/* Microsoft Reference Implementation for TPM 2.0 | |
* | |
* The copyright in this software is being made available under the BSD License, | |
* included below. This software may be subject to other third party and | |
* contributor rights, including patent rights, and no such rights are granted | |
* under this license. | |
* | |
* Copyright (c) Microsoft Corporation | |
* | |
* All rights reserved. | |
* | |
* BSD License | |
* | |
* Redistribution and use in source and binary forms, with or without modification, | |
* are permitted provided that the following conditions are met: | |
* | |
* Redistributions of source code must retain the above copyright notice, this list | |
* of conditions and the following disclaimer. | |
* | |
* Redistributions in binary form must reproduce the above copyright notice, this | |
* list of conditions and the following disclaimer in the documentation and/or | |
* other materials provided with the distribution. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS"" | |
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR | |
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | |
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
//** Includes and defines | |
#include "Tpm.h" | |
#if RSA_KEY_SIEVE | |
#include "CryptPrimeSieve_fp.h" | |
// This determines the number of bits in the largest sieve field. | |
#define MAX_FIELD_SIZE 2048 | |
extern const uint32_t s_LastPrimeInTable; | |
extern const uint32_t s_PrimeTableSize; | |
extern const uint32_t s_PrimesInTable; | |
extern const unsigned char s_PrimeTable[]; | |
// This table is set of prime markers. Each entry is the prime value | |
// for the ((n + 1) * 1024) prime. That is, the entry in s_PrimeMarkers[1] | |
// is the value for the 2,048th prime. This is used in the PrimeSieve | |
// to adjust the limit for the prime search. When processing smaller | |
// prime candidates, fewer primes are checked directly before going to | |
// Miller-Rabin. As the prime grows, it is worth spending more time eliminating | |
// primes as, a) the density is lower, and b) the cost of Miller-Rabin is | |
// higher. | |
const uint32_t s_PrimeMarkersCount = 6; | |
const uint32_t s_PrimeMarkers[] = { | |
8167, 17881, 28183, 38891, 49871, 60961 }; | |
uint32_t primeLimit; | |
//** Functions | |
//*** RsaAdjustPrimeLimit() | |
// This used during the sieve process. The iterator for getting the | |
// next prime (RsaNextPrime()) will return primes until it hits the | |
// limit (primeLimit) set up by this function. This causes the sieve | |
// process to stop when an appropriate number of primes have been | |
// sieved. | |
LIB_EXPORT void | |
RsaAdjustPrimeLimit( | |
uint32_t requestedPrimes | |
) | |
{ | |
if(requestedPrimes == 0 || requestedPrimes > s_PrimesInTable) | |
requestedPrimes = s_PrimesInTable; | |
requestedPrimes = (requestedPrimes - 1) / 1024; | |
if(requestedPrimes < s_PrimeMarkersCount) | |
primeLimit = s_PrimeMarkers[requestedPrimes]; | |
else | |
primeLimit = s_LastPrimeInTable; | |
primeLimit >>= 1; | |
} | |
//*** RsaNextPrime() | |
// This the iterator used during the sieve process. The input is the | |
// last prime returned (or any starting point) and the output is the | |
// next higher prime. The function returns 0 when the primeLimit is | |
// reached. | |
LIB_EXPORT uint32_t | |
RsaNextPrime( | |
uint32_t lastPrime | |
) | |
{ | |
if(lastPrime == 0) | |
return 0; | |
lastPrime >>= 1; | |
for(lastPrime += 1; lastPrime <= primeLimit; lastPrime++) | |
{ | |
if(((s_PrimeTable[lastPrime >> 3] >> (lastPrime & 0x7)) & 1) == 1) | |
return ((lastPrime << 1) + 1); | |
} | |
return 0; | |
} | |
// This table contains a previously sieved table. It has | |
// the bits for 3, 5, and 7 removed. Because of the | |
// factors, it needs to be aligned to 105 and has | |
// a repeat of 105. | |
const BYTE seedValues[] = { | |
0x16, 0x29, 0xcb, 0xa4, 0x65, 0xda, 0x30, 0x6c, | |
0x99, 0x96, 0x4c, 0x53, 0xa2, 0x2d, 0x52, 0x96, | |
0x49, 0xcb, 0xb4, 0x61, 0xd8, 0x32, 0x2d, 0x99, | |
0xa6, 0x44, 0x5b, 0xa4, 0x2c, 0x93, 0x96, 0x69, | |
0xc3, 0xb0, 0x65, 0x5a, 0x32, 0x4d, 0x89, 0xb6, | |
0x48, 0x59, 0x26, 0x2d, 0xd3, 0x86, 0x61, 0xcb, | |
0xb4, 0x64, 0x9a, 0x12, 0x6d, 0x91, 0xb2, 0x4c, | |
0x5a, 0xa6, 0x0d, 0xc3, 0x96, 0x69, 0xc9, 0x34, | |
0x25, 0xda, 0x22, 0x65, 0x99, 0xb4, 0x4c, 0x1b, | |
0x86, 0x2d, 0xd3, 0x92, 0x69, 0x4a, 0xb4, 0x45, | |
0xca, 0x32, 0x69, 0x99, 0x36, 0x0c, 0x5b, 0xa6, | |
0x25, 0xd3, 0x94, 0x68, 0x8b, 0x94, 0x65, 0xd2, | |
0x32, 0x6d, 0x18, 0xb6, 0x4c, 0x4b, 0xa6, 0x29, | |
0xd1}; | |
#define USE_NIBBLE | |
#ifndef USE_NIBBLE | |
static const BYTE bitsInByte[256] = { | |
0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, | |
0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, | |
0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, | |
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, | |
0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, | |
0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08 | |
}; | |
#define BitsInByte(x) bitsInByte[(unsigned char)x] | |
#else | |
const BYTE bitsInNibble[16] = { | |
0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, | |
0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04}; | |
#define BitsInByte(x) \ | |
(bitsInNibble[(unsigned char)(x) & 0xf] \ | |
+ bitsInNibble[((unsigned char)(x) >> 4) & 0xf]) | |
#endif | |
//*** BitsInArry() | |
// This function counts the number of bits set in an array of bytes. | |
static int | |
BitsInArray( | |
const unsigned char *a, // IN: A pointer to an array of bytes | |
unsigned int aSize // IN: the number of bytes to sum | |
) | |
{ | |
int j = 0; | |
for(; aSize; a++, aSize--) | |
j += BitsInByte(*a); | |
return j; | |
} | |
//*** FindNthSetBit() | |
// This function finds the nth SET bit in a bit array. The 'n' parameter is | |
// between 1 and the number of bits in the array (always a multiple of 8). | |
// If called when the array does not have n bits set, it will return -1 | |
// Return Type: unsigned int | |
// <0 no bit is set or no bit with the requested number is set | |
// >=0 the number of the bit in the array that is the nth set | |
LIB_EXPORT int | |
FindNthSetBit( | |
const UINT16 aSize, // IN: the size of the array to check | |
const BYTE *a, // IN: the array to check | |
const UINT32 n // IN, the number of the SET bit | |
) | |
{ | |
UINT16 i; | |
int retValue; | |
UINT32 sum = 0; | |
BYTE sel; | |
//find the bit | |
for(i = 0; (i < (int)aSize) && (sum < n); i++) | |
sum += BitsInByte(a[i]); | |
i--; | |
// The chosen bit is in the byte that was just accessed | |
// Compute the offset to the start of that byte | |
retValue = i * 8 - 1; | |
sel = a[i]; | |
// Subtract the bits in the last byte added. | |
sum -= BitsInByte(sel); | |
// Now process the byte, one bit at a time. | |
for(; (sel != 0) && (sum != n); retValue++, sel = sel >> 1) | |
sum += (sel & 1) != 0; | |
return (sum == n) ? retValue : -1; | |
} | |
typedef struct | |
{ | |
UINT16 prime; | |
UINT16 count; | |
} SIEVE_MARKS; | |
const SIEVE_MARKS sieveMarks[5] = { | |
{31, 7}, {73, 5}, {241, 4}, {1621, 3}, {UINT16_MAX, 2}}; | |
//*** PrimeSieve() | |
// This function does a prime sieve over the input 'field' which has as its | |
// starting address the value in bnN. Since this initializes the Sieve | |
// using a precomputed field with the bits associated with 3, 5 and 7 already | |
// turned off, the value of pnN may need to be adjusted by a few counts to allow | |
// the precomputed field to be used without modification. | |
// | |
// To get better performance, one could address the issue of developing the | |
// composite numbers. When the size of the prime gets large, the time for doing | |
// the divisions goes up, noticeably. It could be better to develop larger composite | |
// numbers even if they need to be bigNum's themselves. The object would be to | |
// reduce the number of times that the large prime is divided into a few large | |
// divides and then use smaller divides to get to the final 16 bit (or smaller) | |
// remainders. | |
LIB_EXPORT UINT32 | |
PrimeSieve( | |
bigNum bnN, // IN/OUT: number to sieve | |
UINT32 fieldSize, // IN: size of the field area in bytes | |
BYTE *field // IN: field | |
) | |
{ | |
UINT32 i; | |
UINT32 j; | |
UINT32 fieldBits = fieldSize * 8; | |
UINT32 r; | |
BYTE *pField; | |
INT32 iter; | |
UINT32 adjust; | |
UINT32 mark = 0; | |
UINT32 count = sieveMarks[0].count; | |
UINT32 stop = sieveMarks[0].prime; | |
UINT32 composite; | |
UINT32 pList[8]; | |
UINT32 next; | |
pAssert(field != NULL && bnN != NULL); | |
// If the remainder is odd, then subtracting the value will give an even number, | |
// but we want an odd number, so subtract the 105+rem. Otherwise, just subtract | |
// the even remainder. | |
adjust = (UINT32)BnModWord(bnN, 105); | |
if(adjust & 1) | |
adjust += 105; | |
// Adjust the input number so that it points to the first number in a | |
// aligned field. | |
BnSubWord(bnN, bnN, adjust); | |
// pAssert(BnModWord(bnN, 105) == 0); | |
pField = field; | |
for(i = fieldSize; i >= sizeof(seedValues); | |
pField += sizeof(seedValues), i -= sizeof(seedValues)) | |
{ | |
memcpy(pField, seedValues, sizeof(seedValues)); | |
} | |
if(i != 0) | |
memcpy(pField, seedValues, i); | |
// Cycle through the primes, clearing bits | |
// Have already done 3, 5, and 7 | |
iter = 7; | |
#define NEXT_PRIME(iter) (iter = RsaNextPrime(iter)) | |
// Get the next N primes where N is determined by the mark in the sieveMarks | |
while((composite = NEXT_PRIME(iter)) != 0) | |
{ | |
next = 0; | |
i = count; | |
pList[i--] = composite; | |
for(; i > 0; i--) | |
{ | |
next = NEXT_PRIME(iter); | |
pList[i] = next; | |
if(next != 0) | |
composite *= next; | |
} | |
// Get the remainder when dividing the base field address | |
// by the composite | |
composite = (UINT32)BnModWord(bnN, composite); | |
// 'composite' is divisible by the composite components. for each of the | |
// composite components, divide 'composite'. That remainder (r) is used to | |
// pick a starting point for clearing the array. The stride is equal to the | |
// composite component. Note, the field only contains odd numbers. If the | |
// field were expanded to contain all numbers, then half of the bits would | |
// have already been cleared. We can save the trouble of clearing them a | |
// second time by having a stride of 2*next. Or we can take all of the even | |
// numbers out of the field and use a stride of 'next' | |
for(i = count; i > 0; i--) | |
{ | |
next = pList[i]; | |
if(next == 0) | |
goto done; | |
r = composite % next; | |
// these computations deal with the fact that we have picked a field-sized | |
// range that is aligned to a 105 count boundary. The problem is, this field | |
// only contains odd numbers. If we take our prime guess and walk through all | |
// the numbers using that prime as the 'stride', then every other 'stride' is | |
// going to be an even number. So, we are actually counting by 2 * the stride | |
// We want the count to start on an odd number at the start of our field. That | |
// is, we want to assume that we have counted up to the edge of the field by | |
// the 'stride' and now we are going to start flipping bits in the field as we | |
// continue to count up by 'stride'. If we take the base of our field and | |
// divide by the stride, we find out how much we find out how short the last | |
// count was from reaching the edge of the bit field. Say we get a quotient of | |
// 3 and remainder of 1. This means that after 3 strides, we are 1 short of | |
// the start of the field and the next stride will either land within the | |
// field or step completely over it. The confounding factor is that our field | |
// only contains odd numbers and our stride is actually 2 * stride. If the | |
// quoitent is even, then that means that when we add 2 * stride, we are going | |
// to hit another even number. So, we have to know if we need to back off | |
// by 1 stride before we start couting by 2 * stride. | |
// We can tell from the remainder whether we are on an even or odd | |
// stride when we hit the beginning of the table. If we are on an odd stride | |
// (r & 1), we would start half a stride in (next - r)/2. If we are on an | |
// even stride, we need 0.5 strides (next - r/2) because the table only has | |
// odd numbers. If the remainder happens to be zero, then the start of the | |
// table is on stride so no adjustment is necessary. | |
if(r & 1) j = (next - r) / 2; | |
else if(r == 0) j = 0; | |
else j = next - (r / 2); | |
for(; j < fieldBits; j += next) | |
ClearBit(j, field, fieldSize); | |
} | |
if(next >= stop) | |
{ | |
mark++; | |
count = sieveMarks[mark].count; | |
stop = sieveMarks[mark].prime; | |
} | |
} | |
done: | |
INSTRUMENT_INC(totalFieldsSieved[PrimeIndex]); | |
i = BitsInArray(field, fieldSize); | |
INSTRUMENT_ADD(bitsInFieldAfterSieve[PrimeIndex], i); | |
INSTRUMENT_ADD(emptyFieldsSieved[PrimeIndex], (i == 0)); | |
return i; | |
} | |
#ifdef SIEVE_DEBUG | |
static uint32_t fieldSize = 210; | |
//***SetFieldSize() | |
// Function to set the field size used for prime generation. Used for tuning. | |
LIB_EXPORT uint32_t | |
SetFieldSize( | |
uint32_t newFieldSize | |
) | |
{ | |
if(newFieldSize == 0 || newFieldSize > MAX_FIELD_SIZE) | |
fieldSize = MAX_FIELD_SIZE; | |
else | |
fieldSize = newFieldSize; | |
return fieldSize; | |
} | |
#endif // SIEVE_DEBUG | |
//*** PrimeSelectWithSieve() | |
// This function will sieve the field around the input prime candidate. If the | |
// sieve field is not empty, one of the one bits in the field is chosen for testing | |
// with Miller-Rabin. If the value is prime, 'pnP' is updated with this value | |
// and the function returns success. If this value is not prime, another | |
// pseudo-random candidate is chosen and tested. This process repeats until | |
// all values in the field have been checked. If all bits in the field have | |
// been checked and none is prime, the function returns FALSE and a new random | |
// value needs to be chosen. | |
// Return Type: TPM_RC | |
// TPM_RC_FAILURE TPM in failure mode, probably due to entropy source | |
// TPM_RC_SUCCESS candidate is probably prime | |
// TPM_RC_NO_RESULT candidate is not prime and couldn't find and alternative | |
// in the field | |
LIB_EXPORT TPM_RC | |
PrimeSelectWithSieve( | |
bigNum candidate, // IN/OUT: The candidate to filter | |
UINT32 e, // IN: the exponent | |
RAND_STATE *rand // IN: the random number generator state | |
) | |
{ | |
BYTE field[MAX_FIELD_SIZE]; | |
UINT32 first; | |
UINT32 ones; | |
INT32 chosen; | |
BN_PRIME(test); | |
UINT32 modE; | |
#ifndef SIEVE_DEBUG | |
UINT32 fieldSize = MAX_FIELD_SIZE; | |
#endif | |
UINT32 primeSize; | |
// | |
// Adjust the field size and prime table list to fit the size of the prime | |
// being tested. This is done to try to optimize the trade-off between the | |
// dividing done for sieving and the time for Miller-Rabin. When the size | |
// of the prime is large, the cost of Miller-Rabin is fairly high, as is the | |
// cost of the sieving. However, the time for Miller-Rabin goes up considerably | |
// faster than the cost of dividing by a number of primes. | |
primeSize = BnSizeInBits(candidate); | |
if(primeSize <= 512) | |
{ | |
RsaAdjustPrimeLimit(1024); // Use just the first 1024 primes | |
} | |
else if(primeSize <= 1024) | |
{ | |
RsaAdjustPrimeLimit(4096); // Use just the first 4K primes | |
} | |
else | |
{ | |
RsaAdjustPrimeLimit(0); // Use all available | |
} | |
// Save the low-order word to use as a search generator and make sure that | |
// it has some interesting range to it | |
first = (UINT32)(candidate->d[0] | 0x80000000); | |
// Sieve the field | |
ones = PrimeSieve(candidate, fieldSize, field); | |
pAssert(ones > 0 && ones < (fieldSize * 8)); | |
for(; ones > 0; ones--) | |
{ | |
// Decide which bit to look at and find its offset | |
chosen = FindNthSetBit((UINT16)fieldSize, field, ((first % ones) + 1)); | |
if((chosen < 0) || (chosen >= (INT32)(fieldSize * 8))) | |
FAIL(FATAL_ERROR_INTERNAL); | |
// Set this as the trial prime | |
BnAddWord(test, candidate, (crypt_uword_t)(chosen * 2)); | |
// The exponent might not have been one of the tested primes so | |
// make sure that it isn't divisible and make sure that 0 != (p-1) mod e | |
// Note: This is the same as 1 != p mod e | |
modE = (UINT32)BnModWord(test, e); | |
if((modE != 0) && (modE != 1) && MillerRabin(test, rand)) | |
{ | |
BnCopy(candidate, test); | |
return TPM_RC_SUCCESS; | |
} | |
// Clear the bit just tested | |
ClearBit(chosen, field, fieldSize); | |
} | |
// Ran out of bits and couldn't find a prime in this field | |
INSTRUMENT_INC(noPrimeFields[PrimeIndex]); | |
return (g_inFailureMode ? TPM_RC_FAILURE : TPM_RC_NO_RESULT); | |
} | |
#if RSA_INSTRUMENT | |
static char a[256]; | |
//*** PrintTuple() | |
char * | |
PrintTuple( | |
UINT32 *i | |
) | |
{ | |
sprintf(a, "{%d, %d, %d}", i[0], i[1], i[2]); | |
return a; | |
} | |
#define CLEAR_VALUE(x) memset(x, 0, sizeof(x)) | |
//*** RsaSimulationEnd() | |
void | |
RsaSimulationEnd( | |
void | |
) | |
{ | |
int i; | |
UINT32 averages[3]; | |
UINT32 nonFirst = 0; | |
if((PrimeCounts[0] + PrimeCounts[1] + PrimeCounts[2]) != 0) | |
{ | |
printf("Primes generated = %s\n", PrintTuple(PrimeCounts)); | |
printf("Fields sieved = %s\n", PrintTuple(totalFieldsSieved)); | |
printf("Fields with no primes = %s\n", PrintTuple(noPrimeFields)); | |
printf("Primes checked with Miller-Rabin = %s\n", | |
PrintTuple(MillerRabinTrials)); | |
for(i = 0; i < 3; i++) | |
averages[i] = (totalFieldsSieved[i] | |
!= 0 ? bitsInFieldAfterSieve[i] / totalFieldsSieved[i] | |
: 0); | |
printf("Average candidates in field %s\n", PrintTuple(averages)); | |
for(i = 1; i < (sizeof(failedAtIteration) / sizeof(failedAtIteration[0])); | |
i++) | |
nonFirst += failedAtIteration[i]; | |
printf("Miller-Rabin failures not in first round = %d\n", nonFirst); | |
} | |
CLEAR_VALUE(PrimeCounts); | |
CLEAR_VALUE(totalFieldsSieved); | |
CLEAR_VALUE(noPrimeFields); | |
CLEAR_VALUE(MillerRabinTrials); | |
CLEAR_VALUE(bitsInFieldAfterSieve); | |
} | |
//*** GetSieveStats() | |
LIB_EXPORT void | |
GetSieveStats( | |
uint32_t *trials, | |
uint32_t *emptyFields, | |
uint32_t *averageBits | |
) | |
{ | |
uint32_t totalBits; | |
uint32_t fields; | |
*trials = MillerRabinTrials[0] + MillerRabinTrials[1] + MillerRabinTrials[2]; | |
*emptyFields = noPrimeFields[0] + noPrimeFields[1] + noPrimeFields[2]; | |
fields = totalFieldsSieved[0] + totalFieldsSieved[1] | |
+ totalFieldsSieved[2]; | |
totalBits = bitsInFieldAfterSieve[0] + bitsInFieldAfterSieve[1] | |
+ bitsInFieldAfterSieve[2]; | |
if(fields != 0) | |
*averageBits = totalBits / fields; | |
else | |
*averageBits = 0; | |
CLEAR_VALUE(PrimeCounts); | |
CLEAR_VALUE(totalFieldsSieved); | |
CLEAR_VALUE(noPrimeFields); | |
CLEAR_VALUE(MillerRabinTrials); | |
CLEAR_VALUE(bitsInFieldAfterSieve); | |
} | |
#endif | |
#endif // RSA_KEY_SIEVE | |
#if !RSA_INSTRUMENT | |
//*** RsaSimulationEnd() | |
// Stub for call when not doing instrumentation. | |
void | |
RsaSimulationEnd( | |
void | |
) | |
{ | |
return; | |
} | |
#endif |