactly n bytes from buf to file descriptor fd. |
| * Returns 0 on success or a negative error code on error. |
| */ |
| static int write_exactly(int fd, const void *buf, size_t n) |
| { |
| const char *p = buf; |
| while (n > 0) { |
| const ssize_t written = write(fd, p, n); |
| if (written < 0) { |
| if (errno == EINTR) |
| continue; |
| |
| return -errno; |
| } |
| |
| p += written; |
| n -= written; |
| } |
| |
| return 0; |
| } |
| |
| /* Closes *pfd and sets it to -1. */ |
| static void close_and_reset(int *pfd) |
| { |
| if (*pfd != -1) |
| close(*pfd); |
| *pfd = -1; |
| } |
| |
| /* |
| * Strip out flags meant for the parent. |
| * We keep things that are not inherited across execve(2) (e.g. capabilities), |
| * or are easier to set after execve(2) (e.g. seccomp filters). |
| */ |
| void minijail_preenter(struct minijail *j) |
| { |
| j->flags.vfs = 0; |
| j->flags.enter_vfs = 0; |
| j->flags.ns_cgroups = 0; |
| j->flags.net = 0; |
| j->flags.uts = 0; |
| j->flags.remount_proc_ro = 0; |
| j->flags.pids = 0; |
| j->flags.do_init = 0; |
| j->flags.run_as_init = 0; |
| j->flags.pid_file = 0; |
| j->flags.cgroups = 0; |
| j->flags.forward_signals = 0; |
| j->flags.setsid = 0; |
| j->remount_mode = 0; |
| free_remounts_list(j); |
| } |
| |
| /* |
| * Strip out flags meant for the child. |
| * We keep things that are inherited across execve(2). |
| */ |
| void minijail_preexec(struct minijail *j) |
| { |
| int vfs = j->flags.vfs; |
| int enter_vfs = j->flags.enter_vfs; |
| int ns_cgroups = j->flags.ns_cgroups; |
| int net = j->flags.net; |
| int uts = j->flags.uts; |
| int remount_proc_ro = j->flags.remount_proc_ro; |
| int userns = j->flags.userns; |
| if (j->user) |
| free(j->user); |
| j->user = NULL; |
| if (j->suppl_gid_list) |
| free(j->suppl_gid_list); |
| j->suppl_gid_list = NULL; |
| if (j->preload_path) |
| free(j->preload_path); |
| j->preload_path = NULL; |
| free_mounts_list(j); |
| memset(&j->flags, 0, sizeof(j->flags)); |
| /* Now restore anything we meant to keep. */ |
| j->flags.vfs = vfs; |
| j->flags.enter_vfs = enter_vfs; |
| j->flags.ns_cgroups = ns_cgroups; |
| j->flags.net = net; |
| j->flags.uts = uts; |
| j->flags.remount_proc_ro = remount_proc_ro; |
| j->flags.userns = userns; |
| /* Note, |pids| will already have been used before this call. */ |
| } |
| |
| /* Minijail API. */ |
| |
| struct minijail API *minijail_new(void) |
| { |
| struct minijail *j = calloc(1, sizeof(struct minijail)); |
| if (j) { |
| j->remount_mode = MS_PRIVATE; |
| } |
| return j; |
| } |
| |
| void API minijail_change_uid(struct minijail *j, uid_t uid) |
| { |
| if (uid == 0) |
| die("useless change to uid 0"); |
| j->uid = uid; |
| j->flags.uid = 1; |
| } |
| |
| void API minijail_change_gid(struct minijail *j, gid_t gid) |
| { |
| if (gid == 0) |
| die("useless change to gid 0"); |
| j->gid = gid; |
| j->flags.gid = 1; |
| } |
| |
| void API minijail_set_supplementary_gids(struct minijail *j, size_t size, |
| const gid_t *list) |
| { |
| size_t i; |
| |
| if (j->flags.inherit_suppl_gids) |
| die("cannot inherit *and* set supplementary groups"); |
| if (j->flags.keep_suppl_gids) |
| die("cannot keep *and* set supplementary groups"); |
| |
| if (size == 0) { |
| /* Clear supplementary groups. */ |
| j->suppl_gid_list = NULL; |
| j->suppl_gid_count = 0; |
| j->flags.set_suppl_gids = 1; |
| return; |
| } |
| |
| /* Copy the gid_t array. */ |
| j->suppl_gid_list = calloc(size, sizeof(gid_t)); |
| if (!j->suppl_gid_list) { |
| die("failed to allocate internal supplementary group array"); |
| } |
| for (i = 0; i < size; i++) { |
| j->suppl_gid_list[i] = list[i]; |
| } |
| j->suppl_gid_count = size; |
| j->flags.set_suppl_gids = 1; |
| } |
| |
| void API minijail_keep_supplementary_gids(struct minijail *j) { |
| j->flags.keep_suppl_gids = 1; |
| } |
| |
| int API minijail_change_user(struct minijail *j, const char *user) |
| { |
| uid_t uid; |
| gid_t gid; |
| int rc = lookup_user(user, &uid, &gid); |
| if (rc) |
| return rc; |
| minijail_change_uid(j, uid); |
| j->user = strdup(user); |
| if (!j->user) |
| return -ENOMEM; |
| j->usergid = gid; |
| return 0; |
| } |
| |
| int API minijail_change_group(struct minijail *j, const char *group) |
| { |
| gid_t gid; |
| int rc = lookup_group(group, &gid); |
| if (rc) |
| return rc; |
| minijail_change_gid(j, gid); |
| return 0; |
| } |
| |
| void API minijail_use_seccomp(struct minijail *j) |
| { |
| j->flags.seccomp = 1; |
| } |
| |
| void API minijail_no_new_privs(struct minijail *j) |
| { |
| j->flags.no_new_privs = 1; |
| } |
| |
| void API minijail_use_seccomp_filter(struct minijail *j) |
| { |
| j->flags.seccomp_filter = 1; |
| } |
| |
| void API minijail_set_seccomp_filter_tsync(struct minijail *j) |
| { |
| if (j->filter_len > 0 && j->filter_prog != NULL) { |
| die("minijail_set_seccomp_filter_tsync() must be called " |
| "before minijail_parse_seccomp_filters()"); |
| } |
| |
| if (j->flags.seccomp_filter_logging && !seccomp_ret_log_available()) { |
| /* |
| * If SECCOMP_RET_LOG is not available, we don't want to use |
| * SECCOMP_RET_TRAP to both kill the entire process and report |
| * failing syscalls, since it will be brittle. Just bail. |
| */ |
| die("SECCOMP_RET_LOG not available, cannot use logging with " |
| "thread sync at the same time"); |
| } |
| |
| j->flags.seccomp_filter_tsync = 1; |
| } |
| |
| void API minijail_set_seccomp_filter_allow_speculation(struct minijail *j) |
| { |
| if (j->filter_len > 0 && j->filter_prog != NULL) { |
| die("minijail_set_seccomp_filter_allow_speculation() must be " |
| "called before minijail_parse_seccomp_filters()"); |
| } |
| |
| j->flags.seccomp_filter_allow_speculation = 1; |
| } |
| |
| void API minijail_log_seccomp_filter_failures(struct minijail *j) |
| { |
| if (j->filter_len > 0 && j->filter_prog != NULL) { |
| die("minijail_log_seccomp_filter_failures() must be called " |
| "before minijail_parse_seccomp_filters()"); |
| } |
| |
| if (j->flags.seccomp_filter_tsync && !seccomp_ret_log_available()) { |
| /* |
| * If SECCOMP_RET_LOG is not available, we don't want to use |
| * SECCOMP_RET_TRAP to both kill the entire process and report |
| * failing syscalls, since it will be brittle. Just bail. |
| */ |
| die("SECCOMP_RET_LOG not available, cannot use thread sync with " |
| "logging at the same time"); |
| } |
| |
| if (debug_logging_allowed()) { |
| j->flags.seccomp_filter_logging = 1; |
| } else { |
| warn("non-debug build: ignoring request to enable seccomp " |
| "logging"); |
| } |
| } |
| |
| void API minijail_use_caps(struct minijail *j, uint64_t capmask) |
| { |
| /* |
| * 'minijail_use_caps' configures a runtime-capabilities-only |
| * environment, including a bounding set matching the thread's runtime |
| * (permitted|inheritable|effective) sets. |
| * Therefore, it will override any existing bounding set configurations |
| * since the latter would allow gaining extra runtime capabilities from |
| * file capabilities. |
| */ |
| if (j->flags.capbset_drop) { |
| warn("overriding bounding set configuration"); |
| j->cap_bset = 0; |
| j->flags.capbset_drop = 0; |
| } |
| j->caps = capmask; |
| j->flags.use_caps = 1; |
| } |
| |
| void API minijail_capbset_drop(struct minijail *j, uint64_t capmask) |
| { |
| if (j->flags.use_caps) { |
| /* |
| * 'minijail_use_caps' will have already configured a capability |
| * bounding set matching the (permitted|inheritable|effective) |
| * sets. Abort if the user tries to configure a separate |
| * bounding set. 'minijail_capbset_drop' and 'minijail_use_caps' |
| * are mutually exclusive. |
| */ |
| die("runtime capabilities already configured, can't drop " |
| "bounding set separately"); |
| } |
| j->cap_bset = capmask; |
| j->flags.capbset_drop = 1; |
| } |
| |
| void API minijail_set_ambient_caps(struct minijail *j) |
| { |
| j->flags.set_ambient_caps = 1; |
| } |
| |
| void API minijail_reset_signal_mask(struct minijail *j) |
| { |
| j->flags.reset_signal_mask = 1; |
| } |
| |
| void API minijail_reset_signal_handlers(struct minijail *j) |
| { |
| j->flags.reset_signal_handlers = 1; |
| } |
| |
| void API minijail_namespace_vfs(struct minijail *j) |
| { |
| j->flags.vfs = 1; |
| } |
| |
| void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path) |
| { |
| /* Note: Do not use O_CLOEXEC here. We'll close it after we use it. */ |
| int ns_fd = open(ns_path, O_RDONLY); |
| if (ns_fd < 0) { |
| pdie("failed to open namespace '%s'", ns_path); |
| } |
| j->mountns_fd = ns_fd; |
| j->flags.enter_vfs = 1; |
| } |
| |
| void API minijail_new_session_keyring(struct minijail *j) |
| { |
| j->flags.new_session_keyring = 1; |
| } |
| |
| void API minijail_skip_setting_securebits(struct minijail *j, |
| uint64_t securebits_skip_mask) |
| { |
| j->securebits_skip_mask = securebits_skip_mask; |
| } |
| |
| void API minijail_remount_mode(struct minijail *j, unsigned long mode) |
| { |
| j->remount_mode = mode; |
| } |
| |
| void API minijail_skip_remount_private(struct minijail *j) |
| { |
| j->remount_mode = 0; |
| } |
| |
| void API minijail_namespace_pids(struct minijail *j) |
| { |
| j->flags.vfs = 1; |
| j->flags.remount_proc_ro = 1; |
| j->flags.pids = 1; |
| j->flags.do_init = 1; |
| } |
| |
| void API minijail_namespace_pids_rw_proc(struct minijail *j) |
| { |
| j->flags.vfs = 1; |
| j->flags.pids = 1; |
| j->flags.do_init = 1; |
| } |
| |
| void API minijail_namespace_ipc(struct minijail *j) |
| { |
| j->flags.ipc = 1; |
| } |
| |
| void API minijail_namespace_uts(struct minijail *j) |
| { |
| j->flags.uts = 1; |
| } |
| |
| int API minijail_namespace_set_hostname(struct minijail *j, const char *name) |
| { |
| if (j->hostname) |
| return -EINVAL; |
| minijail_namespace_uts(j); |
| j->hostname = strdup(name); |
| if (!j->hostname) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void API minijail_namespace_net(struct minijail *j) |
| { |
| j->flags.net = 1; |
| } |
| |
| void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path) |
| { |
| /* Note: Do not use O_CLOEXEC here. We'll close it after we use it. */ |
| int ns_fd = open(ns_path, O_RDONLY); |
| if (ns_fd < 0) { |
| pdie("failed to open namespace '%s'", ns_path); |
| } |
| j->netns_fd = ns_fd; |
| j->flags.enter_net = 1; |
| } |
| |
| void API minijail_namespace_cgroups(struct minijail *j) |
| { |
| j->flags.ns_cgroups = 1; |
| } |
| |
| void API minijail_close_open_fds(struct minijail *j) |
| { |
| j->flags.close_open_fds = 1; |
| } |
| |
| void API minijail_remount_proc_readonly(struct minijail *j) |
| { |
| j->flags.vfs = 1; |
| j->flags.remount_proc_ro = 1; |
| } |
| |
| void API minijail_namespace_user(struct minijail *j) |
| { |
| j->flags.userns = 1; |
| } |
| |
| void API minijail_namespace_user_disable_setgroups(struct minijail *j) |
| { |
| j->flags.disable_setgroups = 1; |
| } |
| |
| int API minijail_uidmap(struct minijail *j, const char *uidmap) |
| { |
| j->uidmap = strdup(uidmap); |
| if (!j->uidmap) |
| return -ENOMEM; |
| char *ch; |
| for (ch = j->uidmap; *ch; ch++) { |
| if (*ch == ',') |
| *ch = '\n'; |
| } |
| return 0; |
| } |
| |
| int API minijail_gidmap(struct minijail *j, const char *gidmap) |
| { |
| j->gidmap = strdup(gidmap); |
| if (!j->gidmap) |
| return -ENOMEM; |
| char *ch; |
| for (ch = j->gidmap; *ch; ch++) { |
| if (*ch == ',') |
| *ch = '\n'; |
| } |
| return 0; |
| } |
| |
| void API minijail_inherit_usergroups(struct minijail *j) |
| { |
| j->flags.inherit_suppl_gids = 1; |
| } |
| |
| void API minijail_run_as_init(struct minijail *j) |
| { |
| /* |
| * Since the jailed program will become 'init' in the new PID namespace, |
| * Minijail does not need to fork an 'init' process. |
| */ |
| j->flags.run_as_init = 1; |
| } |
| |
| int API minijail_enter_chroot(struct minijail *j, const char *dir) |
| { |
| if (j->chrootdir) |
| return -EINVAL; |
| j->chrootdir = strdup(dir); |
| if (!j->chrootdir) |
| return -ENOMEM; |
| j->flags.chroot = 1; |
| return 0; |
| } |
| |
| int API minijail_enter_pivot_root(struct minijail *j, const char *dir) |
| { |
| if (j->chrootdir) |
| return -EINVAL; |
| j->chrootdir = strdup(dir); |
| if (!j->chrootdir) |
| return -ENOMEM; |
| j->flags.pivot_root = 1; |
| return 0; |
| } |
| |
| char API *minijail_get_original_path(struct minijail *j, |
| const char *path_inside_chroot) |
| { |
| struct mountpoint *b; |
| |
| b = j->mounts_head; |
| while (b) { |
| /* |
| * If |path_inside_chroot| is the exact destination of a |
| * mount, then the original path is exactly the source of |
| * the mount. |
| * for example: "-b /some/path/exe,/chroot/path/exe" |
| * mount source = /some/path/exe, mount dest = |
| * /chroot/path/exe Then when getting the original path of |
| * "/chroot/path/exe", the source of that mount, |
| * "/some/path/exe" is what should be returned. |
| */ |
| if (!strcmp(b->dest, path_inside_chroot)) |
| return strdup(b->src); |
| |
| /* |
| * If |path_inside_chroot| is within the destination path of a |
| * mount, take the suffix of the chroot path relative to the |
| * mount destination path, and append it to the mount source |
| * path. |
| */ |
| if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) { |
| const char *relative_path = |
| path_inside_chroot + strlen(b->dest); |
| return path_join(b->src, relative_path); |
| } |
| b = b->next; |
| } |
| |
| /* If there is a chroot path, append |path_inside_chroot| to that. */ |
| if (j->chrootdir) |
| return path_join(j->chrootdir, path_inside_chroot); |
| |
| /* No chroot, so the path outside is the same as it is inside. */ |
| return strdup(path_inside_chroot); |
| } |
| |
| void API minijail_mount_dev(struct minijail *j) |
| { |
| j->flags.mount_dev = 1; |
| } |
| |
| void API minijail_mount_tmp(struct minijail *j) |
| { |
| minijail_mount_tmp_size(j, 64 * 1024 * 1024); |
| } |
| |
| void API minijail_mount_tmp_size(struct minijail *j, size_t size) |
| { |
| j->tmpfs_size = size; |
| j->flags.mount_tmp = 1; |
| } |
| |
| int API minijail_write_pid_file(struct minijail *j, const char *path) |
| { |
| j->pid_file_path = strdup(path); |
| if (!j->pid_file_path) |
| return -ENOMEM; |
| j->flags.pid_file = 1; |
| return 0; |
| } |
| |
| int API minijail_add_to_cgroup(struct minijail *j, const char *path) |
| { |
| if (j->cgroup_count >= MAX_CGROUPS) |
| return -ENOMEM; |
| j->cgroups[j->cgroup_count] = strdup(path); |
| if (!j->cgroups[j->cgroup_count]) |
| return -ENOMEM; |
| j->cgroup_count++; |
| j->flags.cgroups = 1; |
| return 0; |
| } |
| |
| int API minijail_rlimit(struct minijail *j, int type, rlim_t cur, rlim_t max) |
| { |
| size_t i; |
| |
| if (j->rlimit_count >= MAX_RLIMITS) |
| return -ENOMEM; |
| /* It's an error if the caller sets the same rlimit multiple times. */ |
| for (i = 0; i < j->rlimit_count; i++) { |
| if (j->rlimits[i].type == type) |
| return -EEXIST; |
| } |
| |
| j->rlimits[j->rlimit_count].type = type; |
| j->rlimits[j->rlimit_count].cur = cur; |
| j->rlimits[j->rlimit_count].max = max; |
| j->rlimit_count++; |
| return 0; |
| } |
| |
| int API minijail_forward_signals(struct minijail *j) |
| { |
| j->flags.forward_signals = 1; |
| return 0; |
| } |
| |
| int API minijail_create_session(struct minijail *j) { |
| j->flags.setsid = 1; |
| return 0; |
| } |
| |
| int API minijail_mount_with_data(struct minijail *j, const char *src, |
| const char *dest, const char *type, |
| unsigned long flags, const char *data) |
| { |
| struct mountpoint *m; |
| |
| if (*dest != '/') |
| return -EINVAL; |
| m = calloc(1, sizeof(*m)); |
| if (!m) |
| return -ENOMEM; |
| m->dest = strdup(dest); |
| if (!m->dest) |
| goto error; |
| m->src = strdup(src); |
| if (!m->src) |
| goto error; |
| m->type = strdup(type); |
| if (!m->type) |
| goto error; |
| |
| if (!data || !data[0]) { |
| /* |
| * Set up secure defaults for certain filesystems. Adding this |
| * fs-specific logic here kind of sucks, but considering how |
| * people use these in practice, it's probably OK. If they want |
| * the kernel defaults, they can pass data="" instead of NULL. |
| */ |
| if (!strcmp(type, "tmpfs")) { |
| /* tmpfs defaults to mode=1777 and size=50%. */ |
| data = "mode=0755,size=10M"; |
| } |
| } |
| if (data) { |
| m->data = strdup(data); |
| if (!m->data) |
| goto error; |
| m->has_data = 1; |
| } |
| |
| /* If they don't specify any flags, default to secure ones. */ |
| if (flags == 0) |
| flags = MS_NODEV | MS_NOEXEC | MS_NOSUID; |
| m->flags = flags; |
| |
| /* |
| * Unless asked to enter an existing namespace, force vfs namespacing |
| * so the mounts don't leak out into the containing vfs namespace. |
| * If Minijail is being asked to enter the root vfs namespace this will |
| * leak mounts, but it's unlikely that the user would ask to do that by |
| * mistake. |
| */ |
| if (!j->flags.enter_vfs) |
| minijail_namespace_vfs(j); |
| |
| if (j->mounts_tail) |
| j->mounts_tail->next = m; |
| else |
| j->mounts_head = m; |
| j->mounts_tail = m; |
| j->mounts_count++; |
| |
| return 0; |
| |
| error: |
| free(m->type); |
| free(m->src); |
| free(m->dest); |
| free(m); |
| return -ENOMEM; |
| } |
| |
| int API minijail_mount(struct minijail *j, const char *src, const char *dest, |
| const char *type, unsigned long flags) |
| { |
| return minijail_mount_with_data(j, src, dest, type, flags, NULL); |
| } |
| |
| int API minijail_bind(struct minijail *j, const char *src, const char *dest, |
| int writeable) |
| { |
| unsigned long flags = MS_BIND; |
| |
| if (!writeable) |
| flags |= MS_RDONLY; |
| |
| return minijail_mount(j, src, dest, "", flags); |
| } |
| |
| int API minijail_add_remount(struct minijail *j, const char *mount_name, |
| unsigned long remount_mode) |
| { |
| struct minijail_remount *m; |
| |
| if (*mount_name != '/') |
| return -EINVAL; |
| m = calloc(1, sizeof(*m)); |
| if (!m) |
| return -ENOMEM; |
| m->mount_name = strdup(mount_name); |
| if (!m->mount_name) { |
| free(m); |
| return -ENOMEM; |
| } |
| |
| m->remount_mode = remount_mode; |
| |
| if (j->remounts_tail) |
| j->remounts_tail->next = m; |
| else |
| j->remounts_head = m; |
| j->remounts_tail = m; |
| |
| return 0; |
| } |
| |
| int API minijail_add_hook(struct minijail *j, minijail_hook_t hook, |
| void *payload, minijail_hook_event_t event) |
| { |
| struct hook *c; |
| |
| if (hook == NULL) |
| return -EINVAL; |
| if (event >= MINIJAIL_HOOK_EVENT_MAX) |
| return -EINVAL; |
| c = calloc(1, sizeof(*c)); |
| if (!c) |
| return -ENOMEM; |
| |
| c->hook = hook; |
| c->payload = payload; |
| c->event = event; |
| |
| if (j->hooks_tail) |
| j->hooks_tail->next = c; |
| else |
| j->hooks_head = c; |
| j->hooks_tail = c; |
| |
| return 0; |
| } |
| |
| int API minijail_preserve_fd(struct minijail *j, int parent_fd, int child_fd) |
| { |
| if (parent_fd < 0 || child_fd < 0) |
| return -EINVAL; |
| if (j->preserved_fd_count >= MAX_PRESERVED_FDS) |
| return -ENOMEM; |
| j->preserved_fds[j->preserved_fd_count].parent_fd = parent_fd; |
| j->preserved_fds[j->preserved_fd_count].child_fd = child_fd; |
| j->preserved_fd_count++; |
| return 0; |
| } |
| |
| int API minijail_set_preload_path(struct minijail *j, const char *preload_path) |
| { |
| if (j->preload_path) |
| return -EINVAL; |
| j->preload_path = strdup(preload_path); |
| if (!j->preload_path) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void clear_seccomp_options(struct minijail *j) |
| { |
| j->flags.seccomp_filter = 0; |
| j->flags.seccomp_filter_tsync = 0; |
| j->flags.seccomp_filter_logging = 0; |
| j->flags.seccomp_filter_allow_speculation = 0; |
| j->filter_len = 0; |
| j->filter_prog = NULL; |
| j->flags.no_new_privs = 0; |
| } |
| |
| static int seccomp_should_use_filters(struct minijail *j) |
| { |
| if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) { |
| /* |
| * |errno| will be set to EINVAL when seccomp has not been |
| * compiled into the kernel. On certain platforms and kernel |
| * versions this is not a fatal failure. In that case, and only |
| * in that case, disable seccomp and skip loading the filters. |
| */ |
| if ((errno == EINVAL) && seccomp_can_softfail()) { |
| warn("not loading seccomp filters, seccomp filter not " |
| "supported"); |
| clear_seccomp_options(j); |
| return 0; |
| } |
| /* |
| * If |errno| != EINVAL or seccomp_can_softfail() is false, |
| * we can proceed. Worst case scenario minijail_enter() will |
| * abort() if seccomp fails. |
| */ |
| } |
| if (j->flags.seccomp_filter_tsync) { |
| /* Are the seccomp(2) syscall and the TSYNC option supported? */ |
| if (sys_seccomp(SECCOMP_SET_MODE_FILTER, |
| SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) { |
| int saved_errno = errno; |
| if (saved_errno == ENOSYS && seccomp_can_softfail()) { |
| warn("seccomp(2) syscall not supported"); |
| clear_seccomp_options(j); |
| return 0; |
| } else if (saved_errno == EINVAL && |
| seccomp_can_softfail()) { |
| warn( |
| "seccomp filter thread sync not supported"); |
| clear_seccomp_options(j); |
| return 0; |
| } |
| /* |
| * Similar logic here. If seccomp_can_softfail() is |
| * false, or |errno| != ENOSYS, or |errno| != EINVAL, |
| * we can proceed. Worst case scenario minijail_enter() |
| * will abort() if seccomp or TSYNC fail. |
| */ |
| } |
| } |
| if (j->flags.seccomp_filter_allow_speculation) { |
| /* Is the SPEC_ALLOW flag supported? */ |
| if (!seccomp_filter_flags_available( |
| SECCOMP_FILTER_FLAG_SPEC_ALLOW)) { |
| warn("allowing speculative execution on seccomp " |
| "processes not supported"); |
| j->flags.seccomp_filter_allow_speculation = 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int set_seccomp_filters_internal(struct minijail *j, |
| const struct sock_fprog *filter, |
| bool owned) |
| { |
| struct sock_fprog *fprog; |
| |
| if (owned) { |
| /* |
| * If |owned| is true, it's OK to cast away the const-ness since |
| * we'll own the pointer going forward. |
| */ |
| fprog = (struct sock_fprog *)filter; |
| } else { |
| fprog = malloc(sizeof(struct sock_fprog)); |
| if (!fprog) |
| return -ENOMEM; |
| fprog->len = filter->len; |
| fprog->filter = malloc(sizeof(struct sock_filter) * fprog->len); |
| if (!fprog->filter) { |
| free(fprog); |
| return -ENOMEM; |
| } |
| memcpy(fprog->filter, filter->filter, |
| sizeof(struct sock_filter) * fprog->len); |
| } |
| |
| if (j->filter_prog) { |
| free(j->filter_prog->filter); |
| free(j->filter_prog); |
| } |
| |
| j->filter_len = fprog->len; |
| j->filter_prog = fprog; |
| return 0; |
| } |
| |
| static int parse_seccomp_filters(struct minijail *j, const char *filename, |
| FILE *policy_file) |
| { |
| struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog)); |
| if (!fprog) |
| return -ENOMEM; |
| |
| struct filter_options filteropts; |
| |
| /* |
| * Figure out filter options. |
| * Allow logging? |
| */ |
| filteropts.allow_logging = |
| debug_logging_allowed() && j->flags.seccomp_filter_logging; |
| |
| /* What to do on a blocked system call? */ |
| if (filteropts.allow_logging) { |
| if (seccomp_ret_log_available()) |
| filteropts.action = ACTION_RET_LOG; |
| else |
| filteropts.action = ACTION_RET_TRAP; |
| } else { |
| if (j->flags.seccomp_filter_tsync) { |
| if (seccomp_ret_kill_process_available()) { |
| filteropts.action = ACTION_RET_KILL_PROCESS; |
| } else { |
| filteropts.action = ACTION_RET_TRAP; |
| } |
| } else { |
| filteropts.action = ACTION_RET_KILL; |
| } |
| } |
| |
| /* |
| * If SECCOMP_RET_LOG is not available, need to allow extra syscalls |
| * for logging. |
| */ |
| filteropts.allow_syscalls_for_logging = |
| filteropts.allow_logging && !seccomp_ret_log_available(); |
| |
| /* Whether to fail on duplicate syscalls. */ |
| filteropts.allow_duplicate_syscalls = allow_duplicate_syscalls(); |
| |
| if (compile_filter(filename, policy_file, fprog, &filteropts)) { |
| free(fprog); |
| return -1; |
| } |
| |
| return set_seccomp_filters_internal(j, fprog, true /* owned */); |
| } |
| |
| void API minijail_parse_seccomp_filters(struct minijail *j, const char *path) |
| { |
| if (!seccomp_should_use_filters(j)) |
| return; |
| |
| FILE *file = fopen(path, "re"); |
| if (!file) { |
| pdie("failed to open seccomp filter file '%s'", path); |
| } |
| |
| if (parse_seccomp_filters(j, path, file) != 0) { |
| die("failed to compile seccomp filter BPF program in '%s'", |
| path); |
| } |
| fclose(file); |
| } |
| |
| void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd) |
| { |
| char *fd_path, *path; |
| FILE *file; |
| |
| if (!seccomp_should_use_filters(j)) |
| return; |
| |
| file = fdopen(fd, "r"); |
| if (!file) { |
| pdie("failed to associate stream with fd %d", fd); |
| } |
| |
| if (asprintf(&fd_path, "/proc/self/fd/%d", fd) == -1) |
| pdie("failed to create path for fd %d", fd); |
| path = realpath(fd_path, NULL); |
| if (path == NULL) |
| pwarn("failed to get path of fd %d", fd); |
| free(fd_path); |
| |
| if (parse_seccomp_filters(j, path ? path : "<fd>", file) != 0) { |
| die("failed to compile seccomp filter BPF program from fd %d", |
| fd); |
| } |
| free(path); |
| fclose(file); |
| } |
| |
| void API minijail_set_seccomp_filters(struct minijail *j, |
| const struct sock_fprog *filter) |
| { |
| if (!seccomp_should_use_filters(j)) |
| return; |
| |
| if (j->flags.seccomp_filter_logging) { |
| die("minijail_log_seccomp_filter_failures() is incompatible " |
| "with minijail_set_seccomp_filters()"); |
| } |
| |
| /* |
| * set_seccomp_filters_internal() can only fail with ENOMEM. |
| * Furthermore, since we won't own the incoming filter, it will not be |
| * modified. |
| */ |
| if (set_seccomp_filters_internal(j, filter, false /* owned */) < 0) { |
| die("failed to set seccomp filter"); |
| } |
| } |
| |
| int API minijail_use_alt_syscall(struct minijail *j, const char *table) |
| { |
| j->alt_syscall_table = strdup(table); |
| if (!j->alt_syscall_table) |
| return -ENOMEM; |
| j->flags.alt_syscall = 1; |
| return 0; |
| } |
| |
| struct marshal_state { |
| size_t available; |
| size_t total; |
| char *buf; |
| }; |
| |
| static void marshal_state_init(struct marshal_state *state, char *buf, |
| size_t available) |
| { |
| state->available = available; |
| state->buf = buf; |
| state->total = 0; |
| } |
| |
| static void marshal_append(struct marshal_state *state, const void *src, |
| size_t length) |
| { |
| size_t copy_len = MIN(state->available, length); |
| |
| /* Up to |available| will be written. */ |
| if (copy_len) { |
| memcpy(state->buf, src, copy_len); |
| state->buf += copy_len; |
| state->available -= copy_len; |
| } |
| /* |total| will contain the expected length. */ |
| state->total += length; |
| } |
| |
| static void marshal_append_string(struct marshal_state *state, const char *src) |
| { |
| marshal_append(state, src, strlen(src) + 1); |
| } |
| |
| static void marshal_mount(struct marshal_state *state, |
| const struct mountpoint *m) |
| { |
| marshal_append(state, m->src, strlen(m->src) + 1); |
| marshal_append(state, m->dest, strlen(m->dest) + 1); |
| marshal_append(state, m->type, strlen(m->type) + 1); |
| marshal_append(state, (char *)&m->has_data, sizeof(m->has_data)); |
| if (m->has_data) |
| marshal_append(state, m->data, strlen(m->data) + 1); |
| marshal_append(state, (char *)&m->flags, sizeof(m->flags)); |
| } |
| |
| static void minijail_marshal_helper(struct marshal_state *state, |
| const struct minijail *j) |
| { |
| struct mountpoint *m = NULL; |
| size_t i; |
| |
| marshal_append(state, (char *)j, sizeof(*j)); |
| if (j->user) |
| marshal_append_string(state, j->user); |
| if (j->suppl_gid_list) { |
| marshal_append(state, j->suppl_gid_list, |
| j->suppl_gid_count * sizeof(gid_t)); |
| } |
| if (j->chrootdir) |
| marshal_append_string(state, j->chrootdir); |
| if (j->hostname) |
| marshal_append_string(state, j->hostname); |
| if (j->alt_syscall_table) { |
| marshal_append(state, j->alt_syscall_table, |
| strlen(j->alt_syscall_table) + 1); |
| } |
| if (j->flags.seccomp_filter && j->filter_prog) { |
| struct sock_fprog *fp = j->filter_prog; |
| marshal_append(state, (char *)fp->filter, |
| fp->len * sizeof(struct sock_filter)); |
| } |
| for (m = j->mounts_head; m; m = m->next) { |
| marshal_mount(state, m); |
| } |
| for (i = 0; i < j->cgroup_count; ++i) |
| marshal_append_string(state, j->cgroups[i]); |
| } |
| |
| size_t API minijail_size(const struct minijail *j) |
| { |
| struct marshal_state state; |
| marshal_state_init(&state, NULL, 0); |
| minijail_marshal_helper(&state, j); |
| return state.total; |
| } |
| |
| int minijail_marshal(const struct minijail *j, char *buf, size_t available) |
| { |
| struct marshal_state state; |
| marshal_state_init(&state, buf, available); |
| minijail_marshal_helper(&state, j); |
| return (state.total > available); |
| } |
| |
| int minijail_unmarshal(struct minijail *j, char *serialized, size_t length) |
| { |
| size_t i; |
| size_t count; |
| int ret = -EINVAL; |
| |
| if (length < sizeof(*j)) |
| goto out; |
| memcpy((void *)j, serialized, sizeof(*j)); |
| serialized += sizeof(*j); |
| length -= sizeof(*j); |
| |
| /* Potentially stale pointers not used as signals. */ |
| j->preload_path = NULL; |
| j->pid_file_path = NULL; |
| j->uidmap = NULL; |
| j->gidmap = NULL; |
| j->mounts_head = NULL; |
| j->mounts_tail = NULL; |
| j->remounts_head = NULL; |
| j->remounts_tail = NULL; |
| j->filter_prog = NULL; |
| j->hooks_head = NULL; |
| j->hooks_tail = NULL; |
| |
| if (j->user) { /* stale pointer */ |
| char *user = consumestr(&serialized, &length); |
| if (!user) |
| goto clear_pointers; |
| j->user = strdup(user); |
| if (!j->user) |
| goto clear_pointers; |
| } |
| |
| if (j->suppl_gid_list) { /* stale pointer */ |
| if (j->suppl_gid_count > NGROUPS_MAX) { |
| goto bad_gid_list; |
| } |
| size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t); |
| void *gid_list_bytes = |
| consumebytes(gid_list_size, &serialized, &length); |
| if (!gid_list_bytes) |
| goto bad_gid_list; |
| |
| j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t)); |
| if (!j->suppl_gid_list) |
| goto bad_gid_list; |
| |
| memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size); |
| } |
| |
| if (j->chrootdir) { /* stale pointer */ |
| char *chrootdir = consumestr(&serialized, &length); |
| if (!chrootdir) |
| goto bad_chrootdir; |
| j->chrootdir = strdup(chrootdir); |
| if (!j->chrootdir) |
| goto bad_chrootdir; |
| } |
| |
| if (j->hostname) { /* stale pointer */ |
| char *hostname = consumestr(&serialized, &length); |
| if (!hostname) |
| goto bad_hostname; |
| j->hostname = strdup(hostname); |
| if (!j->hostname) |
| goto bad_hostname; |
| } |
| |
| if (j->alt_syscall_table) { /* stale pointer */ |
| char *alt_syscall_table = consumestr(&serialized, &length); |
| if (!alt_syscall_table) |
| goto bad_syscall_table; |
| j->alt_syscall_table = strdup(alt_syscall_table); |
| if (!j->alt_syscall_table) |
| goto bad_syscall_table; |
| } |
| |
| if (j->flags.seccomp_filter && j->filter_len > 0) { |
| size_t ninstrs = j->filter_len; |
| if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) || |
| ninstrs > USHRT_MAX) |
| goto bad_filters; |
| |
| size_t program_len = ninstrs * sizeof(struct sock_filter); |
| void *program = consumebytes(program_len, &serialized, &length); |
| if (!program) |
| goto bad_filters; |
| |
| j->filter_prog = malloc(sizeof(struct sock_fprog)); |
| if (!j->filter_prog) |
| goto bad_filters; |
| |
| j->filter_prog->len = ninstrs; |
| j->filter_prog->filter = malloc(program_len); |
| if (!j->filter_prog->filter) |
| goto bad_filter_prog_instrs; |
| |
| memcpy(j->filter_prog->filter, program, program_len); |
| } |
| |
| count = j->mounts_count; |
| j->mounts_count = 0; |
| for (i = 0; i < count; ++i) { |
| unsigned long *flags; |
| int *has_data; |
| const char *dest; |
| const char *type; |
| const char *data = NULL; |
| const char *src = consumestr(&serialized, &length); |
| if (!src) |
| goto bad_mounts; |
| dest = consumestr(&serialized, &length); |
| if (!dest) |
| goto bad_mounts; |
| type = consumestr(&serialized, &length); |
| if (!type) |
| goto bad_mounts; |
| has_data = consumebytes(sizeof(*has_data), &serialized, |
| &length); |
| if (!has_data) |
| goto bad_mounts; |
| if (*has_data) { |
| data = consumestr(&serialized, &length); |
| if (!data) |
| goto bad_mounts; |
| } |
| flags = consumebytes(sizeof(*flags), &serialized, &length); |
| if (!flags) |
| goto bad_mounts; |
| if (minijail_mount_with_data(j, src, dest, type, *flags, data)) |
| goto bad_mounts; |
| } |
| |
| count = j->cgroup_count; |
| j->cgroup_count = 0; |
| for (i = 0; i < count; ++i) { |
| char *cgroup = consumestr(&serialized, &length); |
| if (!cgroup) |
| goto bad_cgroups; |
| j->cgroups[i] = strdup(cgroup); |
| if (!j->cgroups[i]) |
| goto bad_cgroups; |
| ++j->cgroup_count; |
| } |
| |
| return 0; |
| |
| bad_cgroups: |
| free_mounts_list(j); |
| free_remounts_list(j); |
| for (i = 0; i < j->cgroup_count; ++i) |
| free(j->cgroups[i]); |
| bad_mounts: |
| if (j->filter_prog && j->filter_prog->filter) |
| free(j->filter_prog->filter); |
| bad_filter_prog_instrs: |
| if (j->filter_prog) |
| free(j->filter_prog); |
| bad_filters: |
| if (j->alt_syscall_table) |
| free(j->alt_syscall_table); |
| bad_syscall_table: |
| if (j->chrootdir) |
| free(j->chrootdir); |
| bad_chrootdir: |
| if (j->hostname) |
| free(j->hostname); |
| bad_hostname: |
| if (j->suppl_gid_list) |
| free(j->suppl_gid_list); |
| bad_gid_list: |
| if (j->user) |
| free(j->user); |
| clear_pointers: |
| j->user = NULL; |
| j->suppl_gid_list = NULL; |
| j->chrootdir = NULL; |
| j->hostname = NULL; |
| j->alt_syscall_table = NULL; |
| j->cgroup_count = 0; |
| out: |
| return ret; |
| } |
| |
| struct dev_spec { |
| const char *name; |
| mode_t mode; |
| dev_t major, minor; |
| }; |
| |
| static const struct dev_spec device_nodes[] = { |
| { |
| "null", |
| S_IFCHR | 0666, 1, 3, |
| }, |
| { |
| "zero", |
| S_IFCHR | 0666, 1, 5, |
| }, |
| { |
| "full", |
| S_IFCHR | 0666, 1, 7, |
| }, |
| { |
| "urandom", |
| S_IFCHR | 0444, 1, 9, |
| }, |
| { |
| "tty", |
| S_IFCHR | 0666, 5, 0, |
| }, |
| }; |
| |
| struct dev_sym_spec { |
| const char *source, *dest; |
| }; |
| |
| static const struct dev_sym_spec device_symlinks[] = { |
| { "ptmx", "pts/ptmx", }, |
| { "fd", "/proc/self/fd", }, |
| { "stdin", "fd/0", }, |
| { "stdout", "fd/1", }, |
| { "stderr", "fd/2", }, |
| }; |
| |
| /* |
| * Clean up the temporary dev path we had setup previously. In case of errors, |
| * we don't want to go leaking empty tempdirs. |
| */ |
| static void mount_dev_cleanup(char *dev_path) |
| { |
| umount2(dev_path, MNT_DETACH); |
| rmdir(dev_path); |
| free(dev_path); |
| } |
| |
| /* |
| * Set up the pseudo /dev path at the temporary location. |
| * See mount_dev_finalize for more details. |
| */ |
| static int mount_dev(char **dev_path_ret) |
| { |
| int ret; |
| int dev_fd; |
| size_t i; |
| mode_t mask; |
| char *dev_path; |
| |
| /* |
| * Create a temp path for the /dev init. We'll relocate this to the |
| * final location later on in the startup process. |
| */ |
| dev_path = *dev_path_ret = strdup("/tmp/minijail.dev.XXXXXX"); |
| if (dev_path == NULL || mkdtemp(dev_path) == NULL) |
| pdie("could not create temp path for /dev"); |
| |
| /* Set up the empty /dev mount point first. */ |
| ret = mount("minijail-devfs", dev_path, "tmpfs", |
| MS_NOEXEC | MS_NOSUID, "size=5M,mode=755"); |
| if (ret) { |
| rmdir(dev_path); |
| return ret; |
| } |
| |
| /* We want to set the mode directly from the spec. */ |
| mask = umask(0); |
| |
| /* Get a handle to the temp dev path for *at funcs below. */ |
| dev_fd = open(dev_path, O_DIRECTORY|O_PATH|O_CLOEXEC); |
| if (dev_fd < 0) { |
| ret = 1; |
| goto done; |
| } |
| |
| /* Create all the nodes in /dev. */ |
| for (i = 0; i < ARRAY_SIZE(device_nodes); ++i) { |
| const struct dev_spec *ds = &device_nodes[i]; |
| ret = mknodat(dev_fd, ds->name, ds->mode, |
| makedev(ds->major, ds->minor)); |
| if (ret) |
| goto done; |
| } |
| |
| /* Create all the symlinks in /dev. */ |
| for (i = 0; i < ARRAY_SIZE(device_symlinks); ++i) { |
| const struct dev_sym_spec *ds = &device_symlinks[i]; |
| ret = symlinkat(ds->dest, dev_fd, ds->source); |
| if (ret) |
| goto done; |
| } |
| |
| /* Create empty dir for glibc shared mem APIs. */ |
| ret = mkdirat(dev_fd, "shm", 01777); |
| if (ret) |
| goto done; |
| |
| /* Restore old mask. */ |
| done: |
| close(dev_fd); |
| umask(mask); |
| |
| if (ret) |
| mount_dev_cleanup(dev_path); |
| |
| return ret; |
| } |
| |
| /* |
| * Relocate the temporary /dev mount to its final /dev place. |
| * We have to do this two step process so people can bind mount extra |
| * /dev paths like /dev/log. |
| */ |
| static int mount_dev_finalize(const struct minijail *j, char *dev_path) |
| { |
| int ret = -1; |
| char *dest = NULL; |
| |
| /* Unmount the /dev mount if possible. */ |
| if (umount2("/dev", MNT_DETACH)) |
| goto done; |
| |
| if (asprintf(&dest, "%s/dev", j->chrootdir ? : "") < 0) |
| goto done; |
| |
| if (mount(dev_path, dest, NULL, MS_MOVE, NULL)) |
| goto done; |
| |
| ret = 0; |
| done: |
| free(dest); |
| mount_dev_cleanup(dev_path); |
| |
| return ret; |
| } |
| |
| /* |
| * mount_one: Applies mounts from @m for @j, recursing as needed. |
| * @j Minijail these mounts are for |
| * @m Head of list of mounts |
| * |
| * Returns 0 for success. |
| */ |
| static int mount_one(const struct minijail *j, struct mountpoint *m, |
| const char *dev_path) |
| { |
| int ret; |
| char *dest; |
| int remount = 0; |
| unsigned long original_mnt_flags = 0; |
| |
| /* We assume |dest| has a leading "/". */ |
| if (dev_path && strncmp("/dev/", m->dest, 5) == 0) { |
| /* |
| * Since the temp path is rooted at /dev, skip that dest part. |
| */ |
| if (asprintf(&dest, "%s%s", dev_path, m->dest + 4) < 0) |
| return -ENOMEM; |
| } else { |
| if (asprintf(&dest, "%s%s", j->chrootdir ?: "", m->dest) < 0) |
| return -ENOMEM; |
| } |
| |
| ret = |
| setup_mount_destination(m->src, dest, j->uid, j->gid, |
| (m->flags & MS_BIND), &original_mnt_flags); |
| if (ret) { |
| warn("cannot create mount target '%s'", dest); |
| goto error; |
| } |
| |
| /* |
| * Bind mounts that change the 'ro' flag have to be remounted since |
| * 'bind' and other flags can't both be specified in the same command. |
| * Remount after the initial mount. |
| */ |
| if ((m->flags & MS_BIND) && |
| ((m->flags & MS_RDONLY) != (original_mnt_flags & MS_RDONLY))) { |
| remount = 1; |
| /* |
| * Restrict the mount flags to those that are user-settable in a |
| * MS_REMOUNT request, but excluding MS_RDONLY. The |
| * user-requested mount flags will dictate whether the remount |
| * will have that flag or not. |
| */ |
| original_mnt_flags &= (MS_USER_SETTABLE_MASK & ~MS_RDONLY); |
| } |
| |
| ret = mount(m->src, dest, m->type, m->flags, m->data); |
| if (ret) { |
| pwarn("cannot bind-mount '%s' as '%s' with flags %#lx", m->src, |
| dest, m->flags); |
| goto error; |
| } |
| |
| if (remount) { |
| ret = |
| mount(m->src, dest, NULL, |
| m->flags | original_mnt_flags | MS_REMOUNT, m->data); |
| if (ret) { |
| pwarn( |
| "cannot bind-remount '%s' as '%s' with flags %#lx", |
| m->src, dest, |
| m->flags | original_mnt_flags | MS_REMOUNT); |
| goto error; |
| } |
| } |
| |
| free(dest); |
| if (m->next) |
| return mount_one(j, m->next, dev_path); |
| return 0; |
| |
| error: |
| free(dest); |
| return ret; |
| } |
| |
| static void process_mounts_or_die(const struct minijail *j) |
| { |
| /* |
| * We have to mount /dev first in case there are bind mounts from |
| * the original /dev into the new unique tmpfs one. |
| */ |
| char *dev_path = NULL; |
| if (j->flags.mount_dev && mount_dev(&dev_path)) |
| pdie("mount_dev failed"); |
| |
| if (j->mounts_head && mount_one(j, j->mounts_head, dev_path)) { |
| if (dev_path) |
| mount_dev_cleanup(dev_path); |
| |
| _exit(MINIJAIL_ERR_MOUNT); |
| } |
| |
| /* |
| * Once all bind mounts have been processed, move the temp dev to |
| * its final /dev home. |
| */ |
| if (j->flags.mount_dev && mount_dev_finalize(j, dev_path)) |
| pdie("mount_dev_finalize failed"); |
| } |
| |
| static int enter_chroot(const struct minijail *j) |
| { |
| run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_CHROOT); |
| |
| if (chroot(j->chrootdir)) |
| return -errno; |
| |
| if (chdir("/")) |
| return -errno; |
| |
| return 0; |
| } |
| |
| static int enter_pivot_root(const struct minijail *j) |
| { |
| int oldroot, newroot; |
| |
| run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_CHROOT); |
| |
| /* |
| * Keep the fd for both old and new root. |
| * It will be used in fchdir(2) later. |
| */ |
| oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC); |
| if (oldroot < 0) |
| pdie("failed to open / for fchdir"); |
| newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC); |
| if (newroot < 0) |
| pdie("failed to open %s for fchdir", j->chrootdir); |
| |
| /* |
| * To ensure j->chrootdir is the root of a filesystem, |
| * do a self bind mount. |
| */ |
| if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, "")) |
| pdie("failed to bind mount '%s'", j->chrootdir); |
| if (chdir(j->chrootdir)) |
| return -errno; |
| if (syscall(SYS_pivot_root, ".", ".")) |
| pdie("pivot_root"); |
| |
| /* |
| * Now the old root is mounted on top of the new root. Use fchdir(2) to |
| * change to the old root and unmount it. |
| */ |
| if (fchdir(oldroot)) |
| pdie("failed to fchdir to old /"); |
| |
| /* |
| * If skip_remount_private was enabled for minijail_enter(), |
| * there could be a shared mount point under |oldroot|. In that case, |
| * mounts under this shared mount point will be unmounted below, and |
| * this unmounting will propagate to the original mount namespace |
| * (because the mount point is shared). To prevent this unexpected |
| * unmounting, remove these mounts from their peer groups by recursively |
| * remounting them as MS_PRIVATE. |
| */ |
| if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL)) |
| pdie("failed to mount(/, private) before umount(/)"); |
| /* The old root might be busy, so use lazy unmount. */ |
| if (umount2(".", MNT_DETACH)) |
| pdie("umount(/)"); |
| /* Change back to the new root. */ |
| if (fchdir(newroot)) |
| return -errno; |
| if (close(oldroot)) |
| return -errno; |
| if (close(newroot)) |
| return -errno; |
| if (chroot("/")) |
| return -errno; |
| /* Set correct CWD for getcwd(3). */ |
| if (chdir("/")) |
| return -errno; |
| |
| return 0; |
| } |
| |
| static int mount_tmp(const struct minijail *j) |
| { |
| const char fmt[] = "size=%zu,mode=1777"; |
| /* Count for the user storing ULLONG_MAX literally + extra space. */ |
| char data[sizeof(fmt) + sizeof("18446744073709551615ULL")]; |
| int ret; |
| |
| ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size); |
| |
| if (ret <= 0) |
| pdie("tmpfs size spec error"); |
| else if ((size_t)ret >= sizeof(data)) |
| pdie("tmpfs size spec too large"); |
| return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID, |
| data); |
| } |
| |
| static int remount_proc_readonly(const struct minijail *j) |
| { |
| const char *kProcPath = "/proc"; |
| const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID; |
| /* |
| * Right now, we're holding a reference to our parent's old mount of |
| * /proc in our namespace, which means using MS_REMOUNT here would |
| * mutate our parent's mount as well, even though we're in a VFS |
| * namespace (!). Instead, remove their mount from our namespace lazily |
| * (MNT_DETACH) and make our own. |
| * |
| * However, we skip this in the user namespace case because it will |
| * invariably fail. Every mount namespace is "owned" by the |
| * user namespace of the process that creates it. Mount namespace A is |
| * "less privileged" than mount namespace B if A is created off of B, |
| * and B is owned by a different user namespace. |
| * When a less privileged mount namespace is created, the mounts used to |
| * initialize it (coming from the more privileged mount namespace) come |
| * as a unit, and are locked together. This means that code running in |
| * the new mount (and user) namespace cannot piecemeal unmount |
| * individual mounts inherited from a more privileged mount namespace. |
| * See https://man7.org/linux/man-pages/man7/mount_namespaces.7.html, |
| * "Restrictions on mount namespaces" for details. |
| * |
| * This happens in our use case because we first enter a new user |
| * namespace (on clone(2)) and then we unshare(2) a new mount namespace, |
| * which means the new mount namespace is less privileged than its |
| * parent mount namespace. This would also happen if we entered a new |
| * mount namespace on clone(2), since the user namespace is created |
| * first. |
| * In all other non-user-namespace cases the new mount namespace is |
| * similarly privileged as the parent mount namespace so unmounting a |
| * single mount is allowed. |
| * |
| * We still remount /proc as read-only in the user namespace case |
| * because while a process with CAP_SYS_ADMIN in the new user namespace |
| * can unmount the RO mount and get at the RW mount, an attacker with |
| * access only to a write primitive will not be able to modify /proc. |
| */ |
| if (!j->flags.userns && umount2(kProcPath, MNT_DETACH)) |
| return -errno; |
| if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, "")) |
| return -errno; |
| return 0; |
| } |
| |
| static void kill_child_and_die(const struct minijail *j, const char *msg) |
| { |
| kill(j->initpid, SIGKILL); |
| die("%s", msg); |
| } |
| |
| static void write_pid_file_or_die(const struct minijail *j) |
| { |
| if (write_pid_to_path(j->initpid, j->pid_file_path)) |
| kill_child_and_die(j, "failed to write pid file"); |
| } |
| |
| static void add_to_cgroups_or_die(const struct minijail *j) |
| { |
| size_t i; |
| |
| for (i = 0; i < j->cgroup_count; ++i) { |
| if (write_pid_to_path(j->initpid, j->cgroups[i])) |
| kill_child_and_die(j, "failed to add to cgroups"); |
| } |
| } |
| |
| static void set_rlimits_or_die(const struct minijail *j) |
| { |
| size_t i; |
| |
| for (i = 0; i < j->rlimit_count; ++i) { |
| struct rlimit limit; |
| limit.rlim_cur = j->rlimits[i].cur; |
| limit.rlim_max = j->rlimits[i].max; |
| if (prlimit(j->initpid, j->rlimits[i].type, &limit, NULL)) |
| kill_child_and_die(j, "failed to set rlimit"); |
| } |
| } |
| |
| static void write_ugid_maps_or_die(const struct minijail *j) |
| { |
| if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0) |
| kill_child_and_die(j, "failed to write uid_map"); |
| if (j->gidmap && j->flags.disable_setgroups) { |
| /* |
| * Older kernels might not have the /proc/<pid>/setgroups files. |
| */ |
| int ret = write_proc_file(j->initpid, "deny", "setgroups"); |
| if (ret != 0) { |
| if (ret == -ENOENT) { |
| /* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */ |
| warn("could not disable setgroups(2)"); |
| } else |
| kill_child_and_die( |
| j, "failed to disable setgroups(2)"); |
| } |
| } |
| if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0) |
| kill_child_and_die(j, "failed to write gid_map"); |
| } |
| |
| static void enter_user_namespace(const struct minijail *j) |
| { |
| int uid = j->flags.uid ? j->uid : 0; |
| int gid = j->flags.gid ? j->gid : 0; |
| if (j->gidmap && setresgid(gid, gid, gid)) { |
| pdie("user_namespaces: setresgid(%d, %d, %d) failed", gid, gid, |
| gid); |
| } |
| if (j->uidmap && setresuid(uid, uid, uid)) { |
| pdie("user_namespaces: setresuid(%d, %d, %d) failed", uid, uid, |
| uid); |
| } |
| } |
| |
| static void parent_setup_complete(int *pipe_fds) |
| { |
| close_and_reset(&pipe_fds[0]); |
| close_and_reset(&pipe_fds[1]); |
| } |
| |
| /* |
| * wait_for_parent_setup: Called by the child process to wait for any |
| * further parent-side setup to complete before continuing. |
| */ |
| static void wait_for_parent_setup(int *pipe_fds) |
| { |
| char buf; |
| |
| close_and_reset(&pipe_fds[1]); |
| |
| /* Wait for parent to complete setup and close the pipe. */ |
| if (read(pipe_fds[0], &buf, 1) != 0) |
| die("failed to sync with parent"); |
| close_and_reset(&pipe_fds[0]); |
| } |
| |
| static void drop_ugid(const struct minijail *j) |
| { |
| if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids + |
| j->flags.set_suppl_gids > 1) { |
| die("can only do one of inherit, keep, or set supplementary " |
| "groups"); |
| } |
| |
| if (j->flags.inherit_suppl_gids) { |
| if (initgroups(j->user, j->usergid)) |
| pdie("initgroups(%s, %d) failed", j->user, j->usergid); |
| } else if (j->flags.set_suppl_gids) { |
| if (setgroups(j->suppl_gid_count, j->suppl_gid_list)) |
| pdie("setgroups(suppl_gids) failed"); |
| } else if (!j->flags.keep_suppl_gids && !j->flags.disable_setgroups) { |
| /* |
| * Only attempt to clear supplementary groups if we are changing |
| * users or groups, and if the caller did not request to disable |
| * setgroups (used when entering a user namespace as a |
| * non-privileged user). |
| */ |
| if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL)) |
| pdie("setgroups(0, NULL) failed"); |
| } |
| |
| if (j->flags.gid && setresgid(j->gid, j->gid, j->gid)) |
| pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid); |
| |
| if (j->flags.uid && setresuid(j->uid, j->uid, j->uid)) |
| pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid); |
| } |
| |
| static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap) |
| { |
| const uint64_t one = 1; |
| unsigned int i; |
| for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) { |
| if (keep_mask & (one << i)) |
| continue; |
| if (prctl(PR_CAPBSET_DROP, i)) |
| pdie("could not drop capability from bounding set"); |
| } |
| } |
| |
| static void drop_caps(const struct minijail *j, unsigned int last_valid_cap) |
| { |
| if (!j->flags.use_caps) |
| return; |
| |
| cap_t caps = cap_get_proc(); |
| cap_value_t flag[1]; |
| const size_t ncaps = sizeof(j->caps) * 8; |
| const uint64_t one = 1; |
| unsigned int i; |
| if (!caps) |
| die("can't get process caps"); |
| if (cap_clear(caps)) |
| die("can't clear caps"); |
| |
| for (i = 0; i < ncaps && i <= last_valid_cap; ++i) { |
| /* Keep CAP_SETPCAP for dropping bounding set bits. */ |
| if (i != CAP_SETPCAP && !(j->caps & (one << i))) |
| continue; |
| flag[0] = i; |
| if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET)) |
| die("can't add effective cap"); |
| if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET)) |
| die("can't add permitted cap"); |
| if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET)) |
| die("can't add inheritable cap"); |
| } |
| if (cap_set_proc(caps)) |
| die("can't apply initial cleaned capset"); |
| |
| /* |
| * Instead of dropping the bounding set first, do it here in case |
| * the caller had a more permissive bounding set which could |
| * have been used above to raise a capability that wasn't already |
| * present. This requires CAP_SETPCAP, so we raised/kept it above. |
| * |
| * However, if we're asked to skip setting *and* locking the |
| * SECURE_NOROOT securebit, also skip dropping the bounding set. |
| * If the caller wants to regain all capabilities when executing a |
| * set-user-ID-root program, allow them to do so. The default behavior |
| * (i.e. the behavior without |securebits_skip_mask| set) will still put |
| * the jailed process tree in a capabilities-only environment. |
| * |
| * We check the negated skip mask for SECURE_NOROOT and |
| * SECURE_NOROOT_LOCKED. If the bits are set in the negated mask they |
| * will *not* be skipped in lock_securebits(), and therefore we should |
| * drop the bounding set. |
| */ |
| if (secure_noroot_set_and_locked(~j->securebits_skip_mask)) { |
| drop_capbset(j->caps, last_valid_cap); |
| } else { |
| warn("SECURE_NOROOT not set, not dropping bounding set"); |
| } |
| |
| /* If CAP_SETPCAP wasn't specifically requested, now we remove it. */ |
| if ((j->caps & (one << CAP_SETPCAP)) == 0) { |
| flag[0] = CAP_SETPCAP; |
| if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR)) |
| die("can't clear effective cap"); |
| if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR)) |
| die("can't clear permitted cap"); |
| if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR)) |
| die("can't clear inheritable cap"); |
| } |
| |
| if (cap_set_proc(caps)) |
| die("can't apply final cleaned capset"); |
| |
| /* |
| * If ambient capabilities are supported, clear all capabilities first, |
| * then raise the requested ones. |
| */ |
| if (j->flags.set_ambient_caps) { |
| if (!cap_ambient_supported()) { |
| pdie("ambient capabilities not supported"); |
| } |
| if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) != |
| 0) { |
| pdie("can't clear ambient capabilities"); |
| } |
| |
| for (i = 0; i < ncaps && i <= last_valid_cap; ++i) { |
| if (!(j->caps & (one << i))) |
| continue; |
| |
| if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0, |
| 0) != 0) { |
| pdie("prctl(PR_CAP_AMBIENT, " |
| "PR_CAP_AMBIENT_RAISE, %u) failed", |
| i); |
| } |
| } |
| } |
| |
| cap_free(caps); |
| } |
| |
| static void set_seccomp_filter(const struct minijail *j) |
| { |
| /* |
| * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c> |
| * in the kernel source tree for an explanation of the parameters. |
| */ |
| if (j->flags.no_new_privs) { |
| if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) |
| pdie("prctl(PR_SET_NO_NEW_PRIVS)"); |
| } |
| |
| /* |
| * Code running with ASan |
| * (https://github.com/google/sanitizers/wiki/AddressSanitizer) |
| * will make system calls not included in the syscall filter policy, |
| * which will likely crash the program. Skip setting seccomp filter in |
| * that case. |
| * 'running_with_asan()' has no inputs and is completely defined at |
| * build time, so this cannot be used by an attacker to skip setting |
| * seccomp filter. |
| */ |
| if (j->flags.seccomp_filter && running_with_asan()) { |
| warn("running with (HW)ASan, not setting seccomp filter"); |
| return; |
| } |
| |
| if (j->flags.seccomp_filter) { |
| if (j->flags.seccomp_filter_logging) { |
| warn("logging seccomp filter failures"); |
| if (!seccomp_ret_log_available()) { |
| /* |
| * If SECCOMP_RET_LOG is not available, |
| * install the SIGSYS handler first. |
| */ |
| if (install_sigsys_handler()) |
| pdie( |
| "failed to install SIGSYS handler"); |
| } |
| } else if (j->flags.seccomp_filter_tsync) { |
| /* |
| * If setting thread sync, |
| * reset the SIGSYS signal handler so that |
| * the entire thread group is killed. |
| */ |
| if (signal(SIGSYS, SIG_DFL) == SIG_ERR) |
| pdie("failed to reset SIGSYS disposition"); |
| } |
| } |
| |
| /* |
| * Install the syscall filter. |
| */ |
| if (j->flags.seccomp_filter) { |
| if (j->flags.seccomp_filter_tsync || |
| j->flags.seccomp_filter_allow_speculation) { |
| int filter_flags = |
| (j->flags.seccomp_filter_tsync |
| ? SECCOMP_FILTER_FLAG_TSYNC |
| : 0) | |
| (j->flags.seccomp_filter_allow_speculation |
| ? SECCOMP_FILTER_FLAG_SPEC_ALLOW |
| : 0); |
| if (sys_seccomp(SECCOMP_SET_MODE_FILTER, filter_flags, |
| j->filter_prog)) { |
| pdie("seccomp(tsync) failed"); |
| } |
| } else { |
| if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, |
| j->filter_prog)) { |
| pdie("prctl(seccomp_filter) failed"); |
| } |
| } |
| } |
| } |
| |
| static pid_t forward_pid = -1; |
| |
| static void forward_signal(int sig, |
| siginfo_t *siginfo attribute_unused, |
| void *void_context attribute_unused) |
| { |
| if (forward_pid != -1) { |
| kill(forward_pid, sig); |
| } |
| } |
| |
| static void install_signal_handlers(void) |
| { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_sigaction = &forward_signal; |
| act.sa_flags = SA_SIGINFO | SA_RESTART; |
| |
| /* Handle all signals, except SIGCHLD. */ |
| for (int sig = 1; sig < NSIG; sig++) { |
| /* |
| * We don't care if we get EINVAL: that just means that we |
| * can't handle this signal, so let's skip it and continue. |
| */ |
| sigaction(sig, &act, NULL); |
| } |
| /* Reset SIGCHLD's handler. */ |
| signal(SIGCHLD, SIG_DFL); |
| |
| /* Handle real-time signals. */ |
| for (int sig = SIGRTMIN; sig <= SIGRTMAX; sig++) { |
| sigaction(sig, &act, NULL); |
| } |
| } |
| |
| static const char *lookup_hook_name(minijail_hook_event_t event) |
| { |
| switch (event) { |
| case MINIJAIL_HOOK_EVENT_PRE_DROP_CAPS: |
| return "pre-drop-caps"; |
| case MINIJAIL_HOOK_EVENT_PRE_EXECVE: |
| return "pre-execve"; |
| case MINIJAIL_HOOK_EVENT_PRE_CHROOT: |
| return "pre-chroot"; |
| case MINIJAIL_HOOK_EVENT_MAX: |
| /* |
| * Adding this in favor of a default case to force the |
| * compiler to error out if a new enum value is added. |
| */ |
| break; |
| } |
| return "unknown"; |
| } |
| |
| static void run_hooks_or_die(const struct minijail *j, |
| minijail_hook_event_t event) |
| { |
| int rc; |
| int hook_index = 0; |
| for (struct hook *c = j->hooks_head; c; c = c->next) { |
| if (c->event != event) |
| continue; |
| rc = c->hook(c->payload); |
| if (rc != 0) { |
| errno = -rc; |
| pdie("%s hook (index %d) failed", |
| lookup_hook_name(event), hook_index); |
| } |
| /* Only increase the index within the same hook event type. */ |
| ++hook_index; |
| } |
| } |
| |
| void API minijail_enter(const struct minijail *j) |
| { |
| /* |
| * If we're dropping caps, get the last valid cap from /proc now, |
| * since /proc can be unmounted before drop_caps() is called. |
| */ |
| unsigned int last_valid_cap = 0; |
| if (j->flags.capbset_drop || j->flags.use_caps) |
| last_valid_cap = get_last_valid_cap(); |
| |
| if (j->flags.pids) |
| die("tried to enter a pid-namespaced jail;" |
| " try minijail_run()?"); |
| |
| if (j->flags.inherit_suppl_gids && !j->user) |
| die("cannot inherit supplementary groups without setting a " |
| "username"); |
| |
| /* |
| * We can't recover from failures if we've dropped privileges partially, |
| * so we don't even try. If any of our operations fail, we abort() the |
| * entire process. |
| */ |
| if (j->flags.enter_vfs) { |
| if (setns(j->mountns_fd, CLONE_NEWNS)) |
| pdie("setns(CLONE_NEWNS) failed"); |
| close(j->mountns_fd); |
| } |
| |
| if (j->flags.vfs) { |
| if (unshare(CLONE_NEWNS)) |
| pdie("unshare(CLONE_NEWNS) failed"); |
| /* |
| * By default, remount all filesystems as private, unless |
| * - Passed a specific remount mode, in which case remount with |
| * that, |
| * - Asked not to remount at all, in which case skip the |
| * mount(2) call. |
| * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt |
| */ |
| if (j->remount_mode) { |
| if (mount(NULL, "/", NULL, MS_REC | j->remount_mode, |
| NULL)) |
| pdie("mount(NULL, /, NULL, " |
| "MS_REC | j->remount_mode, NULL) failed"); |
| |
| struct minijail_remount *temp = j->remounts_head; |
| while (temp) { |
| if (temp->remount_mode < j->remount_mode) |
| die("cannot remount %s as stricter " |
| "than the root dir", |
| temp->mount_name); |
| if (mount(NULL, temp->mount_name, NULL, |
| MS_REC | temp->remount_mode, NULL)) |
| pdie("mount(NULL, %s, NULL, " |
| "MS_REC | temp->remount_mode, NULL) " |
| "failed", temp->mount_name); |
| temp = temp->next; |
| } |
| } |
| |
| } |
| |
| if (j->flags.ipc && unshare(CLONE_NEWIPC)) { |
| pdie("unshare(CLONE_NEWIPC) failed"); |
| } |
| |
| if (j->flags.uts) { |
| if (unshare(CLONE_NEWUTS)) |
| pdie("unshare(CLONE_NEWUTS) failed"); |
| |
| if (j->hostname && sethostname(j->hostname, strlen(j->hostname))) |
| pdie("sethostname(%s) failed", j->hostname); |
| } |
| |
| if (j->flags.enter_net) { |
| if (setns(j->netns_fd, CLONE_NEWNET)) |
| pdie("setns(CLONE_NEWNET) failed"); |
| close(j->netns_fd); |
| } else if (j->flags.net) { |
| if (unshare(CLONE_NEWNET)) |
| pdie("unshare(CLONE_NEWNET) failed"); |
| config_net_loopback(); |
| } |
| |
| if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP)) |
| pdie("unshare(CLONE_NEWCGROUP) failed"); |
| |
| if (j->flags.new_session_keyring) { |
| if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0) |
| pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed"); |
| } |
| |
| /* We have to process all the mounts before we chroot/pivot_root. */ |
| process_mounts_or_die(j); |
| |
| if (j->flags.chroot && enter_chroot(j)) |
| pdie("chroot"); |
| |
| if (j->flags.pivot_root && enter_pivot_root(j)) |
| pdie("pivot_root"); |
| |
| if (j->flags.mount_tmp && mount_tmp(j)) |
| pdie("mount_tmp"); |
| |
| if (j->flags.remount_proc_ro && remount_proc_readonly(j)) |
| pdie("remount"); |
| |
| run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_DROP_CAPS); |
| |
| /* |
| * If we're only dropping capabilities from the bounding set, but not |
| * from the thread's (permitted|inheritable|effective) sets, do it now. |
| */ |
| if (j->flags.capbset_drop) { |
| drop_capbset(j->cap_bset, last_valid_cap); |
| } |
| |
| /* |
| * POSIX capabilities are a bit tricky. We must set SECBIT_KEEP_CAPS |
| * before drop_ugid() below as the latter would otherwise drop all |
| * capabilities. |
| */ |
| if (j->flags.use_caps) { |
| /* |
| * When using ambient capabilities, CAP_SET{GID,UID} can be |
| * inherited across execve(2), so SECBIT_KEEP_CAPS is not |
| * strictly needed. |
| */ |
| bool require_keep_caps = !j->flags.set_ambient_caps; |
| if (lock_securebits(j->securebits_skip_mask, |
| require_keep_caps) < 0) { |
| pdie("locking securebits failed"); |
| } |
| } |
| |
| if (j->flags.no_new_privs) { |
| /* |
| * If we're setting no_new_privs, we can drop privileges |
| * before setting seccomp filter. This way filter policies |
| * don't need to allow privilege-dropping syscalls. |
| */ |
| drop_ugid(j); |
| drop_caps(j, last_valid_cap); |
| set_seccomp_filter(j); |
| } else { |
| /* |
| * If we're not setting no_new_privs, |
| * we need to set seccomp filter *before* dropping privileges. |
| * WARNING: this means that filter policies *must* allow |
| * setgroups()/setresgid()/setresuid() for dropping root and |
| * capget()/capset()/prctl() for dropping caps. |
| */ |
| set_seccomp_filter(j); |
| drop_ugid(j); |
| drop_caps(j, last_valid_cap); |
| } |
| |
| /* |
| * Select the specified alternate syscall table. The table must not |
| * block prctl(2) if we're using seccomp as well. |
| */ |
| if (j->flags.alt_syscall) { |
| if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table)) |
| pdie("prctl(PR_ALT_SYSCALL) failed"); |
| } |
| |
| /* |
| * seccomp has to come last since it cuts off all the other |
| * privilege-dropping syscalls :) |
| */ |
| if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) { |
| if ((errno == EINVAL) && seccomp_can_softfail()) { |
| warn("seccomp not supported"); |
| return; |
| } |
| pdie("prctl(PR_SET_SECCOMP) failed"); |
| } |
| } |
| |
| /* TODO(wad): will visibility affect this variable? */ |
| static int init_exitstatus = 0; |
| |
| static void init_term(int sig attribute_unused) |
| { |
| _exit(init_exitstatus); |
| } |
| |
| static void init(pid_t rootpid) |
| { |
| pid_t pid; |
| int status; |
| /* So that we exit with the right status. */ |
| signal(SIGTERM, init_term); |
| /* TODO(wad): self jail with seccomp filters here. */ |
| while ((pid = wait(&status)) > 0) { |
| /* |
| * This loop will only end when either there are no processes |
| * left inside our pid namespace or we get a signal. |
| */ |
| if (pid == rootpid) |
| init_exitstatus = status; |
| } |
| if (!WIFEXITED(init_exitstatus)) |
| _exit(MINIJAIL_ERR_INIT); |
| _exit(WEXITSTATUS(init_exitstatus)); |
| } |
| |
| int API minijail_from_fd(int fd, struct minijail *j) |
| { |
| size_t sz = 0; |
| size_t bytes = read(fd, &sz, sizeof(sz)); |
| char *buf; |
| int r; |
| if (sizeof(sz) != bytes) |
| return -EINVAL; |
| if (sz > USHRT_MAX) /* arbitrary sanity check */ |
| return -E2BIG; |
| buf = malloc(sz); |
| if (!buf) |
| return -ENOMEM; |
| bytes = read(fd, buf, sz); |
| if (bytes != sz) { |
| free(buf); |
| return -EINVAL; |
| } |
| r = minijail_unmarshal(j, buf, sz); |
| free(buf); |
| return r; |
| } |
| |
| int API minijail_to_fd(struct minijail *j, int fd) |
| { |
| size_t sz = minijail_size(j); |
| if (!sz) |
| return -EINVAL; |
| |
| char *buf = malloc(sz); |
| if (!buf) |
| return -ENOMEM; |
| |
| int err = minijail_marshal(j, buf, sz); |
| if (err) |
| goto error; |
| |
| /* Sends [size][minijail]. */ |
| err = write_exactly(fd, &sz, sizeof(sz)); |
| if (err) |
| goto error; |
| |
| err = write_exactly(fd, buf, sz); |
| |
| error: |
| free(buf); |
| return err; |
| } |
| |
| int API minijail_copy_jail(const struct minijail *from, struct minijail *out) |
| { |
| size_t sz = minijail_size(from); |
| if (!sz) |
| return -EINVAL; |
| |
| char *buf = malloc(sz); |
| if (!buf) |
| return -ENOMEM; |
| |
| int err = minijail_marshal(from, buf, sz); |
| if (err) |
| goto error; |
| |
| err = minijail_unmarshal(out, buf, sz); |
| error: |
| free(buf); |
| return err; |
| } |
| |
| static int setup_preload(const struct minijail *j attribute_unused, |
| char ***child_env attribute_unused) |
| { |
| #if defined(__ANDROID__) |
| /* Don't use LDPRELOAD on Android. */ |
| return 0; |
| #else |
| const char *preload_path = j->preload_path ?: PRELOADPATH; |
| char *newenv = NULL; |
| int ret = 0; |
| const char *oldenv = getenv(kLdPreloadEnvVar); |
| |
| if (!oldenv) |
| oldenv = ""; |
| |
| /* Only insert a separating space if we have something to separate... */ |
| if (asprintf(&newenv, "%s%s%s", oldenv, oldenv[0] != '\0' ? " " : "", |
| preload_path) < 0) { |
| return -1; |
| } |
| |
| ret = minijail_setenv(child_env, kLdPreloadEnvVar, newenv, 1); |
| free(newenv); |
| return ret; |
| #endif |
| } |
| |
| static int setup_pipe(char ***child_env, int fds[2]) |
| { |
| int r = pipe(fds); |
| char fd_buf[11]; |
| if (r) |
| return r; |
| r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]); |
| if (r <= 0) |
| return -EINVAL; |
| return minijail_setenv(child_env, kFdEnvVar, fd_buf, 1); |
| } |
| |
| static int close_open_fds(int *inheritable_fds, size_t size) |
| { |
| const char *kFdPath = "/proc/self/fd"; |
| |
| DIR *d = opendir(kFdPath); |
| struct dirent *dir_entry; |
| |
| if (d == NULL) |
| return -1; |
| int dir_fd = dirfd(d); |
| while ((dir_entry = readdir(d)) != NULL) { |
| size_t i; |
| char *end; |
| bool should_close = true; |
| const int fd = strtol(dir_entry->d_name, &end, 10); |
| |
| if ((*end) != '\0') { |
| continue; |
| } |
| /* |
| * We might have set up some pipes that we want to share with |
| * the parent process, and should not be closed. |
| */ |
| for (i = 0; i < size; ++i) { |
| if (fd == inheritable_fds[i]) { |
| should_close = false; |
| break; |
| } |
| } |
| /* Also avoid closing the directory fd. */ |
| if (should_close && fd != dir_fd) |
| close(fd); |
| } |
| closedir(d); |
| return 0; |
| } |
| |
| /* Return true if the specified file descriptor is already open. */ |
| static int fd_is_open(int fd) |
| { |
| return fcntl(fd, F_GETFD) != -1 || errno != EBADF; |
| } |
| |
| static_assert(FD_SETSIZE >= MAX_PRESERVED_FDS * 2 - 1, |
| "If true, ensure_no_fd_conflict will always find an unused fd."); |
| |
| /* If p->parent_fd will be used by a child_fd, move it to an unused fd. */ |
| static int ensure_no_fd_conflict(const fd_set* child_fds, |
| struct preserved_fd* p) |
| { |
| if (!FD_ISSET(p->parent_fd, child_fds)){ |
| return 0; |
| } |
| |
| /* |
| * If no other parent_fd matches the child_fd then use it instead of a |
| * temporary. |
| */ |
| int fd = p->child_fd; |
| if (fd_is_open(fd)) { |
| fd = FD_SETSIZE - 1; |
| while (FD_ISSET(fd, child_fds) || fd_is_open(fd)) { |
| --fd; |
| if (fd < 0) { |
| die("failed to find an unused fd"); |
| } |
| } |
| } |
| |
| int ret = dup2(p->parent_fd, fd); |
| /* |
| * warn() opens a file descriptor so it needs to happen after dup2 to |
| * avoid unintended side effects. This can be avoided by reordering the |
| * mapping requests so that the source fds with overlap are mapped |
| * first (unless there are cycles). |
| */ |
| warn("mapped fd overlap: moving %d to %d", p->parent_fd, fd); |
| if (ret == -1) { |
| return -1; |
| } |
| |
| p->parent_fd = fd; |
| return 0; |
| } |
| |
| static int redirect_fds(struct minijail *j) |
| { |
| fd_set child_fds; |
| FD_ZERO(&child_fds); |
| |
| /* Relocate parent_fds that would be replaced by a child_fd. */ |
| for (size_t i = 0; i < j->preserved_fd_count; i++) { |
| int child_fd = j->preserved_fds[i].child_fd; |
| if (FD_ISSET(child_fd, &child_fds)) { |
| die("fd %d is mapped more than once", child_fd); |
| } |
| |
| if (ensure_no_fd_conflict(&child_fds, |
| &j->preserved_fds[i]) == -1) { |
| return -1; |
| } |
| |
| FD_SET(child_fd, &child_fds); |
| } |
| |
| for (size_t i = 0; i < j->preserved_fd_count; i++) { |
| if (j->preserved_fds[i].parent_fd == |
| j->preserved_fds[i].child_fd) { |
| continue; |
| } |
| if (dup2(j->preserved_fds[i].parent_fd, |
| j->preserved_fds[i].child_fd) == -1) { |
| return -1; |
| } |
| } |
| /* |
| * After all fds have been duped, we are now free to close all parent |
| * fds that are *not* child fds. |
| */ |
| for (size_t i = 0; i < j->preserved_fd_count; i++) { |
| int parent_fd = j->preserved_fds[i].parent_fd; |
| if (!FD_ISSET(parent_fd, &child_fds)) { |
| close(parent_fd); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Structure holding resources and state created when running a minijail. |
| */ |
| struct minijail_run_state { |
| pid_t child_pid; |
| int pipe_fds[2]; |
| int stdin_fds[2]; |
| int stdout_fds[2]; |
| int stderr_fds[2]; |
| int child_sync_pipe_fds[2]; |
| char **child_env; |
| }; |
| |
| static void minijail_free_run_state(struct minijail_run_state *state) |
| { |
| state->child_pid = -1; |
| |
| int *fd_pairs[] = {state->pipe_fds, state->stdin_fds, state->stdout_fds, |
| state->stderr_fds, state->child_sync_pipe_fds}; |
| for (size_t i = 0; i < ARRAY_SIZE(fd_pairs); ++i) { |
| close_and_reset(&fd_pairs[i][0]); |
| close_and_reset(&fd_pairs[i][1]); |
| } |
| |
| minijail_free_env(state->child_env); |
| state->child_env = NULL; |
| } |
| |
| /* Set up stdin/stdout/stderr file descriptors in the child. */ |
| static void setup_child_std_fds(struct minijail *j, |
| struct minijail_run_state *state) |
| { |
| struct { |
| const char *name; |
| int from; |
| int to; |
| } fd_map[] = { |
| {"stdin", state->stdin_fds[0], STDIN_FILENO}, |
| {"stdout", state->stdout_fds[1], STDOUT_FILENO}, |
| {"stderr", state->stderr_fds[1], STDERR_FILENO}, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(fd_map); ++i) { |
| if (fd_map[i].from == -1 || fd_map[i].from == fd_map[i].to) |
| continue; |
| if (dup2(fd_map[i].from, fd_map[i].to) == -1) |
| die("failed to set up %s pipe", fd_map[i].name); |
| } |
| |
| /* Close temporary pipe file descriptors. */ |
| int *std_pipes[] = {state->stdin_fds, state->stdout_fds, |
| state->stderr_fds}; |
| for (size_t i = 0; i < ARRAY_SIZE(std_pipes); ++i) { |
| close_and_reset(&std_pipes[i][0]); |
| close_and_reset(&std_pipes[i][1]); |
| } |
| |
| /* |
| * If any of stdin, stdout, or stderr are TTYs, or setsid flag is |
| * set, create a new session. This prevents the jailed process from |
| * using the TIOCSTI ioctl to push characters into the parent process |
| * terminal's input buffer, therefore escaping the jail. |
| * |
| * Since it has just forked, the child will not be a process group |
| * leader, and this call to setsid() should always succeed. |
| */ |
| if (j->flags.setsid || isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) || |
| isatty(STDERR_FILENO)) { |
| if (setsid() < 0) { |
| pdie("setsid() failed"); |
| } |
| } |
| } |
| |
| /* |
| * Structure that specifies how to start a minijail. |
| * |
| * filename - The program to exec in the child. Required if |exec_in_child| = 1. |
| * argv - Arguments for the child program. Required if |exec_in_child| = 1. |
| * envp - Environment for the child program. Available if |exec_in_child| = 1. |
| * use_preload - If true use LD_PRELOAD. |
| * exec_in_child - If true, run |filename|. Otherwise, the child will return to |
| * the caller. |
| * pstdin_fd - Filled with stdin pipe if non-NULL. |
| * pstdout_fd - Filled with stdout pipe if non-NULL. |
| * pstderr_fd - Filled with stderr pipe if non-NULL. |
| * pchild_pid - Filled with the pid of the child process if non-NULL. |
| */ |
| struct minijail_run_config { |
| const char *filename; |
| char *const *argv; |
| char *const *envp; |
| int use_preload; |
| int exec_in_child; |
| int *pstdin_fd; |
| int *pstdout_fd; |
| int *pstderr_fd; |
| pid_t *pchild_pid; |
| }; |
| |
| static int |
| minijail_run_config_internal(struct minijail *j, |
| const struct minijail_run_config *config); |
| |
| int API minijail_run(struct minijail *j, const char *filename, |
| char *const argv[]) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = true, |
| .exec_in_child = true, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_pid(struct minijail *j, const char *filename, |
| char *const argv[], pid_t *pchild_pid) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = true, |
| .exec_in_child = true, |
| .pchild_pid = pchild_pid, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_pipe(struct minijail *j, const char *filename, |
| char *const argv[], int *pstdin_fd) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = true, |
| .exec_in_child = true, |
| .pstdin_fd = pstdin_fd, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_pid_pipes(struct minijail *j, const char *filename, |
| char *const argv[], pid_t *pchild_pid, |
| int *pstdin_fd, int *pstdout_fd, int *pstderr_fd) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = true, |
| .exec_in_child = true, |
| .pstdin_fd = pstdin_fd, |
| .pstdout_fd = pstdout_fd, |
| .pstderr_fd = pstderr_fd, |
| .pchild_pid = pchild_pid, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_env_pid_pipes(struct minijail *j, const char *filename, |
| char *const argv[], char *const envp[], |
| pid_t *pchild_pid, int *pstdin_fd, |
| int *pstdout_fd, int *pstderr_fd) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = envp, |
| .use_preload = true, |
| .exec_in_child = true, |
| .pstdin_fd = pstdin_fd, |
| .pstdout_fd = pstdout_fd, |
| .pstderr_fd = pstderr_fd, |
| .pchild_pid = pchild_pid, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_no_preload(struct minijail *j, const char *filename, |
| char *const argv[]) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = false, |
| .exec_in_child = true, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_pid_pipes_no_preload(struct minijail *j, |
| const char *filename, |
| char *const argv[], |
| pid_t *pchild_pid, |
| int *pstdin_fd, |
| int *pstdout_fd, |
| int *pstderr_fd) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = NULL, |
| .use_preload = false, |
| .exec_in_child = true, |
| .pstdin_fd = pstdin_fd, |
| .pstdout_fd = pstdout_fd, |
| .pstderr_fd = pstderr_fd, |
| .pchild_pid = pchild_pid, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| int API minijail_run_env_pid_pipes_no_preload(struct minijail *j, |
| const char *filename, |
| char *const argv[], |
| char *const envp[], |
| pid_t *pchild_pid, int *pstdin_fd, |
| int *pstdout_fd, int *pstderr_fd) |
| { |
| struct minijail_run_config config = { |
| .filename = filename, |
| .argv = argv, |
| .envp = envp, |
| .use_preload = false, |
| .exec_in_child = true, |
| .pstdin_fd = pstdin_fd, |
| .pstdout_fd = pstdout_fd, |
| .pstderr_fd = pstderr_fd, |
| .pchild_pid = pchild_pid, |
| }; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| pid_t API minijail_fork(struct minijail *j) |
| { |
| struct minijail_run_config config = {}; |
| return minijail_run_config_internal(j, &config); |
| } |
| |
| static int minijail_run_internal(struct minijail *j, |
| const struct minijail_run_config *config, |
| struct minijail_run_state *state_out) |
| { |
| int sync_child = 0; |
| int ret; |
| /* We need to remember this across the minijail_preexec() call. */ |
| int pid_namespace = j->flags.pids; |
| /* |
| * Create an init process if we are entering a pid namespace, unless the |
| * user has explicitly opted out by calling minijail_run_as_init(). |
| */ |
| int do_init = j->flags.do_init && !j->flags.run_as_init; |
| int use_preload = config->use_preload; |
| |
| if (use_preload) { |
| if (j->hooks_head != NULL) |
| die("Minijail hooks are not supported with LD_PRELOAD"); |
| if (!config->exec_in_child) |
| die("minijail_fork is not supported with LD_PRELOAD"); |
| |
| /* |
| * Before we fork(2) and execve(2) the child process, we need |
| * to open a pipe(2) to send the minijail configuration over. |
| */ |
| state_out->child_env = |
| minijail_copy_env(config->envp ? config->envp : environ); |
| if (!state_out->child_env) |
| return ENOMEM; |
| if (setup_preload(j, &state_out->child_env) || |
| setup_pipe(&state_out->child_env, state_out->pipe_fds)) |
| return -EFAULT; |
| } |
| |
| if (!use_preload) { |
| if (j->flags.use_caps && j->caps != 0 && |
| !j->flags.set_ambient_caps) { |
| die("non-empty, non-ambient capabilities are not " |
| "supported without LD_PRELOAD"); |
| } |
| } |
| |
| /* Create pipes for stdin/stdout/stderr as requested by caller. */ |
| struct { |
| bool requested; |
| int *pipe_fds; |
| } pipe_fd_req[] = { |
| {config->pstdin_fd != NULL, state_out->stdin_fds}, |
| {config->pstdout_fd != NULL, state_out->stdout_fds}, |
| {config->pstderr_fd != NULL, state_out->stderr_fds}, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(pipe_fd_req); ++i) { |
| if (pipe_fd_req[i].requested && |
| pipe(pipe_fd_req[i].pipe_fds) == -1) |
| return EFAULT; |
| } |
| |
| /* |
| * If the parent process needs to configure the child's runtime |
| * environment after forking, create a pipe(2) to block the child until |
| * configuration is done. |
| */ |
| if (j->flags.forward_signals || j->flags.pid_file || j->flags.cgroups || |
| j->rlimit_count || j->flags.userns) { |
| sync_child = 1; |
| if (pipe(state_out->child_sync_pipe_fds)) |
| return -EFAULT; |
| } |
| |
| /* |
| * Use sys_clone() if and only if we're creating a pid namespace. |
| * |
| * tl;dr: WARNING: do not mix pid namespaces and multithreading. |
| * |
| * In multithreaded programs, there are a bunch of locks inside libc, |
| * some of which may be held by other threads at the time that we call |
| * minijail_run_pid(). If we call fork(), glibc does its level best to |
| * ensure that we hold all of these locks before it calls clone() |
| * internally and drop them after clone() returns, but when we call |
| * sys_clone(2) directly, all that gets bypassed and we end up with a |
| * child address space where some of libc's important locks are held by |
| * other threads (which did not get cloned, and hence will never release |
| * those locks). This is okay so long as we call exec() immediately |
| * after, but a bunch of seemingly-innocent libc functions like setenv() |
| * take locks. |
| * |
| * Hence, only call sys_clone() if we need to, in order to get at pid |
| * namespacing. If we follow this path, the child's address space might |
| * have broken locks; you may only call functions that do not acquire |
| * any locks. |
| * |
| * Unfortunately, fork() acquires every lock it can get its hands on, as |
| * previously detailed, so this function is highly likely to deadlock |
| * later on (see "deadlock here") if we're multithreaded. |
| * |
| * We might hack around this by having the clone()d child (init of the |
| * pid namespace) return directly, rather than leaving the clone()d |
| * process hanging around to be init for the new namespace (and having |
| * its fork()ed child return in turn), but that process would be |
| * crippled with its libc locks potentially broken. We might try |
| * fork()ing in the parent before we clone() to ensure that we own all |
| * the locks, but then we have to have the forked child hanging around |
| * consuming resources (and possibly having file descriptors / shared |
| * memory regions / etc attached). We'd need to keep the child around to |
| * avoid having its children get reparented to init. |
| * |
| * TODO(ellyjones): figure out if the "forked child hanging around" |
| * problem is fixable or not. It would be nice if we worked in this |
| * case. |
| */ |
| pid_t child_pid; |
| if (pid_namespace) { |
| unsigned long clone_flags = CLONE_NEWPID | SIGCHLD; |
| if (j->flags.userns) |
| clone_flags |= CLONE_NEWUSER; |
| |
| child_pid = syscall(SYS_clone, clone_flags, NULL, 0L, 0L, 0L); |
| |
| if (child_pid < 0) { |
| if (errno == EPERM) |
| pdie("clone(CLONE_NEWPID | ...) failed with EPERM; " |
| "is this process missing CAP_SYS_ADMIN?"); |
| pdie("clone(CLONE_NEWPID | ...) failed"); |
| } |
| } else { |
| child_pid = fork(); |
| |
| if (child_pid < 0) |
| pdie("fork failed"); |
| } |
| |
| state_out->child_pid = child_pid; |
| if (child_pid) { |
| j->initpid = child_pid; |
| |
| if (j->flags.forward_signals) { |
| forward_pid = child_pid; |
| install_signal_handlers(); |
| } |
| |
| if (j->flags.pid_file) |
| write_pid_file_or_die(j); |
| |
| if (j->flags.cgroups) |
| add_to_cgroups_or_die(j); |
| |
| if (j->rlimit_count) |
| set_rlimits_or_die(j); |
| |
| if (j->flags.userns) |
| write_ugid_maps_or_die(j); |
| |
| if (j->flags.enter_vfs) |
| close(j->mountns_fd); |
| |
| if (j->flags.enter_net) |
| close(j->netns_fd); |
| |
| if (sync_child) |
| parent_setup_complete(state_out->child_sync_pipe_fds); |
| |
| if (use_preload) { |
| /* |
| * Add SIGPIPE to the signal mask to avoid getting |
| * killed if the child process finishes or closes its |
| * end of the pipe prematurely. |
| * |
| * TODO(crbug.com/1022170): Use pthread_sigmask instead |
| * of sigprocmask if Minijail is used in multithreaded |
| * programs. |
| */ |
| sigset_t to_block, to_restore; |
| if (sigemptyset(&to_block) < 0) |
| pdie("sigemptyset failed"); |
| if (sigaddset(&to_block, SIGPIPE) < 0) |
| pdie("sigaddset failed"); |
| if (sigprocmask(SIG_BLOCK, &to_block, &to_restore) < 0) |
| pdie("sigprocmask failed"); |
| |
| /* Send marshalled minijail. */ |
| close_and_reset(&state_out->pipe_fds[0]); |
| ret = minijail_to_fd(j, state_out->pipe_fds[1]); |
| close_and_reset(&state_out->pipe_fds[1]); |
| |
| /* Accept any pending SIGPIPE. */ |
| while (true) { |
| const struct timespec zero_time = {0, 0}; |
| const int sig = sigtimedwait(&to_block, NULL, &zero_time); |
| if (sig < 0) { |
| if (errno != EINTR) |
| break; |
| } else { |
| if (sig != SIGPIPE) |
| die("unexpected signal %d", sig); |
| } |
| } |
| |
| /* Restore the signal mask to its original state. */ |
| if (sigprocmask(SIG_SETMASK, &to_restore, NULL) < 0) |
| pdie("sigprocmask failed"); |
| |
| if (ret) { |
| warn("failed to send marshalled minijail: %s", |
| strerror(-ret)); |
| kill(j->initpid, SIGKILL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Child process. */ |
| if (j->flags.reset_signal_mask) { |
| sigset_t signal_mask; |
| if (sigemptyset(&signal_mask) != 0) |
| pdie("sigemptyset failed"); |
| if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0) |
| pdie("sigprocmask failed"); |
| } |
| |
| if (j->flags.reset_signal_handlers) { |
| int signum; |
| for (signum = 0; signum <= SIGRTMAX; signum++) { |
| /* |
| * Ignore EINVAL since some signal numbers in the range |
| * might not be valid. |
| */ |
| if (signal(signum, SIG_DFL) == SIG_ERR && |
| errno != EINVAL) { |
| pdie("failed to reset signal %d disposition", |
| signum); |
| } |
| } |
| } |
| |
| if (j->flags.close_open_fds) { |
| const size_t kMaxInheritableFdsSize = 10 + MAX_PRESERVED_FDS; |
| int inheritable_fds[kMaxInheritableFdsSize]; |
| size_t size = 0; |
| |
| int *pipe_fds[] = { |
| state_out->pipe_fds, state_out->child_sync_pipe_fds, |
| state_out->stdin_fds, state_out->stdout_fds, |
| state_out->stderr_fds, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(pipe_fds); ++i) { |
| if (pipe_fds[i][0] != -1) { |
| inheritable_fds[size++] = pipe_fds[i][0]; |
| } |
| if (pipe_fds[i][1] != -1) { |
| inheritable_fds[size++] = pipe_fds[i][1]; |
| } |
| } |
| |
| /* |
| * Preserve namespace file descriptors over the close_open_fds() |
| * call. These are closed in minijail_enter() so they won't leak |
| * into the child process. |
| */ |
| if (j->flags.enter_vfs) |
| minijail_preserve_fd(j, j->mountns_fd, j->mountns_fd); |
| if (j->flags.enter_net) |
| minijail_preserve_fd(j, j->netns_fd, j->netns_fd); |
| |
| for (size_t i = 0; i < j->preserved_fd_count; i++) { |
| /* |
| * Preserve all parent_fds. They will be dup2(2)-ed in |
| * the child later. |
| */ |
| inheritable_fds[size++] = j->preserved_fds[i].parent_fd; |
| } |
| |
| if (close_open_fds(inheritable_fds, size) < 0) |
| die("failed to close open file descriptors"); |
| } |
| |
| if (redirect_fds(j)) |
| die("failed to set up fd redirections"); |
| |
| if (sync_child) |
| wait_for_parent_setup(state_out->child_sync_pipe_fds); |
| |
| if (j->flags.userns) |
| enter_user_namespace(j); |
| |
| setup_child_std_fds(j, state_out); |
| |
| /* If running an init program, let it decide when/how to mount /proc. */ |
| if (pid_namespace && !do_init) |
| j->flags.remount_proc_ro = 0; |
| |
| if (use_preload) { |
| /* Strip out flags that cannot be inherited across execve(2). */ |
| minijail_preexec(j); |
| } else { |
| /* |
| * If not using LD_PRELOAD, do all jailing before execve(2). |
| * Note that PID namespaces can only be entered on fork(2), |
| * so that flag is still cleared. |
| */ |
| j->flags.pids = 0; |
| } |
| |
| /* |
| * Jail this process. |
| * If forking, return. |
| * If not, execve(2) the target. |
| */ |
| minijail_enter(j); |
| |
| if (config->exec_in_child && pid_namespace && do_init) { |
| /* |
| * pid namespace: this process will become init inside the new |
| * namespace. We don't want all programs we might exec to have |
| * to know how to be init. Normally (do_init == 1) we fork off |
| * a child to actually run the program. If |do_init == 0|, we |
| * let the program keep pid 1 and be init. |
| * |
| * If we're multithreaded, we'll probably deadlock here. See |
| * WARNING above. |
| */ |
| child_pid = fork(); |
| if (child_pid < 0) { |
| _exit(child_pid); |
| } else if (child_pid > 0) { |
| minijail_free_run_state(state_out); |
| |
| /* |
| * Best effort. Don't bother checking the return value. |
| */ |
| prctl(PR_SET_NAME, "minijail-init"); |
| init(child_pid); /* Never returns. */ |
| } |
| state_out->child_pid = child_pid; |
| } |
| |
| run_hooks_or_die(j, MINIJAIL_HOOK_EVENT_PRE_EXECVE); |
| |
| if (!config->exec_in_child) |
| return 0; |
| |
| /* |
| * We're going to execve(), so make sure any remaining resources are |
| * freed. Exceptions are: |
| * 1. The child environment. No need to worry about freeing it since |
| * execve reinitializes the heap anyways. |
| * 2. The read side of the LD_PRELOAD pipe, which we need to hand down |
| * into the target in which the preloaded code will read from it and |
| * then close it. |
| */ |
| state_out->pipe_fds[0] = -1; |
| char *const *child_env = state_out->child_env; |
| state_out->child_env = NULL; |
| minijail_free_run_state(state_out); |
| |
| /* |
| * If we aren't pid-namespaced, or the jailed program asked to be init: |
| * calling process |
| * -> execve()-ing process |
| * If we are: |
| * calling process |
| * -> init()-ing process |
| * -> execve()-ing process |
| */ |
| if (!child_env) |
| child_env = config->envp ? config->envp : environ; |
| execve(config->filename, config->argv, child_env); |
| |
| ret = (errno == ENOENT ? MINIJAIL_ERR_NO_COMMAND : MINIJAIL_ERR_NO_ACCESS); |
| pwarn("execve(%s) failed", config->filename); |
| _exit(ret); |
| } |
| |
| static int |
| minijail_run_config_internal(struct minijail *j, |
| const struct minijail_run_config *config) |
| { |
| struct minijail_run_state state = { |
| .child_pid = -1, |
| .pipe_fds = {-1, -1}, |
| .stdin_fds = {-1, -1}, |
| .stdout_fds = {-1, -1}, |
| .stderr_fds = {-1, -1}, |
| .child_sync_pipe_fds = {-1, -1}, |
| .child_env = NULL, |
| }; |
| int ret = minijail_run_internal(j, config, &state); |
| |
| if (ret == 0) { |
| if (config->pchild_pid) |
| *config->pchild_pid = state.child_pid; |
| |
| /* Grab stdin/stdout/stderr descriptors requested by caller. */ |
| struct { |
| int *pfd; |
| int *psrc; |
| } fd_map[] = { |
| {config->pstdin_fd, &state.stdin_fds[1]}, |
| {config->pstdout_fd, &state.stdout_fds[0]}, |
| {config->pstderr_fd, &state.stderr_fds[0]}, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(fd_map); ++i) { |
| if (fd_map[i].pfd) { |
| *fd_map[i].pfd = *fd_map[i].psrc; |
| *fd_map[i].psrc = -1; |
| } |
| } |
| |
| if (!config->exec_in_child) |
| ret = state.child_pid; |
| } |
| |
| minijail_free_run_state(&state); |
| |
| return ret; |
| } |
| |
| static int minijail_wait_internal(struct minijail *j, int expected_signal) |
| { |
| if (j->initpid <= 0) |
| return -ECHILD; |
| |
| int st; |
| while (true) { |
| const int ret = waitpid(j->initpid, &st, 0); |
| if (ret >= 0) |
| break; |
| if (errno != EINTR) |
| return -errno; |
| } |
| |
| if (!WIFEXITED(st)) { |
| int error_status = st; |
| if (WIFSIGNALED(st)) { |
| int signum = WTERMSIG(st); |
| if (signum != expected_signal) { |
| warn("child process %d received signal %d", |
| j->initpid, signum); |
| } |
| /* |
| * We return MINIJAIL_ERR_JAIL if the process received |
| * SIGSYS, which happens when a syscall is blocked by |
| * seccomp filters. |
| * If not, we do what bash(1) does: |
| * $? = 128 + signum |
| */ |
| if (signum == SIGSYS) { |
| error_status = MINIJAIL_ERR_JAIL; |
| } else { |
| error_status = MINIJAIL_ERR_SIG_BASE + signum; |
| } |
| } |
| return error_status; |
| } |
| |
| int exit_status = WEXITSTATUS(st); |
| if (exit_status != 0) |
| info("child process %d exited with status %d", |
| j->initpid, exit_status); |
| |
| return exit_status; |
| } |
| |
| int API minijail_kill(struct minijail *j) |
| { |
| if (j->initpid <= 0) |
| return -ECHILD; |
| |
| if (kill(j->initpid, SIGTERM)) |
| return -errno; |
| |
| return minijail_wait_internal(j, SIGTERM); |
| } |
| |
| int API minijail_wait(struct minijail *j) |
| { |
| return minijail_wait_internal(j, 0); |
| } |
| |
| void API minijail_destroy(struct minijail *j) |
| { |
| size_t i; |
| |
| if (j->filter_prog) { |
| free(j->filter_prog->filter); |
| free(j->filter_prog); |
| } |
| free_mounts_list(j); |
| free_remounts_list(j); |
| while (j->hooks_head) { |
| struct hook *c = j->hooks_head; |
| j->hooks_head = c->next; |
| free(c); |
| } |
| j->hooks_tail = NULL; |
| if (j->user) |
| free(j->user); |
| if (j->suppl_gid_list) |
| free(j->suppl_gid_list); |
| if (j->chrootdir) |
| free(j->chrootdir); |
| if (j->pid_file_path) |
| free(j->pid_file_path); |
| if (j->uidmap) |
| free(j->uidmap); |
| if (j->gidmap) |
| free(j->gidmap); |
| if (j->hostname) |
| free(j->hostname); |
| if (j->preload_path) |
| free(j->preload_path); |
| if (j->alt_syscall_table) |
| free(j->alt_syscall_table); |
| for (i = 0; i < j->cgroup_count; ++i) |
| free(j->cgroups[i]); |
| free(j); |
| } |
| |
| void API minijail_log_to_fd(int fd, int min_priority) |
| { |
| init_logging(LOG_TO_FD, fd, min_priority); |
| } |