/* Microsoft Reference Implementation for TPM 2.0 | |
* | |
* The copyright in this software is being made available under the BSD License, | |
* included below. This software may be subject to other third party and | |
* contributor rights, including patent rights, and no such rights are granted | |
* under this license. | |
* | |
* Copyright (c) Microsoft Corporation | |
* | |
* All rights reserved. | |
* | |
* BSD License | |
* | |
* Redistribution and use in source and binary forms, with or without modification, | |
* are permitted provided that the following conditions are met: | |
* | |
* Redistributions of source code must retain the above copyright notice, this list | |
* of conditions and the following disclaimer. | |
* | |
* Redistributions in binary form must reproduce the above copyright notice, this | |
* list of conditions and the following disclaimer in the documentation and/or | |
* other materials provided with the distribution. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS"" | |
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR | |
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | |
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
//** Introduction | |
// | |
// This file contains implementation of the math functions that are performed | |
// with canonical integers in byte buffers. The canonical integer is | |
// big-endian bytes. | |
// | |
#include "Tpm.h" | |
//** Functions | |
//*** UnsignedCmpB | |
// This function compare two unsigned values. The values are byte-aligned, | |
// big-endian numbers (e.g, a hash). | |
// Return Type: int | |
// 1 if (a > b) | |
// 0 if (a = b) | |
// -1 if (a < b) | |
LIB_EXPORT int | |
UnsignedCompareB( | |
UINT32 aSize, // IN: size of a | |
const BYTE *a, // IN: a | |
UINT32 bSize, // IN: size of b | |
const BYTE *b // IN: b | |
) | |
{ | |
UINT32 i; | |
if(aSize > bSize) | |
return 1; | |
else if(aSize < bSize) | |
return -1; | |
else | |
{ | |
for(i = 0; i < aSize; i++) | |
{ | |
if(a[i] != b[i]) | |
return (a[i] > b[i]) ? 1 : -1; | |
} | |
} | |
return 0; | |
} | |
//***SignedCompareB() | |
// Compare two signed integers: | |
// Return Type: int | |
// 1 if a > b | |
// 0 if a = b | |
// -1 if a < b | |
int | |
SignedCompareB( | |
const UINT32 aSize, // IN: size of a | |
const BYTE *a, // IN: a buffer | |
const UINT32 bSize, // IN: size of b | |
const BYTE *b // IN: b buffer | |
) | |
{ | |
int signA, signB; // sign of a and b | |
// For positive or 0, sign_a is 1 | |
// for negative, sign_a is 0 | |
signA = ((a[0] & 0x80) == 0) ? 1 : 0; | |
// For positive or 0, sign_b is 1 | |
// for negative, sign_b is 0 | |
signB = ((b[0] & 0x80) == 0) ? 1 : 0; | |
if(signA != signB) | |
{ | |
return signA - signB; | |
} | |
if(signA == 1) | |
// do unsigned compare function | |
return UnsignedCompareB(aSize, a, bSize, b); | |
else | |
// do unsigned compare the other way | |
return 0 - UnsignedCompareB(aSize, a, bSize, b); | |
} | |
//*** ModExpB | |
// This function is used to do modular exponentiation in support of RSA. | |
// The most typical uses are: 'c' = 'm'^'e' mod 'n' (RSA encrypt) and | |
// 'm' = 'c'^'d' mod 'n' (RSA decrypt). When doing decryption, the 'e' parameter | |
// of the function will contain the private exponent 'd' instead of the public | |
// exponent 'e'. | |
// | |
// If the results will not fit in the provided buffer, | |
// an error is returned (CRYPT_ERROR_UNDERFLOW). If the results is smaller | |
// than the buffer, the results is de-normalized. | |
// | |
// This version is intended for use with RSA and requires that 'm' be | |
// less than 'n'. | |
// | |
// Return Type: TPM_RC | |
// TPM_RC_SIZE number to exponentiate is larger than the modulus | |
// TPM_RC_NO_RESULT result will not fit into the provided buffer | |
// | |
TPM_RC | |
ModExpB( | |
UINT32 cSize, // IN: the size of the output buffer. It will | |
// need to be the same size as the modulus | |
BYTE *c, // OUT: the buffer to receive the results | |
// (c->size must be set to the maximum size | |
// for the returned value) | |
const UINT32 mSize, | |
const BYTE *m, // IN: number to exponentiate | |
const UINT32 eSize, | |
const BYTE *e, // IN: power | |
const UINT32 nSize, | |
const BYTE *n // IN: modulus | |
) | |
{ | |
BN_MAX(bnC); | |
BN_MAX(bnM); | |
BN_MAX(bnE); | |
BN_MAX(bnN); | |
NUMBYTES tSize = (NUMBYTES)nSize; | |
TPM_RC retVal = TPM_RC_SUCCESS; | |
// Convert input parameters | |
BnFromBytes(bnM, m, (NUMBYTES)mSize); | |
BnFromBytes(bnE, e, (NUMBYTES)eSize); | |
BnFromBytes(bnN, n, (NUMBYTES)nSize); | |
// Make sure that the output is big enough to hold the result | |
// and that 'm' is less than 'n' (the modulus) | |
if(cSize < nSize) | |
ERROR_RETURN(TPM_RC_NO_RESULT); | |
if(BnUnsignedCmp(bnM, bnN) >= 0) | |
ERROR_RETURN(TPM_RC_SIZE); | |
BnModExp(bnC, bnM, bnE, bnN); | |
BnToBytes(bnC, c, &tSize); | |
Exit: | |
return retVal; | |
} | |
//*** DivideB() | |
// Divide an integer ('n') by an integer ('d') producing a quotient ('q') and | |
// a remainder ('r'). If 'q' or 'r' is not needed, then the pointer to them | |
// may be set to NULL. | |
// | |
// Return Type: TPM_RC | |
// TPM_RC_NO_RESULT 'q' or 'r' is too small to receive the result | |
// | |
LIB_EXPORT TPM_RC | |
DivideB( | |
const TPM2B *n, // IN: numerator | |
const TPM2B *d, // IN: denominator | |
TPM2B *q, // OUT: quotient | |
TPM2B *r // OUT: remainder | |
) | |
{ | |
BN_MAX_INITIALIZED(bnN, n); | |
BN_MAX_INITIALIZED(bnD, d); | |
BN_MAX(bnQ); | |
BN_MAX(bnR); | |
// | |
// Do divide with converted values | |
BnDiv(bnQ, bnR, bnN, bnD); | |
// Convert the BIGNUM result back to 2B format using the size of the original | |
// number | |
if(q != NULL) | |
if(!BnTo2B(bnQ, q, q->size)) | |
return TPM_RC_NO_RESULT; | |
if(r != NULL) | |
if(!BnTo2B(bnR, r, r->size)) | |
return TPM_RC_NO_RESULT; | |
return TPM_RC_SUCCESS; | |
} | |
//*** AdjustNumberB() | |
// Remove/add leading zeros from a number in a TPM2B. Will try to make the number | |
// by adding or removing leading zeros. If the number is larger than the requested | |
// size, it will make the number as small as possible. Setting 'requestedSize' to | |
// zero is equivalent to requesting that the number be normalized. | |
UINT16 | |
AdjustNumberB( | |
TPM2B *num, | |
UINT16 requestedSize | |
) | |
{ | |
BYTE *from; | |
UINT16 i; | |
// See if number is already the requested size | |
if(num->size == requestedSize) | |
return requestedSize; | |
from = num->buffer; | |
if (num->size > requestedSize) | |
{ | |
// This is a request to shift the number to the left (remove leading zeros) | |
// Find the first non-zero byte. Don't look past the point where removing | |
// more zeros would make the number smaller than requested, and don't throw | |
// away any significant digits. | |
for(i = num->size; *from == 0 && i > requestedSize; from++, i--); | |
if(i < num->size) | |
{ | |
num->size = i; | |
MemoryCopy(num->buffer, from, i); | |
} | |
} | |
// This is a request to shift the number to the right (add leading zeros) | |
else | |
{ | |
MemoryCopy(&num->buffer[requestedSize - num->size], num->buffer, num->size); | |
MemorySet(num->buffer, 0, requestedSize- num->size); | |
num->size = requestedSize; | |
} | |
return num->size; | |
} | |
//*** ShiftLeft() | |
// This function shifts a byte buffer (a TPM2B) one byte to the left. That is, | |
// the most significant bit of the most significant byte is lost. | |
TPM2B * | |
ShiftLeft( | |
TPM2B *value // IN/OUT: value to shift and shifted value out | |
) | |
{ | |
UINT16 count = value->size; | |
BYTE *buffer = value->buffer; | |
if(count > 0) | |
{ | |
for(count -= 1; count > 0; buffer++, count--) | |
{ | |
buffer[0] = (buffer[0] << 1) + ((buffer[1] & 0x80) ? 1 : 0); | |
} | |
*buffer <<= 1; | |
} | |
return value; | |
} | |