/* Microsoft Reference Implementation for TPM 2.0 | |
* | |
* The copyright in this software is being made available under the BSD License, | |
* included below. This software may be subject to other third party and | |
* contributor rights, including patent rights, and no such rights are granted | |
* under this license. | |
* | |
* Copyright (c) Microsoft Corporation | |
* | |
* All rights reserved. | |
* | |
* BSD License | |
* | |
* Redistribution and use in source and binary forms, with or without modification, | |
* are permitted provided that the following conditions are met: | |
* | |
* Redistributions of source code must retain the above copyright notice, this list | |
* of conditions and the following disclaimer. | |
* | |
* Redistributions in binary form must reproduce the above copyright notice, this | |
* list of conditions and the following disclaimer in the documentation and/or | |
* other materials provided with the distribution. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS"" | |
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR | |
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | |
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
//** Includes and Defines | |
#include "Tpm.h" | |
#if ALG_ECC | |
// This version requires that the new format for ECC data be used | |
#if !USE_BN_ECC_DATA | |
#error "Need to SET USE_BN_ECC_DATA to YES in Implementaion.h" | |
#endif | |
//** Functions | |
#if SIMULATION | |
void | |
EccSimulationEnd( | |
void | |
) | |
{ | |
#if SIMULATION | |
// put things to be printed at the end of the simulation here | |
#endif | |
} | |
#endif // SIMULATION | |
//*** CryptEccInit() | |
// This function is called at _TPM_Init | |
BOOL | |
CryptEccInit( | |
void | |
) | |
{ | |
return TRUE; | |
} | |
//*** CryptEccStartup() | |
// This function is called at TPM2_Startup(). | |
BOOL | |
CryptEccStartup( | |
void | |
) | |
{ | |
return TRUE; | |
} | |
//*** ClearPoint2B(generic) | |
// Initialize the size values of a TPMS_ECC_POINT structure. | |
void | |
ClearPoint2B( | |
TPMS_ECC_POINT *p // IN: the point | |
) | |
{ | |
if(p != NULL) | |
{ | |
p->x.t.size = 0; | |
p->y.t.size = 0; | |
} | |
} | |
//*** CryptEccGetParametersByCurveId() | |
// This function returns a pointer to the curve data that is associated with | |
// the indicated curveId. | |
// If there is no curve with the indicated ID, the function returns NULL. This | |
// function is in this module so that it can be called by GetCurve data. | |
// Return Type: const ECC_CURVE_DATA | |
// NULL curve with the indicated TPM_ECC_CURVE is not implemented | |
// != NULL pointer to the curve data | |
LIB_EXPORT const ECC_CURVE * | |
CryptEccGetParametersByCurveId( | |
TPM_ECC_CURVE curveId // IN: the curveID | |
) | |
{ | |
int i; | |
for(i = 0; i < ECC_CURVE_COUNT; i++) | |
{ | |
if(eccCurves[i].curveId == curveId) | |
return &eccCurves[i]; | |
} | |
return NULL; | |
} | |
//*** CryptEccGetKeySizeForCurve() | |
// This function returns the key size in bits of the indicated curve. | |
LIB_EXPORT UINT16 | |
CryptEccGetKeySizeForCurve( | |
TPM_ECC_CURVE curveId // IN: the curve | |
) | |
{ | |
const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId); | |
UINT16 keySizeInBits; | |
// | |
keySizeInBits = (curve != NULL) ? curve->keySizeBits : 0; | |
return keySizeInBits; | |
} | |
//*** GetCurveData() | |
// This function returns the a pointer for the parameter data | |
// associated with a curve. | |
const ECC_CURVE_DATA * | |
GetCurveData( | |
TPM_ECC_CURVE curveId // IN: the curveID | |
) | |
{ | |
const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId); | |
return (curve != NULL) ? curve->curveData : NULL; | |
} | |
//***CryptEccGetOID() | |
const BYTE * | |
CryptEccGetOID( | |
TPM_ECC_CURVE curveId | |
) | |
{ | |
const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId); | |
return (curve != NULL) ? curve->OID : NULL; | |
} | |
//*** CryptEccGetCurveByIndex() | |
// This function returns the number of the 'i'-th implemented curve. The normal | |
// use would be to call this function with 'i' starting at 0. When the 'i' is greater | |
// than or equal to the number of implemented curves, TPM_ECC_NONE is returned. | |
LIB_EXPORT TPM_ECC_CURVE | |
CryptEccGetCurveByIndex( | |
UINT16 i | |
) | |
{ | |
if(i >= ECC_CURVE_COUNT) | |
return TPM_ECC_NONE; | |
return eccCurves[i].curveId; | |
} | |
//*** CryptEccGetParameter() | |
// This function returns an ECC curve parameter. The parameter is | |
// selected by a single character designator from the set of ""PNABXYH"". | |
// Return Type: BOOL | |
// TRUE(1) curve exists and parameter returned | |
// FALSE(0) curve does not exist or parameter selector | |
LIB_EXPORT BOOL | |
CryptEccGetParameter( | |
TPM2B_ECC_PARAMETER *out, // OUT: place to put parameter | |
char p, // IN: the parameter selector | |
TPM_ECC_CURVE curveId // IN: the curve id | |
) | |
{ | |
const ECC_CURVE_DATA *curve = GetCurveData(curveId); | |
bigConst parameter = NULL; | |
if(curve != NULL) | |
{ | |
switch(p) | |
{ | |
case 'p': | |
parameter = CurveGetPrime(curve); | |
break; | |
case 'n': | |
parameter = CurveGetOrder(curve); | |
break; | |
case 'a': | |
parameter = CurveGet_a(curve); | |
break; | |
case 'b': | |
parameter = CurveGet_b(curve); | |
break; | |
case 'x': | |
parameter = CurveGetGx(curve); | |
break; | |
case 'y': | |
parameter = CurveGetGy(curve); | |
break; | |
case 'h': | |
parameter = CurveGetCofactor(curve); | |
break; | |
default: | |
FAIL(FATAL_ERROR_INTERNAL); | |
break; | |
} | |
} | |
// If not debugging and we get here with parameter still NULL, had better | |
// not try to convert so just return FALSE instead. | |
return (parameter != NULL) ? BnTo2B(parameter, &out->b, 0) : 0; | |
} | |
//*** CryptCapGetECCCurve() | |
// This function returns the list of implemented ECC curves. | |
// Return Type: TPMI_YES_NO | |
// YES if no more ECC curve is available | |
// NO if there are more ECC curves not reported | |
TPMI_YES_NO | |
CryptCapGetECCCurve( | |
TPM_ECC_CURVE curveID, // IN: the starting ECC curve | |
UINT32 maxCount, // IN: count of returned curves | |
TPML_ECC_CURVE *curveList // OUT: ECC curve list | |
) | |
{ | |
TPMI_YES_NO more = NO; | |
UINT16 i; | |
UINT32 count = ECC_CURVE_COUNT; | |
TPM_ECC_CURVE curve; | |
// Initialize output property list | |
curveList->count = 0; | |
// The maximum count of curves we may return is MAX_ECC_CURVES | |
if(maxCount > MAX_ECC_CURVES) maxCount = MAX_ECC_CURVES; | |
// Scan the eccCurveValues array | |
for(i = 0; i < count; i++) | |
{ | |
curve = CryptEccGetCurveByIndex(i); | |
// If curveID is less than the starting curveID, skip it | |
if(curve < curveID) | |
continue; | |
if(curveList->count < maxCount) | |
{ | |
// If we have not filled up the return list, add more curves to | |
// it | |
curveList->eccCurves[curveList->count] = curve; | |
curveList->count++; | |
} | |
else | |
{ | |
// If the return list is full but we still have curves | |
// available, report this and stop iterating | |
more = YES; | |
break; | |
} | |
} | |
return more; | |
} | |
//*** CryptGetCurveSignScheme() | |
// This function will return a pointer to the scheme of the curve. | |
const TPMT_ECC_SCHEME * | |
CryptGetCurveSignScheme( | |
TPM_ECC_CURVE curveId // IN: The curve selector | |
) | |
{ | |
const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId); | |
if(curve != NULL) | |
return &(curve->sign); | |
else | |
return NULL; | |
} | |
//*** CryptGenerateR() | |
// This function computes the commit random value for a split signing scheme. | |
// | |
// If 'c' is NULL, it indicates that 'r' is being generated | |
// for TPM2_Commit. | |
// If 'c' is not NULL, the TPM will validate that the 'gr.commitArray' | |
// bit associated with the input value of 'c' is SET. If not, the TPM | |
// returns FALSE and no 'r' value is generated. | |
// Return Type: BOOL | |
// TRUE(1) r value computed | |
// FALSE(0) no r value computed | |
BOOL | |
CryptGenerateR( | |
TPM2B_ECC_PARAMETER *r, // OUT: the generated random value | |
UINT16 *c, // IN/OUT: count value. | |
TPMI_ECC_CURVE curveID, // IN: the curve for the value | |
TPM2B_NAME *name // IN: optional name of a key to | |
// associate with 'r' | |
) | |
{ | |
// This holds the marshaled g_commitCounter. | |
TPM2B_TYPE(8B, 8); | |
TPM2B_8B cntr = {{8,{0}}}; | |
UINT32 iterations; | |
TPM2B_ECC_PARAMETER n; | |
UINT64 currentCount = gr.commitCounter; | |
UINT16 t1; | |
// | |
if(!CryptEccGetParameter(&n, 'n', curveID)) | |
return FALSE; | |
// If this is the commit phase, use the current value of the commit counter | |
if(c != NULL) | |
{ | |
// if the array bit is not set, can't use the value. | |
if(!TEST_BIT((*c & COMMIT_INDEX_MASK), gr.commitArray)) | |
return FALSE; | |
// If it is the sign phase, figure out what the counter value was | |
// when the commitment was made. | |
// | |
// When gr.commitArray has less than 64K bits, the extra | |
// bits of 'c' are used as a check to make sure that the | |
// signing operation is not using an out of range count value | |
t1 = (UINT16)currentCount; | |
// If the lower bits of c are greater or equal to the lower bits of t1 | |
// then the upper bits of t1 must be one more than the upper bits | |
// of c | |
if((*c & COMMIT_INDEX_MASK) >= (t1 & COMMIT_INDEX_MASK)) | |
// Since the counter is behind, reduce the current count | |
currentCount = currentCount - (COMMIT_INDEX_MASK + 1); | |
t1 = (UINT16)currentCount; | |
if((t1 & ~COMMIT_INDEX_MASK) != (*c & ~COMMIT_INDEX_MASK)) | |
return FALSE; | |
// set the counter to the value that was | |
// present when the commitment was made | |
currentCount = (currentCount & 0xffffffffffff0000) | *c; | |
} | |
// Marshal the count value to a TPM2B buffer for the KDF | |
cntr.t.size = sizeof(currentCount); | |
UINT64_TO_BYTE_ARRAY(currentCount, cntr.t.buffer); | |
// Now can do the KDF to create the random value for the signing operation | |
// During the creation process, we may generate an r that does not meet the | |
// requirements of the random value. | |
// want to generate a new r. | |
r->t.size = n.t.size; | |
for(iterations = 1; iterations < 1000000;) | |
{ | |
int i; | |
CryptKDFa(CONTEXT_INTEGRITY_HASH_ALG, &gr.commitNonce.b, COMMIT_STRING, | |
&name->b, &cntr.b, n.t.size * 8, r->t.buffer, &iterations, FALSE); | |
// "random" value must be less than the prime | |
if(UnsignedCompareB(r->b.size, r->b.buffer, n.t.size, n.t.buffer) >= 0) | |
continue; | |
// in this implementation it is required that at least bit | |
// in the upper half of the number be set | |
for(i = n.t.size / 2; i >= 0; i--) | |
if(r->b.buffer[i] != 0) | |
return TRUE; | |
} | |
return FALSE; | |
} | |
//*** CryptCommit() | |
// This function is called when the count value is committed. The 'gr.commitArray' | |
// value associated with the current count value is SET and g_commitCounter is | |
// incremented. The low-order 16 bits of old value of the counter is returned. | |
UINT16 | |
CryptCommit( | |
void | |
) | |
{ | |
UINT16 oldCount = (UINT16)gr.commitCounter; | |
gr.commitCounter++; | |
SET_BIT(oldCount & COMMIT_INDEX_MASK, gr.commitArray); | |
return oldCount; | |
} | |
//*** CryptEndCommit() | |
// This function is called when the signing operation using the committed value | |
// is completed. It clears the gr.commitArray bit associated with the count | |
// value so that it can't be used again. | |
void | |
CryptEndCommit( | |
UINT16 c // IN: the counter value of the commitment | |
) | |
{ | |
ClearBit((c & COMMIT_INDEX_MASK), gr.commitArray, sizeof(gr.commitArray)); | |
} | |
//*** CryptEccGetParameters() | |
// This function returns the ECC parameter details of the given curve. | |
// Return Type: BOOL | |
// TRUE(1) success | |
// FALSE(0) unsupported ECC curve ID | |
BOOL | |
CryptEccGetParameters( | |
TPM_ECC_CURVE curveId, // IN: ECC curve ID | |
TPMS_ALGORITHM_DETAIL_ECC *parameters // OUT: ECC parameters | |
) | |
{ | |
const ECC_CURVE *curve = CryptEccGetParametersByCurveId(curveId); | |
const ECC_CURVE_DATA *data; | |
BOOL found = curve != NULL; | |
if(found) | |
{ | |
data = curve->curveData; | |
parameters->curveID = curve->curveId; | |
parameters->keySize = curve->keySizeBits; | |
parameters->kdf = curve->kdf; | |
parameters->sign = curve->sign; | |
// BnTo2B(data->prime, ¶meters->p.b, 0); | |
BnTo2B(data->prime, ¶meters->p.b, parameters->p.t.size); | |
BnTo2B(data->a, ¶meters->a.b, 0); | |
BnTo2B(data->b, ¶meters->b.b, 0); | |
BnTo2B(data->base.x, ¶meters->gX.b, parameters->p.t.size); | |
BnTo2B(data->base.y, ¶meters->gY.b, parameters->p.t.size); | |
// BnTo2B(data->base.x, ¶meters->gX.b, 0); | |
// BnTo2B(data->base.y, ¶meters->gY.b, 0); | |
BnTo2B(data->order, ¶meters->n.b, 0); | |
BnTo2B(data->h, ¶meters->h.b, 0); | |
} | |
return found; | |
} | |
//*** BnGetCurvePrime() | |
// This function is used to get just the prime modulus associated with a curve. | |
const bignum_t * | |
BnGetCurvePrime( | |
TPM_ECC_CURVE curveId | |
) | |
{ | |
const ECC_CURVE_DATA *C = GetCurveData(curveId); | |
return (C != NULL) ? CurveGetPrime(C) : NULL; | |
} | |
//*** BnGetCurveOrder() | |
// This function is used to get just the curve order | |
const bignum_t * | |
BnGetCurveOrder( | |
TPM_ECC_CURVE curveId | |
) | |
{ | |
const ECC_CURVE_DATA *C = GetCurveData(curveId); | |
return (C != NULL) ? CurveGetOrder(C) : NULL; | |
} | |
//*** BnIsOnCurve() | |
// This function checks if a point is on the curve. | |
BOOL | |
BnIsOnCurve( | |
pointConst Q, | |
const ECC_CURVE_DATA *C | |
) | |
{ | |
BN_VAR(right, (MAX_ECC_KEY_BITS * 3)); | |
BN_VAR(left, (MAX_ECC_KEY_BITS * 2)); | |
bigConst prime = CurveGetPrime(C); | |
// | |
// Show that point is on the curve y^2 = x^3 + ax + b; | |
// Or y^2 = x(x^2 + a) + b | |
// y^2 | |
BnMult(left, Q->y, Q->y); | |
BnMod(left, prime); | |
// x^2 | |
BnMult(right, Q->x, Q->x); | |
// x^2 + a | |
BnAdd(right, right, CurveGet_a(C)); | |
// BnMod(right, CurveGetPrime(C)); | |
// x(x^2 + a) | |
BnMult(right, right, Q->x); | |
// x(x^2 + a) + b | |
BnAdd(right, right, CurveGet_b(C)); | |
BnMod(right, prime); | |
if(BnUnsignedCmp(left, right) == 0) | |
return TRUE; | |
else | |
return FALSE; | |
} | |
//*** BnIsValidPrivateEcc() | |
// Checks that 0 < 'x' < 'q' | |
BOOL | |
BnIsValidPrivateEcc( | |
bigConst x, // IN: private key to check | |
bigCurve E // IN: the curve to check | |
) | |
{ | |
BOOL retVal; | |
retVal = (!BnEqualZero(x) | |
&& (BnUnsignedCmp(x, CurveGetOrder(AccessCurveData(E))) < 0)); | |
return retVal; | |
} | |
LIB_EXPORT BOOL | |
CryptEccIsValidPrivateKey( | |
TPM2B_ECC_PARAMETER *d, | |
TPM_ECC_CURVE curveId | |
) | |
{ | |
BN_INITIALIZED(bnD, MAX_ECC_PARAMETER_BYTES * 8, d); | |
return !BnEqualZero(bnD) && (BnUnsignedCmp(bnD, BnGetCurveOrder(curveId)) < 0); | |
} | |
//*** BnPointMul() | |
// This function does a point multiply of the form 'R' = ['d']'S' + ['u']'Q' where the | |
// parameters are bigNum values. If 'S' is NULL and d is not NULL, then it computes | |
// 'R' = ['d']'G' + ['u']'Q' or just 'R' = ['d']'G' if 'u' and 'Q' are NULL. | |
// If 'skipChecks' is TRUE, then the function will not verify that the inputs are | |
// correct for the domain. This would be the case when the values were created by the | |
// CryptoEngine code. | |
// It will return TPM_RC_NO_RESULT if the resulting point is the point at infinity. | |
// Return Type: TPM_RC | |
// TPM_RC_NO_RESULT result of multiplication is a point at infinity | |
// TPM_RC_ECC_POINT 'S' or 'Q' is not on the curve | |
// TPM_RC_VALUE 'd' or 'u' is not < n | |
TPM_RC | |
BnPointMult( | |
bigPoint R, // OUT: computed point | |
pointConst S, // IN: optional point to multiply by 'd' | |
bigConst d, // IN: scalar for [d]S or [d]G | |
pointConst Q, // IN: optional second point | |
bigConst u, // IN: optional second scalar | |
bigCurve E // IN: curve parameters | |
) | |
{ | |
BOOL OK; | |
// | |
TEST(TPM_ALG_ECDH); | |
// Need one scalar | |
OK = (d != NULL || u != NULL); | |
// If S is present, then d has to be present. If S is not | |
// present, then d may or may not be present | |
OK = OK && (((S == NULL) == (d == NULL)) || (d != NULL)); | |
// either both u and Q have to be provided or neither can be provided (don't | |
// know what to do if only one is provided. | |
OK = OK && ((u == NULL) == (Q == NULL)); | |
OK = OK && (E != NULL); | |
if(!OK) | |
return TPM_RC_VALUE; | |
OK = (S == NULL) || BnIsOnCurve(S, AccessCurveData(E)); | |
OK = OK && ((Q == NULL) || BnIsOnCurve(Q, AccessCurveData(E))); | |
if(!OK) | |
return TPM_RC_ECC_POINT; | |
if((d != NULL) && (S == NULL)) | |
S = CurveGetG(AccessCurveData(E)); | |
// If only one scalar, don't need Shamir's trick | |
if((d == NULL) || (u == NULL)) | |
{ | |
if(d == NULL) | |
OK = BnEccModMult(R, Q, u, E); | |
else | |
OK = BnEccModMult(R, S, d, E); | |
} | |
else | |
{ | |
OK = BnEccModMult2(R, S, d, Q, u, E); | |
} | |
return (OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT); | |
} | |
//***BnEccGetPrivate() | |
// This function gets random values that are the size of the key plus 64 bits. The | |
// value is reduced (mod ('q' - 1)) and incremented by 1 ('q' is the order of the | |
// curve. This produces a value ('d') such that 1 <= 'd' < 'q'. This is the method | |
// of FIPS 186-4 Section B.4.1 ""Key Pair Generation Using Extra Random Bits"". | |
// Return Type: BOOL | |
// TRUE(1) success | |
// FALSE(0) failure generating private key | |
BOOL | |
BnEccGetPrivate( | |
bigNum dOut, // OUT: the qualified random value | |
const ECC_CURVE_DATA *C, // IN: curve for which the private key | |
// needs to be appropriate | |
RAND_STATE *rand // IN: state for DRBG | |
) | |
{ | |
bigConst order = CurveGetOrder(C); | |
BOOL OK; | |
UINT32 orderBits = BnSizeInBits(order); | |
UINT32 orderBytes = BITS_TO_BYTES(orderBits); | |
BN_VAR(bnExtraBits, MAX_ECC_KEY_BITS + 64); | |
BN_VAR(nMinus1, MAX_ECC_KEY_BITS); | |
// | |
OK = BnGetRandomBits(bnExtraBits, (orderBytes * 8) + 64, rand); | |
OK = OK && BnSubWord(nMinus1, order, 1); | |
OK = OK && BnMod(bnExtraBits, nMinus1); | |
OK = OK && BnAddWord(dOut, bnExtraBits, 1); | |
return OK && !g_inFailureMode; | |
} | |
//*** BnEccGenerateKeyPair() | |
// This function gets a private scalar from the source of random bits and does | |
// the point multiply to get the public key. | |
BOOL | |
BnEccGenerateKeyPair( | |
bigNum bnD, // OUT: private scalar | |
bn_point_t *ecQ, // OUT: public point | |
bigCurve E, // IN: curve for the point | |
RAND_STATE *rand // IN: DRBG state to use | |
) | |
{ | |
BOOL OK = FALSE; | |
// Get a private scalar | |
OK = BnEccGetPrivate(bnD, AccessCurveData(E), rand); | |
// Do a point multiply | |
OK = OK && BnEccModMult(ecQ, NULL, bnD, E); | |
if(!OK) | |
BnSetWord(ecQ->z, 0); | |
else | |
BnSetWord(ecQ->z, 1); | |
return OK; | |
} | |
//***CryptEccNewKeyPair(***) | |
// This function creates an ephemeral ECC. It is ephemeral in that | |
// is expected that the private part of the key will be discarded | |
LIB_EXPORT TPM_RC | |
CryptEccNewKeyPair( | |
TPMS_ECC_POINT *Qout, // OUT: the public point | |
TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar | |
TPM_ECC_CURVE curveId // IN: the curve for the key | |
) | |
{ | |
CURVE_INITIALIZED(E, curveId); | |
POINT(ecQ); | |
ECC_NUM(bnD); | |
BOOL OK; | |
if(E == NULL) | |
return TPM_RC_CURVE; | |
TEST(TPM_ALG_ECDH); | |
OK = BnEccGenerateKeyPair(bnD, ecQ, E, NULL); | |
if(OK) | |
{ | |
BnPointTo2B(Qout, ecQ, E); | |
BnTo2B(bnD, &dOut->b, Qout->x.t.size); | |
} | |
else | |
{ | |
Qout->x.t.size = Qout->y.t.size = dOut->t.size = 0; | |
} | |
CURVE_FREE(E); | |
return OK ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT; | |
} | |
//*** CryptEccPointMultiply() | |
// This function computes 'R' := ['dIn']'G' + ['uIn']'QIn'. Where 'dIn' and | |
// 'uIn' are scalars, 'G' and 'QIn' are points on the specified curve and 'G' is the | |
// default generator of the curve. | |
// | |
// The 'xOut' and 'yOut' parameters are optional and may be set to NULL if not | |
// used. | |
// | |
// It is not necessary to provide 'uIn' if 'QIn' is specified but one of 'uIn' and | |
// 'dIn' must be provided. If 'dIn' and 'QIn' are specified but 'uIn' is not | |
// provided, then 'R' = ['dIn']'QIn'. | |
// | |
// If the multiply produces the point at infinity, the TPM_RC_NO_RESULT is returned. | |
// | |
// The sizes of 'xOut' and yOut' will be set to be the size of the degree of | |
// the curve | |
// | |
// It is a fatal error if 'dIn' and 'uIn' are both unspecified (NULL) or if 'Qin' | |
// or 'Rout' is unspecified. | |
// | |
// Return Type: TPM_RC | |
// TPM_RC_ECC_POINT the point 'Pin' or 'Qin' is not on the curve | |
// TPM_RC_NO_RESULT the product point is at infinity | |
// TPM_RC_CURVE bad curve | |
// TPM_RC_VALUE 'dIn' or 'uIn' out of range | |
// | |
LIB_EXPORT TPM_RC | |
CryptEccPointMultiply( | |
TPMS_ECC_POINT *Rout, // OUT: the product point R | |
TPM_ECC_CURVE curveId, // IN: the curve to use | |
TPMS_ECC_POINT *Pin, // IN: first point (can be null) | |
TPM2B_ECC_PARAMETER *dIn, // IN: scalar value for [dIn]Qin | |
// the Pin | |
TPMS_ECC_POINT *Qin, // IN: point Q | |
TPM2B_ECC_PARAMETER *uIn // IN: scalar value for the multiplier | |
// of Q | |
) | |
{ | |
CURVE_INITIALIZED(E, curveId); | |
POINT_INITIALIZED(ecP, Pin); | |
ECC_INITIALIZED(bnD, dIn); // If dIn is null, then bnD is null | |
ECC_INITIALIZED(bnU, uIn); | |
POINT_INITIALIZED(ecQ, Qin); | |
POINT(ecR); | |
TPM_RC retVal; | |
// | |
retVal = BnPointMult(ecR, ecP, bnD, ecQ, bnU, E); | |
if(retVal == TPM_RC_SUCCESS) | |
BnPointTo2B(Rout, ecR, E); | |
else | |
ClearPoint2B(Rout); | |
CURVE_FREE(E); | |
return retVal; | |
} | |
//*** CryptEccIsPointOnCurve() | |
// This function is used to test if a point is on a defined curve. It does this | |
// by checking that 'y'^2 mod 'p' = 'x'^3 + 'a'*'x' + 'b' mod 'p'. | |
// | |
// It is a fatal error if 'Q' is not specified (is NULL). | |
// Return Type: BOOL | |
// TRUE(1) point is on curve | |
// FALSE(0) point is not on curve or curve is not supported | |
LIB_EXPORT BOOL | |
CryptEccIsPointOnCurve( | |
TPM_ECC_CURVE curveId, // IN: the curve selector | |
TPMS_ECC_POINT *Qin // IN: the point. | |
) | |
{ | |
const ECC_CURVE_DATA *C = GetCurveData(curveId); | |
POINT_INITIALIZED(ecQ, Qin); | |
BOOL OK; | |
// | |
pAssert(Qin != NULL); | |
OK = (C != NULL && (BnIsOnCurve(ecQ, C))); | |
return OK; | |
} | |
//*** CryptEccGenerateKey() | |
// This function generates an ECC key pair based on the input parameters. | |
// This routine uses KDFa to produce candidate numbers. The method is according | |
// to FIPS 186-3, section B.1.2 "Key Pair Generation by Testing Candidates." | |
// According to the method in FIPS 186-3, the resulting private value 'd' should be | |
// 1 <= 'd' < 'n' where 'n' is the order of the base point. | |
// | |
// It is a fatal error if 'Qout', 'dOut', is not provided (is NULL). | |
// | |
// If the curve is not supported | |
// If 'seed' is not provided, then a random number will be used for the key | |
// Return Type: TPM_RC | |
// TPM_RC_CURVE curve is not supported | |
// TPM_RC_NO_RESULT could not verify key with signature (FIPS only) | |
LIB_EXPORT TPM_RC | |
CryptEccGenerateKey( | |
TPMT_PUBLIC *publicArea, // IN/OUT: The public area template for | |
// the new key. The public key | |
// area will be replaced computed | |
// ECC public key | |
TPMT_SENSITIVE *sensitive, // OUT: the sensitive area will be | |
// updated to contain the private | |
// ECC key and the symmetric | |
// encryption key | |
RAND_STATE *rand // IN: if not NULL, the deterministic | |
// RNG state | |
) | |
{ | |
CURVE_INITIALIZED(E, publicArea->parameters.eccDetail.curveID); | |
ECC_NUM(bnD); | |
POINT(ecQ); | |
BOOL OK; | |
TPM_RC retVal; | |
// | |
TEST(TPM_ALG_ECDSA); // ECDSA is used to verify each key | |
// Validate parameters | |
if(E == NULL) | |
ERROR_RETURN(TPM_RC_CURVE); | |
publicArea->unique.ecc.x.t.size = 0; | |
publicArea->unique.ecc.y.t.size = 0; | |
sensitive->sensitive.ecc.t.size = 0; | |
OK = BnEccGenerateKeyPair(bnD, ecQ, E, rand); | |
if(OK) | |
{ | |
BnPointTo2B(&publicArea->unique.ecc, ecQ, E); | |
BnTo2B(bnD, &sensitive->sensitive.ecc.b, publicArea->unique.ecc.x.t.size); | |
} | |
#if FIPS_COMPLIANT | |
// See if PWCT is required | |
if(OK && IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign)) | |
{ | |
ECC_NUM(bnT); | |
ECC_NUM(bnS); | |
TPM2B_DIGEST digest; | |
// | |
TEST(TPM_ALG_ECDSA); | |
digest.t.size = MIN(sensitive->sensitive.ecc.t.size, sizeof(digest.t.buffer)); | |
// Get a random value to sign using the built in DRBG state | |
DRBG_Generate(NULL, digest.t.buffer, digest.t.size); | |
if(g_inFailureMode) | |
return TPM_RC_FAILURE; | |
BnSignEcdsa(bnT, bnS, E, bnD, &digest, NULL); | |
// and make sure that we can validate the signature | |
OK = BnValidateSignatureEcdsa(bnT, bnS, E, ecQ, &digest) == TPM_RC_SUCCESS; | |
} | |
#endif | |
retVal = (OK) ? TPM_RC_SUCCESS : TPM_RC_NO_RESULT; | |
Exit: | |
CURVE_FREE(E); | |
return retVal; | |
} | |
#endif // ALG_ECC |